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Dear Douglas Brinkerhoff,
Dear Editor,
We thank Douglas Brinkerhoff very much for the valuable comments regarding our manuscript. We
really appreciate the thoughtful input and the detailed recommendations to improve the document. We
address the raised requests in the form of point-by-point responses and explain how we updated the final
manuscript.
We have also taken the opportunity to further streamline out wording, by simplifying a number of
sentences and paying attention to the overall text coherence. We are convinced that this has resulted in
a much more accessible manuscript as compared to the first submission.
Best regards,
Johannes Landmann and co-authors

RC: Title The observations are not of mass balance, but of surface elevation (specifically in the negative
direction). I suggest changing the title to be more precise.
AR: Thanks for this comment. We agree that the observations we make are in “surface elevation space”
and that these are then transformed into a mass change using the density of the medium (snow/ice).
However, the reviewer will agree that (i) the surface elevation change of a glacier at a given point is the
result of both surface mass balance and a component due to ice emergence (see Cogley et al., 2011, p.
38), and (ii) the changes that we measure at our stakes are only due to the former. Stated differently:
what we see is the surface elevation change due to glacier mass balance, but not the total ice thickness
change. To avoid possible confusion, we have changed the title to: “Assimilating near real-time mass
balance stake readings into a model ensemble using a particle filter”.

RC: L10 The reader does not yet know what ‘model probability’ is in the abstract, nor is the abstract
notion of ‘custom resampling’ useful here.
AR: We understand the point and we have written the following, simplified text: “By means of a
particle filter, these observations are assimilated into an ensemble of three temperature index (TI) and
one simplified energy-balance mass balance models. State augmentation with model parameters is used
to assign temporally-varying weights to individual models. We analyse model performance over the
observation period, and find that the probability for a given model to be preferred by our procedure is
[. . . ]”.

RC: L39 Of the three points (first, second, third) made after this line, only one logically follows this
statement.
AR: We agree that the logics might not have been apparent because the enumerations were stretched very
far out into the subsequent text. We have restructured the text as follows: “In many cases, mass balance
analyses are available twice a year, and are based on seasonal in situ observations (Cogley et al., 2011).
This relatively low frequency is related to the fact that in situ observations are expensive in terms of both
time and manpower. Only recently have low-cost and high-frequency monitoring approaches emerged
(Hulth, 2010, Fausto et al., 2012, Keeler and Brugger, 2012, Biron and Rabatel, 2019, Carturan et al.,
2019, Gugerli et al., 2019, Netto and Arigony-Neto, 2019). However, even with these observations, it is
not straightforward to provide analyses at higher frequencies. This is because near real-time estimates are
often based on ensemble modelling, in order to enable a correct quantification of uncertainties. Ensemble
modelling is used in glaciology in the context of model intercomparison projects (Hock et al., 2019), future
projections for ice sheets and mountain glaciers (e.g. Ritz et al., 2015, Shannon et al., 2019, Golledge,
2020, Marzeion et al., 2020, Seroussi et al., 2020), and also to determine the initial conditions for modelling
(Eis et al., 2019). However, ensembles are currently not prominent in the calculation of seasonal or daily
glacier mass balances. Another reason why calculating higher-frequent glacier mass balance analyses is
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not straightforward is the lack of knowledge about the short-term variability in the parameters of the
necessary models. temperature index (TI) models, for example, are parametrizations of the full energy
balance equation and offset some of the changes occurring in the driving processes through parameter
fluctuations (Ohmura, 2001, Lang and Braun, 1990, Hock, 2003, Hock et al., 2005). In a comparison of
four TI models and a full energy balance model, Gabbi et al. (2014) showed that all models perform very
similarly on a multi-year scale.”.

RC: L49 List of references should have an e.g. in front of it. There are many other examples of ensemble
modelling for ice sheet projection.
AR: Thanks! We have inserted “e.g.”.

RC: L55 ‘discussed how’→‘not clear whether’(?)
AR: We have exchanged the wording as proposed.

RC: L63 surface point mass balance→surface point ablation. You don’t measure massbalance, you mea-
sure volume change in one direction.
AR: Besides the answer given in reply to the comment related to the title (see our first answer), note
that we do not only measure ablation but also accumulation. Together, this is the mass balance of the
surface.

RC: L80 as above.
AR: Idem.

RC: L103 ‘cumulative surface height change’ is (mathematically) equivalent to ‘surface height’. I suggest
the latter for brevity.
AR: We agree in principle. However, the formulation “observations of ice surface height between two
time steps” (as the sentence would read then in l. 103) sounds unintuitive to us. We have inserted the
following wording as a compromise: “observations of surface height change since an initial point in time
(in our case the time at which a camera is set up)”.

