
We thank the anonymous referee for their useful comments and believe we have been able to 

address each of them. 

Below we have copied their comments in blue and responded to each in red. 

We would first like to first bring to the reviewer’s attention a mistake made in the original 

manuscript. Due to a programming error we inadvertantly used radar freeboard data from a different

product (that of Landy et al., 2020) in the winter of 2017/18. Because this product generally 

exhibits higher radar freeboard values than those used in the rest of the study due to a different 

retracking algorithm, we misidentified this winter at one point as ‘a trend bucking year’ for radar 

freeboards. We have now fixed this error and updated our statistics. This has had the following 

results:

• Regional declines in radar freeboard and resulting sea ice thickness are generally smoother.

• Negative trends in several regions are slightly increased.

• Negative trends are therefore more frequently statistically significant at the 5% level.

• Trends when calculated with SnowModel-LG in the 2002-2018 period are now in better 

agreement with those calculated from NESOSIM in the 2002-2015 period.

Despite these changes, the central thesis of our paper remains unchanged: the use of a snow product

with regional variability and trends propagates into varaiblity and trends in regional sea ice 

thickness. 

The manuscript argues that the snow climatology normally used when retrieving sea ice thickness 

from altimeter is missing trends and interannual variability This results in a statistical significant 

faster decline of Arctic sea ice in the Arctic marginal seas. 

The link between the snow cover and the retrieved ice thickness is not new but the quantification is 

interesting and any progress towards understanding the snow cover is of importance. The use of 

Warren and modified Warren climatologies has been a issue for a while but there has not been any 

obvious alternative. I find this paper of interest to the community.

General notes

Please be consistent and call sea ice the same. First example is on line 19 where it is mentioned as 

both sea ice and ice. I would prefer the first.

We searched through the document and changed every mention of “ice” to “sea ice” where relevant.

The only places where we have not done this is where the phrases “first year ice” and “multi-year 

ice” have been used, as we view these as standardised expressions. 

I would reconsider whether it is necessary to plot all panels for all areas and month in different 

figures. These become very small. Maybe it is better to show a few representative panels and put 

the rest in the supplementary material.

We have removed three rows from Figure 6 in response to the specific comment concerning this 

issue. We have put a version of the figure with all regions in the supplement as suggested (and 

referenced it from the main text figure). 



Minor Comments

Line 10 and 11. It is true that knowledge about the polar climate is important for the polar climate, 

but I think that for this abstract it is a bit out of context to include stakeholders from Arctic shipping

in the description. I would stop the sentence with mentioning the polar climate system (line 10).

We have removed the words:

“as well as for stakeholders involved in Arctic shipping and natural resource extraction”

Line 23 Agreed that thick ice has some of the properties mentioned, however thick ice do not make 

it easier to predict the ice cover. Assimilation of a correct ice thickness as oppose to a correct ice 

concentration has more memory and therefore the predictions are improved. Please rephrase.

We have rephrased this section as follows:

“thick sea ice is far more likely to survive the melt season, increasing the average age of 

Arctic sea ice. Correct assimilation of ice thickness into models therefore offers 

opportunities for prediction of the sea ice state on seasonal timescales”

Line 34 ERS is mentioned here but its full name is mentioned on line 118. Please state full name 

here including the abbrivation and use the abbriviation in the rest of the text

We have now defined the acronym in the first instance and used just the acronym subsequently.

Line 107 There is an issue with the reference. Henceforth W99? 

We have removed the abbreviation from this line and opted to define it when W99 is formally 

introduced in the Data Description section. The relevant part now reads:

 All four groups utilize modified forms of the snow climatology assembled by Warren et al. 

(1999) from the observations of Soviet drifting stations between 1954 and 1991 (henceforth 

referred to as W99). 

Line 136: More a comment. It would be surprising if the variability of snow only depended on 

where the first year ice and the multi year ice was located. 

Yes, we agree! But the sea ice type distribution is the dominant determinant of snow variability in 

mW99.

Line 154 I would not start by describing why W99 is not mentioned. 

We have since rearranged this section (on the advice of the other reviewer) and believe this to no-

longer be an issue.

Line 155: We instead compare. . . should include a reference to figure 3. 

We have added this reference. 

Line 168 remove one of “of”. Typo. 



We have removed this typo

Line 184: I would replace shaded with color coded. 

We have made this change.

Line 249 – 254 I think that the readability of this section can be improved if the flow of this section 

is improved. 

We have comprehensively reworded this and added clarifying details concerning our approach. We 

note that on the advice of the other reviewer we have also repositioned this section.

Line 272. Is the Central Arctic for all ice types already mentioned in line 263. If this is not the same 

point then please clarify. 

We were referring to the MYI fraction of the Central Arctic, and have added this detail to the 

sentence.

Line 278 “in for each region in for each month.” Should it be “one for each region and for each 

month. Please modify

Yes this was a typo and we have changed it. The sentence now reads:

“the three components of σ2
SIT for each region in each winter month”

Line 497. The last sentence should be reformulated. I think that a word is missing after positive in 

line 499.

We have reformulated it to read:

“The enhancement of declining trends where they exist is perhaps of benefit for these 

industries.”

Figure 1 W99 IAV values should be mentioned in figure text. If they are not used then remove the 

green bars 

We have reworded this part of section 4.1.1 to read:

“ we find the snow variability introduced at a given point for mW99 (Fig. 3 blue bars) was 

on average about 50% of the value presented in W99 (Fig. 3, green bars).”

We note that this figure has been significantly repositioned on the advice of the other reviewer.

Figure 2 “Variability is displayed in a band where ice types typically fluctuates”. Should this be 

High variability . . .. 

Yes, we have made this change. 

Figure 5: I would reduce the number of panels and only show the ones that are commented on. The 

rest can go to the supplementary material. Details are very hard to see in these small panels. 



We have reduced the number of rows of this figure from eight to five by removing the rows 

corresponding to the Barents, Laptev and Kara Seas. The original figure has been moved to the 

supplement.

Figure 6: The axis labels says meters but there are no ticks on the axis. I think that it should be 

added 

Because correlation statistics are not sensitive to the choice of axes, units or linear scalings of the 

values, we decided to not display axes ticks or labels and scale the axes to fit the rectangular panels 

of the figure. This decision was related to the issue highlighted in a previous comment about our 

figures being crowded. However we clearly should have stated this in our submission and we now 

have added the following text:

“We note here that the correlation between the timeseries is dependent on their relative 

position to a linear regression. These correlation statistics are thus independent of the 

absolute magnitude of the values and any linear scaling of the axes. We therefore choose to 

present the correlations in Fig (7) without axes and scaled to the rectangular panels, so as to 

best show the relative positions of the points without extraneous numerical information.”

The reviewer is correct also to point out that it is jarring to specify “(m)” as units without any axis 

ticks or tick-labels – we have therefore removed this from the axis labels (for reasons of unit-

independence discussed above).

Figure 7 a and b labels should be added. I can guess which are a and b but it should not be left to the

reader to guess. 

We have now added these annotations

In addition I would like to move the colorbar outside of the figures and enlarge it a bit.

We have enlarged it and moved it up and outside the panels

It should be commented why the fraction of total variance can extend beyond 0 and 100. For 

instance November central Arctic figure b (I suppose) exend from -18 to 118 (or something like 

that. 

We have now added some clarifying text: 

“We note that in the case of negative covariability between Snow and RF, it is possible for 

σ2
Snow + σ2

RF to be larger than σ2
SIT. This is not problematic because σ2

Snow + σ2
RF does not 

represent a real quantity when the variables are not independent.

Figure 8 Should It be modified Warren? Labels say w99

Yes, we have now fixed this
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Abstract. Mean sea ice thickness is a sensitive indicator of Arctic climate change and in long-term decline despite significant

interannual variability. Current thickness estimations from satellite radar altimeters employ a snow climatology for converting

range measurements to sea ice thickness, but this introduces unrealistically low interannual variability and trends. When the

sea ice thickness in the period 2002-2018 is calculated using new snow data with more realistic variability and trends, we find

mean sea ice thickness in four of the seven marginal seas to be declining between 60-100% faster than when calculated with the5

conventional climatology. When analysed as an aggregate area, the mean sea ice thickness in the marginal seas is in statistically

significant decline for six of seven winter months. This is observed despite a 76% increase in interannual variability between

the methods in the same time period. On a seasonal timescale we find that snow data exerts an increasingly strong control

on thickness variability over the growth season, contributing 46% in October but 70% by April. Higher variability and faster

decline in the sea ice thickness of the marginal seas has wide implications for our understanding of the polar climate system10

and our predictions for its change.

1 Introduction

Sea ice cover moderates the exchange of moisture, heat and momentum between the atmosphere and the polar oceans, influ-

encing regional ecosystems, hemispheric weather patterns and global climate. Sea ice thickness (SIT) is a key characteristic of

the sea ice cover, as thicker sea ice weakens the coupling between the ocean and atmosphere systems.15

Thicker sea ice is more thermally insulating and limits heat transfer from the ocean to the atmosphere in winter and con-

sequent thermodynamic growth (Petty et al., 2018a). SIT also exerts control on sea ice dynamics and rheology (Tsamados

et al., 2013; Vella and Wettlaufer, 2008). The thickness of sea ice during snow accumulation also dictates whether the sea ice

surface drops below the waterline, potentially increasing thermodynamic sea ice growth through the formation of snow-ice

(Rösel et al., 2018). The impact of the end-of-winter SIT distribution persists into the melt season with thick sea ice decreasing20

the transmission of solar radiation to the surface ocean and reducing the potential for in- and under-ice primary productivity
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(Mundy et al., 2005; Katlein et al., 2015). Finally, thick sea ice is far more likely to survive the melt season, increasing the

average age of Arctic sea ice. Correct assimilation of ice thickness into models therefore offers opportunities for prediction of

the sea ice state on seasonal timescales (Chevallier and Salas-Mélia, 2012; Blockley and Peterson, 2018; Schröder et al., 2019).

