
We would like to thank Dr. Kern for his thoughtful and constructive review; we believe that his 

feedback will undoubtedly improve the quality of our manuscript. 

We have appended an ammended manuscript to this document which illustrates the changes we 

have made to our submission in response to the feedback. Below we quote Dr. Kern’s comments in 

blue, and our responses follow in red. 

We would first like to first bring to the reviewer’s attention a mistake made in the original 

manuscript. Due to a programming error we inadvertantly used radar freeboard data from a different

product (that of Landy et al., 2020) in the winter of 2017/18. Because this product generally 

exhibits higher radar freeboard values than those used in the rest of the study due to a different 

retracking algorithm, we misidentified this winter at one point as ‘a trend bucking year’ for radar 

freeboards. We have now fixed this error and updated our statistics. This has had the following 

results:

• Regional declines in radar freeboard and resulting sea ice thickness are generally smoother.

• Negative trends in several regions are slightly increased.

• Negative trends are therefore more frequently statistically significant at the 5% level.

• Trends when calculated with SnowModel-LG in the 2002-2018 period are now in better 

agreement with those calculated from NESOSIM in the 2002-2015 period.

Despite these changes, the central thesis of our paper remains unchanged: the use of a snow product

with regional variability and trends propagates into varaiblity and trends in regional sea ice 

thickness. 

Summary: This very interesting paper illustrates the potential improvement in the credibility of 

trends in and inter-annual / intra-basin variations of Arctic sea-ice thickness estimates from satellite 

radar altimetry. This is achieved by a comprehensive intercomparison of the contribution of snow 

on sea ice on the retrieval of sea-ice thickness from radar freeboard when using the Warren et al. 

(1999) snow climatology on the one hand and a physical model for snow properties driven by 

atmospheric reanalyses’ precipitation and other relevant meteorological parameters on the other 

hand. As expected, the inter-annual variability of the snow contributions based on the model data is 

considerably larger than the one based on the Warren et al. (1999) data. The paper further 

convincingly demonstrates that the more realistic inter-annual variation and trend in the snow 

parameters obtained with the model yields a new overall picture of the variability and spatio-

temporal development of the Arctic Ocean sea-ice thickness.

The paper is generally well written and will have considerable impact on the scientific community. 

It would benefit from some re-organization (see GC1). It is furthermore quite light when it comes to

descriptions of data and methodologies used (GC2). Currently, one would not be able to re-produce 

the work done. The inclusion of Kara and Barents Sea I find quite a hypothetical move based on the

data availability and suggest to consider removing those from the analysis (GC3). Finally, there is a 

number of open points to discuss when it comes to the illustration and interpretation of the results 

presented. In the following you will find my list of general comments (GC), specific comments and 

some suggestions to mitigate typos and editoral issues - all for the main manuscript - followed by a 

short list of things I found worth to consider in the supplementary material.

Title: While your main conclusion supports the title in general, it is in some way misleading. The 

main focus of the paper is on the illustration that a snow depth climatology

is not well suited to compute credible trends in sea-ice thickness estimates derived from



satellite altimetry with such a snow depth as input for the freeboard to thickness conversion. In your

paper, this is illustrated by usage of data from a numerical model which

has experienced limited validation. Hence, albeit the improvement using these model

data is obvious it is not necessarily the truth either. Hence, instead of formulating the title as a fact I 

suggest to include points of the above-stated.

In response to this feedback we would append a clarifying clause, so that the title reads: 

‘Faster decline and higher variability in the sea ice thickness of the marginal Arctic seas 

when accounting for dynamic snow cover’

GC1: I strongly recommend to re-organize the paper. Most of the explanations / motivations given 

in the subsections 1.1 and 1.2 are tied relatively close to Section 3 and should be combined with that

section. In addition, subsections 1.1 and 1.2 refer to data and regions denoted in Section 2. Hence: 

Remove 1.1 and 1.2 and put it into Section 3. Let Section 2 start right behind the "true" 

introduction. That way the data sets used in 1.1 and 1.2 would be introduced adequately beforehand 

which eases reading and which reduces the number of open questions.

We have rearranged these sections accordingly. Section 1.1 (on our method of separating the 

impacts of snow and radar freeboard data on thickness determination) has been moved to the 

methods section (Section 3). We agree with the reviewer that our illustration of the limitations of 

W99 in Sects 1.2.1 & 1.2.2 would have been better placed after the data description (Sect 2). Rather

than put this in the Methods section (Sect 3), we have moved it to the beginning of our Results 

section (Sect 4). We hope this is satisfactory to the reviewer, but if not we will of course reconsider 

his original suggestion of Sect 3. 

GC2: Both, the description of the data used as well as of the methodologies used lack some clarity 

and/or do not contain all information required. One good example: The ESA-CCI radar freeboard 

data set used comprises data of two different satellites with some overlap. It is not clear from the 

description in the data how long the Envisat and how long the Cryosat-2 part of the data used is - 

plus a motivation of the choice made - plus a discussion about the biases between the radar 

freeboards of these two satellites, which have a different sign based upon the region. Some of the 

descriptions also appear to contain errors which ask for re-phrasing. 

We agree that not specifying the transition point from Envisat to CryoSat-2 radar freeboard data was

an oversight. We would add the following clarifying information into the “Radar Freeboard Data” 

subsection:

CS2 carries a delay-Doppler altimeter that significantly enhances along-track resolution by 

creating a synthetic aperture. For this reason as well as its higher latitudinal limit, we used 

CS2 radar freeboard measurements over Envisat’s during the period when the missions 

overlapped (November 2010 - March 2012).

We have also made changes to our data description and discussion sections with regard to the 

potential effect of biases between the radar freeboard measurements of the two satellites. To “Data 

Description” (Sect 2.2) we have added: 

To create a radar freeboard product that is consistent between the Envisat and CS2 

missions, Envisat returns are retracked using a variable threshold retracking algorithm. 

This variable threshold is calculated from the strength of the surface backscatter and the 

width of the leading edge of the return waveform such that the inter-mission bias is 

minimised (Paul et al., 2018). The results are comprehensively analysed in the Product 



Validation & Intercomparison Report (ESA, 2018). One key finding of this report is that 

while Envisat radar freeboards are calculated so as to match CS2 freeboards during the 

period of overlap over the whole Arctic basin, there are biases over ice types. In particular, 

Envisat ice freeboards (not radar freeboards) are biased 2-3 cm low (relative to CS2) in 

areas dominated by MYI, and 2-3 cm high in areas dominated by FYI. We discuss the 

implications of these biases in Sect. (5.3). 

To our Discussion section, we have added a subsection “Inter-Mission Bias between Envisat and 

CryoSat-2” (5.3). This reads:

An extensive validation exercise for the merged products indicated that although Envisat 

radar freeboards match well with CS2 freeboards in the Arctic overall, some biases do exist 

over specific ice types (ESA, 2018). In particular, analysis of the inter-mission overlap 

period indicates that Envisat freeboards were biased low (relative to CS2) in areas 

dominated by MYI, and high in areas dominated by FYI.

We first make the point that this will have a relatively minimal effect on our findings 

regarding interannual variability, as Snow is unaffected by this and σ2
RF is likely relatively 

independent of the absolute magnitude of RF.

With regard to trends, if Envisat radar freeboards (and thus RF) are in fact biased high over 

FYI between 2002-2010 (relative to CS2), then the total trend in many regions dominated by

FYI could potentially be smaller than calculated in this manuscript. 

We do however add that our findings regarding the impact of declining Snow is unaffected 

by any inter-mission bias in RF. Because the trend in SIT is determined by both Snow & RF,

the trend in SIT will always be more negative when calculated with downward trending data

for Snow.

GC3: The overall credibility of the paper would benefit from a more critical consideration of the 

application area of the Warren et al. (1999) climatology. Sampling density, number of observations, 

as well as the distribution of the snow depth observations over time combined with the usage of a 

polynomial fit limits the usefulness of these observations in the regions Kara Sea and Barents Sea. 

One good solution would be to omit these regions. 

Following the suggestion of the reviewer we analysed the original positional data (found within the 

meteorological observations) from drifting stations NP3 – NP31. This was all the data available to 

us, and was supplied previously in a personal communication by the NSIDC.

After plotting the tracks of these 27 drifting stations, we counted the number of stations that visited 

each region in each month:



We note in the above figure that repeat visits by stations on the same or consecutive years do not 

add to the tally. For example, NP22 lasted for four years and visited the same regions in the same 

months on consecutive years. However it then became apparent that some stations were not making 

snow measurements during some regional ‘visits’, and this should be included in the consideration 

of the sampling density as suggested by the reviewer. Instead we identified all distinct dates on 

which snow stake data was gathered by each NP station. We then cross-referenced this with the 

positional data found within the met data, to break down the number of distinct stake-measurement-

days in each region by month. We believe this is a suitable metric for the spatial sampling of the 

drifting stations.

We have now included this figure and a description of the analysis within the W99 component of 

the Data Description section.

With regard to omitting undersampled marginal seas such as the Kara and Barents Seas from our 

analysis, we note that poor drifting station coverage has not stopped sevaral authors from using 

(m)W99 to derive sea ice thickness in these marginal seas (e.g. Sallila et al., 2019; Li et al., 2020; 

Li et al., 2020b; Belter et al., 2020) particularly in the pursuit of estimating sea ice volume (Tilling 

et al., 2015; Tilling et al., 2018; Laxon et al., 2013). . We therefore would like to consider these 

regions in this manuscript, but with the clear caveat (which is now made explicit to the reader) that 

mW99 is likely not representative of the snow conditions. The subsection that we have added reads:

2.3.1 Drifting Station Coverage Illustration

At this point it is instructive to briefly illustrate the coverage of the drifting stations from 

which W99 was compiled. We analysed position and snow depth data from the twenty-eight 

drifting stations that contributed to W99 (Fig. 2a). It is clear that the vast majority of these 

operated in the Central Arctic or in the East Siberian Sea, with very little sampling done in 

most other marginal seas. But while these tracks illustrate the movements of the drifting 

stations, it is important to note that the stations were not always collecting snow data which 

would contribute to the W99 climatology. To assess the spatial distribution of snow 

sampling, we cross-referenced the position data with days on which the drifting stations 

recorded the snow depth at their measuring stakes. We then calculated the number of 

`measurement-days' in each region-month combination (Fig. 2b). We note that when two 



drifting stations were operating at the same day, we count this as two distinct days (as they 

were rarely so close together so as to collect redundant data). 

This reveals that no snow measurements were taken in the Barents and Kara Seas, and none 

in the Laptev Sea for four of the seven winter months. While `snow-line' transect data also 

contributed to W99 (and indeed was used in preference to stake data where possible), we 

find that snow-line data was overwhelmingly collected on days where stake-data was also 

collected. 

Figure 2 illustrates that the quadratic fits of W99 are not appropriate for use in several of the 

marginals seas. However we note that a number of authors have still used the climatology 

for sea ice thickness retrievals in these regions, often in the course of sea ice volume 

calculations (e.g. Sallila et al., 2019; Li et al., 2020; Li et al., 2020b; Belter et al., 2020; 

Tilling et al., 2015; Tilling et al., 2018; Laxon et al., 2003; Laxon et al., 2013). We therefore 

consider these regions in this manuscript, but with the understanding that mW99 is likely not

representative of the snow conditions.  



Specific comments

Line 18: " ... it determines whether floes ridge or raft ... " –> My take on this would be that this 

happens at rather small ice thicknesses, i.e. around 20-30 cm. I am therefore not so sure whether 

this is such an important physical role of the sea-ice thickness., 

We have removed this line.

Line 21: "... with thin ice favoring melt pond formation ..." Why is that? Because there is little 

snow, which melts away more quickly than on thick is with a thicker snow cover? Otherwise I don’t

see a pressing reason why melt pond formation, which is basically driven by downward short- and 

longwave radiation should occur more easily on thin than on thick sea ice. 

Thin ice favors melt pond formation because it is generally more level. Level ice favors melt pond 

formation because a given amount of water covers a greater surface area. We have removed this 

line.

Line 76: "below the waterline" –> Why this part of the total SIT is from below the waterline? I find 

this addition confusing because it implies that the sea ice is thicker when it is snow covered - which 

is not necessarily the case. Equation (2) refers to a SIT which is similar in both cases, bare or with 

snow cover. It could be 1 m, 2 m, whatsoever, with or without snow. The quantities that change are 

the sea-ice freeboard and the radar freeboard. It seems you want to express that in case of a snow 

cover the part of the sea ice that is below the waterline is larger than in case of bare ice. Usually this

part below the waterline is called draft. It might hence make sense to re-phrase this sentence a bit to 

avoid confusion. 

While the presence of snow on sea ice doesn’t causally make the ice thicker, when we try to 

estimate the thickness of ice with a known radar/ice freeboard, we assume that it is thicker if it has 

thicker snow on it. That’s because to support the weight of the snow while maintaining radar/ice 

freeboard, it must be more buoyant and therefore thicker.  

For instance an MYI floe with a known radar freeboard of 5cm and no snow cover is likely around 

36cm thick. But if it has 6kg/m2 of snow on it (~2cm @ 300kg/m3), we estimate it to be around 

44cm thick (Eq. 2). If it has 18kg/m2 of snow (~6cm), we estimate a 60cm thickness. It is in this 

sense that six centimeters of snow can ‘add’ twenty-four centimeters of sea ice thickness to our 

estimation. 

We can assess exactly how much ‘extra’ sea ice thickness is inferred by a snow thickness by 

calculating d(SIT)/d(ms) = (ρw/ρw-ρi) * 1.81 * 10-3 = 1.3cm per kg/m2 of additional snow cover (at  

MYI ice density).

As for the reviewer’s point about whether this ‘extra’ thickness is added ‘below the waterline’, he is

right that this is confusing. This line was originally included with the following schematic in mind:



But there is no reason that the ‘extra’ thickness inferred should be conceptualised as ‘appearing’ at 

the bottom, as illustrated. We therefore clarify by removing the phrase ‘below the waterline’.

To further reduce confusion surrounding this issue, we have clarified throughout the paper that we 

are considering the relative contributions of snow and RF data to the thickness determination. That 

is, their contribution is to the calculation, as opposed to their literal contribution in space.

Line 83: "assumes total radar penetration of overlying snow" –> How about penetration of the Ku-

Band signal into the sea ice? Given the different near-surface sea-ice salinity and densities of MYI 

compared to FYI one might need to also make a comment on this issue?

This is an interesting point. In-situ studies by Willatt et al. (2010, 2011) suggest that a very low 

amount of Ku-band radar energy returns from below the sea ice surface. Further in-situ 

measurements from the MOSAiC expedition published by Stroeve et al. (2020) are in agreement 

with this. The physical basis for this is the strong dielectric contrast between the snow and the sea 

ice. 

Regarding the differences between MYI and FYI, it likely that an FYI-snow interface will have a 

higher normalised radar cross-section (and would therefore be penetrated less). This is because (as 

alluded to by the reviewer) the density, salinity, and therefore permitivity of the ice is higher relative

to that of snow or air. We do however note that due to the process of upward brine migration into 

the snow from the FYI surface, an ‘impedance matching’ effect can be produced (Perovich et al., 

1998) which lowers the dielectric contrast at the ice-snow interface. However the strength and 

prevalence of this effect are not well understood.

Lines 109/110: "as quadratic fits ... without corresponding fits of density." –> I don’t agree. Warren 

et al. (1999), page 8, writes about 2-dimensional density fits. Yes, only a May map is shown but 

maps are derived for all months. And it is the SWE which is computed, not the other way round. 

Please rewrite this paragraph accordingly. 

The reviewer is right to highlight that a quadratic fit for May snow density is shown in Fig. 10 of 

Warren et al. (1999), and it was density that was measured in-situ, not SWE (as shown in Fig. 2 of 

Warren et al., 1999). We would like to state that we have conducted an extensive search for the 

original density fits (one of which is displayed in Fig. 10 of Warren et al.), but have not been able to

find them. This search included contacting the first two authors of Warren et al. 1999 and going 

through the Fetterer and Radionov (2000) data hosted publicly by the NSIDC (which only contain 

fits for SWE and depth). We also received additional, raw data on snow line and stake data from the

NSIDC in a private communication which did not include the quadratic density fits. But it is clearly 



the case that the fit for May is published in Warren et al., so we revise our wording to: “quadratic 

fits of density … are not publicly available for all months”.

Lines 121-124: I suggest to provide information whether and to which extend this modification of 

W99 has been implemented by follow-on studies, e.g. Tilling et al. ? Kwok and Cunningham 

2015 ... 

We have elaborated on this in the text:

Mainstream CS2 thickness retrieval products have generally used this approach since (e.g. 

Tilling et al., 2018; Kurtz et al., 2014; Hendricks et al., 2018). Kwok and Cunningham 

(2015) also investigated the effect of multiplying by a factor of 0.7 (rather than 0.5) with 

some success. 

Lines 126-127: "are not currently used in sea ice thickness retrievals" –> I am wondering whether 

these variabilities are input into the uncertainty estimates provided alongwith the ESA-CCI SIT 

products? It might be worth to check. 

This information is contained in the D2.1 Algorithm Theoretical Basis Docuement for the ESA-CCI

freeboards (Sect. 2.9.4). The IAV values do indeed contribute to the uncertainty estimates provided 

with the ESA-CCI product and we have added this information to our manuscript.

Lines 130-133: "As such, ... values." –> Will this described in more detail in section 2? No it will 

not. Are positions of real drift stations used? If yes, which? If not: Isn’t taking into account ALL ice 

covered grid cells of a 25 km grid providing a substantially different statistics - compared to the few

drift stations used in the W99 climatology (their Fig. 1)? What is the time period considered? The 

description of this analysis step is lacking key details and should be re-written.

We have comprehensively rewritten this section to clarify. We now stress that the IAV values 

presented in W99 represent the mean of many (positive) IAV values from individual, point-like 
drifting stations. To compare mW99 and SnowModel-LG values to these in a rigorous way, we 

therefore must similarly take the mean of many (positive) IAV values from individual points. It 

would be wrong to take the IAV of the mean value of many points (which may each have cancelling

positive or negative anomalies). This is a nuanced distinction that was not fully spelled out, but we 

believe to now be remedied. We also note that the logic above does not hold regarding the trends 

observed at drifting stations (because individual drifting station trends are not always positive), but 

because none the trends reported in Warren et al. (1999) are statistically significant we have not 

reported or visualised them in our manuscript.

Figure 2: Fig. 2 could be connected more easily to Fig. 1 if you’d use snow depth instead of SWE. 

It is not entirely clear how these maps are derived. 

We have now changed this figure to snow depth and added clarifying information in the caption and

the main text (see below):



Caption: “Snow depth variability at each EASE grid point over the 2002-2018 period. This is 

calculated by generating a timeseries of snow depth at each point and then calculating the 

standard deviation of that timeseries. High variability is displayed in a band where sea ice 

type typically fluctuates from year to year. IAV is zero in areas that do not exhibit sea ice 

type variability, introducing unphysically low variability in SIT in these areas.”

I note that the ice edge in the Kara / Barents Seas looks a bit weird for months DEC and JAN. 

These sharp edges were formed by an unexpected bug involving interaction between the “zero-line”

of the W99 quadratic fits and our masking technique in these two months. A small change of a 

boolean  (x<0 → x<=0) has fixed this. 

Line 136: "this results" –> Which? Not clear to what this refers.

We have changed this to:

“We present this analysis of the point-like snow variability to illustrate that mW99...”

Line 138: "where the ice type typically varies from year to year" –> How did you define this?