RC: Eq. 1 This equation is only valid for bare ice. This is briefly touched on elsewhere, but should be
reiterated here. In fact, it might be better to state that the operation relates h(t,z) to asfc.
AR: We have circumvented this issue by replacing the density of ice “ρice” with the bulk density of snow
and/or ice “ρbulk”. We think that this clarifies that this equation is generally valid. We now explain
in the text that “ρbulk is the temporally weighted bulk density of snow and ice at the camera location
(kg m−3)”.

RC: L111 ‘Short snow events ...’. We never see this notion of assigning a high uncertainty SWE estimate
again. Is this actually done, and specifically how?
AR: Yes, we actually assign higher uncertainties to snowfalls. We have clarified the “how” as follows:
“Short snow events during the melt season are assigned a density of 150 kg m−3. The calculated snow
water equivalent is assigned an uncertainty of 2-3 cm w.e..”

RC: L133 I’m confused by the lapse rate thing. Why don’t you continue to be a Bayesian and just use the
probability distribution over the lapse rate inferred from the data without injecting questionable notions
of ‘significance’? This could then be propagated into downstream analysis.
AR: We did not use significance testing in the strict statistical sense, but rather as a simple procedure to
take background information (in the data assimilation sense) into account on days where the lapse rate
cannot be estimated from the meteorological data directly. However, we have implemented the suggested
way to treat the lapse rates of temperature and precipitation in the following way and explained it in
the text: The temperature lapse rate is now derived from the 25 closest cells to a glacier outline centroid
using a Bayesian estimation based on a linear regression model:

Tt,i = et + qthi + νt,i (1)

where Tt,i is the temperature of the i-th grid cell out of the 25 considered cells at time t, et is the
regression line intercept, qt is the regression slope (i.e. ∂T

∂z ), hi is the height of the i-th grid cell, and
νt,i ∼ N (0, σ2

ν,t) are the residuals independent in space and time. Using a g-prior of Zellner (Zellner,
1986), being non-informative in the intercept et and model noise variance σ2

ν,t of the regression, we draw
samples of the lapse rate qt from the following posterior distribution:
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Above, p(·) means “probability of”, g determines a weighting factor composing the posterior mean (we set
g = 1), q̂t is the least squares estimator of the slope, q0 is the prior mean, which we choose to be an annually
varying climatological mean gradient at the respective grid location, h̄ is the average height of the 25 grid
cells, and s2t is the residual sum of squares. This is up to a constant the density of a t-distributed random

variables with 24 degrees of freedom, shifted by (gq̂t+q0)
(1+g) and multiplied by c. The samples drawn from

this distribution are then propagated into the particle filter. For precipitation, we also derive Bayesian
lapse rates from the surrounding 25 grid cells in the same fashion as we do for the temperature lapse
rate. However, to circumvent high errors in the slope calculation due to the boundedness of precipitation
towards zero, we (1) calculate the slope on the square root of the precipitation, and (2) assign a probability
that the reference has actually received precipitation when the reference cell value is zero but other cells
have non-zero precipitation.

RC: L151 In what sense is an outline a surface? I don’t understand this line.
AR: The term “reference surface” is used to highlight that the extent doesn’t change over time. We have
clarified this in the following way: “[. . . ] and mass balances are calculated over a fixed glacier surface
area (Elsberg et al., 2001, Huss et al., 2012)”

RC: L158 ‘Values of glacier-wide mass balance ...’ I don’t understand what ‘partly harmonized’ means
in this context?
AR: It means that some of the mass balance data used for model calibration (i.e. data provided by
GLAMOS), are already consistent with geodetic mass balances, thus matching long-term mass changes
(the procedure of ensuring consistency is often referred to as “homogenization”, (Huss et al., 2015)).
“Partly homogenized” (or “harmonized”) means that this procedure has not yet happened for the most
recent mass balance data, since no geodetic mass balances are available yet. We have explained that in
the revised text at l.158 and exchange “harmonized” with “homogenized” to avoid confusion: “Glacier-
wide mass balances are obtained by extrapolating the in-situ observations, and making the extrapolated
values consistent with long-term mass changes. The latter procedure is sometimes referred to as “homog-
enization” (e.g. Bauder et al., 2007, Huss et al., 2015). For recent years, this homogenization has not yet
been performed, since no geodetic mass balances are available yet.”

RC: Eq. 2 Perhaps it’s standard notation, but having cprec mean an entirely different thing (with different
units) than ccfc is really confusing.
AR: We have replaced cprec with prcpscale in the entire manuscript to avoid such confusion.

RC: L214 It would be useful to make a note that G is a function of I.
AR: We agree. We use the following notation in the entire manuscript now: G(Ipot, t, z)

RC: Eq. 8 Suggest using ∆ t rather than dt, as the latter is usually reserved for infinitesimals.
AR: We have changed this as suggested.