The annual sea ice thickness distribution is highly spatially variable, with a cover of thick multi-year ice in the Central Arctic25

and a thinner, more seasonally variable cover of first year ice in the marginal seas. Regional sea ice thickness distributions are

often characterised by the mean thickness, SIT . As well as being a key parameter for the processes described above, the value

can be multiplied by the sea ice area to produce the sea ice volume, one of the most sensitive indicators of Arctic climate

change (Schweiger et al., 2019).

While continuous and consistent monitoring of Pan-Arctic SIT has not been achieved on a multi-decadal timescale, a com-30

bination of different techniques has suggested a significant decline in thickness since 1950 (Kwok, 2018; Stroeve and Notz,

2018). Satellite altimeters using both radar and lidar have provided a valuable record of changing sea ice thickness, but have

often been limited for various reasons. Some have been limited spatially by their orbital inclination (e.g. the European Re-

mote Sensing (ERS) satellites, Envisat, AltiKa and Sentinel radar altimeters have operated up to only 81.5 degrees north), and

others in temporal coverage (e.g. ICESat was operated in ‘campaign mode’ rather than providing continuous coverage). Two35

satellite altimeters currently offer continuous and meaningfully Pan-Arctic monitoring of the Arctic sea ice: the ICESat-2 and

CryoSat-2 altimeters. ICESat-2 has been in operation since September 2018 and so far has documented only two winters of

sea ice thickness (Kwok et al., 2020).

Although the launch of the CryoSat-2 radar altimeter (henceforth CS2) in 2010 allowed significant advances in understanding

the spatial distribution and interannual variability of Pan-Arctic SIT (Laxon et al., 2013), a statistically significant decreasing40

trend within the CS2 observational period has not been detected for the Arctic as a whole. The lack of certainty regarding any

trend in SIT is in part due to the various uncertainties associated with SIT retrieval from radar altimetry (Ricker et al., 2014;

Zygmuntowska et al., 2014). Major contributors to these uncertainties are the relatively large footprint of a radar pulse when

compared to laser altimetry, the variable density of sea ice, retracking of radar returns from rough sea ice, and the need for an

a priori snow depth and density distribution (Kern et al., 2015; Landy et al., 2020).45

The impact of snow-depth uncertainty on SIT retrievals was recently included by the IPCC in a list of ‘Key Knowledge

Gaps and Uncertainties’ (Meredith et al., 2019). More specifically, Bunzel et al. (2018) found snow to have a strong influence

on the interannual variability of SIT and consequent detection of thickness trends. Here we investigate the impact of a new,

Pan-Arctic snow depth and density data set (SnowModel-LG; Liston et al., 2020; Stroeve et al., 2020) on trends and variability

in regional SIT when used in place of the traditional, climatological data set (Warren et al., 1999). We show that traditional50

calculations of SIT omit significant interannual variability due to their reliance on a snow climatology, and we quantify this

omission. We also show that sea ice is likely thinning at a faster rate in some marginal seas than previously thought, because

the snow water equivalent on the sea ice is declining too.
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1.1 The Role of Snow in Radar-Altimetry Derived Sea Ice Thickness Retrievals

Satellite radar altimetry involves the emission of radar pulses from a satellite and the subsequent detection of their backscatter.55

The time difference between emission and detection (‘time of flight’) corresponds to the distance traveled and thus the height of

the transmitter above the scattering surface. Radar altimeters of different frequencies have been carried on board several earth

observation satellites such as ERS-1/2, Envisat, AltiKa, CryoSat-2 and Sentinel-3A/B (Quartly et al., 2019). We now quantify

the role of snow cover in conventional sea ice thickness estimation, before revealing and explaining the effects of previously

unincorporated trends and variability.60

The Ku-band radar waves emitted from CryoSat-2 are generally assumed in mainstream SIT products to scatter from the

snow/sea-ice interface (Kurtz et al., 2014; Tilling et al., 2018; Hendricks and Ricker, 2019; Landy et al., 2020). The difference

in radar ranging (derived from time-of-flight) between areas of open water and areas of sea ice is known as the ‘radar freeboard’,

fr. The height of the sea ice surface above the waterline is referred to as the sea ice freeboard, fi. This is extracted from the

radar freeboard through (a) assuming that the primary scattering horizon corresponds to the sea ice surface, and (b) accounting65

for the slower radar wave propagation through the snow cover above the sea ice surface (Armitage and Ridout, 2015; Mallett

et al., 2020). The sea ice freeboard can then be converted to sea ice thickness by considering the floe’s hydrostatic equilibrium

given the sea ice density and weight of overlying snow. In the simplified case of bare sea ice, we would calculate:

SITbare = fr
ρw

ρw − ρi
(1)

Where ρw is the density of seawater and ρi the density of sea ice. In order to adjust the above equation for the presence70

of overlying snow, the twin effects of the snow’s weight and the snow’s delaying influence on radar pulse propagation must

be taken into effect. These three influences on SIT (the radar freeboard measurement, the pulse propagation delay and the

freeboard depression from snow weight) can therefore be expressed as three terms (see supplementary information) in the

following way:

SIT = hr

ρw
ρw − ρi

+hs

ρw
ρw − ρi

[

c

cs
− 1

]

+hs

ρs
ρw − ρi

(2)75

In this manuscript we introduce a simple method for combining the second and third terms of the above equation into a

single term that is proportional to the snow water equivalent (Sect. 3.1). This helps to easily separate the influences of snow

data and radar freeboard measurements on the determination of sea ice thickness. Specifically, we compare the impact of two

snow products on regional trends and variability in sea ice thickness. These products are the snow climatology given by Warren

et al. (1999) and the output of SnowModel-LG (Liston et al., 2020; Stroeve et al., 2020).80
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2 Data Description

2.1 Regional Mask

We define six regions of the Arctic Basin using the mask from Stroeve et al. (2014) which is gridded onto a 25 km resolution

EASE grid (Brodzik et al., 2012, Fig. 1). We define the ‘marginal seas’ of the Arctic Basin as the color coded areas of Fig. (1)

excluding the Central Arctic. All constituent regions of the ‘marginal seas’ grouping lie within the coverage of Envisat barring85

a negligible portion of the Laptev Sea.

Figure 1. The definitions of the marginal Arctic seas used in this paper, from Stroeve et al. (2014). Two black, concentric circles indicate the

latitudinal limits of the CryoSat-2 (inner circle; 88◦N) and Envisat (outer circle; 82.5◦N) missions.

2.2 Radar Freeboard Data

To examine the impact of snow products on Enivsat/CryoSat-2 thickness retrievals, we used radar freeboard data from the ESA

Sea Ice Climate Change Initiative (Hendricks et al., 2018). This data is available from October in the winter of 2002/03 until

April in the winter of 2016/17. This product was chosen for two main reasons: (a) it provides a consistent record for both90

the Envisat and CS2 missions (Paul et al., 2018), and (b) it is publicly available for download. CS2 carries a delay-Doppler
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altimeter that significantly enhances along-track resolution by creating a synthetic aperture. For this reason as well as its higher

latitudinal limit, we used CS2 radar freeboard measurements over Envisat during the period when the missions overlapped

(November 2010 - March 2012). To create a radar freeboard product that is consistent between the Envisat and CS2 missions,

Envisat returns are retracked using a variable threshold retracking algorithm. This variable threshold is calculated from the95

strength of the surface backscatter and the width of the leading edge of the return waveform such that the inter-mission bias is

minimised (Paul et al., 2018). The results are comprehensively analysed in the Product Validation & Intercomparison Report

(ESA, 2018). One key finding of this report is that while Envisat radar freeboards are calculated so as to match CS2 freeboards

during the period of overlap over the whole Arctic basin, there are biases over ice types. In particular, Envisat ice freeboards

(not radar freeboards) are biased 2-3 cm low (relative to CS2) in areas dominated by MYI, and 2-3 cm high in areas dominated100

by FYI. We discuss the implications of these biases in Sect. 5.3.

While the ESA CCI data are only available from the CCI website until the winter of 2016/17, the CryoSat-2 radar freeboards

in this data are identical to the CS2 radar freeboard product of the Alfred Wegener Institute (Hendricks and Ricker, 2019,

this was manually confirmed). We were therefore able to extend our radar freeboard timeseries through the winter of 2017/18,

which is when our snow data from SnowModel-LG (see below) ends.105

All radar freeboard data used in this study are supplied on a 25 km EASE grid (Brodzik et al., 2012), the same as that of

SnowModel-LG.

2.3 The Warren Climatology (W99)

The most commonly used radar-altimetry SIT products use algorithms developed by the Centre for Polar Observation and

Modelling, the Alfred Wegener Institute and the NASA Goddard Space Flight Centre (Tilling et al., 2018; Hendricks and110

Ricker, 2019; Kurtz et al., 2014). Another commonly used but not publicly available product is from the NASA Jet Propulsion

Laboratory (Kwok and Cunningham, 2015). All four groups utilize modified forms of the snow climatology assembled by

Warren et al. (1999) from the observations of Soviet drifting stations between 1954 and 1991 (henceforth referred to as W99).

While the consistent use of W99 for sea ice thickness calculation is convenient for intercomparison of products (e.g. Sallila

et al., 2019; Landy et al., 2020), the data have a number of drawbacks. This work is centered around two key issues with the115

use of W99 for SIT retrieval: inadequate representation of interannual variability and trends.

The Warren Climatology includes quadratic fits for every month of snow water equivalent and snow depth. We projected

these fits over the 361×361 EASE grid (for combination with our radar freeboard data and comparison with SnowModel-LG)

to create SWE and depth distributions across the Arctic basin as defined in Sect. (2.1).