We have clarified this with the following sentence:

“This band represents areas where the ice-type is not typically either FYI or MYI. Instead it 

is either switching between the two, or it is an area where FYI has replaced MYI during the 

period of analysis.”

Lines 157-162: "We find ... (S3)." –> One question upfront: What is exactly the region you are 

considering here? The central Arctic Ocean? Laptev Sea included? Kara Sea? 

In the manuscript we stated (L155): 

“We instead compare the trends in basin-wide snow depth...”



But we appreciate it may have been unclear what we meant by “basin-wide”. We have therefore 

added a set of clarifying parentheses so that the sentence now reads:

“We instead compare the trends in basin-wide (all shaded regions of Fig. 1) snow depth...”

I am just asking because at a certain point in winter the entire region considered should be ice 

covered and the FYI fraction hence be only a function of the MYI extent. I buy that there is a the 

decreasing fraction of FYI relative to the total ice extent in October due to later freeze-up. I don’t 

agree, however, that this is the sole reason for your observation with respect to the trend mW99 

snow depth and SWE. I believe an issue to consider is that the MYI coverage retreats more and 

more to those regions where W99 has maximum snow depth. Hence the relative fraction of MYI 

grid cells with comparably thick snow is increasing which to my opinion can result in a higher 

mean W99 snow depth (and SWE) for the MYI part of the sea ice in October. 

This is an interesting point that we had not considered. To investigate the effect of the ice retretating

into a region of high W99 snow depth, we repeated our analysis with a ‘flattened’ W99 climatology.

To do this we first calculated monthly basin-wide SWE and depth averages from the W99 

climatology. We then assigned those values to every point in the basin, rather than using the 

quadratic fits. This has the effect of removing the areas of high snow depth/SWE. We then halved 

the snow depth/ SWE over FYI as before to produce an mW99 product without the quadratic fitting.

We then performed our trend analysis again and found that the October trends were lower in the 

‘flattened’ case, indicating that retreat into a higher-depth region of W99 is indeed playing a role in 

the positive snow trends. We do however note that the October trends in SWE and snow depth are 

both still significant at the 5% level in the ‘flattened’ case.



We therefore modify our manuscript to say:

“This increasing trend in snow depth is in part due to the diminishing area of October FYI 

relative to that of MYI (Fig. S4), and in part due to the retreat of the October ice into the 

Central Arctic where W99 exhibits higher snow depths and SWE.”

Lines 164-166: "Several ... year to year. –> I don’t find this formulation particularly clear. I find the 

"cannot accumulate snow from year to year" not to well chosen in the light of mostly complete 

snow melt during summer - also on multiyear ice. I’d state that there are two reasons for the 

observations with SnowModel-LG: 1) The MYI area shrinks. Hence your sentence about "a lower 

[smaller] ice area is exposed to snowfall in September/October fits well. 2) Freeze-up commences 

later, hence new seasonal ice either has not yet formed or is too thin to carry / accumulate snow 

resulting in a substantial amount of the precipitation falling as snow being dumped into open water. 

In short also here your sentence about "a lower ice areas ..." applies, meaning you can, to my 

opinion, delete that extension "also the later ... year." 

We agree with this observation and have changed the manuscript to the following:

“We identify two processes as responsible for this decreasing trend: the MYI ice area is 

shrinking, so a smaller MYI sea ice area is present during during the high snowfall months 

of September and October (Boisvert et al., 2018); also freeze-up commences later, so a 

lower FYI area is available in these months and more precipitation falls directly into the 

ocean”

Line 167: "Webster et al. ..." –> I am wondering whether the "in situ sources" mentioned in the 

context of Webster et al. (2014) are i) also representing FYI and ii) aren’t complemented with 

information from airborne operation ice bridge data [in which case these are not "in situ" anymore]. 

Please check! If their data indeed represent FYI and MYI then it might be worth to mention that 

explicitly in your manuscript.

This comment has led to our revision of this sentence. In particular, we highlight that the figure 

cited from Webster et al. (2014) includes raw data from the NP stations, so cannot be seen as 

independent of W99. We have also ammended the sentence to highlight that airborne measurements

contributed significantly to the figure. 



“Webster et al. (2014) observed a -0.29cm/yr trend in Western Arctic spring snow depths 

using both airborne and in situ sources. This airborne contributions to this figure included 

data over both ice types, and the in-situ contributions included data from individual Soviet 

drifting stations from the Western Arctic.”

Lines 187-189: "Where sea ice ..." –> Could you please comment on whether this second data set is 

similar to / consistent with the OSI-SAF one? What is the basis? Given the fact that you investigate 

quite short time series in your paper and put quite some weight on different ice types it is important 

that thes two data sets are consistent to each other, i.e. provide a seamless continuous spatial 

FYI/MYI fraction distribution without a jump in total regional FYI and MYI extent from, e.g., Feb 

2005 to March 2005.

The OSISAF-403c Global Sea Ice Type data is an operational product that is only available since 

2005. Unfortunately the NSIDC product (which spans a longer time period) is not suitable because 

of its weekly time resolution (see next point), so we wanted to use this product as our primary 

source of ice-type data.

To extend our ice-type data for three years to reach the beginning of the radar freeboard timeseries 

we used the Copernicus Sea Ice Type Climate Data Record. Since our original submission this data 

has been relocated, the documentation has improved and it has been assigned a DOI 

(10.24381/cds.29c46d83). This documentation (here) includes a dedicated appendix (App. B) 

summarising the main differences between the OSI SAF operational product and the C3S product. 

The C3S product’s underlying algorithm is adopted from the OSISAF operational processing chain, 

but then modified to produce a consistent record compatable with reanalysis. 

The other key difference is that the OSISAF record uses active sensors such as the ASCAT 

scatterometer whereas the C3S product is confined to ‘passive’ satellite radiometers. This allows the

OSISAF product to be delivered at a higher spatial resolution. This advantage is generally lost in 

our analysis as we would downsample to a 25km grid for compatability with our radar freeboard 

and SnowModel-LG data. But the reviewer is absolutely right to ask (a) whether these differences 

affect our study and (b) is it appropriate to switch from C3S to OSISAF when the latter becomes 

available for the winter of 2005?

We compared the two ice-type datasets over the period 2005-2019 and found the differences to be 

very small (once we’d classified the ambiguous pixels). Nonetheless we now opt to now use the 

C3S dataset over the entire period of our study. This is because our study is based around trends and

variability, so a consistent record is of particular importance. We found after switching that this had 

a minimal impact on our results, and removes the need for a detailed assessment of (a) the abrupt 

transition from the CDS to the OSISAF product and (b) the impact on trends from the transition 

over the period.

We have rewritten the description of our ice type data to reflect this information.

I note that you also use NSIDC ice-age data and one could ask the question: why didn’t you use ice-

age data throughout the entire study? 

We do not use the NSIDC ice-age data in this study. The only NSIDC product cited here is the 

concetration data that is used to drive the NESOSIM model. Although the NSIDC product has a 

long time span (1984-2019), it is only available at a weekly temporal resolution. This makes it 

unsuitable for use in conjunction with the monthly data from the ESA-CCI product. This 

unsuitability stems from ambiguity about how to split certain weeks of data that span two months. 



Section 2.3: Please comment on two issues. 

1) The sampling on which W99 is based has large regional variations with substantial differences 

between marginal seas such as the Kara or Barents Seas compared to the central Arctic. How does 

the lack of reliability of W99 in these partly undersampled regions influence your results - 

particularly in the two regions mentioned above?

Our response above to GC2 highlights the exceptionally poor (and sometimes non-existant) 

sampling of the Kara, Barents and Laptev seas by Russian drifting stations. This uncertainty 

undoubtedly propagates into W99 and mW99. However, this has not stopped sevaral groups from 

using W99 to derive sea ice thickness in these marginal seas (e.g. Li et al., 2020a,b; Belter et al., 

2020) particularly in the pursuit of estimating sea ice volume (Tilling et al., 2015; Laxon et al., 

2013).

We do not argue here that using (m)W99 in these regions is an appropriate approach, but simply 

point out the difference in trends and variability of SIT when calculated with the two different 

methods. We also point out that even if the climatology has an absolute error in these regions, it 

does not significantly affect our findings regarding variability and trends (which are both low or 

effectively zero in (m)W99 regardless of the snow depth value itself). We have now included this 

argument in our manuscript (see GC2 response).

2) Snow depths / SWE in the Kara / Barents Sea do - for the same reason - depend a lot on the 

extrapolation / fit function used. Howdoes this influence your results?Aren’t the snow depth values 

in these regions too hypothetical to be adequately used in your study? Wouldn’t it make sense to 

exclude the Kara and Barents Seas? To my opinion it would make your study considerably more 

credible. And it would potentially safe some space.

The extrapolation/fit function is indeed highly uncertain in these marginal seas, although this does 

not affect our central arguments concerning trend and variability. This is because the trends and 

variability in the implementation of (m)W99 are not sensitive to the extrapolation/fit functions, but 

rather the lack of trends that stem from the climatological approach.  

Section 2.4: Isn’t the EASE grid a polar aspect of the Lambert Azimuthal Equal area grid? I’d 

suspect no re-gridding is required.

The reviewer is correct that EASE is a polar aspect of the Lambert Azimuthal Equal Area 

projection, and our description of the data was confusing in this respect. Both the ESA-CCI 

freeboards and the SnowModel-LG data are supplied on a 25 km EASE grid. The ESA-CCI data 

were previously being subjected to a “regridding” process that did not change the positions of the 

relevant coordinates at all (but did remove low-latitude ‘nan’ datapoints to make the grids the same 

dimension). This regridding process has now been removed from our processing chain (with no 

impact on the analysis). 

What is the grid resolution of the radar freeboard data?

As mentioned above, it supplied on a 25x25 km EASE grid, and this is now mentioned in our data 

description section. 

What is the time period (years, months of the year) for which these data are available and used by 

you?



The radar freeboard data is available from the CCI website from October in the winter of 2002/03 

until then end of winter 2016/17. However the CS2 radar freeboard component of the CCI product 

is functionally identical to the radar freeboard product made available by the Alfred Wegener 

Institue (Hendricks and Ricker, 2019). We have checked this manually for the period of overlap. We

were therefore able to extend the timeseries of radar freeboards for one year until the end of winter 

2017/2018, which is the end of our SnowModel-LG data series. All of these details have now been 

added to the Data Description of our revised manuscript.

How did you treat the overlap of Envisat and Cryosat-2?

A description of this was originally omitted in our manuscript. We direct the reviewer to our 

response above to GC2 where we have answered this question.

Key information is lacking here. It might also be worthwhile to take a look into the validation report

of the SIT / freeboard data set used (see e.g.: 

https://icdc.cen.uni-hamburg.de/fileadmin/user_upload/ESA_Sea-IceECV_Phase2/

SICCI_P2_PVIR-SIT_D4.1_Issue_1.1.pdf ). It provides some information about how "consistent" 

the two "merged" data sets are. Taking this information into account and discussing the potential 

biases (which still exist) I rate mandatory for a paper which so much relies on the analysis of this 

17-year long time-series with a change of sensor right in the middle of the time series. 

We note first for readers of this review that this document is now found here. We have now added 

relevant information to Section 2 on how the Envisat retracker threshold is varied to match CS2 in 

the period of overlap, as well as a citation to the PVIR document and some information on the 

relevant biases. 

We have also added the following subsection to our Discussion:

“Inter-Mission Sea Ice Type Bias between Envisat and CryoSat-2

An extensive validation exercise for the merged products indicated that although EnviSat 

radar freeboards match well with CS2 freeboards in the Arctic overall, some biases do exist 

over specific ice types (ESA, 2018). In particular, analysis of the inter-mission  overlap 

period indicates that Envisat freeboards were biased low (relative to CS2) in areas 

dominated by MYI, and high in areas dominated by FYI.

We first make the point that this will have a relatively minimal effect on our findings 

regarding interannual variability, as Snow is unaffected by this and σ2
RF is likely relatively 

independent of the absolute magnitude of RF.

With regard to trends, if Envisat radar freeboards (and thus RF) are in fact biased high over 

FYI between 2002-2010 (relative to CS2), then the total trends in many regions dominated 

by FYI could potentially be smaller than calculated in this manuscript. 

We do however add that our central findings regarding the impact of declining Snow is 

unaffected by any inter-mission bias in RF. Because the trend in SIT is determined by both 

Snow & RF, the trend in SIT will always be more negative when calculated with downward 

trending data for Snow.”

Line 206: "ice motion vectors" –> Which ice motion vectors? Please provide this information - 

including the temporal resolution and the version of that ice motion data set used - in your 

manuscript. 



The ice motion vectors used were v4 of the polar pathfinder ice motion vectors (Tschudi et al., 

2020). These are supplied on the 25x25 km EASE grid and were analysed at weekly time 

resolution. This information has been included in our revised manuscript. 

In addition: "pan-Arctic snow depth and density distributions" –> Please provide a spatial and a 

temporal resolution as well as the domain. While the paper focuses a lot on snow depth I am 

wondering how snow densities obtained with SnowModel-LG compare to W99 ones?

The SnowModel-LG output is supplied on the 25 km EASE grid at daily time resolution. From this 

we produced monthly gridded fields for combination with the monthly radar freeboard data. This 

information is now included in our revised manuscript.

Line 210: "snow-ice accumulation" –> Please explain what "snow-ice accumulation" is. Do you 

refer to snow-ice formation at the basal snow layer?

We were actually referring to superimposed ice and used the wrong term. Snow-ice in its 

conventional meaning results from flooding of the base of the snow by depression of the ice surface

below the waterline. This is not modelled in SnowModel-LG, as the model does not model or 

assimilate ice freeboard. We have removed this reference to snow-ice from our revised manuscript.

Lines 216/217: "snow depth differences ... than 5 cm" –> This is a quite global statement. Is this an 

Arctic mean value? Is this the mean difference in SnowModel-LS realizations just for the grid cells 

co-located with the OIB data? What is the standarddeviation of this difference? 

In our submission we stated:

“snow depth differences between the reanalysis products were found to be less than 5 cm”

By this we were referring to the difference in SnowModel-LG snow depths when forced with 

MERRA-2 and ERA5 reanalysis data. We have clarified this in our revised manuscript to:

“snow depth differences between the ERA5 and MERRA2 reanalysis products were found to 

be less than 5 cm”

The 5 cm figure represents the Arctic as a whole and is illustrated by Figure 4 of Stroeve et al. 

(2020). The standard deviation of this value was not reported by the authors. We investigate this 

here. 

We first visualise the “mean bias”, which we calculate as the difference in the snow depths 

calculated when SnowModel-LG is run with ERA5 and MERRA2, averaged over several years. In 

this scheme, if the ERA5 run is larger in one year and smaller in another, this cancels out. This 

indicates the degree of bias. We also calculate the average absolute difference. For this, we subtract 

MERRA2 SnowModel-LG output from that of ERA5, and then take the absolute value. We then 

plot the time-mean of this distribution. We also summarise these data by region and by month in the

lower right hand panels of the below figures: 



We place this figure in the supplement and reference it from the main mauscript.

Do the OIB data used to tune SnowModel-LG represent FYI conditions adequately?

Figure 7 of Stroeve et al. (2020) illustrates the locations of the OIB flights used to tune 

SnowModel-LG. The vast majority are over the Beaufort Sea and the Greenlandic side of the 

Central Arctic, which is generally consituted by multiyear ice. It is therefore conceivable that the 



scaling factor would be different if FYI were better sampled by OIB. We have raised this point in 

our revised manuscript. 

We do however believe that the scaling factor is not paticularly relevant to our central observations 

concerning trends and variability. It is certainly the case that if the scaling factor is off then we are 

under/overestimating snow and sea ice thickness. However the impact on this on trends and 

variabiliy is potentially very small. 

Section 2.6: For a better understanding it might make sense to explicitly state whether precipitation 

and/or snow fall are assimilated into NESOSIM as well.

It does assimilate reanalysis precipitation directly and we have now explicitly stated this.

The snow pack initialisation, is this covering both snow depth and density? As W99 data are 

monthly values, is this initialisation only done monthly, or are monthly values interpolated to daily 

values with which the model is initialised henceforth?

In this study we use data from a NESOSIM run initialised on the 15th August for each year (Sect 2.1

Petty et al., 2018). The initial depth was produced by a “near-surface air-temperature-based scaling 

of the August W99 snow depth climatology”. This is a linear scaling based on the duration of the 

preceeding summer melt season. Snow density was initialised using the August snow-line 

observations of Soviet NP drifting stations 25, 26, 30 and 31. Data from the most recent publicly 

available drifting stations were chosen to maximise their relevance in a changing climate. We have 

ammended our draft manuscript to include this information.

You explicitly mention depth-hoar and wind-packed layers in the context of NESOSIM. Does this 

imply that SnowModelLG does not represent such features? If not, then I suggest to be more 

specific in the description of what SnowModel-LG can do and what not.

SnowModel-LG does include these aspects of snowpack evolution in a multi-layered scheme. We 

have added a line in the SnowModel-LG descrition to reflect this, and also modified our subsequent

description of NESOSIM to draw a direct comparison.

Section 3.2: Please provide more details. How many grid cells with valid SIT measurements are 

requied to compute a regional mean SIT value?

(related comment) How many valid observations are required for the results broken down into ice 

types (see Figures S4 and S5)? 

Snow, RF & SIT  were calculated when any grid cells were present in a region, and we have now 

added this information to our manuscript. We have also now conducted analysis on the number of 

measurements that feed into our analysis. Although the number of snow and radar freeboard data 

points in a region were closely related (as both are tightly coupled to the ice area in the region), we 

found that there were generally fewer radar freeboard measurements. We have visualised this 

below:



We add to our manuscript: 

“Snow, RF & SIT were calculated where any valid grid points existed on the 25x25 km 

EASE grid. Because of this, no average values were computed in the Kara Sea in October 

2009 or 2012. Furthermore, no October values were generally available in the Barents Sea 

after 2008 (with the exception of 2011 and 2014). The impact of this on our analysis is 

clearly visible in Fig. (10).We do not exclude the Barents Sea in October from our analysis 

because of the low number of valid points, but we do highlight the undersampling issue 

here. We continue to consider it because we do not find statistically significant declining 

trends with the data we have, so essentially we are reporting a null result. Our calculations 

of interannual variability in this month is inherently adjusted for the small sample size, but 

we nonetheless urge caution in interpretation of the value.”

How about regional means of radar freeboard and snow depth / SWE? Did you compute these as 

well?

These were calculated during our analysis and plotted alongside each other as a figure in the 

supplement. We have now added an explicit reference to this figure to this section. 

Please provide a reference for the "Wald test".



Although we were correct to use this term, its use (and technical definition) are not particularly 

enlightening for the reader. Instead we have opted now to just describe the test as a hypothesis test 

(and state the null-hypothesis). 

Line 249: I suggest to stress here once more what "Snow_overbar" is, that it is not the snow depth 

but the snow-depth contribution to the SIT retrieved from altimetry

We have reiterated the definition here.

Line 259: "individual years, regions and months" –> Not clear what you did. You used detrended 

time-series of monthly, region-mean values of RF and snow and computed the correlation between 

these time series separately for every month and every region?

Yes, this is correct. We have added the following text to clarify this:

To do this we calculated a monthly timeseries of RF and Snow for each region over the 

time-periods (2002-2018, with the Central Arctic being 2010-2018). Because we considered 

eight regions and seven months, this led to to 56 pairs of timeseries for RF and Snow. We 

then detrended each of them. We then calculated the correlation between each of the pairs of

detrended timeseries.