RC: Eq. 10 The ‘general framework’ also has inside epsilon of H(x), although it doesn’t appear that way
in this work.
AR: We see the point. Our notation, which has ε outside of H(x), is meant to signalize that we only
consider additive errors in our study. This is a common assumption, and it is not obvious to us why
considering other error types would be beneficial in our case. However, we agree that some confusion
arises due to the different notations in Eqs. 1 and 10. We have thus moved εt outside of the brackets to
match Eq. 10:

h(t, z) = H(bsfc(t, z)) + εt,z =
bsfc(t, z) · ρw

ρbulk
+ εt,z
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RC: Sec. 3.3 I find it confusing that the parameter update process appears at the end, even though Figure
6 indicates that it happens at the same time as the state prediction.
AR: The reason why the two processes are merged in fig. 6 is that we couldn’t think of a symbol repre-
senting the updating of parameters. In general, the order “resampling - parameter update - prediction”
is due to the observations (and so the weights) only depending on the physical state ξ, and not on the
parameters θ. This is why the parameters can evolve after the resampling, in which it is decided to
which models the resampled particles belong. In the example figure, the two orange particles with the
same physical state ξt can thus obtain different parameters. We have visually separated the parameter
evolution from the prediction step by moving the annotation to the resampling side:

Figure 1: Illustration of the individual particle filter steps. The example refers to a case in which four
models (blue, orange, red, and green) start with two particles each. The blue curve represents the
observation distribution. At time step t0 + 1, the green model performs poorly and receives entirely low
weights during the update step (weights are shown by the size of the circles). In the resampling step, we
modify the weights of the other particles again. This is for not omitting the green model entirely, due to
temporarily poor performance. As the green model stays in the ensemble, it can recover later, i.e. when
making a good prediction (here: t0 + 2).

RC: L289 It might be clearer to state explicitly that a particle is always associated with only 1 model over
its “lifetime”.
AR: Thanks for this comment. We have added text to explain what “a particle” means: “This means
that, when following a given particle backwards in time, its entire dynamics is governed by one single
model only. In the forward direction, a particle can change model during the resampling step. In this
case, both the model index mt,k and the entire past trajectory are changed to the new model.”.

RC: Eq. 16 I strongly disagree with the choice of setting βt = 0. This is because this is tantamount
to the assumption that the model predictions are perfect, which is certainly not the case. In reality,
two models are only different in their reliability to the extent that their predictions differ by more than
their internal uncertainty and one fits the data better than the other. Setting this model error to zero
artificially accentuates the differences in the likelihoods computed for different model and encourages the
mode collapse (what you call ‘model dominance’) exhibited in Figure 11.
AR: Our choice of setting βt=0 originates from the fact that for our case, the model error is dominated
by the uncertain model inputs, i.e. by the meteorological input and the parameters. In principle, we have
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thus splitted the value of β into the meteorological input errors η, which we can specify correctly. We
have clarified this point with the following explanation (l. 306): “By introducing both the meteorological
uncertainty η and the parameter uncertainties, we shift the majority of the uncertainty contained in βt
to these variables. Since the remaining uncertainty for βt is small and hard to quantify, we set βt = 0 for
simplicity.”

RC: Table 2 Caption By covariance, do you mean standard deviation?
AR: Yes, sorry, that’s a typo. We have corrected it.

RC: L320 the standard symbol for variance would be σ2.
AR: For clarity (one superscript less), we have changed “variance” to “standard deviation” and left the
symbol σε untouched.

RC: Eq. 18 An implicit assumption made throughout is that a single model’s probability is marginally
uniform, or alternatively that P (mt) = Dirichlet(1), to wit that one model being dominant is just as
probable as all four models contributing equally. This is a weird assumption for a time dependent problem,
because it means that physical reality is subject to sudden switches between governing principles. Again,
this leads to the mode collapse seen in Fig. 11. Predictions might be made substantially more robust
by putting a prior on P(mt) such that the more probable case is an averaging of the four models, and
deviation from that has to be the result of significant evidence.
AR: We do not make the assumption that the probability of each single model is marginally uniform,
neither explicitly nor implicitly. At the initial time t0, all four models have the probability 1/4. As the
model index never changes during predict steps, the same is true at all later times t if we do not condition
on the observations. If we condition on the observations, instead, the model probabilities change at each
time a new observation becomes available (this happens during the update step). In other words, we
have

P (mt = j | y1:t−1) = P (mt−1 = j | y1:t−1),

This means that a model that has high probability at time t− 1 is favored by the prior also at time
t, which means that a sudden switch of the preferred model is unlikely. Such a switch only happens if
the evidence for it is strong, the evidence being given by the likelihood ratio and the likelihood of model
j being

p(yt | mt = j, y1:t−1) ∝ p(mt = j | y1:t)
p(mt = j | y1:t−1)

,

or, by Equations (17) and (18),

p(yt | mt = j, y1:t−1) ∝
∑
k p(yt | xt,k)wt−1,kδ(mt,k − j)∑

k wt−1,kδ(mt−1,k − j)
.