2.3.1 Drifting Station Coverage Illustration120

At this point it is instructive to briefly illustrate the coverage of the drifting stations from which W99 was compiled. We

analysed position and snow depth data from the twenty-eight drifting stations that contributed to W99 (Fig. 2a). It is clear that

the vast majority of these operated in the Central Arctic or in the East Siberian Sea, with very little sampling done in most other

marginal seas. But while these tracks illustrate the movements of the drifting stations, it is important to note that the stations
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Figure 2. (a) tracks of Soviet drifting stations 3 - 31. (b) Number of days in each region in each month that snow stake measurements were

taken.

were not always collecting snow data which would contribute to the W99 climatology. To assess the spatial distribution of125

snow sampling, we cross-referenced the position data with days on which the drifting stations recorded the snow depth at their

measuring stakes. We then calculated the number of ‘measurement-days’ in each region-month combination (Fig. 2b). We note

that when two drifting stations were operating at the same day, we count this as two distinct days (as they were rarely so close

together so as to collect redundant data).

This reveals that no snow measurements were taken in the Barents and Kara Seas, and none in the Laptev Sea for four of130

the seven winter months. While ‘snow-line’ transect data also contributed to W99 (and indeed was used in preference to stake

data where possible), we find that snow-line data was overwhelmingly collected on days where stake-data was also collected.

Figure 2 illustrates that the quadratic fits of W99 are not appropriate for use in several of the marginals seas. However we

note that a number of authors have still used the climatology for sea ice thickness retrievals in these regions, often in the course

of sea ice volume calculations (e.g. Laxon et al., 2003, 2013; Tilling et al., 2015, 2018; Sallila et al., 2019; Li et al., 2020a;135

Belter et al., 2020; Li et al., 2020b). We therefore consider these regions in this manuscript, but with the understanding that

mW99 is likely not representative of the snow conditions.

2.4 The modified Warren Climatology (mW99)

The W99 climatology is by definition invariant from year to year, and was implemented in this way by Laxon et al. (2003) and

Giles et al. (2008a) to estimate sea ice thickness using ERS 1 & 2. When implemented like this, the amount of snow on sea ice140

exhibits no interannual variability.

The implementation of W99 was then modified by Laxon et al. (2013) based on the results of Operation IceBridge flights

which showed reduced snow depth over first year ice (FYI; Kurtz and Farrell, 2011). This implementation, known as ‘mW99’,
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consists of halving snow depths over first year ice with snow density kept constant. Because the areal fraction and spatial

distribution of FYI changes from year to year, this modification introduces a small degree of interannual variability into the145

contribution of snow data to sea ice thickness. We investigate this in Sect. (4.1.1).

2.5 Ice Type Data

Sea ice type data is required to modify W99 and create mW99. One popular product for this (e.g. Tilling et al., 2018; Hendricks

and Ricker, 2019) is an operational product from the EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI SAF,

www.osi-saf.org). However, this data series begins in March 2005. This is after our study begins (in October 2002).150

A similar product exists, published by the Copernicus Climate Data Store (CDS, www.cds.climate.copernicus.eu; Aaboe,

2020). This product’s underlying algorithm is adopted from the OSI SAF processing chain, but has been modified to produce

a consistent record compatible with reanalysis. Furthermore, the CDS product only assimilates information from ‘passive’

satellite radiometers, whereas the OSI SAF operational product assimilates additional data from ‘active’ scatterometers. Despite

these differences, a brief comparison of the products reveals a high degree of similarity.155

It would be possible to use the CDS product prior to the beginning of the OSISAF product in 2005, but this approach raises

issues surrounding the continuity of the products across the 2005 transition. Since our investigation focusses on trends and

variability, we prioritise a consistent record and opt to use the CDS ice type product for the entirety of our study.

Both ice type products occasionally include pixels of ambiguously classified ice. We implemented a very simple interpolation

strategy to classify these points while creating our mW99 data, although they are rarely present in winter within the regions160

analysed in this paper. Where the ambiguous pixels are generally surrounded by a given ice type then they are classified as the

surrounding type. In the case where the ambiguous classification is on the boundary between the two types, the snow depth

was not divided by two.

2.6 SnowModel-LG

To investigate the impact of variability and trends in snow cover on regional sea ice thickness we use the results of SnowModel-165

LG (Liston et al., 2020; Stroeve et al., 2020). SnowModel-LG is a Lagrangian model for snow accumulation over sea ice; the

model is capable of assimilating meteorological data from different atmospheric reanalyses (see below) and combines them

with sea ice motion vectors to generate pan-Arctic snow depth and density distributions. The sea ice motion vectors used were

from the Polar Pathfinder dataset at weekly time resolution (Tschudi et al., 2020). SnowModel-LG exhibits more significant

interannual variability than mW99 in its output because it reflects year to year variations in weather and sea ice dynamics.170

SnowModel-LG includes a relatively advanced degree of physics in its modelling of winter snow accumulation. The model

creates and merges layers based on precipitation and snowpack metamorphism. The effects of sublimation, depth-hoar forma-

tion and wind-packing are included. However, the effects of snow loss to leads by wind and extra snow accumulation due to

sea ice roughness are not included. Furthermore, the heat flux to the snow is not sensitive to the thickness of the underlying sea

ice.175
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SnowModel-LG creates a snow distribution based on reanalysis data, and the accuracy of this snow data is unlikely to exceed

the accuracy of the input. There is significant spread in the representation of the actual distribution of relevant meteorological

parameters by atmospheric reanalyses (Boisvert et al., 2018; Barrett et al., 2020). The results of SnowModel-LG therefore

depend on the reanalysis data set used. However, the data product used has been tuned to match Operation Ice Bridge derived

snow depths during spring time, and snow depth differences between the reanalysis products were found to be less than 5180

cm (Stroeve et al., 2020). We note that the vast majority are over the Beaufort Sea and the Greenlandic side of the Central

Arctic, which is generally covered by multiyear ice. It is therefore conceivable that the scaling factors would be different if

FYI were better sampled by OIB. The time-averaged regional differences between SnowModel-LG runs forced by ERA5 and

MERRA2 reanalysis data are shown in Fig. (S3). The SnowModel-LG data used in this study are generated from the average

of SnowModel-LG runs forced by the two reanalysis products. The SnowModel-LG data is provided on the same 25 km EASE185

grid as the ESA-CCI radar freeboards described above at daily time resolution. We averaged this daily product to produce

monthly gridded data for combination with the monthly radar freeboard data.

2.7 NASA Eulerian Snow on Sea Ice Model (NESOSIM)

To support and broaden the impact of our findings, we repeat our analyses with NESOSIM data from 2002-2015 (Petty

et al., 2018b). NESOSIM data is released on a 100×100 km grid which was interpolated to the 25×25km EASE grid of the190

SnowModel-LG and radar freeboard data. NESOSIM runs in a Eulerian framework and like SnowModel-LG can assimilate

precipitation data from a variety of reanalyses data. In contrast with SnowModel-LG’s multi-layered scheme, NESOSIM uses

a two-layer snow scheme to represent depth-hoar and wind-packed layers. To define these layers, it assimilates surface winds

and temperature profiles from reanalysis. Wind-blown snow loss is parameterised to leads using daily sea ice concentration

fields (Comiso, 2000, updated 2017).195

In this study we use data from a NESOSIM run initialised on the 15th August for each year. The initial depth was produced

by a ‘near-surface air-temperature-based scaling of the August W99 snow depth climatology’. This is a linear scaling based

on the duration of the preceeding summer melt season. Snow density was initialised using the August snow-line observations

of Soviet NP drifting stations 25, 26, 30 and 31. Data from the most recent publicly available drifting stations were chosen to

maximise their relevance in a changing climate.200
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3 Methods

3.1 Contributions to thickness determination from snow and radar freeboard data

We now identify that the height correction due to slower radar pulse propagation in snow scales in almost direct proportion to

the total mass of penetrated snow (ms; Fig. S1). As such, it can be easily combined with the change to the floe’s hydrostatic

equilibrium from snow loading (also linearly dependent on ms) to make one transformation to modify Eq. (2) such that:205

SIT = fr
ρw

ρw − ρi
+ms

ρw
ρw − ρi

× 1.81× 10−3 (3)

Physically, the first term of Eq. (3) corresponds to the SIT were the sea ice known to have no snow cover. The second term

is the additional sea ice thickness that is inferred from knowledge of the overlying snow cover. SIT has been decomposed

into linearly independent contributions from radar-freeboard data and snow data. This allows the contributions of the two data

components to SIT to be assessed independently. A derivation of the 1.81× 10−3 coefficient is available in the supplementary210

material.

We highlight here that our expression in Eq. (3) of the contribution of snow data to SIT determination solely in terms of

snow mass is technically convenient for using W99 to estimate sea ice thickness, as quadratic fits of density (unlike depth and

snow water equivalent) are not publicly available for all months. This has led to the required density values often being set to

a constant value or ‘backed out’ by dividing the published SWE distributions by the depth distributions.215

Eq. (3) and its factor of 1.81×10−3 allow the simple expression of the theoretical change to the radar freeboard under rapid

snow accumulation or removal. Making fr the subject of the equation and assuming SIT constant we find:

∂fr
∂ms

=−1.81× 10−3 (m/kgm−2) (4)

We stress that the above equation assumes total radar penetration of overlying snow, an assumption discussed in Sect. (5.3.1).

As well as allowing independent analysis of the radar and snow data contributions to SIT at a point, the linearly independent220

nature of Eq. (3) in terms of fr and ms allows for a simple calculation of the average SIT in a region (SIT ) as:

SIT =RF +Snow (5)

Where RF and Snow represent the spatial averages of the first and second terms of Eq. (3).

3.2 Assessing Snow Trends and Variability at a point

In Sect. (4.1) we briefly compare the statistics for trends and variability at drifting stations published in Warren et al. (1999)225

with those introduced by mW99 and SnowModel-LG at a given point. We carry out this analysis to establish that the mW99

variability and trends at a given point (chosen as pixels on a 25x25 km EASE grid) are considerably smaller than those observed

at drifting stations.
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The monthly interannual variability (IAV) values published in Warren et al. (1999) are calculated as the standard deviation

of the snow depths at drifting stations when compared to the climatology at the position of the stations. The IAV values at230

a point-like drifting station in a region will therefore naturally be higher than the IAV of the region’s spatial-mean. As such,

to compare IAV values from point-like drifting stations to mW99, we calculate the IAV at individual ice-covered points on a

25×25 km equal-area grid (Brodzik et al., 2012). These are all positive values, which we then average for comparison with the

drifting stations. By regionally averaging the IAV values of many points rather than calculating the IAV of regional averages,

we replicate the statistics of the point-like drifting stations.235

However, the main part of this paper does not focus on trends and variability at a point (as measured by drifting stations),

but instead investigates trends and variability in Snow and SIT at the regional scale (Sections 4.2 & 4.3). This variability

is significantly lower than the typical variability at a point, as many local anomalies from climatology within a region are

averaged out in the calculation of single, area-mean values which form a timeseries for each region.