Lines 263/264: "The Barents Sea ... correlation." –> I suspect this observation is based on two 

completely different causes. For the Central Arctic the time series is just 9 years long. For the 

Barents Sea, neither is mW99 overly reliable nor are RF values overly reliable - especially during 

the Envisat period. 

We have added a brief clause to this line: “- the reasons for this are discussed in Sect. (5.4)”.

Another, more general comment: The RF data for region Central Arctic are considerably more 

robust in terms of the number of valid observations contributing to the RF values used.

Figure 6: Not clear what is shown magnitude-wise on x- and y-axes. The same applies to Figures S6

and S7.

Because correlation statistics are not sensitive to the choice of axes, units or linear scalings of the 

values, we decided to not display axes ticks or labels and scale the axes to fit the rectangular panels 

of the figure. However we clearly should have stated this in our submission and we now have added

the following text:

“We note here that the correlation between the timeseries is dependent on their relative 

position to a linear regression. These correlation statistics are thus independent of the 

absolute magnitude of the values, their units, or any linear scaling of the axes. We therefore 

choose to present the correlations in Fig (7) without axes and scaled to the rectangular 

panels, so as to best show the relative positions of the points without extraneous numerical 

information.”

Line 286: "but analysis ... regions." –> Not clear what you mean here. 

We have reworded this sentence for clarification:

“but analysis of this grouping conceals more significant variation at the scale of the 

individual group members”



Line 287: "The covariability ... contribution" –> This discussion focuses on radar freeboard. It does 

not comment on the observation that at the beginning of winter (Oct.) the fraction of SIT IAV that is

explained by RF-Snow covariance is larger than snow IAV. 

We have added the following text to include this information: 

We note that in contrast to σ2
RF, σ

2
Snow is almost always larger than the covariability 

component. A noticeable exception to this generalisation is in October for the Marginal 

Seas grouping, where the covariability contribution to σ2
SIT is around twice as large as the 

contribution from σ2
Snow

Figure 7: Can you please check whether your representation of "Fraction of Total Variance (%)" is 

correct? I mean, ok, if the dimensionless factor rho is negative then the covariance term in Eq (5) 

gets a negative sign. Therefore you plot negative bars in panels (b). 

We gave the visualisation of the data in Figure 7 considerable thought, but agree that a succinct 

characterisation of what is actually being plotted on the y axis is challenging. It is possible that 

“Fraction” is not the best word, as it carries connotations of being less than a whole. Given that the 

quantity on the y axis is the normalised contribution to σ2
SIT, then we propose that this is put as the 

axis label to minimise confusion. 

However, looking at the Central Arctic, November, this results in a fraction of radar freeboard IAV 

of about 110%, also the one for October is larger than 100%. I get a headache with this because a 

fraction cannot be negative (have you ever had a negative piece of cake?) and it can also not be 

larger than 100%, i.e. larger than the total (only if you order a medium size Pizza and get a large 

one instead). This applies then also to Figure S15 where the deviations from 100% are even larger. 

Again, I can see from Eq. 5 that it is mathematically correct. However, a positive covariability 

means that sigma_RF and sigma_snow are positively correlated while a negative one means that 

these quantities are anti-correlated. If we assume a very strong negative covariability of, say -90%, 

does that mean that the IAVs of RF and snow need to sum up to a fraction of the total of 190%?

We consider the more intuitive case of apples and oranges being delivered in a truck. If the number 

of apples is determined randomly and truck space is limited, it is the case that when more apples are

delivered then less oranges are delivered. This corresponds to a strong negative covariability 

between the n_apples and n_oranges – they are random, dependent variables just like RF and Snow.

For the case that 100 extra apples delivered means that you lose the space for 90 oranges, then the 

variability in n_apples or n_oranges individually is many times larger than the variability in the 

total number of pieces of fruit. If your standard deviation in n_apples = 500, then your standard 

deviation in n_oranges is around 450, but the standard deviation in total pieces of fruit is just 50. 

This case illustrates that the σ2
RF and σ2

Snow can logically be much larger than the standard deviation 

of the sum of RF and Snow (so long as their covariability is negative). 

Lines 327/328: "Perhaps more significantly, ..." –> This I don’t find too convincing - also given the 

unknown uncertainty of these regional mean SIT values. I suggest to only mention these three new 

trends but do not hypothesize about the main reason. 

We have removed our hypothesis about this being driven by the years 2003 and 2004.

Line 350: "... truncated SIT distribution ... thicker ice." –> This relatively global statement is not 

supported by Fig. S10 for all months. 



We have now qualified this statement by adding “in the months January – April”.

Particularly, I would not use the word "truncated". Truncated means that below or above a certain 

SIT values the area occupied by these SIT bins is abruptly zero

We have now removed all uses of the word “truncated” from our manuscript. In the case of the CS2 

observational period, we have used the word “shorter”. In this case of the distribution of sea ice 

thickness distributions, we have used the word “narrower”.

Lines 351/352: Please see my comment at Figure S10: You need to provide more details about how 

you derived this Figure. What is missing are binsizes and borders as well as the time-period for 

which the Figure is valid (2010-2018 I assume) as well as a statement here that this Figure is now 

showing a classical pdf but expresses the distribution in form of sea-ice area. In order to avoid 

confusion with the classical definition of sea-ice area which is sum of the area of ice covered grid 

cells weighed with the actual sea-ice concentration, you might want to rename your y-variable. 

Line 353: "The regional, seasonal growth rate ..." –> What is the period considered? 

We’ve added the following sentence to clarify this:

“These rates were calculated over the period 2002-2018 with the exception of the Central 

Arctic which was restricted to the period 2010-2018.”

Lines 372-374: I suggest to refer to the Boisvert et al. (2018) paper here (about the difference 

between Merra-2 and ERA-Interim) and in addition take into acount this paper: 

https://doi.org/10.1029/2019GL086426.

We have now added the following text:

“Boisvert et al. (2018) conducted a similar analysis with drifting ice mass balance buoys, 

and found the interannual variability of the data sets to also be similar (although the 

authors found larger discrepancies in magnitude). These differences in magnitude however 

cannot be physical (as there is only one Arctic), and Cabaj et al. (2020) were able to bring 

precipitation estimates into better alignment using CloudSat data with a scaling approach. 

However this scaling approach preserved the interannual variability of the data sets, which 

Barrett et al. (2020) and Boisvert et al. (2018) found to be in comparatively good agreement.

I am wondering whether Figure S12 is required. After all it confirms that your choice combining 

SnowModel-LG runs of ERA5 and Merra-2 is a good one. 

We agree that Fig. S12 is not strictly required, although we would prefer to keep it in the 

supplement (as were the reader to not see it, they may doubt our choice).

Line 387: "replicates the higher contribution ..." –> Even though for the Central Arctic the data are 

just based on the period 2010-2015 = 6 years. 

The word “replicates” does perhaps imply that the data are more directly comparable than they are. 

We therefore explicitly note the timeframe difference and change “replicate” to “also exhibits” as 

such:

“Despite the shorter timeframe, NESOSIM also exhibits an increasingly … and also a 

higher...”



Lines 390/391: "underlying trends ... period" –> Ok ... but at the same time you use a shorter time 

period for the Central Arctic anyways. So this argument is not conclusive. 

In response we add:

“(by comparison to regions where all relevant data is available from 2002-2018)”

Lines 394-399: "As such ... 2018)." –> I suggest to shorten this part and perhaps either delete Figure

11 or move it as well to the Appendix. - which however, already contains a lot of additional 

material. But I feel that the paper would be still understandable with a few sentences highlighting 

the common findings between NESOSIM and SnowModelLG

We have removed this paragraph and the figure. 

Line 427-428: "... these investigations ... warmer temperatures ..." –> I do not quite agree to this 

statement because, according to my knowledge, among the cases investigated and presented in 

Nandan et al. (2017) as well as in the later paper by Nandan etal. (2020) is a sufficiently high 

number of cases with cold snow; hence the observation of a rising scattering horizon is not uniquely

tied to warmer temperatures.

In response to this comment we have modified this statement:

“However, these investigations were often (but not exclusively) carried out at the end of the

winter season or in the Sub-Arctic, when warmer temperatures may have increased the 

snow's brine volume fraction...”

Lines 434-440: "Knowledge ... depth." –> I can follow the physical reasoning here and also how it 

is connected with Equation (2). However, it might not be as straightforward as it is formulated, 

given the fact that equation (2) transforms into equation (4) in Kwok and Cunningham (2008, 

https://doi.org/10.1029/2008JC004753 ) for a lidar - hence introducing a different factor in front of 

the snow depth. Perhaps formulating these lines more like being your own hypothesis than being 

fact might be more appropriate? 

To improve the rigor of this section we have elected to remove the following sentence:

“This incidentally raises the possibility that radar waves with a certain relative penetration 

depth may allow the estimation of SIT without requiring any knowledge of the snow depth.”

We hope that by doing this we remove the hypothesis-based element of this part of the discussion.

Line 443: In the context of the paragraph ending here you could also comment on the impact of i) 

the increased likelihood of a flooded basal snow layer in regions of comparably thin sea ice / thick 

snow / high SWE as, e.g. the Barents Sea and part of the region Central Arctic facing the Atlantic 

and ii) of a potentially increased likelihood for enhanced snow metamorphism, like is typical for the

Antarctic, even in the middle of winter due to intrusions of marine air-masses into the Arctic, e.g. 

via the Fram Strait. 

We have addressed these issues with the following paragraph: 



“We finally note the potentially confounding influence of negative freeboard in regions such

as the Atlantic sector of the Central Arctic region and the Barents Sea. In the case of high 

snowfall and low ice thickness, the ice surface can be depressed to the waterline or below. 

Beyond this point Eq. (5) no longer function. The prevalence of negative freeboards has 

been studied by Rosel et al. (2018) and Merkouriadi et al. (2020), but has yet to be 

incorporated into any radar-altimetry based sea ice thickness retrievals. This situation can be

driven by storm tracks entering the Arctic from the Atlantic (but also the Bering Strait). 

These intrusions of warm air can also drive snow  grain metamorphism, which may well 

affect radar penetration through the snowpack.”

Line 469: "in the high precipitation months ..." –> One could argue, though, that thanks to later 

freeze-up and the concomitant change in atmospheric moisture content (and perhaps also 

circulation) also shifts the maximum of the precipitation to a later time - and with that the seasonal 

sea ice would still be able to accumulate a fair amount of snow - particularly supported by the fact 

that a warmer atmosphere can hold more moisture and with that can lead to increased precipitation 

rates. This is hypothetical of course but among the possible scenarios. 

Lines 504/505: "negative ... this is not seen." –> I thought the negative covariances between RF and

Snow shown in Figures 7 and S15 are an indication of exactly this observation?! The fact that these 

only occur in early winter makes a lot of sense as well. 

Yes, “this is not seen” was an oversimplification. We have ammended this to read:

“This corresponds to a negative covariability term in Eq. (5) and is represented by purple 

bars in Fig. (8). Negative values are generally not seen, with the exception of October and 

November in the Central Arctic, November in the Barents Sea and December in the Chukchi

Sea.”

Lines 505-507: "... snow is a highly ... weeks." –> I am wondering whether it wouldmake sense to 

to have a thought experiment to check whether the magnitudes of the the changes involved fit this 

hypothesis. While Snow_overbar can be easily computed based on the snow properties and is 

independent of the sea-ice thickness and its radar freeboard, RF_overbar is not. It is a function of 

both, ice growth and snow load. An experiment one could think of is, e.g. an initially 80 cm thick 

ice floe with i) 5 cm snow depth and ii) 20 cm snow depth (and similar snow densities) grows at -30

degC over a month. What is the RF for both cases at the beginning and what is the change in RF 

over the month? Without further snow accumulation Snow_overbar remains constant. How would 

the change in RF be modified if one would add another 5 cm of snow in the middle of the month 

and again at the end of the month? My hypothesis is that RF_overbar and Ssnow_overbar are 

correlated well in case a thin to moderately deep, slowly increasing snow cover allows adequate ice 

thickening so that Snow_overbar increases over time but RF increases as well over time. Further, 

my hypothesis is that RF_overbar and Snow_overbar are not well correlated in case an already thick

snow cover hampers adequate ice thickening while it further deepens over time. In that case 

Snow_overbar increase over time like in the above-mentioned example, but the RF increase by 

increasing SIT and hence sea-ice freeboard is counterbalanced by an increasing radar range such 

that the increase is considerably slower than in the first example or even zero. 

We found the reviewers comments of great interest, and they have clear bearing on the 

seasonal correlations between RF and Snow We point out that while thereis an immediate 

(theoretical) negative impact between snow accumulation and radar freeboard, this 

relationship is weakened by a negative feedback in which snow insulates theice and reduces 

subsequent growth. We believe that that this monthly-to-seasonal interplayof snow and radar

freeboard is fertile ground for further study, and draw the reader’s attention recent 



conference presentations by Lawrence et al on this topic, as well as previous modelling work

by Stroeve et al. (2018) and Petty et al. (2018). 

Lines 513-517: "Freeze-up ... further study" –> I doubt that for the months you consider this is an 

issue. Melt ponds in the Central Arctic begin to freeze over in mid August, latest in September; 

hence any snow falling in October falls on solid ice. I suggest to delete this part. 

In response we have removed this section.

Typos / Editoral remarks 

Lines 5/6 " ... with the conventional method ... " –> I suggest to tie this better the usage of a snow 

climatology.

We have ammended this line to do this

Line 91: I suggest to use a different letter for the dimensionless factor than rhoto avoid confusion 

with a density. 

We have ammended this line to do this

Also "sigma_SIT_overbar" should possibly read "sigma_Snow_overbar"

Yes, this was a typo and has now been fixed.

Line 110: "radar speed" –> "radar wave speed" or "speed of the radar waves"

This line has now been restructured in response to another comment and “radar speed” no longer 

appears.

Line 118: If I am not mistaken, then Giles et al. (2008b) is purely dealing with the Antarctic, hence 

application of the W99 climatology appears to be unlikely.

Yes, we have removed this reference.

Line 119: I agree that Eq. (2) contains the snow contribution to the sea-ice thickness; however, the 

term Snow_overbar is used in Eq. (4). 

Yes, we have now changed this.

Line 134: "average half of the value" –> In order to allow a more fluent reading I suggest to write 

"about 50%" instead of "average half of the value" in Line 134. That way it will be easier to connect

this finding with the SnowModel findings.

We have now changed this.

Line 139 and 140: "consistent" –> What is a consistent ice type in this context? Could it be that you 

wanted say "constant" or "unchanged"? 

We have changed “temporally consistent” to “temporally unchanging”



Line 187: "2005" –> "March 2005" 

We’ve added this as suggested.

Lines 205: "assimilates reanalysis weather data" –> "is capable to assimilate meteorological data 

from different atmospheric reanalyses (see below)" 

We’ve changed this as suggested.

Lines 214: "results of reanalysis" –> "representation of the actual distribution of relevant 

meteorological parameters by atmospheric reanalyses"

We’ve changed this as suggested (and added a citation to Boisvert et al., 2018)

Line 228: "Eq. (2)" –> Same issue as for Line 119 (see above)

We’ve changed this as suggested.

Line 238: "The Central Arctic region exists above the latitudinal limit of the Envisat orbit" –> "The 

Central Arctic region is not sufficiently well observed by the Envisat radar altimeter (see Fig. 4)"

We’ve changed this as suggested.

Line 255: "SnowModel’s" –> I suggest to always keep the full name.

We’ve changed this as suggested.

Line 257: "Having calculated ..." –> I suggest to refer to Figure 5 and the standard deviation shown 

therein. 

We’ve added a reference to Figure 5 (detrended timeseries of σ2
Snow)

Line 260: "between" –> "between detrended" 

We’ve added this as suggested.

Line 278: "in for each" –> "for each" 

We’ve changed this as suggested.

Lines 286/287: "grouping by comparison to" –> "grouping in comparison to" 

We’ve changed this as suggested.

Lines 287-289: I suggest to add "radar" to all mentioning of "freeboard" 

We have been through each usage of the word “freeboard” and added “radar” where appropriate.

Figure 7 caption: For better readability of the figure and the text refering to it I suggest to 

somewhere re-introduce IAV here as the inter-annual variability. The last time IAV was used was in 

Figure 2. 



We have reintroduced the term on L293. 

I cannot see (a) and (b) in the Figure.

We’ve now added these annotations.

I suggest to write "panel" instead of "figure in Line 293. 

We’ve made this change as suggested.

Line 294: "continuous" –> "contiguous" 

We’ve made this change as suggested.

Line 296: "was the" –> "was in the"

We’ve made this change as suggested.

Line 306 "2002 - 2018": I suggest to add something like: "except for the Central Arctic: 2010-2018"

in this caption as well as in all other figure captions where the Central Arctic region is shown along 

with results of the other regions.

We’ve made this change as suggested.

Line 315: "Fig. 9" –> I suggest to refer to the panels highlighted in green.

We’ve made this change as suggested.

Line 320: "declining" –> "negative" 

We’ve made this change as suggested.

Line 324: "mW99" –> Suggest to refer to Fig. 9 and the red panels 

We’ve made this change as suggested.

Line 325: "declining months to four" –> "months with a decline in SIT to four" 

We’ve made this change as suggested.

Line 326: "after 2006" –> I suggest to write "after 2003, except 2006" 

We’ve made this change as suggested.

Lines 333/334: "are only ones" –> "are the only ones" 

We’ve made this change as suggested.

Line 337: "Laptev Sea." –> I suggest to add "when using SnowModel-LG instead of mW99." 

We’ve made this change as suggested.



Line 340: "statistically significant months" –> When SIT is computed using SnowModelLG? 

We’ve made this change as suggested.

Line 344: "snow" –> "show" 

We’ve made this change as suggested.

Figure 9, caption: I suggest to add the notion that y-axes of Central Arctic and East Siberian Sea 

differs from all other regions. 

We’ve made this change as suggested.

I suggest to make "Where trends are ... superimposed" the second sentence of the caption. 

We’ve made this change as suggested.

I suggest to add a note that unlike all other regions Central Arctic data are based solely on Cryosat-2

data.

We’ve made this change as suggested.

Line 356: "Siberian there" –> "Siberian Sea there"

We’ve made this change as suggested.

Line 404: "Chukchi" –> "Chukchi seas" 

We’ve made this change as suggested.

Line 405: "one month" –> "only one month"

We’ve made this change as suggested.

Line 427: "raise" –> "rise" 

We believe that we have used the word ‘raise’ correctly here (with the difference being that raise is 

a transitive verb while rise is not – the object of the sentence being “the scattering horizon”). 

Line 442: "diminishing show cover" –> I suggest to add: ", i.e. actual values of snow depth and 

SWE that are smaller than the climatological values"

In this paper we do not argue that snow depth or SWE are underestimated in an absolute sense by 

comparison to W99. Instead we argue that the rate of decline (which is important for trends) is not 

properly represented by W99. As such we do not feel that we can add this line. 

Line 457: "EM" –> Has EM been explained already ...?

This abbreviation had not been previously defined and we have replaced it with “electromagnetic”

Line 489: "... truncated" –> Please re-phrase. It is not the radar altimetry time series that is 

truncated. There is a region where simply no measurements could be taken.



We have reworded this to:

“at best limited to the CryoSat-2 era”

Line 511: "has longer to" –> "has longer time to" 

We’ve made this change as suggested.

Comments for the supplementary material: 

Line 19: Please refer to Figure S1 here. Otherwise it is completely unclear how you ended up with 

the expression in Eq. (S8). You might want to replace the "=" by an "is approximated by ... as 

illustrated in Figure S1." 