The preferred model can thus only switch if the particles belonging to one model have a much better
fit for the new observations than all the other models. This is what happens with our data. It indicates
that presumably the forecast values xt,k are overconfident and that all four models have non-negligible
model errors. However, in order to specify model errors, we would need physical knowledge of their order
of magnitude and their dependence on meteorological inputs. As a way to mirror this explanation in the
manuscript, we have added a figure containing the prediction bsfc(z, t)k and the likelihood p(yt | bsfc(z, t))
for a time t where the model probability changes quickly (see Fig. 2). We have added the following text:
“In terms of the temporal evolution, the model dominance for Rhonegletscher and Glacier de la Plaine
Morte is determined already within the first few days, and changes only little after that. Changes in model
dominance can be observed for Rhonegletscher and Findelgletscher, instead. In the case of Rhonegletscher,
for example, the model dominance switches from the PellicciottiModel to the OerlemansModel and later
to the HockModel. For Findelgletscher instead, there is a transition from the OerlemansModel to the
PellicciottiModel. This transition is particularly noticeable between August 7th and 8th, 2019 (Fig. 2).
The causes for it are not entirely clear, and we speculate that it might be related to the precipitation
event starting on August 6th.”

RC: L338 It’s not that there’s no stochasticity, it’s that mt for a given particle doesn’t evolve at all!
AR: Thanks for raising this point. We think that the statement depends on how the system is viewed
and thus how a given particle is defined. When taking the Eulerian view, i.e. when the particle index k
is fixed, the model index mt,k is free to change during resampling. When taking the Lagrangian view, i.e.
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Figure 2: Violin plots with scattered particles as example for a fast switch in assigned model probability
(cf. Fig. 11). The example refers to Findelgletscher (station FIN 1). Shown are (a) predictions of the
individual models, (b) the ensemble prediction, and (c) the particle likelihood for two subsequent days.
The weight of the individual models is given in Figure 11. Note that the ensemble is dominated by the
OerlemansModel for the first day (left), and by the PellicciottiModel on the second day (right).

when not fixing k but following a specific particle backwards in time, its model index does not change
(see also our response to the comment on line 289). In this sense, we believe that our statement ”There
is no stochasticity in the evolution of mt” is correct. To clarify this, we have rephrased l. 338 in the
following way: “Because there is no stochasticity in the evolution of mt though, when the particle index
k is fixed,. . . ”

RC: Sec. 3.4 This section is essentially incomprehensible, with the section on proper scoring reading like
it was pasted from a statistical methods paper. This being the Cryosphere, it’s important to try to help your
reader with some intuition as to what the CRPS actually means, and why its potential impropriety matters.
A figure describing the metric might be useful, or perhaps a simple example de-scribing circumstances
where the value is high or low. While the rest of the paper is still accessible not understanding CRPS,
the analysis breaks down to ‘big number bad, low number good,’ which is unfortunate given that there is
probably much more insight to be gained from the following sections.
AR: We have simplified the paragraph and taken some statistics jargon out of it. We have also added
the suggested example (but did not add the figure to not increase the manuscript’s length further):
“[. . . ]It takes into account both the deviation of the median forecast from the actual observation (forecast
reliability) and the spread of the forecast distribution (forecast resolution). This means that a forecast
close to the observation median can still receive a poor Continuous Ranked Probability Score (CRPS) if
the forecast distribution spread is high, and the other way around. Lower values of the CRPS correspond
to better forecasts. The minimum value is zero, corresponding to a perfect, deterministic forecast of the
observation.

The CRPS is defined as (Hersbach, 2000):

CRPS =

∫ ∞
−∞

[Pf (bsfc/ρbulk · ρw)−H(bsfc/ρbulk · ρw − h(t, z))]2dbsfc (4)

where Pf (·) is the forecast mass balance cumulative probability distribution, and H(·) is the Heaviside
function. The usual choice for Pf is the weighted ensemble distribution of the predict particles, i.e. a
discrete step function with jumps of height wt−1,k at the positions H(bsfc(t, z)k), where bsfc(t, z)k are
the prediction particles. Note that this setting does not account for the observation error of h(t, z),
implying that the score is not “proper”, i.e. it does not always return the best value when the prediction
distribution is the true distribution (Ferro, 2017, Brehmer and Gneiting, 2019). To obtain a proper score,
one can use the forecast of the camera reading h(t, z), which is the Gaussian mixture with weights wt−1,k,
mean values H(bsfc(t, z)k), and common variance σ2

ε . Despite being proper, it still has some theoretical
shortcomings (Ferro, 2017). Since for our data the values of the two scores do not differ much, we use
only the proper score in all results figures, but give also the value of the common CRPS in square brackets
in the text.”