3.3 Assessing Regional Interannual Variability240

Sect. (4.2) of this paper focuses on the interannual variability in regional SIT which (treating RF and Snow as random,

dependent variables) can be expressed thus:

σ2

SIT
= σ2

RF
+σ2

Snow
+2Cov(RF,Snow) (6)

Where the final term represents the covariance between spatially averaged radar freeboard and snow contributions. This covari-

ance term can be expressed as 2r×σ
Snow

×σ
RF

, where r is the dimensionless correlation-coefficient between the variables245

and ranges between -1 and 1. To further explain this term, if years of high RF are correlated with high Snow, then the covari-

ance term will be high and interannual variability in SIT will be amplified. If mean snow depths are anti-correlated with mean

radar freeboard across the years, interannual variability in SIT will be reduced.

SIT , RF & Snow were calculated where any valid grid points existed on the 25x25 km EASE grid. Because of this,

no average values were computed in the Kara Sea in October 2009 or 2012. Furthermore, no October values were generally250

available in the Barents Sea after 2008 (with the exception of 2011 and 2014). The impact of this on our resulting analysis

is clearly visible in the top left panel of Fig. (10). We do not exclude the Barents Sea in October from our analysis because

of the low number of valid points, but we do highlight the undersampling issue here. We continue to consider it because we

do not find statistically significant declining trends with the data we have, so essentially we are reporting a null result. Our

calculations of interannual variability in this month is inherently adjusted for the small sample size, but we nonetheless urge255

caution in interpretation of the values. The number of grid points available for averaging in each region in each month are

shown in Fig. (S2).

The three terms on the right hand side of Eq. (6) correspond to the three unique terms of the covariance matrix of the two

terms of Eq. (5). The main-diagonal elements of this 2×2 matrix correspond to the variance of the snow contribution and the

radar freeboard contribution to sea ice thickness, terms one and two of Eq. (6). The off-diagonal elements are identical and260

sum to form the third term of Eq. (6).
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We calculated this matrix for each region in each month to investigate the sources of regional interannual variability in SIT

for the time period under consideration (2002-2018). The Central Arctic region is not sufficiently well observed by the Envisat

radar altimeter (see Fig. 1), so the covariance matrix for the region was only calculated for the CS2 period (2010-2018).

In some cases a natural degree of covariance is introduced between the regional Snow and RF timeseries because they both265

display a decreasing trend. This ‘false-variance’ would not be present were the system in a steady state. As such, we detrended

the regional timeseries prior to calculation of the covariance matrix. We found that doing this significantly decreased the value

of the covariance term in Eq. (6) .

We consider the relative contributions of these three terms to σ2

SIT
in calculations involving mW99 and SnowModel-LG

(Sect. 4.2). In light of these results, we then re-assess the statistical significance of regional trends in SIT using SnowModel-270

LG.

Detection of temporal trends in SIT is critically dependent on accurate characterisation of σ2

SIT
. This is because conven-

tional tests for trend exploit the known probability of a system with no trend generating the data at hand through variability

alone (Chandler and Scott, 2011, p. 61). In this paper we argue that the σ2

Snow
term of Eq. (6) has been systematically un-

derestimated through the use of a quasi-climatological snow data set (mW99). As an alternative to this we use the results of275

SnowModel-LG, a snow accumulation model that incorporates interannual changes in precipitation amount, freeze-up timing

and sea ice distribution.

3.4 Assessing Regional Temporal Trends

In Sect (4.3) we examine temporal trends in regional SIT for each month of the growth-season (October - April), and decom-

pose the results by sea ice type. It is stressed that these regional trends are each the trend of a single timeseries of spatially280

averaged thickness values, rather than the average of many trends in sea ice thickness at various pixels in a region. Regional

trends were deemed statistically significant if they passed a two-tailed hypothesis test with p-value less than 0.05, with a null

hypothesis of no trend. Trends were calculated for regional SIT over the Envisat-CS2 period (2002-2018) for all regions apart

from the Central Arctic for which only CS2 data was available. We assess the relationship of these trends in SIT to trends in

RF and Snow (Fig S19).285

In Sect. (4.1.2) we show that basin-wide average snow depth and SWE is decreasing in SnowModel-LG in most months,

but only in October for mW99. We point out here that (under the paradigm of total radar wave penetration of snow on sea

ice) under-accounting for potential reductions in SWE may partially mask a decline in sea ice thickness, as reductions in radar

freeboards are partially compensated by reductions in snow depths. From Eq. (5):

∂(SIT )

∂t
=

∂(RF )

∂t
+

∂(Snow)

∂t
(7)290
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4 Results

4.1 Comparison of point-trends and point-variability

4.1.1 Low interannual variability in mW99 compared to drifting stations and SnowModel-LG

How does the variability in mW99 and SnowModel-LG at a given point compare to the values recorded at Soviet drifting

stations published by Warren et al. (1999)? These values for interannual variability are not currently used in sea ice thickness295

retrievals (although they do contribute to uncertainty estimates in the ESA-CCI sea ice thickness product). Nonetheless, they

offer a benchmark against which to evaluate the variability induced by mW99 at a given location.

Using the method described in Sect. 3.2 we find that the snow variability at a point from mW99 (Fig. 3, blue bars) is on

average about 50% of the values recorded at the drifting stations (Fig. 3, green bars). By comparison, SnowModel-LG snow

depth variability at a given point is significantly higher, ranging from ∼75% of the drifting station values in October to ∼115%300

by the end of winter.

We present this analysis of the point-like snow variability to illustrate that mW99 does not introduce enough variability at a

given point to match that observed at drifting stations from year to year. Furthermore, the variability that does exist is confined

to a distinct band of the Arctic Ocean (Fig. 4). This band represents areas where the sea ice type is not typically either FYI or

MYI. Instead it is either switching between the two, or it is an area where FYI has replaced MYI during the period of analysis.305

In areas where sea ice type is temporally unchanging, snow variability is not present. This has implications at the regional scale

as marginal seas with a consistent sea ice type experience unrealistically low σ
Snow

in the mW99 scheme.
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Figure 3. Interannual variability (2002-2018) in snow depth from mW99 and SnowModel-LG compared to the values given in Table 1 of

Warren et al. (1999).

Figure 4. mW99 snow depth variability at each EASE grid point over the 2002-2018 period. This is calculated by generating a timeseries

of snow depth at each point and then calculating the standard deviation of that timeseries. High variability is displayed in a band where sea

ice type typically fluctuates from year to year. IAV is zero in areas that do not exhibit sea ice type variability, introducing unphysically low

variability in SIT.
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4.1.2 Lack of Temporal Trends in mW99 compared to SnowModel-LG and in-situ data

Weak trends exist at some points in the mW99 Arctic snow distribution due to the shifting distribution and abundance of first

year ice in the Arctic. In this section we briefly address their size, sign and veracity, leaving regional analysis until Sect. (4.2).310

Values for SWE and depth trends measured by individual drifting stations are given in W99, but the values are not statistically

significant for any of the winter months, and as such are not displayed here. We instead compare the point-trends at all color

coded regions of Fig. 1 from mW99 and SnowModel-LG (Fig. 5).

We find that when we average the point-trends at a basin-wide scale, the only statistically significant trend (at the 5% level)

for mW99 snow depth is a positive one for the month of October (+0.11 cm/yr; Fig. 5). This increasing trend in snow depth is315

in part due to the diminishing area of October FYI relative to that of MYI (Fig. S4), and in part due to the retreat of the October

sea ice into the Central Arctic where W99 exhibits higher snow depths and SWE. The increasing October areal dominance of

MYI is in part driven by delayed Arctic freeze-up (Markus et al., 2009; Stroeve et al., 2014). The area of sea ice over which

the W99 climatology is halved in October is therefore shrinking, and basin-wide mean snow depths in mW99 are increasing.

Trends in sea ice type fraction for each winter month are displayed in Fig. (S4), and monthly timeseries for mW99 SWE are320

displayed in Fig. (S5).

Unlike mW99, SnowModel-LG exhibits statistically significant, negative point-trends for the later five of the seven winter

months (when averaged at a basin-wide scale). We identify two processes as responsible for this decreasing trend: the MYI

area is shrinking, so a smaller MYI sea ice area is present during during the high snowfall months of September and October

(Boisvert et al., 2018); also freeze-up commences later, so a lower FYI area is available in these months and more precipitation325

falls directly into the ocean. Webster et al. (2014) observed a -0.29cm/yr trend in Western Arctic spring snow depths using

both airborne and in situ sources. This airborne contributions to this statistic included data over both sea ice types, and the

in-situ contributions included data from individual Soviet drifting stations from the Western Arctic. The statistic compares

well with the behaviour of SnowModel-LG (-0.27 cm/yr March; -0.31 cm/yr April), but is considerably beyond that of the

non-statistically significant trends of W99 and mW99.330

What might the effects of this decline be on SIT at regional scales and larger? In terms of Eq. (7), models and observations

indicate that ∂(Snow)/∂t is negative on long timescales (Webster et al., 2014; Warren et al., 1999; Stroeve et al., 2020).