We have rewritten L21 to read:

“This linearity is visualised in Fig. (S1) and allows the second term...”

Line 23: "reformulated as" –> Which value is used for rho_water? 

We have rewritten L23 as follows:

“This can be reformulated by setting ρw = 1023 kgm-3 as follows:”

Figure S6, caption, line 3: "five" –> "four":

We wrote:

“A persistent, positive correlation exists in the Central Arctic and the East Siberian Sea in 

the last five months of winter.”

It’s possible that we’re misinterpreting the reviewer’s comment here, but we believe this should 

read “five”. Here we reproduce the two regions in question. The five months of December, January, 

February, March and April all exhibit positive correlations. 

Figure S10, caption "... SnowModel-LG data." –> I suggest to add something like ... "expressed as 

total sea ice area of all grid cells falling into a specific SIT bin." In addition: What is the bin size? 

What the bin borders? Since it includes the region "Central Arctic" this figure is based on years 

2010-2018 only, correct? 



We have added the suggested clarification and have included the bin size (which is 5 cm). The 

reviewer is correct that this is carried out in the CS2 period (2010-2018) and we have also added 

this. 

Figure S11: There are two identical panels denoted (b). 

This has now been fixed.

Please make a note in the caption about the differences in the y-axis range. 

We have rescaled the plots so all regions have the same y-axis scales with the exception of the 

Central Arctic. We have noted this exception in the caption. 

Please make a note about the error bars. i.e. what these represent. 

The error bars represent 1 standard deviation either side of the mean of the timeseries. We have now

added this information to the caption.

Figure S11, caption: "The SnowModel-LG contribution ..." –> While this statement is undoubtly 

correct also the aggregated marginal seas start low and end high. So why not also commenting on 

those regions? 

We have now commented on this.

Again, I note that you need to provide the information whether all regions but the Central Arctic are

based on the full period 2002-2018 or whether indeed all regions only used data from 2010-2018. 

We have now included this in the caption.

Figure S13: Again the notion about the smaller time period covered for region Central Arctic is 

missing.

We have now noted this in the caption.
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Abstract. Mean sea ice thickness is a sensitive indicator of Arctic climate change and in long-term decline despite significant

interannual variability. Current thickness estimations from satellite radar altimeters employ a snow climatology for converting

range measurements to sea ice thickness, but this introduces unrealistically low interannual variability and trends. When the

sea ice thickness in the period 2002-2018 is calculated using new snow data with more realistic variability and trends, we find

mean sea ice thickness in four of the seven marginal seas to be declining between 60-100% faster than when calculated with the5

conventional climatology. When analysed as an aggregate area, the mean sea ice thickness in the marginal seas is in statistically

significant decline for six of seven winter months. This is observed despite a 76% increase in interannual variability between

the methods in the same time period. On a seasonal timescale we find that snow data exerts an increasingly strong control

on thickness variability over the growth season, contributing 46% in October but 70% by April. Higher variability and faster

decline in the sea ice thickness of the marginal seas has wide implications for our understanding of the polar climate system10

and our predictions for its change.

1 Introduction

Sea ice cover moderates the exchange of moisture, heat and momentum between the atmosphere and the polar oceans, influ-

encing regional ecosystems, hemispheric weather patterns and global climate. Sea ice thickness (SIT) is a key characteristic of

the sea ice cover, as thicker sea ice weakens the coupling between the ocean and atmosphere systems.15

Thicker sea ice is more thermally insulating and limits heat transfer from the ocean to the atmosphere in winter and con-

sequent thermodynamic growth (Petty et al., 2018a). SIT also exerts control on sea ice dynamics and rheology (Tsamados

et al., 2013; Vella and Wettlaufer, 2008). The thickness of sea ice during snow accumulation also dictates whether the sea ice

surface drops below the waterline, potentially increasing thermodynamic sea ice growth through the formation of snow-ice

(Rösel et al., 2018). The impact of the end-of-winter SIT distribution persists into the melt season with thick sea ice decreasing20

the transmission of solar radiation to the surface ocean and reducing the potential for in- and under-ice primary productivity
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(Mundy et al., 2005; Katlein et al., 2015). Finally, thick sea ice is far more likely to survive the melt season, increasing the

average age of Arctic sea ice. Correct assimilation of ice thickness into models therefore offers opportunities for prediction of

the sea ice state on seasonal timescales (Chevallier and Salas-Mélia, 2012; Blockley and Peterson, 2018; Schröder et al., 2019).

The annual sea ice thickness distribution is highly spatially variable, with a cover of thick multi-year ice in the Central Arctic25

and a thinner, more seasonally variable cover of first year ice in the marginal seas. Regional sea ice thickness distributions are

often characterised by the mean thickness, SIT . As well as being a key parameter for the processes described above, the value

can be multiplied by the sea ice area to produce the sea ice volume, one of the most sensitive indicators of Arctic climate

change (Schweiger et al., 2019).

While continuous and consistent monitoring of Pan-Arctic SIT has not been achieved on a multi-decadal timescale, a com-30

bination of different techniques has suggested a significant decline in thickness since 1950 (Kwok, 2018; Stroeve and Notz,

2018). Satellite altimeters using both radar and lidar have provided a valuable record of changing sea ice thickness, but have

often been limited for various reasons. Some have been limited spatially by their orbital inclination (e.g. the European Re-

mote Sensing (ERS) satellites, Envisat, AltiKa and Sentinel radar altimeters have operated up to only 81.5 degrees north), and

others in temporal coverage (e.g. ICESat was operated in ‘campaign mode’ rather than providing continuous coverage). Two35

satellite altimeters currently offer continuous and meaningfully Pan-Arctic monitoring of the Arctic sea ice: the ICESat-2 and

CryoSat-2 altimeters. ICESat-2 has been in operation since September 2018 and so far has documented only two winters of

sea ice thickness (Kwok et al., 2020).

Although the launch of the CryoSat-2 radar altimeter (henceforth CS2) in 2010 allowed significant advances in understanding

the spatial distribution and interannual variability of Pan-Arctic SIT (Laxon et al., 2013), a statistically significant decreasing40

trend within the CS2 observational period has not been detected for the Arctic as a whole. The lack of certainty regarding any

trend in SIT is in part due to the various uncertainties associated with SIT retrieval from radar altimetry (Ricker et al., 2014;

Zygmuntowska et al., 2014). Major contributors to these uncertainties are the relatively large footprint of a radar pulse when

compared to laser altimetry, the variable density of sea ice, retracking of radar returns from rough sea ice, and the need for an

a priori snow depth and density distribution (Kern et al., 2015; Landy et al., 2020).45

The impact of snow-depth uncertainty on SIT retrievals was recently included by the IPCC in a list of ‘Key Knowledge

Gaps and Uncertainties’ (Meredith et al., 2019). More specifically, Bunzel et al. (2018) found snow to have a strong influence

on the interannual variability of SIT and consequent detection of thickness trends. Here we investigate the impact of a new,

Pan-Arctic snow depth and density data set (SnowModel-LG; Liston et al., 2020; Stroeve et al., 2020) on trends and variability

in regional SIT when used in place of the traditional, climatological data set (Warren et al., 1999). We show that traditional50

calculations of SIT omit significant interannual variability due to their reliance on a snow climatology, and we quantify this

omission. We also show that sea ice is likely thinning at a faster rate in some marginal seas than previously thought, because

the snow water equivalent on the sea ice is declining too.
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1.1 The Role of Snow in Radar-Altimetry Derived Sea Ice Thickness Retrievals

Satellite radar altimetry involves the emission of radar pulses from a satellite and the subsequent detection of their backscatter.55

The time difference between emission and detection (‘time of flight’) corresponds to the distance traveled and thus the height of

the transmitter above the scattering surface. Radar altimeters of different frequencies have been carried on board several earth

observation satellites such as ERS-1/2, Envisat, AltiKa, CryoSat-2 and Sentinel-3A/B (Quartly et al., 2019). We now quantify

the role of snow cover in conventional sea ice thickness estimation, before revealing and explaining the effects of previously

unincorporated trends and variability.60

The Ku-band radar waves emitted from CryoSat-2 are generally assumed in mainstream SIT products to scatter from the

snow/sea-ice interface (Kurtz et al., 2014; Tilling et al., 2018; Hendricks and Ricker, 2019; Landy et al., 2020). The difference

in radar ranging (derived from time-of-flight) between areas of open water and areas of sea ice is known as the ‘radar freeboard’,

fr. The height of the sea ice surface above the waterline is referred to as the sea ice freeboard, fi. This is extracted from the

radar freeboard through (a) assuming that the primary scattering horizon corresponds to the sea ice surface, and (b) accounting65

for the slower radar wave propagation through the snow cover above the sea ice surface (Armitage and Ridout, 2015; Mallett

et al., 2020). The sea ice freeboard can then be converted to sea ice thickness by considering the floe’s hydrostatic equilibrium

given the sea ice density and weight of overlying snow. In the simplified case of bare sea ice, we would calculate:

SITbare = fr
ρw

ρw − ρi
(1)

Where ρw is the density of seawater and ρi the density of sea ice. In order to adjust the above equation for the presence70

of overlying snow, the twin effects of the snow’s weight and the snow’s delaying influence on radar pulse propagation must

be taken into effect. These three influences on SIT (the radar freeboard measurement, the pulse propagation delay and the

freeboard depression from snow weight) can therefore be expressed as three terms (see supplementary information) in the

following way:

SIT = hr

ρw
ρw − ρi

+hs

ρw
ρw − ρi

[

c

cs
− 1

]

+hs

ρs
ρw − ρi

(2)75

In this manuscript we introduce a simple method for combining the second and third terms of the above equation into a

single term that is proportional to the snow water equivalent (Sect. 3.1). This helps to easily separate the influences of snow

data and radar freeboard measurements on the determination of sea ice thickness. Specifically, we compare the impact of two

snow products on regional trends and variability in sea ice thickness. These products are the snow climatology given by Warren

et al. (1999) and the output of SnowModel-LG (Liston et al., 2020; Stroeve et al., 2020).80
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2 Data Description

2.1 Regional Mask

We define six regions of the Arctic Basin using the mask from Stroeve et al. (2014) which is gridded onto a 25 km resolution

EASE grid (Brodzik et al., 2012, Fig. 1). We define the ‘marginal seas’ of the Arctic Basin as the color coded areas of Fig. (1)

excluding the Central Arctic. All constituent regions of the ‘marginal seas’ grouping lie within the coverage of Envisat barring85

a negligible portion of the Laptev Sea.

Figure 1. The definitions of the marginal Arctic seas used in this paper, from Stroeve et al. (2014). Two black, concentric circles indicate the

latitudinal limits of the CryoSat-2 (inner circle; 88◦N) and Envisat (outer circle; 82.5◦N) missions.

2.2 Radar Freeboard Data

To examine the impact of snow products on Enivsat/CryoSat-2 thickness retrievals, we used radar freeboard data from the ESA

Sea Ice Climate Change Initiative (Hendricks et al., 2018). This data is available from October in the winter of 2002/03 until

April in the winter of 2016/17. This product was chosen for two main reasons: (a) it provides a consistent record for both90

the Envisat and CS2 missions (Paul et al., 2018), and (b) it is publicly available for download. CS2 carries a delay-Doppler
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altimeter that significantly enhances along-track resolution by creating a synthetic aperture. For this reason as well as its higher

latitudinal limit, we used CS2 radar freeboard measurements over Envisat during the period when the missions overlapped

(November 2010 - March 2012). To create a radar freeboard product that is consistent between the Envisat and CS2 missions,

Envisat returns are retracked using a variable threshold retracking algorithm. This variable threshold is calculated from the95

strength of the surface backscatter and the width of the leading edge of the return waveform such that the inter-mission bias is

minimised (Paul et al., 2018). The results are comprehensively analysed in the Product Validation & Intercomparison Report

(ESA, 2018). One key finding of this report is that while Envisat radar freeboards are calculated so as to match CS2 freeboards

during the period of overlap over the whole Arctic basin, there are biases over ice types. In particular, Envisat ice freeboards

(not radar freeboards) are biased 2-3 cm low (relative to CS2) in areas dominated by MYI, and 2-3 cm high in areas dominated100

by FYI. We discuss the implications of these biases in Sect. 5.3.

While the ESA CCI data are only available from the CCI website until the winter of 2016/17, the CryoSat-2 radar freeboards

in this data are identical to the CS2 radar freeboard product of the Alfred Wegener Institute (Hendricks and Ricker, 2019,

this was manually confirmed). We were therefore able to extend our radar freeboard timeseries through the winter of 2017/18,

which is when our snow data from SnowModel-LG (see below) ends.105

All radar freeboard data used in this study are supplied on a 25 km EASE grid (Brodzik et al., 2012), the same as that of

SnowModel-LG.

2.3 The Warren Climatology (W99)

The most commonly used radar-altimetry SIT products use algorithms developed by the Centre for Polar Observation and

Modelling, the Alfred Wegener Institute and the NASA Goddard Space Flight Centre (Tilling et al., 2018; Hendricks and110

Ricker, 2019; Kurtz et al., 2014). Another commonly used but not publicly available product is from the NASA Jet Propulsion

Laboratory (Kwok and Cunningham, 2015). All four groups utilize modified forms of the snow climatology assembled by

Warren et al. (1999) from the observations of Soviet drifting stations between 1954 and 1991 (henceforth referred to as W99).

While the consistent use of W99 for sea ice thickness calculation is convenient for intercomparison of products (e.g. Sallila

et al., 2019; Landy et al., 2020), the data have a number of drawbacks. This work is centered around two key issues with the115

use of W99 for SIT retrieval: inadequate representation of interannual variability and trends.

The Warren Climatology includes quadratic fits for every month of snow water equivalent and snow depth. We projected

these fits over the 361×361 EASE grid (for combination with our radar freeboard data and comparison with SnowModel-LG)

to create SWE and depth distributions across the Arctic basin as defined in Sect. (2.1).

2.3.1 Drifting Station Coverage Illustration120

At this point it is instructive to briefly illustrate the coverage of the drifting stations from which W99 was compiled. We

analysed position and snow depth data from the twenty-eight drifting stations that contributed to W99 (Fig. 2a). It is clear that

the vast majority of these operated in the Central Arctic or in the East Siberian Sea, with very little sampling done in most other

marginal seas. But while these tracks illustrate the movements of the drifting stations, it is important to note that the stations
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Figure 2. (a) tracks of Soviet drifting stations 3 - 31. (b) Number of days in each region in each month that snow stake measurements were

taken.

were not always collecting snow data which would contribute to the W99 climatology. To assess the spatial distribution of125

snow sampling, we cross-referenced the position data with days on which the drifting stations recorded the snow depth at their

measuring stakes. We then calculated the number of ‘measurement-days’ in each region-month combination (Fig. 2b). We note

that when two drifting stations were operating at the same day, we count this as two distinct days (as they were rarely so close

together so as to collect redundant data).

This reveals that no snow measurements were taken in the Barents and Kara Seas, and none in the Laptev Sea for four of130

the seven winter months. While ‘snow-line’ transect data also contributed to W99 (and indeed was used in preference to stake

data where possible), we find that snow-line data was overwhelmingly collected on days where stake-data was also collected.

Figure 2 illustrates that the quadratic fits of W99 are not appropriate for use in several of the marginals seas. However we

note that a number of authors have still used the climatology for sea ice thickness retrievals in these regions, often in the course

of sea ice volume calculations (e.g. Laxon et al., 2003, 2013; Tilling et al., 2015, 2018; Sallila et al., 2019; Li et al., 2020a;135

Belter et al., 2020; Li et al., 2020b). We therefore consider these regions in this manuscript, but with the understanding that

mW99 is likely not representative of the snow conditions.

2.4 The modified Warren Climatology (mW99)

The W99 climatology is by definition invariant from year to year, and was implemented in this way by Laxon et al. (2003) and

Giles et al. (2008a) to estimate sea ice thickness using ERS 1 & 2. When implemented like this, the amount of snow on sea ice140

exhibits no interannual variability.

The implementation of W99 was then modified by Laxon et al. (2013) based on the results of Operation IceBridge flights

which showed reduced snow depth over first year ice (FYI; Kurtz and Farrell, 2011). This implementation, known as ‘mW99’,

6



consists of halving snow depths over first year ice with snow density kept constant. Because the areal fraction and spatial

distribution of FYI changes from year to year, this modification introduces a small degree of interannual variability into the145

contribution of snow data to sea ice thickness. We investigate this in Sect. (4.1.1).

2.5 Ice Type Data

Sea ice type data is required to modify W99 and create mW99. One popular product for this (e.g. Tilling et al., 2018; Hendricks

and Ricker, 2019) is an operational product from the EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI SAF,

www.osi-saf.org). However, this data series begins in March 2005. This is after our study begins (in October 2002).150

A similar product exists, published by the Copernicus Climate Data Store (CDS, www.cds.climate.copernicus.eu; Aaboe,

2020). This product’s underlying algorithm is adopted from the OSI SAF processing chain, but has been modified to produce

a consistent record compatible with reanalysis. Furthermore, the CDS product only assimilates information from ‘passive’

satellite radiometers, whereas the OSI SAF operational product assimilates additional data from ‘active’ scatterometers. Despite

these differences, a brief comparison of the products reveals a high degree of similarity.155

It would be possible to use the CDS product prior to the beginning of the OSISAF product in 2005, but this approach raises

issues surrounding the continuity of the products across the 2005 transition. Since our investigation focusses on trends and

variability, we prioritise a consistent record and opt to use the CDS ice type product for the entirety of our study.

Both ice type products occasionally include pixels of ambiguously classified ice. We implemented a very simple interpolation

strategy to classify these points while creating our mW99 data, although they are rarely present in winter within the regions160

analysed in this paper. Where the ambiguous pixels are generally surrounded by a given ice type then they are classified as the

surrounding type. In the case where the ambiguous classification is on the boundary between the two types, the snow depth

was not divided by two.

2.6 SnowModel-LG

To investigate the impact of variability and trends in snow cover on regional sea ice thickness we use the results of SnowModel-165

LG (Liston et al., 2020; Stroeve et al., 2020). SnowModel-LG is a Lagrangian model for snow accumulation over sea ice; the

model is capable of assimilating meteorological data from different atmospheric reanalyses (see below) and combines them

with sea ice motion vectors to generate pan-Arctic snow depth and density distributions. The sea ice motion vectors used were

from the Polar Pathfinder dataset at weekly time resolution (Tschudi et al., 2020). SnowModel-LG exhibits more significant

interannual variability than mW99 in its output because it reflects year to year variations in weather and sea ice dynamics.170

SnowModel-LG includes a relatively advanced degree of physics in its modelling of winter snow accumulation. The model

creates and merges layers based on precipitation and snowpack metamorphism. The effects of sublimation, depth-hoar forma-

tion and wind-packing are included. However, the effects of snow loss to leads by wind and extra snow accumulation due to

sea ice roughness are not included. Furthermore, the heat flux to the snow is not sensitive to the thickness of the underlying sea

ice.175
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SnowModel-LG creates a snow distribution based on reanalysis data, and the accuracy of this snow data is unlikely to exceed

the accuracy of the input. There is significant spread in the representation of the actual distribution of relevant meteorological

parameters by atmospheric reanalyses (Boisvert et al., 2018; Barrett et al., 2020). The results of SnowModel-LG therefore

depend on the reanalysis data set used. However, the data product used has been tuned to match Operation Ice Bridge derived

snow depths during spring time, and snow depth differences between the reanalysis products were found to be less than 5180

cm (Stroeve et al., 2020). We note that the vast majority are over the Beaufort Sea and the Greenlandic side of the Central

Arctic, which is generally covered by multiyear ice. It is therefore conceivable that the scaling factors would be different if

FYI were better sampled by OIB. The time-averaged regional differences between SnowModel-LG runs forced by ERA5 and

MERRA2 reanalysis data are shown in Fig. (S3). The SnowModel-LG data used in this study are generated from the average

of SnowModel-LG runs forced by the two reanalysis products. The SnowModel-LG data is provided on the same 25 km EASE185

grid as the ESA-CCI radar freeboards described above at daily time resolution. We averaged this daily product to produce

monthly gridded data for combination with the monthly radar freeboard data.