RC: Sec. 4.2.1 This section is quite unclear, specifically what the differences are that these include
relative to the ‘full’ forecast.
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AR: We have avoided the wording “full” in this paragraph and changed the sentences to: ‘We consider
two types of reference forecasts: first, a forecast with (i) mean glacier-wide melt parameters as obtained
from past calibration (Section 3.2) and (ii) the precipitation correction factor prcpscale constrained by the
2019 Glacier Monitoring Switzerland (GLAMOS) winter mass balance. Second, a forecast with a partially
informed model including the same constraint for prcpscale, but also a tuning of the melt parameters to
reproduce one further intermediate point measurement. The latter measurement is the cumulative mass
balance between September 2018 and 2019 at the mass balance stake closest to each camera (locations on
Figure 1). Since there are up to four stake readings per glacier, we calculate single parameter sets tuned
to reproduce all possible combinations of stake readings per glacier. This results in 19 CRPS values in
total, for which we calculate the median. We also distinguish between the case in which the uncertainties
in the meteorological inputs are taken into account and the case in which they are not.

Finally, we calculate the CRPS for the two reference forecasts by inserting two different values into
the CRPS equation: (a) the mass balance of each day separately, and (b) the cumulative mass balance.
Note that for the particle filter, there is no need to make this distinction. Indeed, the daily deviation
from a mass balance observation also equals the deviation from the cumulative observation.”

RC: L435 Perhaps I missed it, but I can’t find anything describing what the number in brackets means.
AR: It is explained in l. 371, but indeed far from the first number occurring in this format. We have
added another hint in the Results section (see also comment from Anonymous Referee #2 on this line):
“(proper CRPS outside, non-proper CRPS inside the square brackets)”.

RC: Sec. 4.2.2 This section on cross-validation is very clear and good. Maybe it would be useful to
comment on the temporal pattern evident in Figure 9, with CRPS in-creasing through time, but at different
rates between different cross-validation folds.
AR: This is indeed a very interesting feature. We have added the following sentences: “The temporal
pattern evident in Figure 9 includes an increasing CRPS through time, but at different rates depending on
the cross-validation subset. The individual pattern originates from (1) a stations’ representativity for the
given elevation band it is located in, (2) the combination of stations in the cross-validation subsets, and
(3) cumulative error characteristics, since we observe cumulative mass balance over time. Station RHO
3, for example, can generally be modelled with lower errors compared to other stations. We speculate
this being related to its location, which is in a relatively flat area with little crevasses. The other stations
are instead either in the vicinity of crevasses (RHO 4) or influenced by shadows from the surrounding
terrain, dark glacier surface or steep ice (RHO 1 and RHO 2). RHO 1 and RHO 2 also show that even
neighboring stations can exhibit different melt. This affects the results of the cross-validation whenever
one of these two stations is excluded from the training dataset.”

RC: L481 I don’t understand where the ‘45 distinct model runs’ come from. Also, what is a ‘random
coupling’?
AR: We have clarified this in the text in the following way: “During the period preceding the installation
of our cameras, we calculate mass balance with the parameters calibrated in Section 3.2. This results in
about 45 distinct model runs, which we call “free model runs”. We use this first period to provide initial
conditions for the particle filter period, which lasts from the first camera setup on a respective glacier
either until cameras are retrieved, or until the autumn field date is reached (whatever comes first). To
achieve a connection between the free model run and the period during which the particle filter is used, we
sample 10000 times from the initial conditions at the first camera setup date. We refer to this procedure
as to “particle filtering without pre-selection (of initial conditions)”. Not all free model runs have to be
used, though: they can also be pre-selected based on the cumulative mass balance observed at the stakes
closest to the camera stations. For this case, we select model runs that reproduce these observations
within an estimated reading uncertainty of ± 0.05 m w.e. (“particle filtering with pre-selection”). The
cumulative mass balances calculated with these two procedures are compared to the GLAMOS analyses
[...].”

RC: L495–496 I don’t understand this sentence, nor why conditioning initial conditions on observations
leads to poorer results.
AR: This is something that we discussed extensively as well. The only reasons we can think of for why the
conditioning can also lead to worse overall results are the following: 1) the mass balance stakes are several
meters to hundreds of meters away from the camera installations, and are thus not “true” observations at
the camera locations. This might result in the initial conditions being conditioned on biased observations
with respect to the camera locations. 2) Either the CRAMPON and/or the GLAMOS uncertainties
might be too small or too large. This can cause either of the analyses to be over-confident. 3) The
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GLAMOS glacier-wide annual mass balances are interpolated from the stake readings using a model, and
CRAMPON uses simplified geometries to calculate mass balances. If combined unluckily, this might lead
to a stronger deviation from the GLAMOS annual mass balance when conditioned on point observations.
Concretely, this means that because it was only possible to mount the cameras in our study on the
lower 30% of the glacier surface area, they have a spatial bias and thus might not be representative
for the vertical mass balance gradient. The three points are mentioned in the manuscript already, but
have elaborated more on point (2) and (3): ”Overall, the differences to the GLAMOS analyses can be
explained by the (1) difference in the approaches used to calculate glacier-wide mass balances from point
observations, (2) use of only 1-4 point observations located in the ablation zone and covering <30% of
the glacier elevation range, compared to the complete network of 5-14 stakes over the entire elevation
range used in the GLAMOS analyses, (3) lack of representativeness of the camera observations for the
accumulation zone of the glaciers, i.e. biased vertical mass balance gradients, (4) lack of representation of
individual winter accumulation measurements in our glacier model, or (5) a problem with representing the
mass balance of the glacier with only one parameter set. Also note that 91-99% of the total uncertainty
for the model runs with data assimilation stem from the period before the particle filter can be initialised,
i.e. before the installation of the first camera station.”