However, the use of mW99 effectively sets ∂(Snow)/∂t to zero, and to a positive value in October. This has the effect of

biasing ∂(SIT )/∂t high (and towards zero). Section 4.3 examines the effect of using SWE data with a more realistic decline

on regional SIT trends; this is mediated by the effects of higher interannual variability, which is examined in Sect. (4.2).335
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Figure 5. Basin-wide spatial average of point-like trends in (a) snow depth and (b) SWE, from mW99 and SnowModel-LG. Calculated

for the Envisat-CS2 period (2002-2018). Significance values (in %) are given at the base of each bar. Only October trends for mW99 are

significant at the 5% level, whereas significant negative trends exist in SnowModel-LG for December - April.

4.2 Realistic SWE Interannual Variability Enhances Regional SIT Interannual Variability

Having illustrated the deficiency of point-trends and point-variability in mW99, we now move on to the impact of snow data

on SIT at the regional scale.

We calculate the interannual variability of detrended timeseries of the snow contribution to the thickness determination

(Snow) from mW99 and SnowModel-LG. We display some of these results in Fig. (6). We did this for every winter month340

(Oct-Apr) and for in each region defined in Fig. (1). SnowModel-LG data produce more variable timeseries of Snow (i.e.

higher values of σ2

Snow
; c.f. Eq. 6). This is the case for all months, in all regions. For snow in the Kara Sea, mW99 introduces

almost four times less interannual variability into SIT via Snow than SnowModel-LG in the April timeseries. This analysis is

further broken down by sea ice type in Figs S7 and S8.

Having shown that SnowModel-LG’s contribution to SIT is more variable than mW99, how does this increased variability345

propagate into sea ice thickness variability itself (σ2

SIT
)? To answer this question, we must examine the way in which the

snow contribution to SIT combines with data from satellite radar freeboard measurements. Having calculated the σ2

Snow
term

of Eq. 6 (displayed in Fig. 6), we now turn to the 2Cov(RF,Snow) term. To assess this we calculate the magnitude and

statistical significance of correlations between the detrended RF and Snow contributions to SIT in individual years, regions

and months.350

To do this we calculated a monthly timeseries of RF and Snow for each region over the time-periods (2002-2018, with the

Central Arctic being 2010-2018). Because we considered eight regions and seven months, this led to to 56 pairs of timeseries

for RF and Snow. We then detrended each of them. We then calculated the correlation between each of the pairs of detrended

timeseries. We note here that the correlation between the timeseries is dependent on their relative position to a linear regression.
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Figure 6. Detrended timeseries of spatially averaged snow contributions to sea ice thickness (Snow) by region from W99 (blue) and

SnowModel-LG (red). Standard deviation values are displayed for SnowModel-LG (lower left, red), and mW99 (lower right, blue). All

regions are plotted in Supplementary Fig. (S6)

These correlation statistics are thus independent of the absolute magnitude of the values, their units, or any linear scaling of355

the axes. We therefore choose to present the correlations in Fig (7) without axes and scaled to the rectangular panels, so as to

best show the relative positions of the points without extraneous numerical information.

We find statistically significant correlations between Snow and RF to generally range between 0.6 - 0.85 (Fig. 7). All

statistically significant correlations were positive ones, and this was also the case when individual sea ice types were considered

for each region. When all sea ice types were considered, the Laptev and East Siberian seas exhibited statistically significant360

trends in five and six of the seven growth-season months respectively. The Barents Sea and the Beaufort Sea both exhibited one

month of correlation, and the Central Arctic Region exhibited no months of correlation - the reasons for this are discussed in

Sect. (5.4). When analysed as a single, large region, the ‘Marginal Seas’ area exhibits correlations in four of the seven months

analysed, with the strength of these correlations increasing over the season.

We continued this analysis by breaking down the regions by sea ice type. The area of the Central Arctic sea ice covered with365

first year ice exhibits strong correlations (all above 0.8) in the later five months of the winter (Fig. S9).

When considering correlations over multi-year ice (MYI), the ‘Marginal Seas’ grouping exhibits correlations in the first

four growth-season months (Fig. S10). The MYI fraction Central Arctic, Chukchi and Barents Seas exhibited no correlations.

We note that this analysis is relatively sensitive to the detrending process. When performed without detrending, statistically
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Figure 7. Covariability of contributions to sea ice thickness from radar freeboard and SnowModel-LG derived snow components over all

sea ice types. Plots are colored with magenta when a a statistically significant correlation is present between the contributions (p>0.95).

Analogous plots are displayed for the FYI and MYI components of the regions in Figs S9 & S10.

significant correlations are noticeably more common. This is because Snow and RF are both in decline in some areas, which370

introduces an inherent correlation from the trend.

Having identified and quantified regions and months of significant covariance between Snow and RF (Fig. 7), we are in

a position to fully answer the question of how the increased variability of SnowModel-LG over mW99 (shown in Fig. 6)

ultimately impacts σ2

SIT
. We plot the three contributing components to σ2

SIT
for each region in each winter month (Fig. 8). We

note that in the case of negative covariability between Snow and RF , it is possible for σ2

Snow
+σ2

RF
to be larger than σ2

SIT
.375

This is not problematic because σ2

Snow
+σ2

RF
does not represent a real quantity when the variables are not independent.

In the marginal seas σ2

Snow
overtakes σ2

RF
to become the main constituent of σ2

SIT
by end of the growth season (Fig. 8).

This is particularly driven by the behaviour of the Beaufort and East Siberian Seas, where this relationship is clearly visible.
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Figure 8. Constituent parts of σ2

SIT
of different regions. Bars represent the variance (σ2) of RF and Snow and the covariance between the

two. (a) illustrates the absolute variance contributions (b) illustrates their relative contributions. The variance of Snow in mW99 is indicated

in panel (a) by a superimposed black bar. Snow contributes significantly more variability in the late winter than radar freeboard in most of

the marginal seas.
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In the Central Arctic σ2

RF
just remains the dominant component of σ2

SIT
, throughout the cold season although σ2

Snow
plays an

increasing role as the season progresses.380

Covariance between RF and Snow makes relatively constant contributions to σ2

SIT
of the ‘marginal seas’ grouping in

comparison to the other two components, but analysis of this grouping conceals more significant variation at the scale of the

individual group members. The covariability term of Eq. (6) makes a larger contribution than radar freeboard variability itself

at times, for example in the Kara and East Siberian seas at the end-of-winter, and for the Chukchi Sea in February and March.

For the Central Arctic, the covariability term generally makes less of a contribution to total SIT variability than radar freeboard385

or snow variability individually, and is negative in the first two months of winter. We note that the covariability is almost always

positive in the marginal seas with the exception of December in the Kara and Chuckchi Seas.

Finally, we directly compare the variability of SIT itself, when calculated using SnowModel-LG and mW99. We conduct

this exercise in both absolute terms (Fig. 9a) and as a fraction of the regional mean thickness (Fig. 9b).

Calculation of regional SIT with SnowModel-LG reveals higher variability in all marginal seas of the Arctic basin in all390

months. When the marginal seas are analysed as a contiguous entity, the standard deviation is 0.09 m with mW99 and 0.16 m

with SnowModel-LG. This represents an increase in SIT variability of 77%. For the Central Arctic this figure is considerably

smaller, at 25%. When the individual marginal seas are considered, the largest increase was the Kara Sea (138%) and the

smallest was the Beaufort Sea (35%).

One key aspect of interannual variability is how it compares to typical values. When IAV is expressed as a percentage of395

the regional mean thickness, the Barents Sea exhibits the largest increase when calculated with SnowModel-LG: the standard

deviation (as a percentage of mean thickness) increases from 15% to 25%. When variability is viewed in this way, the increase

in the Central Arctic is small (7.9% to 9.4%). Variability as a fraction of mean thickness is also highest in the Barents Sea

when calculated with SnowModel-LG - whereas with mW99 this designation would go to the Beaufort Sea. When analysed as

one area, variability (as a fraction of mean thickness) in the marginal seas transitions from being 7.5% of the mean thickness400

to 13.8% when calculated with SnowModel-LG.

We also note that MYI exhibits more thickness variability than FYI (both absolutely and relative to the sea ice type’s mean

thickness) in all the marginal seas (Fig. S11). For the marginal seas as a single group, MYI is roughly twice as variable in

absolute terms. This is not the case in the Central Arctic, where the thickness variability of the individual sea ice types is highly

similar (with FYI IAV slightly larger when calculated relative to regional mean thickness).405
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Figure 9. Standard deviation in sea ice thickness over the period 2002 - 2018 except for the Central Arctic: 2010-2018 (a) calculated in

absolute terms (b) calculated as a percentage of the regional mean thickness over the period. Mean growth-season values shown with dashed

lines. The individual detrended regional timeseries from which this figure is synthesised are available in Fig. (S12).

4.3 New and faster thickness declines in the marginal seas

As well as exhibiting higher interannual variability than mW99, SnowModel-LG Snow values decline over time in most

regions due to decreasing SWE values year-on-year. Here we examine the aggregate contribution of a more variable but

declining Snow timeseries in determining the magnitude and significance of trends in SIT .

We first assess regions where SIT was already in statistically significant decline when calculated with mW99. This is the410

case for all months in the Laptev and Kara seas, and four of seven months in the Chukchi and Barents sea. The rate of decline

in these regions grew significantly when calculated with SnowModel-LG data (Fig. 10; green panels). Relative to the decline-

rate calculated with mW99, this represents average increases of 62% in the Laptev sea, 81% in the Kara Sea, and 102% in
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the Barents Sea. The largest increase in an already statistically-significant decline was in the Chukchi Sea in April, where the

decline-rate increased by a factor of 2.1. When analysed as an aggregated area and with mW99, the total ‘Marginal Seas’ area415

exhibits a statistically significant negative trend in November, December, January and April. The East Siberian Sea is the only

region to have a month of decline when calculated with mW99 but not with SnowModel-LG.

We now turn our attention to new trends that stem from the use of SnowModel-LG over mW99 (Fig. 10; red panels). Our

analysis reveals a new, statistically significant SIT decline in the Chukchi Sea in October (taking the number of months

with a decline in SIT to five). Perhaps more significantly, the aggregated Marginal Seas region exhibits two new months of420

statistically significant declining SIT in October and February, taking the total number of declining months to six. No months

in any marginal sea exhibited a statistically significant increasing trend in SIT (with either snow data set).