2.7 NASA Eulerian Snow on Sea Ice Model (NESOSIM)

To support and broaden the impact of our findings, we repeat our analyses with NESOSIM data from 2002-2015 (Petty

et al., 2018b). NESOSIM data is released on a 100×100 km grid which was interpolated to the 25×25km EASE grid of the190

SnowModel-LG and radar freeboard data. NESOSIM runs in a Eulerian framework and like SnowModel-LG can assimilate

precipitation data from a variety of reanalyses data. In contrast with SnowModel-LG’s multi-layered scheme, NESOSIM uses

a two-layer snow scheme to represent depth-hoar and wind-packed layers. To define these layers, it assimilates surface winds

and temperature profiles from reanalysis. Wind-blown snow loss is parameterised to leads using daily sea ice concentration

fields (Comiso, 2000, updated 2017).195

In this study we use data from a NESOSIM run initialised on the 15th August for each year. The initial depth was produced

by a ‘near-surface air-temperature-based scaling of the August W99 snow depth climatology’. This is a linear scaling based

on the duration of the preceeding summer melt season. Snow density was initialised using the August snow-line observations

of Soviet NP drifting stations 25, 26, 30 and 31. Data from the most recent publicly available drifting stations were chosen to

maximise their relevance in a changing climate.200
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3 Methods

3.1 Contributions to thickness determination from snow and radar freeboard data

We now identify that the height correction due to slower radar pulse propagation in snow scales in almost direct proportion to

the total mass of penetrated snow (ms; Fig. S1). As such, it can be easily combined with the change to the floe’s hydrostatic

equilibrium from snow loading (also linearly dependent on ms) to make one transformation to modify Eq. (2) such that:205

SIT = fr
ρw

ρw − ρi
+ms

ρw
ρw − ρi

× 1.81× 10−3 (3)

Physically, the first term of Eq. (3) corresponds to the SIT were the sea ice known to have no snow cover. The second term

is the additional sea ice thickness that is inferred from knowledge of the overlying snow cover. SIT has been decomposed

into linearly independent contributions from radar-freeboard data and snow data. This allows the contributions of the two data

components to SIT to be assessed independently. A derivation of the 1.81× 10−3 coefficient is available in the supplementary210

material.

We highlight here that our expression in Eq. (3) of the contribution of snow data to SIT determination solely in terms of

snow mass is technically convenient for using W99 to estimate sea ice thickness, as quadratic fits of density (unlike depth and

snow water equivalent) are not publicly available for all months. This has led to the required density values often being set to

a constant value or ‘backed out’ by dividing the published SWE distributions by the depth distributions.215

Eq. (3) and its factor of 1.81×10−3 allow the simple expression of the theoretical change to the radar freeboard under rapid

snow accumulation or removal. Making fr the subject of the equation and assuming SIT constant we find:

∂fr
∂ms

=−1.81× 10−3 (m/kgm−2) (4)

We stress that the above equation assumes total radar penetration of overlying snow, an assumption discussed in Sect. (5.3.1).

As well as allowing independent analysis of the radar and snow data contributions to SIT at a point, the linearly independent220

nature of Eq. (3) in terms of fr and ms allows for a simple calculation of the average SIT in a region (SIT ) as:

SIT =RF +Snow (5)

Where RF and Snow represent the spatial averages of the first and second terms of Eq. (3).

3.2 Assessing Snow Trends and Variability at a point

In Sect. (4.1) we briefly compare the statistics for trends and variability at drifting stations published in Warren et al. (1999)225

with those introduced by mW99 and SnowModel-LG at a given point. We carry out this analysis to establish that the mW99

variability and trends at a given point (chosen as pixels on a 25x25 km EASE grid) are considerably smaller than those observed

at drifting stations.

9



The monthly interannual variability (IAV) values published in Warren et al. (1999) are calculated as the standard deviation

of the snow depths at drifting stations when compared to the climatology at the position of the stations. The IAV values at230

a point-like drifting station in a region will therefore naturally be higher than the IAV of the region’s spatial-mean. As such,

to compare IAV values from point-like drifting stations to mW99, we calculate the IAV at individual ice-covered points on a

25×25 km equal-area grid (Brodzik et al., 2012). These are all positive values, which we then average for comparison with the

drifting stations. By regionally averaging the IAV values of many points rather than calculating the IAV of regional averages,

we replicate the statistics of the point-like drifting stations.235

However, the main part of this paper does not focus on trends and variability at a point (as measured by drifting stations),

but instead investigates trends and variability in Snow and SIT at the regional scale (Sections 4.2 & 4.3). This variability

is significantly lower than the typical variability at a point, as many local anomalies from climatology within a region are

averaged out in the calculation of single, area-mean values which form a timeseries for each region.

3.3 Assessing Regional Interannual Variability240

Sect. (4.2) of this paper focuses on the interannual variability in regional SIT which (treating RF and Snow as random,

dependent variables) can be expressed thus:

σ2

SIT
= σ2

RF
+σ2

Snow
+2Cov(RF,Snow) (6)

Where the final term represents the covariance between spatially averaged radar freeboard and snow contributions. This covari-

ance term can be expressed as 2r×σ
Snow

×σ
RF

, where r is the dimensionless correlation-coefficient between the variables245

and ranges between -1 and 1. To further explain this term, if years of high RF are correlated with high Snow, then the covari-

ance term will be high and interannual variability in SIT will be amplified. If mean snow depths are anti-correlated with mean

radar freeboard across the years, interannual variability in SIT will be reduced.

SIT , RF & Snow were calculated where any valid grid points existed on the 25x25 km EASE grid. Because of this,

no average values were computed in the Kara Sea in October 2009 or 2012. Furthermore, no October values were generally250

available in the Barents Sea after 2008 (with the exception of 2011 and 2014). The impact of this on our resulting analysis

is clearly visible in the top left panel of Fig. (10). We do not exclude the Barents Sea in October from our analysis because

of the low number of valid points, but we do highlight the undersampling issue here. We continue to consider it because we

do not find statistically significant declining trends with the data we have, so essentially we are reporting a null result. Our

calculations of interannual variability in this month is inherently adjusted for the small sample size, but we nonetheless urge255

caution in interpretation of the values. The number of grid points available for averaging in each region in each month are

shown in Fig. (S2).

The three terms on the right hand side of Eq. (6) correspond to the three unique terms of the covariance matrix of the two

terms of Eq. (5). The main-diagonal elements of this 2×2 matrix correspond to the variance of the snow contribution and the

radar freeboard contribution to sea ice thickness, terms one and two of Eq. (6). The off-diagonal elements are identical and260

sum to form the third term of Eq. (6).
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We calculated this matrix for each region in each month to investigate the sources of regional interannual variability in SIT

for the time period under consideration (2002-2018). The Central Arctic region is not sufficiently well observed by the Envisat

radar altimeter (see Fig. 1), so the covariance matrix for the region was only calculated for the CS2 period (2010-2018).

In some cases a natural degree of covariance is introduced between the regional Snow and RF timeseries because they both265

display a decreasing trend. This ‘false-variance’ would not be present were the system in a steady state. As such, we detrended

the regional timeseries prior to calculation of the covariance matrix. We found that doing this significantly decreased the value

of the covariance term in Eq. (6) .

We consider the relative contributions of these three terms to σ2

SIT
in calculations involving mW99 and SnowModel-LG

(Sect. 4.2). In light of these results, we then re-assess the statistical significance of regional trends in SIT using SnowModel-270

LG.

Detection of temporal trends in SIT is critically dependent on accurate characterisation of σ2

SIT
. This is because conven-

tional tests for trend exploit the known probability of a system with no trend generating the data at hand through variability

alone (Chandler and Scott, 2011, p. 61). In this paper we argue that the σ2

Snow
term of Eq. (6) has been systematically un-

derestimated through the use of a quasi-climatological snow data set (mW99). As an alternative to this we use the results of275

SnowModel-LG, a snow accumulation model that incorporates interannual changes in precipitation amount, freeze-up timing

and sea ice distribution.

3.4 Assessing Regional Temporal Trends

In Sect (4.3) we examine temporal trends in regional SIT for each month of the growth-season (October - April), and decom-

pose the results by sea ice type. It is stressed that these regional trends are each the trend of a single timeseries of spatially280

averaged thickness values, rather than the average of many trends in sea ice thickness at various pixels in a region. Regional

trends were deemed statistically significant if they passed a two-tailed hypothesis test with p-value less than 0.05, with a null

hypothesis of no trend. Trends were calculated for regional SIT over the Envisat-CS2 period (2002-2018) for all regions apart

from the Central Arctic for which only CS2 data was available. We assess the relationship of these trends in SIT to trends in

RF and Snow (Fig S19).285

In Sect. (4.1.2) we show that basin-wide average snow depth and SWE is decreasing in SnowModel-LG in most months,

but only in October for mW99. We point out here that (under the paradigm of total radar wave penetration of snow on sea

ice) under-accounting for potential reductions in SWE may partially mask a decline in sea ice thickness, as reductions in radar

freeboards are partially compensated by reductions in snow depths. From Eq. (5):

∂(SIT )

∂t
=

∂(RF )

∂t
+

∂(Snow)

∂t
(7)290
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4 Results

4.1 Comparison of point-trends and point-variability

4.1.1 Low interannual variability in mW99 compared to drifting stations and SnowModel-LG

How does the variability in mW99 and SnowModel-LG at a given point compare to the values recorded at Soviet drifting

stations published by Warren et al. (1999)? These values for interannual variability are not currently used in sea ice thickness295

retrievals (although they do contribute to uncertainty estimates in the ESA-CCI sea ice thickness product). Nonetheless, they

offer a benchmark against which to evaluate the variability induced by mW99 at a given location.

Using the method described in Sect. 3.2 we find that the snow variability at a point from mW99 (Fig. 3, blue bars) is on

average about 50% of the values recorded at the drifting stations (Fig. 3, green bars). By comparison, SnowModel-LG snow

depth variability at a given point is significantly higher, ranging from ∼75% of the drifting station values in October to ∼115%300

by the end of winter.

We present this analysis of the point-like snow variability to illustrate that mW99 does not introduce enough variability at a

given point to match that observed at drifting stations from year to year. Furthermore, the variability that does exist is confined

to a distinct band of the Arctic Ocean (Fig. 4). This band represents areas where the sea ice type is not typically either FYI or

MYI. Instead it is either switching between the two, or it is an area where FYI has replaced MYI during the period of analysis.305

In areas where sea ice type is temporally unchanging, snow variability is not present. This has implications at the regional scale

as marginal seas with a consistent sea ice type experience unrealistically low σ
Snow

in the mW99 scheme.
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Figure 3. Interannual variability (2002-2018) in snow depth from mW99 and SnowModel-LG compared to the values given in Table 1 of

Warren et al. (1999).

Figure 4. mW99 snow depth variability at each EASE grid point over the 2002-2018 period. This is calculated by generating a timeseries

of snow depth at each point and then calculating the standard deviation of that timeseries. High variability is displayed in a band where sea

ice type typically fluctuates from year to year. IAV is zero in areas that do not exhibit sea ice type variability, introducing unphysically low

variability in SIT.
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4.1.2 Lack of Temporal Trends in mW99 compared to SnowModel-LG and in-situ data

Weak trends exist at some points in the mW99 Arctic snow distribution due to the shifting distribution and abundance of first

year ice in the Arctic. In this section we briefly address their size, sign and veracity, leaving regional analysis until Sect. (4.2).310

Values for SWE and depth trends measured by individual drifting stations are given in W99, but the values are not statistically

significant for any of the winter months, and as such are not displayed here. We instead compare the point-trends at all color

coded regions of Fig. 1 from mW99 and SnowModel-LG (Fig. 5).

We find that when we average the point-trends at a basin-wide scale, the only statistically significant trend (at the 5% level)

for mW99 snow depth is a positive one for the month of October (+0.11 cm/yr; Fig. 5). This increasing trend in snow depth is315

in part due to the diminishing area of October FYI relative to that of MYI (Fig. S4), and in part due to the retreat of the October

sea ice into the Central Arctic where W99 exhibits higher snow depths and SWE. The increasing October areal dominance of

MYI is in part driven by delayed Arctic freeze-up (Markus et al., 2009; Stroeve et al., 2014). The area of sea ice over which

the W99 climatology is halved in October is therefore shrinking, and basin-wide mean snow depths in mW99 are increasing.

Trends in sea ice type fraction for each winter month are displayed in Fig. (S4), and monthly timeseries for mW99 SWE are320

displayed in Fig. (S5).

Unlike mW99, SnowModel-LG exhibits statistically significant, negative point-trends for the later five of the seven winter

months (when averaged at a basin-wide scale). We identify two processes as responsible for this decreasing trend: the MYI

area is shrinking, so a smaller MYI sea ice area is present during during the high snowfall months of September and October

(Boisvert et al., 2018); also freeze-up commences later, so a lower FYI area is available in these months and more precipitation325

falls directly into the ocean. Webster et al. (2014) observed a -0.29cm/yr trend in Western Arctic spring snow depths using

both airborne and in situ sources. This airborne contributions to this statistic included data over both sea ice types, and the

in-situ contributions included data from individual Soviet drifting stations from the Western Arctic. The statistic compares

well with the behaviour of SnowModel-LG (-0.27 cm/yr March; -0.31 cm/yr April), but is considerably beyond that of the

non-statistically significant trends of W99 and mW99.330

What might the effects of this decline be on SIT at regional scales and larger? In terms of Eq. (7), models and observations

indicate that ∂(Snow)/∂t is negative on long timescales (Webster et al., 2014; Warren et al., 1999; Stroeve et al., 2020).

However, the use of mW99 effectively sets ∂(Snow)/∂t to zero, and to a positive value in October. This has the effect of

biasing ∂(SIT )/∂t high (and towards zero). Section 4.3 examines the effect of using SWE data with a more realistic decline

on regional SIT trends; this is mediated by the effects of higher interannual variability, which is examined in Sect. (4.2).335
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Figure 5. Basin-wide spatial average of point-like trends in (a) snow depth and (b) SWE, from mW99 and SnowModel-LG. Calculated

for the Envisat-CS2 period (2002-2018). Significance values (in %) are given at the base of each bar. Only October trends for mW99 are

significant at the 5% level, whereas significant negative trends exist in SnowModel-LG for December - April.

4.2 Realistic SWE Interannual Variability Enhances Regional SIT Interannual Variability

Having illustrated the deficiency of point-trends and point-variability in mW99, we now move on to the impact of snow data

on SIT at the regional scale.

We calculate the interannual variability of detrended timeseries of the snow contribution to the thickness determination

(Snow) from mW99 and SnowModel-LG. We display some of these results in Fig. (6). We did this for every winter month340

(Oct-Apr) and for in each region defined in Fig. (1). SnowModel-LG data produce more variable timeseries of Snow (i.e.

higher values of σ2

Snow
; c.f. Eq. 6). This is the case for all months, in all regions. For snow in the Kara Sea, mW99 introduces

almost four times less interannual variability into SIT via Snow than SnowModel-LG in the April timeseries. This analysis is

further broken down by sea ice type in Figs S7 and S8.

Having shown that SnowModel-LG’s contribution to SIT is more variable than mW99, how does this increased variability345

propagate into sea ice thickness variability itself (σ2

SIT
)? To answer this question, we must examine the way in which the

snow contribution to SIT combines with data from satellite radar freeboard measurements. Having calculated the σ2

Snow
term

of Eq. 6 (displayed in Fig. 6), we now turn to the 2Cov(RF,Snow) term. To assess this we calculate the magnitude and

statistical significance of correlations between the detrended RF and Snow contributions to SIT in individual years, regions

and months.350

To do this we calculated a monthly timeseries of RF and Snow for each region over the time-periods (2002-2018, with the

Central Arctic being 2010-2018). Because we considered eight regions and seven months, this led to to 56 pairs of timeseries

for RF and Snow. We then detrended each of them. We then calculated the correlation between each of the pairs of detrended

timeseries. We note here that the correlation between the timeseries is dependent on their relative position to a linear regression.
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Figure 6. Detrended timeseries of spatially averaged snow contributions to sea ice thickness (Snow) by region from W99 (blue) and

SnowModel-LG (red). Standard deviation values are displayed for SnowModel-LG (lower left, red), and mW99 (lower right, blue). All

regions are plotted in Supplementary Fig. (S6)

These correlation statistics are thus independent of the absolute magnitude of the values, their units, or any linear scaling of355

the axes. We therefore choose to present the correlations in Fig (7) without axes and scaled to the rectangular panels, so as to

best show the relative positions of the points without extraneous numerical information.

We find statistically significant correlations between Snow and RF to generally range between 0.6 - 0.85 (Fig. 7). All

statistically significant correlations were positive ones, and this was also the case when individual sea ice types were considered

for each region. When all sea ice types were considered, the Laptev and East Siberian seas exhibited statistically significant360

trends in five and six of the seven growth-season months respectively. The Barents Sea and the Beaufort Sea both exhibited one

month of correlation, and the Central Arctic Region exhibited no months of correlation - the reasons for this are discussed in

Sect. (5.4). When analysed as a single, large region, the ‘Marginal Seas’ area exhibits correlations in four of the seven months

analysed, with the strength of these correlations increasing over the season.

We continued this analysis by breaking down the regions by sea ice type. The area of the Central Arctic sea ice covered with365

first year ice exhibits strong correlations (all above 0.8) in the later five months of the winter (Fig. S9).

When considering correlations over multi-year ice (MYI), the ‘Marginal Seas’ grouping exhibits correlations in the first

four growth-season months (Fig. S10). The MYI fraction Central Arctic, Chukchi and Barents Seas exhibited no correlations.

We note that this analysis is relatively sensitive to the detrending process. When performed without detrending, statistically
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Figure 7. Covariability of contributions to sea ice thickness from radar freeboard and SnowModel-LG derived snow components over all

sea ice types. Plots are colored with magenta when a a statistically significant correlation is present between the contributions (p>0.95).

Analogous plots are displayed for the FYI and MYI components of the regions in Figs S9 & S10.

significant correlations are noticeably more common. This is because Snow and RF are both in decline in some areas, which370

introduces an inherent correlation from the trend.

Having identified and quantified regions and months of significant covariance between Snow and RF (Fig. 7), we are in

a position to fully answer the question of how the increased variability of SnowModel-LG over mW99 (shown in Fig. 6)

ultimately impacts σ2

SIT
. We plot the three contributing components to σ2

SIT
for each region in each winter month (Fig. 8). We

note that in the case of negative covariability between Snow and RF , it is possible for σ2

Snow
+σ2

RF
to be larger than σ2

SIT
.375

This is not problematic because σ2

Snow
+σ2

RF
does not represent a real quantity when the variables are not independent.

In the marginal seas σ2

Snow
overtakes σ2

RF
to become the main constituent of σ2

SIT
by end of the growth season (Fig. 8).