RC: Figure 11 To emphasize earlier comments again, this pattern of mode collapse is strongly indicative
of an over-confident likelihood operating in an M-open framework. It’s well known that Bayesian inference
only ‘works’ when the models are correctly specified. For Bayesian model averaging (which is what the
particle filter is doing in a time dependent way), this still holds: because the true physics are not contained
in the set of equations that the filter has available to pick from, yet this additional uncertainty is not
explicitly specified, the filter hops between the model that fits the observations in the moment. While I
don’t expect any additional analysis, I think it would be appropriate to make this assumption explicit in
the text, and to perhaps reference it when describing the fast switching between dominant models.
AR: This is really a valuable inspiration for future work. We agree with the comment but would add
that, in our view, it is not the likelihood being overconfident, but rather the prediction and thus the prior
following from that. This is because we have chosen the observational error σε conservatively. We could
experiment with likely values for βt, which would also depend on the meteorological input uncertainties,
until the Particle Filter slowly converges towards one model. However, we believe that this is critical, since
values for βt are volatile and tuning them would be subject to manual intervention. By implementing
the procedure suggested for the lapse rates as our reply to the comment on l. 133, we have taken another
source of uncertainty into account, which counteracts the “hopping” between models. In order to include
an explicit error term βt, we would have to specify a distribution also depending on the meteorological
inputs. This would be a major undertaking. Regarding the request to clarify this in the text, we have
made the following addition (together with the edits according to the comment on Eq. 16): L.307 “By
introducing both the meteorological uncertainty η and the parameter uncertainties, we shift the majority
of the uncertainty contained in βt to these variables. Since the remaining uncertainty for βt is small
and hard to quantify, we set βt = 0 for simplicity. With this assumption, we neglect some additional
uncertainty contained in βt, being aware that this might lead to “jumps” in the temporal evolution of
the model performance.”
L. 515 “In our case, we believe that the ensemble prior might be overconfident on average, since we have
chosen the observational error conservatively, i.e. we have chosen the largest errors emerging in the round
robin experiment (Section 2.1.2). This would lead to a model preferably obtaining high weights, which
has already dominated on the previous days. However, when the likelihood is overconfident or there is
strong evidence that a previously well performing model now performs worse, the filter might switch
back and forth between individual models that best describe the observations. We accept this model
dominance and the fast switching as a sign that the overall ensemble performance is improved.”

RC: Figure ?? Two things that are missing from the paper are time series’ of state and parameter
distributions. It would be very interesting to see the evolution of un-certainty in the predictions away
from observations, and also to see how quickly parameters change or revert to the mean.
AR: We agree that this is very interesting. We have added a figure and a small paragraph discussing the
aspect of parameter evolution in the new manuscript: “‘Figure 13 shows the evolution of the distribution
of individual model parameters during the assimilation period. The example refers to Findelgletscher.
Three phases of quick parameter changes can be observed: First, the parameters change rapidly on the
first days of the assimilation period. This means that the prior parameter distributions do not match the
exact parameter distributions needed to model the mass balance at the camera locations. This is due to
both the calibration time span (seasonal calibration vs. daily application) and the low sample size of the
calibrated parameters. A second rapid change can be observed after the second camera has been switched
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Figure 3: Temporal evolution of the various model parameters for Findelgletscher. Shown are the sample
means (lines) and the standard deviation (bands). Note that for the OerlemansModel, parameter c0 is
adjusted to fit on the same scale as c1.

on, i.e. on July 24th, 2019. Here, an adjustment in the parameters is needed in order to accommodate
the mass balance at both stations equally well. The third rapid change starts when ablation at station
FIN 1 is highest, but when radiation and temperature are not at their maximum. Here, the change
might be due to the model being forced to yield high ablation rates despite only moderate meteorological
forcing. This shows the advantage of employing the model ensemble as opposed to e.g. a single model
with deterministic parameters: the ensemble also reproduces system states which cannot be explained by
the uncertain meteorological input.”