The Central Arctic region exhibits a statistically significant thickening October trend with both snow data sets (10 cm/yr and

9 cm/yr with SnowModel-LG and mW99). The region exhibits an additional month of increase in November when calculated

with SnowModel-LG (7 cm/yr).425

We also analyse these regional declines as a percentage of the regional mean sea ice thickness in the observational period

(2002-2018). We observe the average growth-season thinning to increase from 21% per decade to 42% per decade in the

Barents Sea, 39% to 56% per decade in the Kara Sea, and 24% to 40% per decade in the Laptev Sea when using SnowModel-

LG instead of mW99. Five of the seven growth-season months in the Chukchi Sea exhibit a decline with SnowModel-LG of (on

average) 44% per decade. This is much more than that of the four significant months observable with mW99 (25% per decade).430

We find the Marginal Seas (when considered as a contiguous, aggregated group) to be losing 30% of its mean thickness per

decade in the six statistically significant months when SIT is calculated using SnowModel-LG (as opposed to mW99).

We further analyse these declining trends by sea ice type. This reveals the aggregate trends in the marginal seas to be

broadly driven by thickness decline in FYI rather than MYI. We note that the FYI sea ice cover in the Kara and Laptev seas is

in statistically significant decline with either snow product in all months. The FYI cover in the Barents Sea is also in decline435

for six of the seven winter months when calculated with SnowModel-LG. We find that (when analysed with SnowModel-LG)

if any month in a specific marginal sea is in ‘all types’ decline, its first year ice is also statistically significantly declining.

4.4 Changes to the sea ice thickness distribution and seasonal growth

We now consider differences in the spatial sea ice thickness distribution introduced by a snow product with IAV. Because mW99

has low spatial variability in its SWE fields (the quadratic fits are relatively flat), it produces a more sharply peaked and narrow440

SIT distribution with lower probabilities of thinner or thicker sea ice in the months January - April. The SIT distribution

also exhibits some degree of bimodality due to the halving scheme. This bimodality is to a large degree represented in the

SnowModel-LG histograms - an encouraging result (Fig. S13).

The regional, seasonal growth rate is also similar when comparing calculations with SnowModel-LG and mW99 (Fig. S14).

These rates were calculated over the period 2002-2018 with the exception of the Central Arctic which was restricted to the445

period 2010-2018. Among the most salient differences are the much smoother seasonal evolution of snow cover in the Barents

Sea from SnowModel-LG and the decline in SWE from March to April in the Kara, Laptev and Beaufort seas with mW99
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Figure 10. Regional SIT timeseries calculated using mW99 and SnowModel-LG. Note different y-axis scale for Central Arctic and East

Siberian Sea. Panels featuring a statistically significant trend in sea ice thickness when calculated both mW99 & SnowModel-LG framed

with green. Red frames indicate where trend is only significant when calculated with SnowModel-LG. Blue frames indicate where a statis-

tically significant increase is detected with mW99, but not with SnowModel-LG. Where trends are statistically significant, trend lines are

superimposed.
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Figure 11. Sea ice thickness trends in the four marginal seas that exhibited robust trends in several winter months in the period 2002-2018.

Average winter trend (calculated only from statistically significant months) from each snow product shown with dashed lines. Data points

are only shown where a statistically significant trend is present for that month and for the relevant snow data.

(compared to a continued increase with SnowModel-LG). In the East Siberian and Laptev seas there is clearly a slightly lower

seasonal growth rate when calculated with mW99, and this is also true to a lesser extent in the Chukchi Sea.
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5 Discussion450

5.1 Sensitivity of Findings to Choice of Snow Product

5.1.1 Choice of Climatology - Combining AMSR2 with mW99

The most recent sea ice thickness product from the Alfred Wegener Institute (Hendricks and Ricker, 2019) makes use of a

new snow climatology, generated by the merging of W99 with snow depth data derived from the AMSR2 passive microwave

record. This is then applied with a halving scheme based on sea ice type in a similar way to mW99 (but with the AMSR2455

component not halved). This likely improves the absolute accuracy of snow depths (and thus sea ice thickness), but does not

resolve the issues discussed in this paper involving trends and variability. The modified AMSR2/W99 climatology functions in

a very similar way to mW99 - a weak IAV is introduced in areas of interannually fluctuating sea ice type. Any trends will be

the result of trends in the relative dominance of sea ice type. This was discussed in Sect. 4.1.2 and illustrated in Fig. S4: sea

ice type trends are only significant in October and January, where they are weak.460

5.1.2 Choice of Reanalysis Forcing for SnowModel-LG

Barrett et al. (2020) reviewed precipitation data from various reanalysis products over the Arctic Ocean using records from the

Soviet drifting stations, and found the magnitude of interannual variability to be similar. They further broke these data down

to the regional scale using the same regional definitions in this paper, and found that this similarity persisted. Boisvert et al.

(2018) conducted a similar analysis with drifting ice mass balance buoys, and found the interannual variability of the data sets465

to also be similar (although the authors found larger discrepancies in magnitude). These differences in magnitude however

cannot be physical (as there is only one Arctic), and Cabaj et al. (2020) were able to bring precipitation estimates into better

alignment using CloudSat data with a scaling approach. However this scaling approach preserved the interannual variability of

the data sets, which Barrett et al. (2020) and Boisvert et al. (2018) found to be in comparatively good agreement. To investigate

how this variability propagates into Snow variability, we calculate Snow timeseries from SnowModel-LG runs forced by both470

MERRA-2 and ERA-5 data and find their variability to be very similar (Fig. S15).

With regard to trends, we find that the two different reanalysis forcings generally introduce minimal differences in the

SIT trends (Fig. S16). We do however find that small differences in SWE cause the Snow contribution of the MERRA-2

SnowModel-LG run to exhibit statistically signficant decline in regions and months where the ERA-5 run does not (with only

a small change to the p-value). Analysis of the absolute Snow timeseries reveals them to be otherwise similar (Fig. S17).475

We take these clear similarities as evidence that our findings are in principle robust to the choice of atmospheric reanalysis.

5.1.3 Choice of Model - Comparison with NESOSIM

Some uncertainty is introduced into the spatial distribution of snow in a given year by SnowModel-LG snow parameterisations

and simplifications, such as the lack of snow loss to leads. We therefore repeat our analyses with 2002-2015 data from the

NASA Eulerian Snow On Sea Ice Model (NESOSIM; Petty et al., 2018b).480
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We find that doing this increases the relative importance of snow variability to sea ice thickness variability (Fig. S18). We

also observe that the NESOSIM calculations are considerably more similar to those done with SnowModel-LG than with

mW99. NESOSIM replicates the increasingly dominant σ2

Snow
contribution to σ2

SIT
over the winter in the Marginal seas, and

also replicates the higher contribution of σ2

RF
in the Central Arctic compared to both the individual and aggregated marginal

seas. Striking resemblances are seen for the Kara Sea and the East Siberian Sea. Furthermore, the negative covariances for485

November in the Barents Sea and December in the Chukchi are replicated (albeit with significantly greater magnitude in the

Barents Sea). NESOSIM also replicates the negative covariances in October and November in the Central Arctic, but also

introduces negative covariance in December (unlike SnowModel-LG).

Because the NESOSIM data is only publicly available from 2002-2015, any underlying trends in the SIT timeseries are more

challenging to detect because of the shorter observational period (by comparison to regions where all relevant data is available490

from 2002-2018). On the other hand, the calculated interannual variability is not reduced by the shorter timeseries, further

obscuring any potential underlying trends. But despite these differences, both snow data sets produce statistically significant

decline in all months in the Laptev Sea. NESOSIM reproduces six of the seven months of decline in the Kara Sea shown by

SnowModel-LG, and three of the five in the Marginal Seas.

Further inspection of the individual data points across all regions and months reveals good agreement in regional SIT495

when calculated with either SnowModel-LG or NESOSIM - we take this as evidence that our findings concerning trends and

variability over the longer 2002-2018 period are robust to the choice of reanalysis-accumulation model.

5.2 Study Limitations

5.2.1 Statistical Treatment

We have assumed in calculating single figures for variances that the interannual variability of the systems at hand is time-500

stationary. It is unclear whether this is the case, as the timeseries are limited in length and time-resolution and thus offer limited

scope to test for stationarity. Furthermore we only tested for linear trends, when trends may in fact be non-linear. However, a

visual inspection of Fig. (10) implies that this approximation is adequate on a qualitative level. Our trend tests also were two-

tailed, with the null hypothesis that there was no trend. We could have formulated an alternate test where our null hypothesis

was that the trend was positive. This would have given a higher number of statistically significant instances of negative trends,505

but we deemed this inappropriate as one of the regions (the Central Arctic) does exhibit significant positive trends with the

two-tailed test.

5.3 Inter-Mission Bias between Envisat and CryoSat-2

An extensive validation exercise for the merged products indicated that although Envisat radar freeboards match well with

CS2 freeboards in the Arctic overall, some biases do exist over specific ice types (ESA, 2018). In particular, analysis of the510

inter-mission overlap period indicates that Envisat freeboards were biased low (relative to CS2) in areas dominated by MYI,

and high in areas dominated by FYI.
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We first make the point that this will have a relatively minimal effect on our findings regarding interannual variability, as

Snow is unaffected by this and σ2

RF
is likely relatively independent of the absolute magnitude of RF .

With regard to trends, if Envisat radar freeboards (and thus RF ) are in fact biased high over FYI between 2002-2010 (relative515

to CS2), then the total trend in many regions dominated by FYI could potentially be smaller than calculated in this manuscript.

We do however add that our findings regarding the impact of declining Snow is unaffected by any inter-mission bias in RF .

Because the trend in SIT is determined by both Snow & RF , the trend in SIT will always be more negative when calculated

with downward trending data for Snow.