This is particularly driven by the behaviour of the Beaufort and East Siberian Seas, where this relationship is clearly visible.
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Figure 8. Constituent parts of σ2

SIT
of different regions. Bars represent the variance (σ2) of RF and Snow and the covariance between the

two. (a) illustrates the absolute variance contributions (b) illustrates their relative contributions. The variance of Snow in mW99 is indicated

in panel (a) by a superimposed black bar. Snow contributes significantly more variability in the late winter than radar freeboard in most of

the marginal seas.
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In the Central Arctic σ2

RF
just remains the dominant component of σ2

SIT
, throughout the cold season although σ2

Snow
plays an

increasing role as the season progresses.380

Covariance between RF and Snow makes relatively constant contributions to σ2

SIT
of the ‘marginal seas’ grouping in

comparison to the other two components, but analysis of this grouping conceals more significant variation at the scale of the

individual group members. The covariability term of Eq. (6) makes a larger contribution than radar freeboard variability itself

at times, for example in the Kara and East Siberian seas at the end-of-winter, and for the Chukchi Sea in February and March.

For the Central Arctic, the covariability term generally makes less of a contribution to total SIT variability than radar freeboard385

or snow variability individually, and is negative in the first two months of winter. We note that the covariability is almost always

positive in the marginal seas with the exception of December in the Kara and Chuckchi Seas.

Finally, we directly compare the variability of SIT itself, when calculated using SnowModel-LG and mW99. We conduct

this exercise in both absolute terms (Fig. 9a) and as a fraction of the regional mean thickness (Fig. 9b).

Calculation of regional SIT with SnowModel-LG reveals higher variability in all marginal seas of the Arctic basin in all390

months. When the marginal seas are analysed as a contiguous entity, the standard deviation is 0.09 m with mW99 and 0.16 m

with SnowModel-LG. This represents an increase in SIT variability of 77%. For the Central Arctic this figure is considerably

smaller, at 25%. When the individual marginal seas are considered, the largest increase was the Kara Sea (138%) and the

smallest was the Beaufort Sea (35%).

One key aspect of interannual variability is how it compares to typical values. When IAV is expressed as a percentage of395

the regional mean thickness, the Barents Sea exhibits the largest increase when calculated with SnowModel-LG: the standard

deviation (as a percentage of mean thickness) increases from 15% to 25%. When variability is viewed in this way, the increase

in the Central Arctic is small (7.9% to 9.4%). Variability as a fraction of mean thickness is also highest in the Barents Sea

when calculated with SnowModel-LG - whereas with mW99 this designation would go to the Beaufort Sea. When analysed as

one area, variability (as a fraction of mean thickness) in the marginal seas transitions from being 7.5% of the mean thickness400

to 13.8% when calculated with SnowModel-LG.

We also note that MYI exhibits more thickness variability than FYI (both absolutely and relative to the sea ice type’s mean

thickness) in all the marginal seas (Fig. S11). For the marginal seas as a single group, MYI is roughly twice as variable in

absolute terms. This is not the case in the Central Arctic, where the thickness variability of the individual sea ice types is highly

similar (with FYI IAV slightly larger when calculated relative to regional mean thickness).405
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Figure 9. Standard deviation in sea ice thickness over the period 2002 - 2018 except for the Central Arctic: 2010-2018 (a) calculated in

absolute terms (b) calculated as a percentage of the regional mean thickness over the period. Mean growth-season values shown with dashed

lines. The individual detrended regional timeseries from which this figure is synthesised are available in Fig. (S12).

4.3 New and faster thickness declines in the marginal seas

As well as exhibiting higher interannual variability than mW99, SnowModel-LG Snow values decline over time in most

regions due to decreasing SWE values year-on-year. Here we examine the aggregate contribution of a more variable but

declining Snow timeseries in determining the magnitude and significance of trends in SIT .

We first assess regions where SIT was already in statistically significant decline when calculated with mW99. This is the410

case for all months in the Laptev and Kara seas, and four of seven months in the Chukchi and Barents sea. The rate of decline

in these regions grew significantly when calculated with SnowModel-LG data (Fig. 10; green panels). Relative to the decline-

rate calculated with mW99, this represents average increases of 62% in the Laptev sea, 81% in the Kara Sea, and 102% in
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the Barents Sea. The largest increase in an already statistically-significant decline was in the Chukchi Sea in April, where the

decline-rate increased by a factor of 2.1. When analysed as an aggregated area and with mW99, the total ‘Marginal Seas’ area415

exhibits a statistically significant negative trend in November, December, January and April. The East Siberian Sea is the only

region to have a month of decline when calculated with mW99 but not with SnowModel-LG.

We now turn our attention to new trends that stem from the use of SnowModel-LG over mW99 (Fig. 10; red panels). Our

analysis reveals a new, statistically significant SIT decline in the Chukchi Sea in October (taking the number of months

with a decline in SIT to five). Perhaps more significantly, the aggregated Marginal Seas region exhibits two new months of420

statistically significant declining SIT in October and February, taking the total number of declining months to six. No months

in any marginal sea exhibited a statistically significant increasing trend in SIT (with either snow data set).

The Central Arctic region exhibits a statistically significant thickening October trend with both snow data sets (10 cm/yr and

9 cm/yr with SnowModel-LG and mW99). The region exhibits an additional month of increase in November when calculated

with SnowModel-LG (7 cm/yr).425

We also analyse these regional declines as a percentage of the regional mean sea ice thickness in the observational period

(2002-2018). We observe the average growth-season thinning to increase from 21% per decade to 42% per decade in the

Barents Sea, 39% to 56% per decade in the Kara Sea, and 24% to 40% per decade in the Laptev Sea when using SnowModel-

LG instead of mW99. Five of the seven growth-season months in the Chukchi Sea exhibit a decline with SnowModel-LG of (on

average) 44% per decade. This is much more than that of the four significant months observable with mW99 (25% per decade).430

We find the Marginal Seas (when considered as a contiguous, aggregated group) to be losing 30% of its mean thickness per

decade in the six statistically significant months when SIT is calculated using SnowModel-LG (as opposed to mW99).

We further analyse these declining trends by sea ice type. This reveals the aggregate trends in the marginal seas to be

broadly driven by thickness decline in FYI rather than MYI. We note that the FYI sea ice cover in the Kara and Laptev seas is

in statistically significant decline with either snow product in all months. The FYI cover in the Barents Sea is also in decline435

for six of the seven winter months when calculated with SnowModel-LG. We find that (when analysed with SnowModel-LG)

if any month in a specific marginal sea is in ‘all types’ decline, its first year ice is also statistically significantly declining.

4.4 Changes to the sea ice thickness distribution and seasonal growth

We now consider differences in the spatial sea ice thickness distribution introduced by a snow product with IAV. Because mW99

has low spatial variability in its SWE fields (the quadratic fits are relatively flat), it produces a more sharply peaked and narrow440

SIT distribution with lower probabilities of thinner or thicker sea ice in the months January - April. The SIT distribution

also exhibits some degree of bimodality due to the halving scheme. This bimodality is to a large degree represented in the

SnowModel-LG histograms - an encouraging result (Fig. S13).

The regional, seasonal growth rate is also similar when comparing calculations with SnowModel-LG and mW99 (Fig. S14).

These rates were calculated over the period 2002-2018 with the exception of the Central Arctic which was restricted to the445

period 2010-2018. Among the most salient differences are the much smoother seasonal evolution of snow cover in the Barents

Sea from SnowModel-LG and the decline in SWE from March to April in the Kara, Laptev and Beaufort seas with mW99

21



Figure 10. Regional SIT timeseries calculated using mW99 and SnowModel-LG. Note different y-axis scale for Central Arctic and East

Siberian Sea. Panels featuring a statistically significant trend in sea ice thickness when calculated both mW99 & SnowModel-LG framed

with green. Red frames indicate where trend is only significant when calculated with SnowModel-LG. Blue frames indicate where a statis-

tically significant increase is detected with mW99, but not with SnowModel-LG. Where trends are statistically significant, trend lines are

superimposed.
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Figure 11. Sea ice thickness trends in the four marginal seas that exhibited robust trends in several winter months in the period 2002-2018.

Average winter trend (calculated only from statistically significant months) from each snow product shown with dashed lines. Data points

are only shown where a statistically significant trend is present for that month and for the relevant snow data.

(compared to a continued increase with SnowModel-LG). In the East Siberian and Laptev seas there is clearly a slightly lower

seasonal growth rate when calculated with mW99, and this is also true to a lesser extent in the Chukchi Sea.
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5 Discussion450

5.1 Sensitivity of Findings to Choice of Snow Product

5.1.1 Choice of Climatology - Combining AMSR2 with mW99

The most recent sea ice thickness product from the Alfred Wegener Institute (Hendricks and Ricker, 2019) makes use of a

new snow climatology, generated by the merging of W99 with snow depth data derived from the AMSR2 passive microwave

record. This is then applied with a halving scheme based on sea ice type in a similar way to mW99 (but with the AMSR2455

component not halved). This likely improves the absolute accuracy of snow depths (and thus sea ice thickness), but does not

resolve the issues discussed in this paper involving trends and variability. The modified AMSR2/W99 climatology functions in

a very similar way to mW99 - a weak IAV is introduced in areas of interannually fluctuating sea ice type. Any trends will be

the result of trends in the relative dominance of sea ice type. This was discussed in Sect. 4.1.2 and illustrated in Fig. S4: sea

ice type trends are only significant in October and January, where they are weak.460

5.1.2 Choice of Reanalysis Forcing for SnowModel-LG

Barrett et al. (2020) reviewed precipitation data from various reanalysis products over the Arctic Ocean using records from the

Soviet drifting stations, and found the magnitude of interannual variability to be similar. They further broke these data down

to the regional scale using the same regional definitions in this paper, and found that this similarity persisted. Boisvert et al.

(2018) conducted a similar analysis with drifting ice mass balance buoys, and found the interannual variability of the data sets465

to also be similar (although the authors found larger discrepancies in magnitude). These differences in magnitude however

cannot be physical (as there is only one Arctic), and Cabaj et al. (2020) were able to bring precipitation estimates into better

alignment using CloudSat data with a scaling approach. However this scaling approach preserved the interannual variability of

the data sets, which Barrett et al. (2020) and Boisvert et al. (2018) found to be in comparatively good agreement. To investigate

how this variability propagates into Snow variability, we calculate Snow timeseries from SnowModel-LG runs forced by both470

MERRA-2 and ERA-5 data and find their variability to be very similar (Fig. S15).

With regard to trends, we find that the two different reanalysis forcings generally introduce minimal differences in the

SIT trends (Fig. S16). We do however find that small differences in SWE cause the Snow contribution of the MERRA-2

SnowModel-LG run to exhibit statistically signficant decline in regions and months where the ERA-5 run does not (with only

a small change to the p-value). Analysis of the absolute Snow timeseries reveals them to be otherwise similar (Fig. S17).475

We take these clear similarities as evidence that our findings are in principle robust to the choice of atmospheric reanalysis.

5.1.3 Choice of Model - Comparison with NESOSIM

Some uncertainty is introduced into the spatial distribution of snow in a given year by SnowModel-LG snow parameterisations

and simplifications, such as the lack of snow loss to leads. We therefore repeat our analyses with 2002-2015 data from the

NASA Eulerian Snow On Sea Ice Model (NESOSIM; Petty et al., 2018b).480
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We find that doing this increases the relative importance of snow variability to sea ice thickness variability (Fig. S18). We

also observe that the NESOSIM calculations are considerably more similar to those done with SnowModel-LG than with

mW99. NESOSIM replicates the increasingly dominant σ2

Snow
contribution to σ2

SIT
over the winter in the Marginal seas, and

also replicates the higher contribution of σ2

RF
in the Central Arctic compared to both the individual and aggregated marginal

seas. Striking resemblances are seen for the Kara Sea and the East Siberian Sea. Furthermore, the negative covariances for485

November in the Barents Sea and December in the Chukchi are replicated (albeit with significantly greater magnitude in the

Barents Sea). NESOSIM also replicates the negative covariances in October and November in the Central Arctic, but also

introduces negative covariance in December (unlike SnowModel-LG).

Because the NESOSIM data is only publicly available from 2002-2015, any underlying trends in the SIT timeseries are more

challenging to detect because of the shorter observational period (by comparison to regions where all relevant data is available490

from 2002-2018). On the other hand, the calculated interannual variability is not reduced by the shorter timeseries, further

obscuring any potential underlying trends. But despite these differences, both snow data sets produce statistically significant

decline in all months in the Laptev Sea. NESOSIM reproduces six of the seven months of decline in the Kara Sea shown by

SnowModel-LG, and three of the five in the Marginal Seas.

Further inspection of the individual data points across all regions and months reveals good agreement in regional SIT495

when calculated with either SnowModel-LG or NESOSIM - we take this as evidence that our findings concerning trends and

variability over the longer 2002-2018 period are robust to the choice of reanalysis-accumulation model.

5.2 Study Limitations

5.2.1 Statistical Treatment

We have assumed in calculating single figures for variances that the interannual variability of the systems at hand is time-500

stationary. It is unclear whether this is the case, as the timeseries are limited in length and time-resolution and thus offer limited

scope to test for stationarity. Furthermore we only tested for linear trends, when trends may in fact be non-linear. However, a

visual inspection of Fig. (10) implies that this approximation is adequate on a qualitative level. Our trend tests also were two-

tailed, with the null hypothesis that there was no trend. We could have formulated an alternate test where our null hypothesis

was that the trend was positive. This would have given a higher number of statistically significant instances of negative trends,505

but we deemed this inappropriate as one of the regions (the Central Arctic) does exhibit significant positive trends with the

two-tailed test.

5.3 Inter-Mission Bias between Envisat and CryoSat-2

An extensive validation exercise for the merged products indicated that although Envisat radar freeboards match well with

CS2 freeboards in the Arctic overall, some biases do exist over specific ice types (ESA, 2018). In particular, analysis of the510

inter-mission overlap period indicates that Envisat freeboards were biased low (relative to CS2) in areas dominated by MYI,

and high in areas dominated by FYI.
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We first make the point that this will have a relatively minimal effect on our findings regarding interannual variability, as

Snow is unaffected by this and σ2

RF
is likely relatively independent of the absolute magnitude of RF .

With regard to trends, if Envisat radar freeboards (and thus RF ) are in fact biased high over FYI between 2002-2010 (relative515

to CS2), then the total trend in many regions dominated by FYI could potentially be smaller than calculated in this manuscript.

We do however add that our findings regarding the impact of declining Snow is unaffected by any inter-mission bias in RF .

Because the trend in SIT is determined by both Snow & RF , the trend in SIT will always be more negative when calculated

with downward trending data for Snow.

5.3.1 The Effects of Incomplete Radar Penetration of the Snowpack520

This investigation has been carried out within the paradigm of total Ku-band radar wave penetration of the snow cover (as

suggested by Beaven et al. (1995)), however some in situ investigations have cast doubt on this. The issue was highlighted

in an Antarctic context by Giles et al. (2008b) for ERS radar freeboards, and it was shown subsequently that significant mor-

phological features in the snowpack (e.g. depth hoar, wet snow or crusts) enhanced radar scattering from within the snowpack

(Willatt et al., 2010). For the Arctic, Willatt et al. (2011) found that airborne Ku-band radar backscatter in the Bay of Both-525

nia was returned from nearer the snow-ice than snow-air interface in only 25% of cases when the temperature was close to

freezing, the figure increasing to 80% at lower temperatures. Nandan et al. (2017) observed that the presence of brine in the

base of the snowpack can raise the scattering horizon by several centimeters. However, these investigations were often (but not

exclusively) carried out at the end of the winter season or in the Sub-Arctic, when warmer temperatures may have increased

the snow’s brine volume fraction and diurnal forcing can drive rapid snow metamorphism. Both of these factors will be less530

prevalent in the colder months of winter. This analysis is therefore carried out using the imperfect historical assumption present

in publicly available sea ice products (that of total penetration).

What would the effects of incomplete penetration of the snowpack be on our findings? As the height of the primary radar

scattering horizon rises through the snow, the altimeter operation transitions from that of a radar altimeter to that of a lidar

altimeter. Knowledge of overlying snow contributes positively to the inference of SIT in the case of a radar altimeter (i.e. the535

coefficient of ms term of Eq. 3 is positive). However, the influence of overlying snow on lidar-based SIT estimates is negative

(i.e. the presence of more snow for a given measured radar freeboard implies less underlying sea ice). As the scattering horizon

rises through the snowpack, the SIT contribution of snow therefore decreases, reaches zero (in the top half of the snowpack,

the exact location depending on snow density) and proceeds to negative values. The result of potential incomplete penetration

for our study is that the magnitude of the reported trend and variance underestimations is diminished. Were our investigation540

based on a similarly long timeseries of lidar freeboards combined with a snow climatology, one of our conclusions would be

that diminishing snow cover is leading to overestimation of rates of decline in the marginal seas.

We finally note the potentially confounding influence of negative freeboard in regions such as the Atlantic sector of the

Central Arctic region and the Barents Sea. In the case of high snowfall and low sea ice thickness, the sea ice surface can be

depressed to the waterline or below. Beyond this point Eq. (5) no longer functions. The prevalence of negative freeboards has545

been studied by Rösel et al. (2018) and Merkouriadi et al. (2020), but has yet to be incorporated into any radar-altimetry based
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sea ice thickness retrievals. This situation can be driven by storm tracks entering the Arctic from the Atlantic (but also the

Bering Strait). These intrusions of warm air can also drive snow grain metamorphism, which may well affect radar penetration

through the snowpack.

5.4 The Impact of Enhanced Variability from SnowModel-LG550

When used instead of mW99, SnowModel-LG data increases the interannual variability of SIT in the marginal seas by more

than 50%. The main way that this occurs is though increasing σ2

Snow
values (Fig. 6). The second and less significant way that

σ2

SIT
is increased is through some positive correlations between Snow and RF values for individual months in some regions

(Fig. 7). Because the two timeseries are positively correlated in some cases, σ2

SIT
is increased; for the Marginal Seas region

this covariance term makes up around 15-20% of σ2

SIT
(Fig. 8).555

While values for interannual variability are given in W99, it was previously impossible to apply those values to either a given

year or to fulfil Eq. (6). SnowModel-LG offers similar variability to the SWE statistics given in W99 (Fig. 3), and can generate

a yearly timeseries of values. Furthermore it can be combined with radar freeboard data to generate all terms of Eq. (6) for a

direct calculation of σ2

SIT
.

Comparing our IAV values to the literature is challenging due to differences in the area over which other authors have560

calculated IAV values. Haas (2004) investigated the interannual variability of an area within the Transpolar Drift in the Central

Arctic and Northern Barents Sea, and found a 0.73 m standard deviation. This is considerably higher than the values determined

in this study, although this data was collected by electromagnetic sounding in late summer over a ten year period that does not

overlap with this analysis. Laxon et al. (2003) defined a ‘region of coverage’, which essentially consisted of the marginal seas

considered in this analysis with the addition of some areas of the Canadian Archipelago and the Greenland sea. The authors565

found a variability of 0.24 m using W99 in this region of coverage over an eight year timescale. Unlike Haas (2004), this

value is lower than our findings using either mW99 or SnowModel-LG. Similar to Haas (2004), the time period is considerably

shorter and the geographical area is not identical. Finally, Rothrock et al. (2008) found interannual variability in SIT to be 0.46

m over a twenty-five year period (1975-2000), using submarine records from a variety of Arctic regions. It is likely that the

values in these studies differ due to the unequal spatial extent over which the IAV was calculated; averaging over a larger area570

reduces the IAV due to the averaging out of local anomalies.