Regarding the evolution of the mass balance state, we have added Figure 4. However, to not extend
the main text any further, we have put this figure in the Appendix and give a reference in the main text.
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Figure 4: Temporal evolution of the ensemble mass balance state at stations FIN-1 and FIN-2. In the top
two panels, the evolution of the mean and standard deviation of the filter (black lines and yellow shaded
area) around the centered observations (blue lines and blue shaded area) is shown. In the bottom panel
the mean deviation of the filter from the observations at both stations is shown.

New references

• Bernardo, J. M., & Smith, A. F. (2009). Bayesian theory (Vol. 405). John Wiley & Sons.

• Zellner, A. (1986). On assessing prior distributions and Bayesian regression analysis with g-prior
distributions. Bayesian inference and decision techniques.
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Author response to the review of Anonymous Reviewer #2

Johannes Landmann and co-authors

June 2021

Dear Anonymous Referee #2,
Dear Editor,
We would like to thank Anonymous Referee #2 for the valuable review of our manuscript. We appreciate
the constructive comments and the positive feedback regarding the overall context of the study. We
address the comments point-by-point answers to the individual remarks and questions.
We have also taken the opportunity to further streamline out wording, by simplifying a number of
sentences and paying attention to the overall text coherence. We are convinced that this has resulted in
a much more accessible manuscript as compared to the first submission.
Best regards,
Johannes Landmann and co-authors

– Major comments and questions –

RC: What made you choose a particle filter as DA method as opposed to more traditional methods (e.g.
variational methods and ensemble Kalman filter). It would complement the work if you discussed why a
PF suits this problem.
AR: The Particle Filter (PF) is a generic data assimilation method that can handle all kinds of model
distributions, also non-linear ones. We have chosen the PF since we know that the distributions we deal
with are not always Gaussian. To not extend the already long introduction any further, we have added
these explanations at l. 250, where we introduce the Particle Filter: “Especially when temperatures are
around the melting point, the system becomes non-linear, since melt occurs above but not below this
point. As a consequence, the distributions we deal with are not necessarily Gaussian. The facts that
(a) the temperature chosen to parametrize the melting point is not the same for all four models, (b) the
individual model prior distributions are combined to obtain the ensemble prediction, and (c) there can
also be accumulation contributing to the overall mass balance, add further complexity. We do not use
other data assimilation approaches, such as variational methods or Ensemble Kalman filtering, because
variational methods encounter difficulties when dealing with non-Gaussian priors (van Leeuwen et al.,
2019), whilst the Ensemble Kalman Filter in its original form is not designed for multi-model applications
as we use in our case. Overall, particle filtering is a very flexible, generalizable, and readily implementable
data assimilation method.”

RC: Line 105. If I understood well, the observations are of a cumulative quantity. In this case, do
observation errors need to consider time auto-correlations?
AR: This is a justified question. The observations are of a cumulative quantity, but not auto-correlated.
This is because mass balance at a given time is not inferred by summing the individual, sub-daily readings
up to that time. Rather, the mass balance of a given point in time is given by one single reading, i.e.
by the reading of the total height change at the stake up to that time. This is made possible by the
colour coding used on the stake: the colour sequence is chosen such that any location of the stake can
uniquely be identified as soon as four coloured stripes are visible. To clarify this, we have added the
following text at L.107: “We expect the observation errors to be uncorrelated in time, since every reading
is independent from the previous one.”

RC: Line 255.I was a bit confused on where the uncertainties of the input variables are represented. Are
they represented in the model error beta, in the observation error epsilon (as mentioned in line 258), or
both?
AR: The observational error from the camera readings is represented in the observation error ε, as stated
in l. 257. The model input errors are considered to be contained in the model error βt, as stated in l. 258.
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We have clarified this by replacing “[. . . ] (βt) can also represent uncertainties in model input variables”
with “[. . . ] (βt) should include uncertainties stemming from the model input variables” in l. 258.

RC: The use of the PF in a multi-model ensemble context is quite interesting, especially since each model
has different parameters one is trying to estimate. Is there previous work in this regard? Could you
provide some references?
AR: Currently, we are not aware of other studies that have applied particle filtering in a multi-model
ensemble related to glacier mass balance. However, we have added some references to applications in
other contexts:

• Kreucher, C., Hero, A., & Kastella, K. (2004, March). Multiple model particle filtering for mul-
titarget tracking. In Proceedings of the Twelfth Annual Workshop on Adaptive Sensor Array
Processing.

• Ristic, B., Arulampalam, S., & Gordon, N. (2004). Beyond the Kalman filter: Particle filters for
tracking applications (Vol. 685). Boston: Artech house.

• A. Saucan, T. Chonavel, C. Sintes and J. Le Caillec, ”Interacting multiple model particle filters for
side scan bathymetry,” 2013 MTS/IEEE OCEANS - Bergen, 2013, pp. 1-5, doi: 10.1109/OCEANS-
Bergen.2013.6608125.