5.3.1 The Effects of Incomplete Radar Penetration of the Snowpack520

This investigation has been carried out within the paradigm of total Ku-band radar wave penetration of the snow cover (as

suggested by Beaven et al. (1995)), however some in situ investigations have cast doubt on this. The issue was highlighted

in an Antarctic context by Giles et al. (2008b) for ERS radar freeboards, and it was shown subsequently that significant mor-

phological features in the snowpack (e.g. depth hoar, wet snow or crusts) enhanced radar scattering from within the snowpack

(Willatt et al., 2010). For the Arctic, Willatt et al. (2011) found that airborne Ku-band radar backscatter in the Bay of Both-525

nia was returned from nearer the snow-ice than snow-air interface in only 25% of cases when the temperature was close to

freezing, the figure increasing to 80% at lower temperatures. Nandan et al. (2017) observed that the presence of brine in the

base of the snowpack can raise the scattering horizon by several centimeters. However, these investigations were often (but not

exclusively) carried out at the end of the winter season or in the Sub-Arctic, when warmer temperatures may have increased

the snow’s brine volume fraction and diurnal forcing can drive rapid snow metamorphism. Both of these factors will be less530

prevalent in the colder months of winter. This analysis is therefore carried out using the imperfect historical assumption present

in publicly available sea ice products (that of total penetration).

What would the effects of incomplete penetration of the snowpack be on our findings? As the height of the primary radar

scattering horizon rises through the snow, the altimeter operation transitions from that of a radar altimeter to that of a lidar

altimeter. Knowledge of overlying snow contributes positively to the inference of SIT in the case of a radar altimeter (i.e. the535

coefficient of ms term of Eq. 3 is positive). However, the influence of overlying snow on lidar-based SIT estimates is negative

(i.e. the presence of more snow for a given measured radar freeboard implies less underlying sea ice). As the scattering horizon

rises through the snowpack, the SIT contribution of snow therefore decreases, reaches zero (in the top half of the snowpack,

the exact location depending on snow density) and proceeds to negative values. The result of potential incomplete penetration

for our study is that the magnitude of the reported trend and variance underestimations is diminished. Were our investigation540

based on a similarly long timeseries of lidar freeboards combined with a snow climatology, one of our conclusions would be

that diminishing snow cover is leading to overestimation of rates of decline in the marginal seas.

We finally note the potentially confounding influence of negative freeboard in regions such as the Atlantic sector of the

Central Arctic region and the Barents Sea. In the case of high snowfall and low sea ice thickness, the sea ice surface can be

depressed to the waterline or below. Beyond this point Eq. (5) no longer functions. The prevalence of negative freeboards has545

been studied by Rösel et al. (2018) and Merkouriadi et al. (2020), but has yet to be incorporated into any radar-altimetry based
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sea ice thickness retrievals. This situation can be driven by storm tracks entering the Arctic from the Atlantic (but also the

Bering Strait). These intrusions of warm air can also drive snow grain metamorphism, which may well affect radar penetration

through the snowpack.

5.4 The Impact of Enhanced Variability from SnowModel-LG550

When used instead of mW99, SnowModel-LG data increases the interannual variability of SIT in the marginal seas by more

than 50%. The main way that this occurs is though increasing σ2

Snow
values (Fig. 6). The second and less significant way that

σ2

SIT
is increased is through some positive correlations between Snow and RF values for individual months in some regions

(Fig. 7). Because the two timeseries are positively correlated in some cases, σ2

SIT
is increased; for the Marginal Seas region

this covariance term makes up around 15-20% of σ2

SIT
(Fig. 8).555

While values for interannual variability are given in W99, it was previously impossible to apply those values to either a given

year or to fulfil Eq. (6). SnowModel-LG offers similar variability to the SWE statistics given in W99 (Fig. 3), and can generate

a yearly timeseries of values. Furthermore it can be combined with radar freeboard data to generate all terms of Eq. (6) for a

direct calculation of σ2

SIT
.

Comparing our IAV values to the literature is challenging due to differences in the area over which other authors have560

calculated IAV values. Haas (2004) investigated the interannual variability of an area within the Transpolar Drift in the Central

Arctic and Northern Barents Sea, and found a 0.73 m standard deviation. This is considerably higher than the values determined

in this study, although this data was collected by electromagnetic sounding in late summer over a ten year period that does not

overlap with this analysis. Laxon et al. (2003) defined a ‘region of coverage’, which essentially consisted of the marginal seas

considered in this analysis with the addition of some areas of the Canadian Archipelago and the Greenland sea. The authors565

found a variability of 0.24 m using W99 in this region of coverage over an eight year timescale. Unlike Haas (2004), this

value is lower than our findings using either mW99 or SnowModel-LG. Similar to Haas (2004), the time period is considerably

shorter and the geographical area is not identical. Finally, Rothrock et al. (2008) found interannual variability in SIT to be 0.46

m over a twenty-five year period (1975-2000), using submarine records from a variety of Arctic regions. It is likely that the

values in these studies differ due to the unequal spatial extent over which the IAV was calculated; averaging over a larger area570

reduces the IAV due to the averaging out of local anomalies.

5.5 The Impact of New and Steeper Trends in Mean Sea Ice Thickness

The replacement of multiyear ice with first year ice has been documented to be reducing Arctic-mean SWE on sea ice in spring

(Webster et al., 2014). However, progressively later freeze-ups in the Arctic are also likely driving a reduction in mean SWE in

the early cold-season. This is because sea ice covers a relatively smaller area in the high precipitation months of September and575

October. When the sea ice area then expands with the progression of the growth-season, the newer sea ice has not been exposed

to this snowfall. This mechanism is not accounted for in mW99, and as such snow depths do not decrease at a statistically

significant level in any month.
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In this study we have assessed how these negative trends in Snow propagate through into trends in SIT . In every area where

a statistically significant decline in radar freeboards is observed, a statistically significant decline in SnowModel-LG SWE is580

also observed (Fig. S19). In addition to this, SnowModel-LG also exhibits Snow decline in other months in the Beaufort and

Barents Sea. As such, reductions in Snow usually act in concert with observed reductions in RF , amplifying decline in SIT .

This relationship is illustrated by the fact that several months in several regions do not exhibit either a statistically significant

decline in RF or Snow (Fig. S19), but despite this they do exhibit decline in SIT (Fig. 10). We note here that this ‘co-decline’

in Snow and RF is separate to the covariability presented in Sect. 4.2 and Fig. 7, as that was calculated from detrended data.585

Because SnowModel-LG data features a steeper decline in Snow than mW99, a steeper decline is observed in the SIT of

several regions. However, SnowModel-LG Snow contribution to SIT also exhibits significantly more variability, which acts

to reduce statistical significance of SIT trends. Despite this compensating effect, the statistical significance of trends in SIT

were generally greater than those calculated using mW99. Furthermore, statistically significant trends emerged in new months

and new regions.590

Kwok and Rothrock (2009) analysed 42 years of submarine records and the five year ICESat record. However, it is chal-

lenging to draw comparison with our results, as trends were gleaned from submarine track crossings and by comparing the

thickness difference between the period of submarine observation and that of ICESat observations. Difficulty in comparison

is further compounded by differences in regional designation and the area of the submarine data release (which is generally

confined to the Central Arctic region where the radar altimetry timeseries is at best limited to the CryoSat-2 era). This is also595

the case for the updated analysis of Kwok (2018), who seasonally adjusted mean thickness values to match crossover points in

submarine tracks in time and space.

Our findings of enhanced interannual variability and steeper decline have implications for Arctic stakeholders and the de-

ployment of human infrastructure. The marginal seas are heavily used for the shipping of goods along the Northern Sea Route

in summer (Eguíluz et al., 2016) and provide the setting for potential extraction of natural resources (Petrick et al., 2017).600

Furthermore, the season during which vessels may traverse the Northern Sea Route is lengthening. Higher variability in sea ice

thickness may pose a challenge to the planning of this seasonal travel, particularly with regard to the need for ice-strengthened

escorts for conventional vessels (Melia et al., 2017; Cariou et al., 2019). The enhancement of declining trends where they exist

is perhaps of benefit these industries.

5.6 The interannual relationship between radar freeboard and snow depth605

We finally consider the physical mechanisms behind positive or non-significant correlations between Snow and RF displayed

in Fig. (7). Assuming total radar penetration of the snow cover, as snow accumulates on sea ice it should lower the local radar

freeboard by a distance on the order of half its accumulated height (Eq. 4). This lowering is a result of physical depression

of the sea ice surface and an increase in the radar ranging due to slower radar wave propagation in snow (in approximately

a 60:40 ratio). Over short time scales (days to weeks), this would result in a negative correlation between local snow depth610

and local radar freeboard. This corresponds to a negative covariability term in Eq. (5) and is represented by purple bars in

Fig. (8). Negative values are generally not seen, with the exception of October and November in the Central Arctic, November
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in the Barents Sea and December in the Chukchi and Kara seas. Furthermore, snow is a highly insulating material and its

accumulation limits sea ice thermodynamic growth. This would also bring about a negative correlation between snow depth

and radar freeboard, lagged over a period of weeks.615

The lack of negative correlations between RF and Snow from year to year is likely indicative of the timescale of our

analysis. If present, the negative correlation implied by Eq. (4) and the mechanisms above must only be present on shorter

timescales (e.g. days). So what drives the positive correlations between RF and Snow where they exist? One driver over FYI

is likely sea ice age. Sea ice formed at the beginning of the season has a longer time to (a) grow thicker, and (b) accumulate

snow. Both variables are therefore likely controlled by regional freeze-up timing, explaining the correlation. The combined620

evolution of Snow and RF anomalies as a function of regional freeze-up timings is likely to be the subject of future study.

The relationship between MYI radar freeboards and accumulated SWE may also form an avenue for further study.

6 Summary

In this paper we used a novel approximation for the slowing of radar waves in snow to decompose the conventional method for

estimating sea ice thickness into two contributions: one originating from radar freeboard data (from satellite altimeters), the625

other from snow data of varying provenance.

