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Abstract. Understanding the impact of tree structure on snow depth and extent is important in order to make predictions of 

snow amounts, and how changes in forest cover may affect future water resources. In this work, we investigate snow depth 

under tree canopies and in open areas to quantify the role of tree structure in controlling snow depth, as well as the controls 

from wind and topography. We use fine scale terrestrial laser scanning (TLS) data collected across Grand Mesa, Colorado, 

USA, to measure the snow depth and extract horizontal and vertical tree descriptors (metrics) at six sites. We apply the Marker-15 

controlled watershed algorithm for individual tree segmentation and measure the snow depth using the Multi-scale Model to 

Model Cloud Comparison (M3C2) algorithm. Canopy, topography and snow interaction results indicate that vegetation 

structural metrics (specifically foliage height diversity (FHD)) along with local scale processes like wind and topography are 

highly influential on snow depth variation. Our study specifies that windward slopes show greater impact on snow 

accumulation than vegetation metrics. In addition, the results emphasize the importance of tree species and distribution on 20 

snow depth patterns. Fine scale analysis from TLS provides information on local scale controls, and provides an opportunity 

to be readily coupled with lidar or photogrammetry from uncrewed aerial systems (UAS), airborne, and spaceborne platforms 

to investigate larger-scale controls on snow depth.  

1 Introduction 

Forests are distributed across approximately half of the snow-covered landmasses on Earth during peak snow extent (Kim et 25 

al., 2017), with snow in nonpolar, cold climate zones accounting for 17 % of the total terrestrial water storage (Rutter et al., 

2009; Guntner et al., 2007). Estimating the amount of water stored in this snowpack, the snow water equivalent (SWE), and 

its spatial distribution under various physiographic conditions, are crucial to providing water managers with parameters to 

accurately predict runoff timing, duration and amount, especially in a changing climate. Snowbound forested regions are 

rapidly changing in forest cover composition (e.g. fire, insect outbreaks, thinning) (Nolin and Daly, 2006; Bewley et al., 2010; 30 
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Gauthier et al., 2015). Understanding how forest characteristics affect snow distribution, as well as how we might model the 

relationships between forests and snow distribution will benefit water management objectives. 

Generally, complex tree structure reduces snow deposition by increasing snow-canopy interception. However, canopy 

sheltering at windy sites can reverse the influence of interception on snow accumulation (Dickerson et al., 2017). Shading 

degrades incoming shortwave radiation while sheltering reduces the wind speed and turbulent heat transfer within canopies, 35 

resulting in longer snowmelt duration relative to open areas. The extinction of shortwave radiation by shading, however, can 

enhance sub-canopy longwave irradiance from tree trunks (Pomeroy et al., 2009). Reducing wind speeds within the canopy 

due to sheltering can also reduce the spatial heterogeneity of snow depth and extent (Qiu et al., 2011). Therefore, at windy 

sites studies have shown similar snow deposition in open areas as under the canopy (Dickerson et al., 2017), changing sub-

canopy deposition and accumulation. These and other studies demonstrate the complexity between snow processes and 40 

vegetation in the presence of other predominant controls for modeling snow distribution and properties. 

Forest canopy cover can be incorporated into watershed and regional scale models as subgrid parameterization via snow 

depletion curves by relating canopy cover distributions to fractional melt patterns (Dickerson-Lange, et al., 2015; Homan et 

al., 2011; Luce et al., 1999). Pixel-level binary or weighted snow depth correction factors in gridded models (Hedrick et al., 

2018, Winstral et al., 2013) can be adjusted for canopy cover, as well as a hybridized approach that adjusts radiative inputs 45 

differently in open areas and forest gaps based on their size and relationship to the surrounding forest (Seyednasrollah and 

Kumar, 2014). In research pertaining to forest-snow processes, forest plots may be classified qualitatively (e.g., Dickerson-

Lange et al., 2015; Pomeroy et al., 2009) or more recently, at larger scales, quantitatively with airborne lidar (e.g. Mazzotti et 

al., 2019). The use of lidar in spatially distributed modeling efforts is rapidly advancing (e.g. Hedrick et al., 2018, Painter et 

al., 2016) and understanding how best to describe forest characteristics (cover, structure, gaps, etc.) relevant to snow 50 

distribution is evolving (Jenicek et al, 2018, Mazzotti et al., 2019, Yang et al., 2020). 

Airborne lidar has been used to describe snow depths in forests starting almost two decades ago (e.g. Hopkinson et al., 2004), 

and more recently, to describe the relationships among forest characteristics and snow distributions (e.g. Moeser et al., 2015a,b; 

Mazzotti et al., 2019; Zheng et al., 2016; Tennant et al., 2017). Realizing airborne lidar’s capabilities to provide high-resolution 

snow depth and canopy measurements across large extents, studies have identified vegetation characteristics as drivers of snow 55 

depth variation. For example, canopy structure along with the forest canopy edge were driving factors that govern the snow 

depth distribution in a study of alpine climates (Mazzotti et al., 2019). Similarly, mean distance to canopy and canopy closure 

have been identified as strong metrics for predicting snow interception (Moeser et al., 2015a). In the wind dominant case, 

Trujillo et al. (2007) observed that snow depth variability occurs at larger scales than those related to vegetation. They found 

that when canopy interception is dominant and wind effect is minimal, the variation in snow depth is controlled by vegetation 60 

characteristics. Broxton et al. (2015) found canopy-snow interception and shading properties in transition zones result in 

different snow depths in comparison to the open and under-the-canopy regions. Further work in snow depth variability near 

forest edges acknowledges that snow depth variations are due to the effects of temperature, wind speed and direction, solar 

radiation, and forest distribution (Currier and Lundquist, 2018). Recently, uncrewed aerial systems (UAS) have been utilized 