• Wang, R., Work, D. B., & Sowers, R. (2016). Multiple model particle filter for traffic estimation and
incident detection. IEEE Transactions on Intelligent Transportation Systems, 17(12), 3461-3470.

The revised text reads: “We are not aware of mass balance studies that have applied a multi-model
ensemble based on a particle filter with the resampling methods we propose, although multi-model particle
filters have been used for other applications (e.g. Kreucher et al., 2004, Ristic et al., 2004, Saucan et al.,
2013, Wang et al., 2016).”

RC: When discussing the particle filter, you introduce the concept of ’minimum contribution’ for some
particles. This is taken into account when weighting, as explained in appendix 2. There is a comment
saying that the original weights are preserved ’in average’. Could you elaborate more on this statement?
AR: Only preserving the weights on average is common for resampling procedures: when a particle
performs poorly, it obtains a weight of zero and disappears. If a particle xt,k has a weight wt,k, then it is
chosen N · wt,k times in the resampling. This particle then has the weight 1/N times the “number how
often it has been resampled”, so on average wt,k. The same is true when resampling within a model: a
particle xt,k with model index j is resampled on average Nt,j · wt,k/πt,j times. After resampling it has
the weight w̃t,k times “number how often it was resampled”, so on average wt,k. This statement is made
in Equations B2 and B3, which are found in Appendix B.

RC: Equation 21. How are µ0 and Σ0 chosen?
AR: We choose µ0 and Σ0 from the parameter statistics obtained from the calibration procedure in
section 3.2. We have added a phrase stating where µ0 and Σ0 originate from. Revised text: “~µ0 and ~Σ0

are the prior mean and the prior covariance of ~θ at the starting time t0, which we determine from the
calibration procedure described in section 3.2,[. . . ] ”

– Minor comments and questions –

RC: The title mentions ’mass balance observations’, whereas the observations are of surface elevation.
AR: Our intention was to simplify the wording for the reader. As explained in our response to the
comment on the manuscript title by Reviewer #1, we have changed the title as follows: “Assimilating
near real-time mass balance stake readings into a model ensemble using a particle filter”

RC: Line 96. It is mentioned that the camera images are read ’manually’ to obtain the daily cumulative
surface height change. Is it literally reading the marks from the ablation pole? How could this be automated
to be applied to more places?
AR: Yes, we have read the marks manually. We are working on a procedure to automate this though,
so that operational runs that we plan for the future won’t require manual interventions. In this respect,
see our EGU2021 abstract (https://doi.org/10.5194/egusphere-egu21-7663) and our GitHub repository
(https://github.com/leosold/TOAST).
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RC: Line 127. Can you say more about the 0.2 degree resolution? How does this compare with other
products? Is it high or low resolution?
AR: At Swiss latitudes, 0.2 degrees corresponds to a resolution of about 2km. Compared to Global
Climate Models or Regional Climate Models, which are sometimes used to force glaciological models
directly, this is a very high resolution. We have specified this in the revised text: “. . . . which for
Switzerland corresponds to a horizontal resolution of about 2 km.”

RC: Figure 7. I think making the vertical axis larger for panels a and b could make the figure easier to
read.
AR: As a response to the request, we have doubled the extent of these two axes:

RC: Figure 8. The individual circles are difficult to see. Please make the circunferences thicker, and
maybe increase the size of the figure.
AR: We have increased the line thickness of the circles to improve the visibility and we have also increased
the figure size:

RC: In pages 22-24 (approximately) there are several places where a quantity is written followed by () or
[]. It was not clear to me what the quantities in the parenthesis are, and why there are two styles.
AR: It was explained in l. 371 that we use the square brackets to add the non-proper Continuous Ranked
Probability Score (CRPS) into the text, but apparently it needs to be repeated in the Results section.
Moreover, the round brackets we use in our notation are to be understood as annotations in the way they
are commonly used. We have added a reminder at the first occurrence of the square brackets: “(proper
CRPS outside, non-proper CRPS inside the square brackets)”.
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- Typos and corrections -

RC: Line 109. ... because it can happen that the camera construction sinks...→ ... because the camera
construction can sink. (easier to read).
AR: We have changed this as suggested.

RC: Line 118. melt during night → nighttime melting
AR: We have changed this as suggested.

RC: Line 190 on. When mentioning the models in an itemised list, start the sentences with capital
letter.
AR: We have changed this as suggested.

RC: Figure 5. Some of the words in the labels are split into two lines
AR: This was a tradeoff between font size and visual appearance. We have reformatted the figure so
that the individual words are better readable:

RC: In the title of table 2 it should say ’standard deviations’ instead of ’covariances’.
AR: We thank the reviewer for noticing this. We have corrected this.
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