This allowed a regional assessment of the conventional impact of snow on variability and trends in sea ice thickness. We

then used a new snow data set (from SnowModel-LG) with a more realistic magnitude of interannual variability and trends to

calculate the regional sea ice thickness timeseries.

We found that interannual variability in average sea ice thickness (σ2

SIT
) of the marginal seas was increased by more than630

50% by accounting for variability in the snow cover. On a seasonal timescale we find that variability in the snow cover makes

an increasing contribution to the total variability of inferred sea ice thickness, increasing from around 20% in October to more

than 70% in April.

We also observed that the trends in SnowModel-LG data propagated through to the SIT timeseries, amplifying decline in

regions where it was already significant, and introducing significant decline where it did not previously exist. This occurred in635

spite of the compensating effect of enhanced interannual variability.
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S1 Snow’s impact on conventional sea ice thickness retrievals can be characterised solely by its snow water equivalent

Using the expression of ice freeboard from Armitage and Ridout (2015):

Ice Freeboard = Radar Freeboard + Propagation Correction (S1)

And using the expression of the propagation correction from Tilling et al. (2018):

hi = hr +hs(c/cs − 1) (S2)5

Where hs is snow depth, c is the speed of light in free space and cs is the speed of light in snow. Numerous empirical

expressions for cs exist, in this work we use the expression for the permittivity of dry snow from Mätzler (2006):

ǫds =
(

1+0.5194ρs
)3

(S3)

Relating the radar wave speed to the permittivity using cs = c/
√
ǫ (Ulaby and Long, 2014):

cs = c
(

1+0.5194ρs
)

−3/2
(S4)10

The conversion of hi to SIT then invokes the floe’s hydrostatic equilibrium and Archimedes’ principle. Like the freeboard

correction for slower radar pulse propagation in snow, this operation requires a priori knowledge of the depth and density of

the snow cover.

SIT = hi
ρw

ρw − ρi
+hs

ρs
ρw − ρi

(Tilling et al. 2018) (S5)
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Separating hi into its hr and δhprop components using Eq. (S2), we can express SIT for a given ice type as a linear combi-15

nation of the radar freeboard and snow properties.

SIT = hr
ρw

ρw − ρi
+hs

ρw
ρw − ρi

[

c

cs
− 1

]

+hs
ρs

ρw − ρi
(S6)

SIT = hr
ρw

ρw − ρi
+hs

ρw
ρw − ρi

([

c

cs
− 1

]

+
ρs
ρw

)

(S7)

The equation y = c/cs − 1 where cs is a function of ρs as in Eq (S4) is highly linear as a function of ρs as follows:

c

cs
− 1 = 8.36× 10−4 × ρs (S8)20

This linearity is visualised in Fig. (S1) and allows the second term in Eq. (S7) to be written to a close approximation:

SIT = hr
ρw

ρw − ρi
+ms

ρw
ρw − ρi

(

(8.36× 10−4)+
1

ρw

)

(S9)

Where ms represents the mass of snow per unit area. This can be reformulated by setting ρw = 1023 kgm−3 as:

SIT = hr
ρw

ρw − ρi
+ms

ρw
ρw − ρi

× 1.81× 10−3 (S10)
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Figure S1. Value of the propagation factor used to convert radar freeboard to ice freeboard, plotted as a function of snow density. This

function is highly linear and is approximated as such in this work. The factor is multiplied by the snow depth to generate the total correction.
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Figure S2. The number of RF 25×25 km data points in each region for each month. We were not able to compute RF in the Kara Sea for

October 2009 or 2012. Nor were we able to calculate it in the Barents Sea in October after 2008 (with the exception of 2011 and 2014).
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Figure S3. (a) difference in snow depth in SnowModel-LG when driven by ERA5 and Merra2 reanalysis data at each 25x25 km pixel on

the EASE grid averaged over the period 2002-2018. (b) time average of absolute differences in SnowModel-LG when driven by ERA5 and

Merra2 reanalysis data. We note that (b) is not the absolute value of (a), but instead the time-average of the absolute values of monthly

differences.
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Figure S4. Basinwide trends in first year ice extent as a fraction of total extent from 2003-2018. Statistically significant trends exist in October

(declining) and January (increasing). When trends of any significance are considered, all months show positive slopes barring October, which

shows distinct decline. The October trend is due to later freeze-ups, the other positive trends fit in with established trends of increasing FYI

dominance. Shaded regions represent the 95% confidence level for the linear regression.

Figure S5. Basinwide trends in mW99 SWE fields from 2003-2018. A statistically significant trend only exists in October, where SWE is

increasing due to the increasing dominance of MYI in the month due to later freeze-ups. Shaded regions represent the 95% confidence level

for the linear regression.
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Figure S6. Detrended timeseries of spatially averaged snow contributions to sea ice thickness (Snow) by region from W99 (blue) and

SnowModel-LG (red). Standard deviation values are displayed for SnowModel-LG (lower left, red), and mW99 (lower right, blue)
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Figure S7. Detrended timeseries of spatially averaged snow contribution to sea ice thickness (Snow) from W99 (blue) and SnowModel-

LG (red) over first year ice. SnowModel-LG is significantly more variable from year to year than W99, which only varies due to shifting

dominance of ice types. This increased variability propagates through to sea ice thickness, but is moderated by its covariance with radar

freeboard variability. The standard deviations of the two timeseries are displayed in the lower corners of each panel.
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Figure S8. Detrended timeseries of spatially averaged snow contribution to sea ice thickness (Snow) from W99 (blue) and SnowModel-LG

(red) over multiyear ice (MYI). SnowModel-LG is significantly more variable from year to year than W99, which only varies due to shifting

dominance of ice types. This increased variability propagates through to sea ice thickness, but is moderated by its covariance with radar

freeboard variability. A substantial number of data points are missing from some panels - these absences reflect months where no MYI is

present in the relevant region. The standard deviations of the two timeseries are displayed in the lower corners of each panel.
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Figure S9. FYI correlations between radar freeboard and snow contributions to sea ice thickness, where the snow contribution is calculated

using SnowModel-LG. All statistically significant correlations are positive (i.e. years with more snow exhibit higher radar freeboards). A

persistent, positive correlation exists in the Central Arctic and the East Siberian Sea in the last five months of winter. The Barents and Kara

Seas both exhibit significant correlations in the last two months of winter. The Beaufort sea exhibits no months of statistically significant

correlation between radar freeboard and snow contributions.
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Figure S10. MYI correlations between radar freeboard and snow contributions to sea ice thickness, where the snow contribution is calculated

using SnowModel-LG. Fewer correlations exist for MYI than for FYI. The Central Arctic and Chukchi Sea exhibit no correlations between

snow and radar freeboard contributions.

11



Figure S11. Regional IAV displayed by ice type. MYI represented by orange points, FYI represented by purple. When averaging over the

growth season in a given region, MYI is more variable in all the marginal seas.
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Figure S12. Detrended timeseries of spatially averaged sea ice thickness (SIT ) by region from W99 (blue) and SnowModel-LG (red) for

all ice types. Standard deviation values are displayed for SnowModel-LG (lower left, red), and mW99 (lower right, blue).
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Figure S13. 2010-2018 basin-wide sea ice thickness distribution calculated using both mW99 and SnowModel-LG data expressed as total

sea ice area of all grid cells falling into a specific SIT bin. Bin size is 5 cm. Shaded areas represent the area constituted by the Central Arctic.
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Figure S14. Seasonal evolution of (a) snow thickness and (b) sea ice thickness by region. All regions calculated over 2002-2018 with the

exception of the Central Arctic, which is 2010-2018. Note different y-axis scales for Central Arctic panels. ‘Error bars’ represent the one

standard-deviation range either side of the mean value for the timeseries. The SnowModel-LG contribution starts lower but ends higher in

the Central Arctic, the region that dominates Pan-Arctic statistics. This is also true for the Marginal Seas grouping, but not necessarily true

for the individual constituent regions. This corresponds to faster thickness increase than would be calculated with W99.

15



Figure S15. Interannual variability of SnowModel-LG contribution to σ
2

SIT
(σ2

Snow
) when forced by two different reanalysis data sets.

MERRA2 (orange) and ERA5 (green) produce very similar variability.
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Figure S16. Trends in sea ice thickness (2002-2018) by region, when calculated using SnowModel-LG runs using two different sources

of reanalysis (ERA5, Purple; MERRA2, Orange). Panels are framed with green where statistically significant trends exist independent of

reanalysis choice. Purple (orange) frames represent month/region pairs where statistically significant trends are only present with ERA5

(MERRA2). Slope values are given where significant in the lower corners. All significant trends in the marginal seas are negative, all

significant trends in the Central Arctic are positive. In the Central Arctic, two of the four statistically significant increasing trends are only

evident with ERA5 reanalysis. In the Marginal Seas, the decline in some months is only statistically significant with MERRA2.
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Figure S17. Trends in snow contribution to sea ice thickness (Snow; 2002-2018) by region, when calculated using SnowModel-LG runs

using two different sources of reanalysis (ERA5, Purple; MERRA2, Orange). Panels are framed with green where statistically significant

trends exist independent of reanalysis choice. Purple (orange) frames represent month/region pairs where statistically significant trends are

only present with ERA5 (MERRA2). Slope values are given where significant in the lower corners.
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Figure S18. Interannual variability of NESOSIM data’s contribution to SIT, shown as (a) absolute contribution to SIT variability, and (b)

relative contribution. Variability from snow is of a similar magnitude to that of SnowModel-LG, although regional differences exist between

the corresponding plots, particularly in the Barents Sea. As well as differences in the snow accumulation scheme, the two data sets differ in

spatial resolution and the timespan over which they are analysed.
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Figure S19. Timeseries of the thickness contributions of radar freeboards (RF ) and snow (Snow) over all ice types. Orange framed boxes

indicate statistically significant decline in both RF and Snow. The red framed box indicates statistically significant decline in Snow only.

No boxes feature a statistically significant decline in RF without a concomitant decline in Snow. All statistically significant trends in both

Snow and RF are negative.
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