5.5 The Impact of New and Steeper Trends in Mean Sea Ice Thickness

The replacement of multiyear ice with first year ice has been documented to be reducing Arctic-mean SWE on sea ice in spring

(Webster et al., 2014). However, progressively later freeze-ups in the Arctic are also likely driving a reduction in mean SWE in

the early cold-season. This is because sea ice covers a relatively smaller area in the high precipitation months of September and575

October. When the sea ice area then expands with the progression of the growth-season, the newer sea ice has not been exposed

to this snowfall. This mechanism is not accounted for in mW99, and as such snow depths do not decrease at a statistically

significant level in any month.
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In this study we have assessed how these negative trends in Snow propagate through into trends in SIT . In every area where

a statistically significant decline in radar freeboards is observed, a statistically significant decline in SnowModel-LG SWE is580

also observed (Fig. S19). In addition to this, SnowModel-LG also exhibits Snow decline in other months in the Beaufort and

Barents Sea. As such, reductions in Snow usually act in concert with observed reductions in RF , amplifying decline in SIT .

This relationship is illustrated by the fact that several months in several regions do not exhibit either a statistically significant

decline in RF or Snow (Fig. S19), but despite this they do exhibit decline in SIT (Fig. 10). We note here that this ‘co-decline’

in Snow and RF is separate to the covariability presented in Sect. 4.2 and Fig. 7, as that was calculated from detrended data.585

Because SnowModel-LG data features a steeper decline in Snow than mW99, a steeper decline is observed in the SIT of

several regions. However, SnowModel-LG Snow contribution to SIT also exhibits significantly more variability, which acts

to reduce statistical significance of SIT trends. Despite this compensating effect, the statistical significance of trends in SIT

were generally greater than those calculated using mW99. Furthermore, statistically significant trends emerged in new months

and new regions.590

Kwok and Rothrock (2009) analysed 42 years of submarine records and the five year ICESat record. However, it is chal-

lenging to draw comparison with our results, as trends were gleaned from submarine track crossings and by comparing the

thickness difference between the period of submarine observation and that of ICESat observations. Difficulty in comparison

is further compounded by differences in regional designation and the area of the submarine data release (which is generally

confined to the Central Arctic region where the radar altimetry timeseries is at best limited to the CryoSat-2 era). This is also595

the case for the updated analysis of Kwok (2018), who seasonally adjusted mean thickness values to match crossover points in

submarine tracks in time and space.

Our findings of enhanced interannual variability and steeper decline have implications for Arctic stakeholders and the de-

ployment of human infrastructure. The marginal seas are heavily used for the shipping of goods along the Northern Sea Route

in summer (Eguíluz et al., 2016) and provide the setting for potential extraction of natural resources (Petrick et al., 2017).600

Furthermore, the season during which vessels may traverse the Northern Sea Route is lengthening. Higher variability in sea ice

thickness may pose a challenge to the planning of this seasonal travel, particularly with regard to the need for ice-strengthened

escorts for conventional vessels (Melia et al., 2017; Cariou et al., 2019). The enhancement of declining trends where they exist

is perhaps of benefit these industries.

5.6 The interannual relationship between radar freeboard and snow depth605

We finally consider the physical mechanisms behind positive or non-significant correlations between Snow and RF displayed

in Fig. (7). Assuming total radar penetration of the snow cover, as snow accumulates on sea ice it should lower the local radar

freeboard by a distance on the order of half its accumulated height (Eq. 4). This lowering is a result of physical depression

of the sea ice surface and an increase in the radar ranging due to slower radar wave propagation in snow (in approximately

a 60:40 ratio). Over short time scales (days to weeks), this would result in a negative correlation between local snow depth610

and local radar freeboard. This corresponds to a negative covariability term in Eq. (5) and is represented by purple bars in

Fig. (8). Negative values are generally not seen, with the exception of October and November in the Central Arctic, November
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in the Barents Sea and December in the Chukchi and Kara seas. Furthermore, snow is a highly insulating material and its

accumulation limits sea ice thermodynamic growth. This would also bring about a negative correlation between snow depth

and radar freeboard, lagged over a period of weeks.615

The lack of negative correlations between RF and Snow from year to year is likely indicative of the timescale of our

analysis. If present, the negative correlation implied by Eq. (4) and the mechanisms above must only be present on shorter

timescales (e.g. days). So what drives the positive correlations between RF and Snow where they exist? One driver over FYI

is likely sea ice age. Sea ice formed at the beginning of the season has a longer time to (a) grow thicker, and (b) accumulate

snow. Both variables are therefore likely controlled by regional freeze-up timing, explaining the correlation. The combined620

evolution of Snow and RF anomalies as a function of regional freeze-up timings is likely to be the subject of future study.

The relationship between MYI radar freeboards and accumulated SWE may also form an avenue for further study.

6 Summary

In this paper we used a novel approximation for the slowing of radar waves in snow to decompose the conventional method for

estimating sea ice thickness into two contributions: one originating from radar freeboard data (from satellite altimeters), the625

other from snow data of varying provenance.

This allowed a regional assessment of the conventional impact of snow on variability and trends in sea ice thickness. We

then used a new snow data set (from SnowModel-LG) with a more realistic magnitude of interannual variability and trends to

calculate the regional sea ice thickness timeseries.

We found that interannual variability in average sea ice thickness (σ2

SIT
) of the marginal seas was increased by more than630

50% by accounting for variability in the snow cover. On a seasonal timescale we find that variability in the snow cover makes

an increasing contribution to the total variability of inferred sea ice thickness, increasing from around 20% in October to more

than 70% in April.

We also observed that the trends in SnowModel-LG data propagated through to the SIT timeseries, amplifying decline in

regions where it was already significant, and introducing significant decline where it did not previously exist. This occurred in635

spite of the compensating effect of enhanced interannual variability.

Author contributions. JCS, JCL, MT and RW proposed and conceptualised the study. VN and GEL provided extensive feedback on manuscript

and GEL provided the SnowModel-LG data. RDCM carried out the main analysis. All authors contributed to the write-up.

Code and data availability. The code used for all analysis and visualisation was written in Python 3.6 and is available at

github.com/robbiemallett/SnowModel-LG_SIT_Impacts. The radar freeboard data from Envisat and CryoSat-2 is available from the ESA640

CCI initiative at climate.esa.int/en/odp/#/project. The NESOSIM snow data is available from the NASA Cryospheric Sciences Laboratory

29



website at earth.gsfc.nasa.gov/cryo/data/nasa-eulerian-snow-sea-ice-model-nesosim. It is anticipated that the SnowModel-LG data will be

hosted in a persistent data repository in the near future. Code and data last accessed 2020/9/20.

Competing interests. The authors declare no competing interests.

Acknowledgements. This work was funded primarily by the London Natural Environmental Research Council Doctoral Training Partnership645

grant (NE/L002485/1). JCL acknowledges support from the European Space Agency Living Planet Fellowship ‘Arctic-SummIT’ under grant

ESA/4000125582/18/I-NS and the Natural Environmental Research Council Project ‘Diatom-ARCTIC’ under Grant NE/R012849/1. MT

acknowledges support from the European Space Agency by project ‘Polarice’ under grant ESA/AO/1-9132/17/NL/MP, project ‘CryoSat

+ Antarctica’ under Grant ESA AO/1-9156/17/I-BG and project ‘Polar + Snow’ under Grant ESA AO/1-10061/19/I-EF. JS and MT also

acknowledge support from the Natural Environment Research Council (grant no. NE/S002510/1). JCS and GEL acknowledge support from650

NASA grant 15-CRYO2015-0019 /NNX16AK85G.

30



References

Aaboe, S.: Copernicus Climate Data Records Sea Ice Edge and Sea Ice Type Product User Guide and Specification, Tech. rep.,

https://doi.org/10.24381/cds.29c46d83, 2020.

Armitage, T. W. and Ridout, A. L.: Arctic sea ice freeboard from AltiKa and comparison with CryoSat-2 and Operation IceBridge, Geophys-655

ical Research Letters, 42, 6724–6731, https://doi.org/10.1002/2015GL064823, 2015.

Barrett, A. P., Stroeve, J. C., and Serreze, M. C.: Arctic Ocean Precipitation From Atmospheric Reanalyses and Comparisons With North Pole

Drifting Station Records, Journal of Geophysical Research: Oceans, 125, https://doi.org/10.1029/2019JC015415, https://onlinelibrary.

wiley.com/doi/abs/10.1029/2019JC015415, 2020.

Beaven, S. G., Lockhart, G. L., Gogineni, S. P., Hosseinmostafa, A. R., Jezek, K., Gow, A. J., Perovich, D. K., Fung, A. K., and Tjuatja, S.:660

Laboratory measurements of radar backscatter from bare and snow-covered saline ice sheets, International Journal of Remote Sensing,

16, 851–876, https://doi.org/10.1080/01431169508954448, 1995.

Belter, H. J., Krumpen, T., Hendricks, S., Hoelemann, J., Janout, M. A., Ricker, R., and Haas, C.: Satellite-based sea ice thickness changes

in the Laptev Sea from 2002 to 2017: comparison to mooring observations, The Cryosphere, 14, 2189–2203, https://doi.org/10.5194/tc-

14-2189-2020, https://tc.copernicus.org/articles/14/2189/2020/, 2020.665

Blockley, E. W. and Peterson, K. A.: Improving Met Office seasonal predictions of Arctic sea ice using assimilation of CryoSat-2 thickness,

The Cryosphere, 12, 3419–3438, https://doi.org/10.5194/tc-12-3419-2018, https://www.the-cryosphere.net/12/3419/2018/, 2018.

Boisvert, L. N., Webster, M. A., Petty, A. A., Markus, T., Bromwich, D. H., and Cullather, R. I.: Intercomparison of precipitation estimates

over the Arctic ocean and its peripheral seas from reanalyses, Journal of Climate, 31, 8441–8462, https://doi.org/10.1175/JCLI-D-18-

0125.1, http://journals.ametsoc.org/doi/10.1175/JCLI-D-18-0125.1, 2018.670

Brodzik, M. J., Billingsley, B., Haran, T., Raup, B., and Savoie, M. H.: EASE-Grid 2.0: Incremental but Significant Improvements for Earth-

Gridded Data Sets, ISPRS International Journal of Geo-Information, 1, 32–45, https://doi.org/10.3390/ijgi1010032, http://www.mdpi.

com/2220-9964/1/1/32, 2012.

Bunzel, F., Notz, D., and Pedersen, L. T.: Retrievals of Arctic Sea-Ice Volume and Its Trend Significantly Affected by Interannual Snow

Variability, Geophysical Research Letters, 45, 751–11, https://doi.org/10.1029/2018GL078867, 2018.675

Cabaj, A., Kushner, P., Fletcher, C., Howell, S., and Petty, A.: Constraining Reanalysis Snowfall Over the Arctic Ocean Using CloudSat

Observations, Geophysical Research Letters, 47, https://doi.org/10.1029/2019GL086426, https://onlinelibrary.wiley.com/doi/abs/10.1029/

2019GL086426, 2020.

Cariou, P., Cheaitou, A., Faury, O., and Hamdan, S.: The feasibility of Arctic container shipping: the economic and environmental im-

pacts of ice thickness, Maritime Economics and Logistics, pp. 1–17, https://doi.org/10.1057/s41278-019-00145-3, https://doi.org/10.1057/680

s41278-019-00145-3, 2019.

Chandler, R. E. and Scott, E. M.: Statistical Methods for Trend Detection and Analysis in the Environmental Sciences,

https://doi.org/10.1002/9781119991571, 2011.

Chevallier, M. and Salas-Mélia, D.: The Role of Sea Ice Thickness Distribution in the Arctic Sea Ice Potential Predictability: A Diagnostic

Approach with a Coupled GCM, Journal of Climate, 25, 3025–3038, https://doi.org/10.1175/JCLI-D-11-00209.1, http://journals.ametsoc.685

org/doi/10.1175/JCLI-D-11-00209.1, 2012.

Comiso, J.: Bootstrap Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I, National Snow and Ice Data Center, Boulder,

Colorado. Digital media, 2000.

31



Eguíluz, V. M., Fernández-Gracia, J., Irigoien, X., and Duarte, C. M.: A quantitative assessment of Arctic shipping in 2010-2014, Scientific

Reports, 6, 1–6, https://doi.org/10.1038/srep30682, www.nature.com/scientificreports, 2016.690

ESA: Sea Ice Climate Change Initiative: Phase 2 D4.1 Product Validation & Intercomparison Report (PVIR), Tech. rep., 2018.

Giles, K. A., Laxon, S. W., and Ridout, A. L.: Circumpolar thinning of Arctic sea ice following the 2007 record ice extent minimum, Geo-

physical Research Letters, 35, L22 502, https://doi.org/10.1029/2008GL035710, http://doi.wiley.com/10.1029/2008GL035710, 2008a.

Giles, K. A., Laxon, S. W., and Worby, A. P.: Antarctic sea ice elevation from satellite radar altimetry, Geophysical Research Letters, 35,

L03 503, https://doi.org/10.1029/2007GL031572, http://doi.wiley.com/10.1029/2007GL031572, 2008b.695

Haas, C.: Late-summer sea ice thickness variability in the Arctic Transpolar Drift 1991-2001 derived from ground-based electro-

magnetic sounding, Geophysical Research Letters, 31, n/a–n/a, https://doi.org/10.1029/2003GL019394, http://doi.wiley.com/10.1029/

2003GL019394, 2004.

Hendricks, S. and Ricker, R.: Product User Guide & Algorithm Specification: AWI CryoSat-2 Sea Ice Thickness (version 2.2), 2019.

Hendricks, S., Paul, S., and Rinne, E.: Northern hemisphere sea ice thickness from the CryoSat-2 satellite on a monthly grid (L3C), v2.0,700

https://doi.org/10.5285/ff79d140824f42dd92b204b4f1e9e7c2, 2018.

Katlein, C., Arndt, S., Nicolaus, M., Perovich, D. K., Jakuba, M. V., Suman, S., Elliott, S., Whitcomb, L. L., McFarland, C. J., Gerdes, R.,

Boetius, A., and German, C. R.: Influence of ice thickness and surface properties on light transmission through <scp>A</scp> rctic sea

ice, Journal of Geophysical Research: Oceans, 120, 5932–5944, https://doi.org/10.1002/2015JC010914, https://onlinelibrary.wiley.com/

doi/abs/10.1002/2015JC010914, 2015.705

Kern, S., Khvorostovsky, K., Skourup, H., Rinne, E., Parsakhoo, Z. S., Djepa, V., Wadhams, P., and Sandven, S.: The impact of snow depth,

snow density and ice density on sea ice thickness retrieval from satellite radar altimetry: Results from the ESA-CCI Sea Ice ECV Project

Round Robin Exercise, Cryosphere, 9, 37–52, https://doi.org/10.5194/tc-9-37-2015, 2015.

Kurtz, N. T. and Farrell, S. L.: Large-scale surveys of snow depth on Arctic sea ice from Operation IceBridge, Geophysical Research Letters,

38, n/a–n/a, https://doi.org/10.1029/2011GL049216, http://doi.wiley.com/10.1029/2011GL049216, 2011.710

Kurtz, N. T., Galin, N., and Studinger, M.: An improved CryoSat-2 sea ice freeboard retrieval algorithm through the use of waveform fitting,

Cryosphere, 8, 1217–1237, https://doi.org/10.5194/tc-8-1217-2014, https://www.the-cryosphere.net/8/1217/2014/, 2014.

Kwok, R.: Arctic sea ice thickness, volume, and multiyear ice coverage: Losses and coupled variability (1958-2018), Environmental Research

Letters, 13, 105 005, https://doi.org/10.1088/1748-9326/aae3ec, https://doi.org/10.1088/1748-9326/aae3ec, 2018.

Kwok, R. and Cunningham, G. F.: Variability of arctic sea ice thickness and volume from CryoSat-2, Philosophical Transactions of the Royal715

Society A: Mathematical, Physical and Engineering Sciences, 373, https://doi.org/10.1098/rsta.2014.0157, 2015.

Kwok, R. and Rothrock, D. A.: Decline in Arctic sea ice thickness from submarine and ICESat records: 1958-2008, Geophysical Research

Letters, 36, https://doi.org/10.1029/2009GL039035, 2009.

Kwok, R., Kacimi, S., Webster, M. A., Kurtz, N. T., and Petty, A. A.: Arctic Snow Depth and Sea Ice Thickness From ICESat-2 and CryoSat-2

Freeboards: A First Examination, Journal of Geophysical Research: Oceans, 125, 1–19, https://doi.org/10.1029/2019JC016008, 2020.720

Landy, J. C., Petty, A. A., Tsamados, M., and Stroeve, J. C.: Sea ice roughness overlooked as a key source of uncertainty in CryoSat-2 ice

freeboard retrievals, Journal of Geophysical Research: Oceans, 44, 1–36, https://doi.org/10.1029/2019jc015820, 2020.

Laxon, S., Peacock, H., and Smith, D.: High interannual variability of sea ice thickness in the Arctic region, Nature, 425, 947–950,

https://doi.org/10.1038/nature02050, 2003.

32



Laxon, S. W., Giles, K. A., Ridout, A. L., Wingham, D. J., Willatt, R., Cullen, R., Kwok, R., Schweiger, A., Zhang, J., Haas, C., Hendricks,725

S., Krishfield, R., Kurtz, N., Farrell, S., and Davidson, M.: CryoSat-2 estimates of Arctic sea ice thickness and volume, Geophysical

Research Letters, 40, 732–737, https://doi.org/10.1002/grl.50193, 2013.

Li, M., Ke, C., Shen, X., Cheng, B., and Li, H.: Investigation of the Arctic Sea ice volume from 2002 to 2018 using multi-source data,

International Journal of Climatology, p. joc.6972, https://doi.org/10.1002/joc.6972, https://onlinelibrary.wiley.com/doi/10.1002/joc.6972,

2020a.730

Li, Z., Zhao, J., Su, J., Li, C., Cheng, B., Hui, F., Yang, Q., and Shi, L.: Spatial and temporal variations in the extent and thickness of arctic

landfast ice, Remote Sensing, 12, 64, https://doi.org/10.3390/RS12010064, www.mdpi.com/journal/remotesensing, 2020b.

Liston, G. E., Itkin, P., Stroeve, J., Tschudi, M., Stewart, J. S., Pedersen, S. H., Reinking, A. K., and Elder, K.: A Lagrangian

Snow-Evolution System for Sea-Ice Applications (SnowModel-LG): Part I – Model Description, Journal of Geophysical Research:

Oceans, https://doi.org/10.1029/2019jc015913, https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JC015913https://agupubs.735

onlinelibrary.wiley.com/doi/abs/10.1029/2019JC015913https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JC015913, 2020.

Mallett, R. D., Lawrence, I. R., Stroeve, J. C., Landy, J. C., and Tsamados, M.: Brief communication: Conventional assumptions involving

the speed of radar waves in snow introduce systematic underestimates to sea ice thickness and seasonal growth rate estimates, Cryosphere,

14, 251–260, https://doi.org/10.5194/tc-14-251-2020, 2020.

Markus, T., Stroeve, J. C., and Miller, J.: Recent changes in Arctic sea ice melt onset, freezeup, and melt season length, Journal of Geophysical740

Research: Oceans, 114, https://doi.org/10.1029/2009JC005436, 2009.

Melia, N., Haines, K., Hawkins, E., and Day, J. J.: Towards seasonal Arctic shipping route predictions, Environmental Research Letters, 12,

084 005, https://doi.org/10.1088/1748-9326/aa7a60, https://doi.org/10.1088/1748-9326/aa7a60, 2017.

Meredith, M., Sommerkorn, M., Cassotta, S., Derksen, C., Ekaykin, A., Hollowed, A., Kofinas, G., Mackintosh, A., Melbourne-Thomas,

J., Muelbert, M., Ottersen, G., Pritchard, H., and Schuur, E.: Polar Regions, in: IPCC Special Report on the Ocean and Cryosphere in a745

Changing Climate, edited by Portner, H.-O., Roberts, D., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K.,

Alegria, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N., pp. 203–320, IPCC, 2019.

Merkouriadi, I., Liston, G. E., Graham, R. M., and Granskog, M. A.: Quantifying the Potential for Snow-Ice Formation in the Arctic

Ocean, Geophysical Research Letters, 47, no, https://doi.org/10.1029/2019GL085020, https://onlinelibrary.wiley.com/doi/abs/10.1029/

2019GL085020, 2020.750

Mundy, C. J., Barber, D. G., and Michel, C.: Variability of snow and ice thermal, physical and optical properties pertinent to sea ice al-

gae biomass during spring, Journal of Marine Systems, 58, 107–120, https://doi.org/10.1016/j.jmarsys.2005.07.003, https://linkinghub.

elsevier.com/retrieve/pii/S0924796305001417, 2005.

Nandan, V., Geldsetzer, T., Yackel, J., Mahmud, M., Scharien, R., Howell, S., King, J., Ricker, R., and Else, B.: Effect of

Snow Salinity on CryoSat-2 Arctic First-Year Sea Ice Freeboard Measurements, Geophysical Research Letters, 44, 419–10,755

https://doi.org/10.1002/2017GL074506, http://doi.wiley.com/10.1002/2017GL074506, 2017.

Paul, S., Hendricks, S., Ricker, R., Kern, S., and Rinne, E.: Empirical parametrization of Envisat freeboard retrieval of Arctic and Antarctic

sea ice based on CryoSat-2: progress in the ESA Climate Change Initiative, The Cryosphere, 12, 2437–2460, https://doi.org/10.5194/tc-

12-2437-2018, https://tc.copernicus.org/articles/12/2437/2018/, 2018.

Petrick, S., Riemann-Campe, K., Hoog, S., Growitsch, C., Schwind, H., Gerdes, R., and Rehdanz, K.: Climate change, future Arc-760

tic Sea ice, and the competitiveness of European Arctic offshore oil and gas production on world markets, Ambio, 46, 410–422,

https://doi.org/10.1007/s13280-017-0957-z, 2017.

33



Petty, A. A., Holland, M. M., Bailey, D. A., and Kurtz, N. T.: Warm Arctic, Increased Winter Sea Ice Growth?, Geophysical Research Letters,

45, 922–12, https://doi.org/10.1029/2018GL079223, https://onlinelibrary.wiley.com/doi/abs/10.1029/2018GL079223, 2018a.

Petty, A. A., Webster, M., Boisvert, L., and Markus, T.: The NASA Eulerian Snow on Sea Ice Model (NESOSIM) v1.0: Initial model765

development and analysis, Geoscientific Model Development, 11, 4577–4602, https://doi.org/10.5194/gmd-11-4577-2018, 2018b.

Quartly, G. D., Rinne, E., Passaro, M., Andersen, O. B., Dinardo, S., Fleury, S., Guillot, A., Hendricks, S., Kurekin, A. A., Müller, F. L.,

Ricker, R., Skourup, H., and Tsamados, M.: Retrieving sea level and freeboard in the Arctic: A review of current radar altimetry method-

ologies and future perspectives, https://doi.org/10.3390/RS11070881, 2019.

Ricker, R., Hendricks, S., Helm, V., Skourup, H., and Davidson, M.: Sensitivity of CryoSat-2 Arctic sea-ice freeboard and thickness770

on radar-waveform interpretation, Cryosphere, 8, 1607–1622, https://doi.org/10.5194/tc-8-1607-2014, https://www.the-cryosphere.net/

8/1607/2014/, 2014.

Rösel, A., Itkin, P., King, J., Divine, D., Wang, C., Granskog, M. A., Krumpen, T., and Gerland, S.: Thin Sea Ice, Thick Snow, and

Widespread Negative Freeboard Observed During N-ICE2015 North of Svalbard, Journal of Geophysical Research: Oceans, 123, 1156–

1176, https://doi.org/10.1002/2017JC012865, 2018.775

Rothrock, D. A., Percival, D. B., and Wensnahan, M.: The decline in arctic sea-ice thickness: Separating the spatial, annual, and interannual

variability in a quarter century of submarine data, Journal of Geophysical Research: Oceans, 113, https://doi.org/10.1029/2007JC004252,

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2007JC004252https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/

2007JC004252https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2007JC004252, 2008.

Sallila, H., Farrell, S. L., McCurry, J., and Rinne, E.: Assessment of contemporary satellite sea ice thickness products for Arctic sea ice, The780

Cryosphere, 13, 1187–1213, https://doi.org/10.5194/tc-13-1187-2019, https://www.the-cryosphere.net/13/1187/2019/, 2019.

Schröder, D., Feltham, D. L., Tsamados, M., Ridout, A., and Tilling, R.: New insight from CryoSat-2 sea ice thickness for sea ice modelling,

The Cryosphere, 13, 125–139, https://doi.org/10.5194/tc-13-125-2019, https://www.the-cryosphere.net/13/125/2019/, 2019.

Schweiger, A. J., Wood, K. R., and Zhang, J.: Arctic Sea Ice volume variability over 1901-2010: A model-based reconstruction, Journal of

Climate, 32, 4731–4752, https://doi.org/10.1175/JCLI-D-19-0008.1, 2019.785

Stroeve, J. and Notz, D.: Changing state of Arctic sea ice across all seasons, Environmental Research Letters, 13, 103 001,

https://doi.org/10.1088/1748-9326/aade56, https://doi.org/10.1088/1748-9326/aade56, 2018.

Stroeve, J., Liston, G. E., Buzzard, S., Zhou, L., Mallett, R., Barrett, A., Tschudi, M., Tsamados, M., Itkin, P., and Stewart, J. S.: A La-

grangian Snow-Evolution System for Sea Ice Applications (SnowModel-LG): Part II - Analyses, Journal of Geophysical Research: Oceans,

https://doi.org/10.1029/2019JC015900, https://onlinelibrary.wiley.com/doi/abs/10.1029/2019JC015900, 2020.790

Stroeve, J. C., Markus, T., Boisvert, L., Miller, J., and Barrett, A.: Changes in Arctic melt season and implications for sea ice loss, Geophysical

Research Letters, 41, 1216–1225, https://doi.org/10.1002/2013GL058951, http://doi.wiley.com/10.1002/2013GL058951, 2014.

Tilling, R. L., Ridout, A., Shepherd, A., and Wingham, D. J.: Increased Arctic sea ice volume after anomalously low melting in 2013, Nature

Geoscience, 8, 643–646, https://doi.org/10.1038/ngeo2489, 2015.

Tilling, R. L., Ridout, A., and Shepherd, A.: Estimating Arctic sea ice thickness and volume using CryoSat-2 radar altimeter data, Advances795

in Space Research, 62, 1203–1225, https://doi.org/10.1016/j.asr.2017.10.051, https://doi.org/10.1016/j.asr.2017.10.051, 2018.

Tsamados, M., Feltham, D. L., and Wilchinsky, A. V.: Impact of a new anisotropic rheology on simulations of Arctic Sea ice, Journal of

Geophysical Research: Oceans, 118, 91–107, https://doi.org/10.1029/2012JC007990, 2013.

Tschudi, M. A., Meier, W. N., and Scott Stewart, J.: An enhancement to sea ice motion and age products at the National Snow and Ice Data

Center (NSIDC), Cryosphere, 14, 1519–1536, https://doi.org/10.5194/tc-14-1519-2020, 2020.800

34



Vella, D. and Wettlaufer, J. S.: Explaining the patterns formed by ice floe interactions, Journal of Geophysical Research, 113, C11 011,

https://doi.org/10.1029/2008JC004781, http://doi.wiley.com/10.1029/2008JC004781, 2008.

Warren, S. G., Rigor, I. G., Untersteiner, N., Radionov, V. F., Bryazgin, N. N., Aleksandrov, Y. I., and Colony, R.: Snow depth on Arctic sea

ice, Journal of Climate, 12, 1814–1829, https://doi.org/10.1175/1520-0442(1999)012<1814:SDOASI>2.0.CO;2, 1999.

Webster, M. A., Rigor, I. G., Nghiem, S. V., Kurtz, N. T., Farrell, S. L., Perovich, D. K., and Sturm, M.: Interdecadal changes in snow depth805

on Arctic sea ice, Journal of Geophysical Research: Oceans, 119, 5395–5406, http://doi.wiley.com/10.1002/2014JC009985, 2014.

Willatt, R., Laxon, S., Giles, K., Cullen, R., Haas, C., and Helm, V.: Ku-band radar penetration into snow cover on Arctic sea ice using

airborne data, Annals of Glaciology, 52, 197–205, https://doi.org/10.3189/172756411795931589, 2011.

Willatt, R. C., Giles, K. A., Laxon, S. W., Stone-Drake, L., and Worby, A. P.: Field investigations of Ku-band radar penetration into snow cover

on antarctic sea ice, IEEE Transactions on Geoscience and Remote Sensing, 48, 365–372, https://doi.org/10.1109/TGRS.2009.2028237,810

http://ieeexplore.ieee.org/document/5282596/, 2010.

Zygmuntowska, M., Rampal, P., Ivanova, N., and Smedsrud, L. H.: Uncertainties in Arctic sea ice thickness and volume: New estimates

and implications for trends, Cryosphere, 8, 705–720, https://doi.org/10.5194/tc-8-705-2014, https://www.the-cryosphere.net/8/705/2014/,

2014.

35



Supplement to: Faster decline and higher variability in the sea ice

thickness of the marginal Arctic seas when accounting for dynamic

snow cover

Robbie D.C. Mallett 1, Julienne C. Stroeve 1,2,3, Michel Tsamados 1, Jack C. Landy 4, Rosemary

Willatt 1, Vishnu Nandan 3, and Glen E. Liston 5

1Centre for Polar Observation and Modelling, Earth Sciences, University College London, London, UK
2National Snow and Ice Data Center, University of Colorado, Boulder, CO, USA
3Centre for Earth Observation Science, University of Manitoba, Winnipeg, Canada
4School of Geographical Sciences, University of Bristol, Bristol, UK
5Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO, USA

S1 Snow’s impact on conventional sea ice thickness retrievals can be characterised solely by its snow water equivalent

Using the expression of ice freeboard from Armitage and Ridout (2015):

Ice Freeboard = Radar Freeboard + Propagation Correction (S1)

And using the expression of the propagation correction from Tilling et al. (2018):

hi = hr +hs(c/cs − 1) (S2)5

Where hs is snow depth, c is the speed of light in free space and cs is the speed of light in snow. Numerous empirical

expressions for cs exist, in this work we use the expression for the permittivity of dry snow from Mätzler (2006):

ǫds =
(

1+0.5194ρs
)3

(S3)

Relating the radar wave speed to the permittivity using cs = c/
√
ǫ (Ulaby and Long, 2014):

cs = c
(

1+0.5194ρs
)

−3/2
(S4)10

The conversion of hi to SIT then invokes the floe’s hydrostatic equilibrium and Archimedes’ principle. Like the freeboard

correction for slower radar pulse propagation in snow, this operation requires a priori knowledge of the depth and density of

the snow cover.

SIT = hi
ρw

ρw − ρi
+hs

ρs
ρw − ρi

(Tilling et al. 2018) (S5)
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Separating hi into its hr and δhprop components using Eq. (S2), we can express SIT for a given ice type as a linear combi-15

nation of the radar freeboard and snow properties.

SIT = hr
ρw

ρw − ρi
+hs

ρw
ρw − ρi

[

c

cs
− 1

]

+hs
ρs

ρw − ρi
(S6)

SIT = hr
ρw

ρw − ρi
+hs

ρw
ρw − ρi

([

c

cs
− 1

]

+
ρs
ρw

)

(S7)

The equation y = c/cs − 1 where cs is a function of ρs as in Eq (S4) is highly linear as a function of ρs as follows:

c

cs
− 1 = 8.36× 10−4 × ρs (S8)20

This linearity is visualised in Fig. (S1) and allows the second term in Eq. (S7) to be written to a close approximation:

SIT = hr
ρw

ρw − ρi
+ms

ρw
ρw − ρi

(

(8.36× 10−4)+
1

ρw

)

(S9)

Where ms represents the mass of snow per unit area. This can be reformulated by setting ρw = 1023 kgm−3 as:

SIT = hr
ρw

ρw − ρi
+ms

ρw
ρw − ρi

× 1.81× 10−3 (S10)
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Figure S1. Value of the propagation factor used to convert radar freeboard to ice freeboard, plotted as a function of snow density. This

function is highly linear and is approximated as such in this work. The factor is multiplied by the snow depth to generate the total correction.
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Figure S2. The number of RF 25×25 km data points in each region for each month. We were not able to compute RF in the Kara Sea for

October 2009 or 2012. Nor were we able to calculate it in the Barents Sea in October after 2008 (with the exception of 2011 and 2014).
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Figure S3. (a) difference in snow depth in SnowModel-LG when driven by ERA5 and Merra2 reanalysis data at each 25x25 km pixel on

the EASE grid averaged over the period 2002-2018. (b) time average of absolute differences in SnowModel-LG when driven by ERA5 and

Merra2 reanalysis data. We note that (b) is not the absolute value of (a), but instead the time-average of the absolute values of monthly

differences.
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Figure S4. Basinwide trends in first year ice extent as a fraction of total extent from 2003-2018. Statistically significant trends exist in October

(declining) and January (increasing). When trends of any significance are considered, all months show positive slopes barring October, which

shows distinct decline. The October trend is due to later freeze-ups, the other positive trends fit in with established trends of increasing FYI

dominance. Shaded regions represent the 95% confidence level for the linear regression.

Figure S5. Basinwide trends in mW99 SWE fields from 2003-2018. A statistically significant trend only exists in October, where SWE is

increasing due to the increasing dominance of MYI in the month due to later freeze-ups. Shaded regions represent the 95% confidence level

for the linear regression.
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Figure S6. Detrended timeseries of spatially averaged snow contributions to sea ice thickness (Snow) by region from W99 (blue) and

SnowModel-LG (red). Standard deviation values are displayed for SnowModel-LG (lower left, red), and mW99 (lower right, blue)
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Figure S7. Detrended timeseries of spatially averaged snow contribution to sea ice thickness (Snow) from W99 (blue) and SnowModel-

LG (red) over first year ice. SnowModel-LG is significantly more variable from year to year than W99, which only varies due to shifting

dominance of ice types. This increased variability propagates through to sea ice thickness, but is moderated by its covariance with radar

freeboard variability. The standard deviations of the two timeseries are displayed in the lower corners of each panel.
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Figure S8. Detrended timeseries of spatially averaged snow contribution to sea ice thickness (Snow) from W99 (blue) and SnowModel-LG

(red) over multiyear ice (MYI). SnowModel-LG is significantly more variable from year to year than W99, which only varies due to shifting

dominance of ice types. This increased variability propagates through to sea ice thickness, but is moderated by its covariance with radar

freeboard variability. A substantial number of data points are missing from some panels - these absences reflect months where no MYI is

present in the relevant region. The standard deviations of the two timeseries are displayed in the lower corners of each panel.
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Figure S9. FYI correlations between radar freeboard and snow contributions to sea ice thickness, where the snow contribution is calculated

using SnowModel-LG. All statistically significant correlations are positive (i.e. years with more snow exhibit higher radar freeboards). A

persistent, positive correlation exists in the Central Arctic and the East Siberian Sea in the last five months of winter. The Barents and Kara

Seas both exhibit significant correlations in the last two months of winter. The Beaufort sea exhibits no months of statistically significant

correlation between radar freeboard and snow contributions.
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Figure S10. MYI correlations between radar freeboard and snow contributions to sea ice thickness, where the snow contribution is calculated

using SnowModel-LG. Fewer correlations exist for MYI than for FYI. The Central Arctic and Chukchi Sea exhibit no correlations between

snow and radar freeboard contributions.

11



Figure S11. Regional IAV displayed by ice type. MYI represented by orange points, FYI represented by purple. When averaging over the

growth season in a given region, MYI is more variable in all the marginal seas.
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Figure S12. Detrended timeseries of spatially averaged sea ice thickness (SIT ) by region from W99 (blue) and SnowModel-LG (red) for

all ice types. Standard deviation values are displayed for SnowModel-LG (lower left, red), and mW99 (lower right, blue).

13



Figure S13. 2010-2018 basin-wide sea ice thickness distribution calculated using both mW99 and SnowModel-LG data expressed as total

sea ice area of all grid cells falling into a specific SIT bin. Bin size is 5 cm. Shaded areas represent the area constituted by the Central Arctic.
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Figure S14. Seasonal evolution of (a) snow thickness and (b) sea ice thickness by region. All regions calculated over 2002-2018 with the

exception of the Central Arctic, which is 2010-2018. Note different y-axis scales for Central Arctic panels. ‘Error bars’ represent the one

standard-deviation range either side of the mean value for the timeseries. The SnowModel-LG contribution starts lower but ends higher in

the Central Arctic, the region that dominates Pan-Arctic statistics. This is also true for the Marginal Seas grouping, but not necessarily true

for the individual constituent regions. This corresponds to faster thickness increase than would be calculated with W99.
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Figure S15. Interannual variability of SnowModel-LG contribution to σ
2

SIT
(σ2

Snow
) when forced by two different reanalysis data sets.

MERRA2 (orange) and ERA5 (green) produce very similar variability.
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Figure S16. Trends in sea ice thickness (2002-2018) by region, when calculated using SnowModel-LG runs using two different sources

of reanalysis (ERA5, Purple; MERRA2, Orange). Panels are framed with green where statistically significant trends exist independent of

reanalysis choice. Purple (orange) frames represent month/region pairs where statistically significant trends are only present with ERA5

(MERRA2). Slope values are given where significant in the lower corners. All significant trends in the marginal seas are negative, all

significant trends in the Central Arctic are positive. In the Central Arctic, two of the four statistically significant increasing trends are only

evident with ERA5 reanalysis. In the Marginal Seas, the decline in some months is only statistically significant with MERRA2.
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Figure S17. Trends in snow contribution to sea ice thickness (Snow; 2002-2018) by region, when calculated using SnowModel-LG runs

using two different sources of reanalysis (ERA5, Purple; MERRA2, Orange). Panels are framed with green where statistically significant

trends exist independent of reanalysis choice. Purple (orange) frames represent month/region pairs where statistically significant trends are

only present with ERA5 (MERRA2). Slope values are given where significant in the lower corners.
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Figure S18. Interannual variability of NESOSIM data’s contribution to SIT, shown as (a) absolute contribution to SIT variability, and (b)

relative contribution. Variability from snow is of a similar magnitude to that of SnowModel-LG, although regional differences exist between

the corresponding plots, particularly in the Barents Sea. As well as differences in the snow accumulation scheme, the two data sets differ in

spatial resolution and the timespan over which they are analysed.
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Figure S19. Timeseries of the thickness contributions of radar freeboards (RF ) and snow (Snow) over all ice types. Orange framed boxes

indicate statistically significant decline in both RF and Snow. The red framed box indicates statistically significant decline in Snow only.

No boxes feature a statistically significant decline in RF without a concomitant decline in Snow. All statistically significant trends in both

Snow and RF are negative.
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