3 
 

to measure snow depth using photogrammetric techniques (e.g. Structure from Motion (SfM)) in open and sparsely-forested 65 

areas (Buhler et al., 2016, Cimoli et al., 2017, Harder et al., 2016). In addition, a lidar mounted on a UAS can be collected at 

different scans angles, making it a reliable source for sub-canopy measurements and across catchment scales (~ 5km2) (Harder 

et al., 2020). UAS-based observations can fill measurement gaps in airborne and spaceborne lidar measurements, and provide 

the opportunity to assess forest and snow relationships at a spatial (and temporal) resolution higher than airborne lidar and 

from a different viewing angle than terrestrial laser scanning (TLS). 70 

Terrestrial laser scanning provides plot-level observations between forest cover and snow distribution that can be used to 

validate UAS, airborne (e.g. Currier et al., 2019), and spaceborne lidar and confidently upscale local-scale processes (Revuelto 

et al., 2016a,b). Complimentary to nadir observations, TLS provides data collection with viewing angles from the ground and 

thus can capture fine-scale vegetation structure (and corresponding snow depth variations). Many studies have used TLS data 

to validate snow depths and melt (e.g. Deems et al., 2013; Hartzell et al., 2015; Grünewald et al., 2010), and along with physical 75 

modelling, to understand the role of wind in snow accumulation (e.g. Schirmer et al., 2011). While fewer studies have used 

TLS to explore forest canopy – snow relationships, TLS provides exciting opportunities to investigate fine-scale processes 

controlling snow distribution (Revuelto et al., 2015, 2016a, b; Gleason et al., 2013). Revuelto et al. (2015, 2016b) found smaller 

snow depth differences between the canopy and open areas in regions of thicker snowpack using TLS. They also demonstrated 

that shallower snow (snow depth < 0.5 m) occurred closer to the trunks while deeper snow (snow depth > 0.5 m) was found at 80 

the edge of the canopy where the dominant species was Pinus sylvestris. Gleason et al. (2013) used TLS to map tree stem 

density in burned forests and related this to greater snow accumulation in comparison to unburned areas. Taken together, 

previous studies point to the importance of choosing proper scales to study the controlling processes on snow depth variability; 

and furthermore, the opportunities to explore relationships between snow depth and canopy structure at fine-scales (individual 

trees). 85 

 

The objective of this study is to further contribute to the understanding of fine-scale forest canopy – snow interactions by 

exploring how forest canopy structure affects snow depth distribution during the snow accumulation period with TLS. This 

study is part of the NASA-led SnowEx 2017 campaign aimed at evaluating remote sensing snow properties with a primary 

focus on testing the impact of forest on remote sensing approaches for monitoring SWE. We use TLS data collected during 90 

the accumulation period (single measurements) in mid-winter SnowEx 2017 (winter 2016-2017) across a number of small TLS 

study sites on Grand Mesa, CO. In this study, we explore the following questions: 

1. What measures of vegetation best describe a relationship with snow depth under the canopy (sub-canopy)? 

2. Are there conditions in which vegetation characteristics are a more important control on snow depth than topography, 

or vice versa? 95 

3. Does snow depth vary as a function of distance from the canopy edge? How does tree height influence snow depth as 

a function of distance and direction? 
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2 Study Area 

The TLS data were collected at six sites (A, F, K, M, N, and O) across Grand Mesa, Colorado, USA. Grand Mesa is an 

approximate 470 km2 plateau with elevation of 2,922 to 3,440 m, rising along a west to east gradient (Fig. 1). Vegetation in 100 

the west, where wind speeds are highest, is predominantly shrubby cinquefoil (Dasiphora fruticosa) steppe with isolated 

Engelmann spruce (Picea engelmannii) tree islands. The central portion of the mesa becomes semi-continuous forest cover 

consisting primarily of Engelmann spruce with minor subalpine fir (Abies lasiocarpa) and aspen (Populus tremuloides) trees, 

all interspersed with subalpine meadows. Farther to the east, where wind speeds are lowest and elevation drops, there is dense 

continuous Engelmann spruce and subalpine fir forest with some lodgepole pine (Pinus contorta var. latifolia) and aspen 105 

stands at the lowest elevations. 

Wind speed data during our TLS data collection period were available from three stations including a site at the western extent 

of forest cover on the plateau (Mesa West, near site A), a site termed the Local Scale Observation Site (LSOS), and a site 

situated in more dense forest in the middle of Grand Mesa (Mesa Middle, near site M) (Houser, personal comm.) (Fig. 2). The 

data were collected from 17 November 2016 – 28 February 2017 and indicate a dominant NE wind direction at site A, though 110 

up to 15 m/s wind speeds from the SW were observed at this site. The predominant wind direction was from the NW at LSOS, 

and from the NW and SE at site M, during the sampling period. In analyses outlined below, we utilized a general E-W direction 

for testing the importance of wind (whereas we used a N-S direction for testing shading effects on snow, more below). 

3 Methods 

.3.1 Data and Processing  115 

We collected TLS data in snow-off (fall 2016) and snow-on (winter 2017) conditions at Grand Mesa at several sites (Fig. 1, 

Table 1) (Glenn et al., 2019; Hiemstra et al., 2019). The winter 2017 data collection occurred over 16 days but without 

significant snowfall between days. Each site was scanned once during the duration. A Riegl VZ-1000 (1550 nm) and Leica 

Scan Station C10 (532 nm) were used. Multiple scans (at least 3) were obtained at each site to reduce occlusion. The scans 

were coregistered to produce a single point cloud for each site and date. Coregistered scans were then georegistered using 120 

surveyed locations within the plots. The georegistered scans (i.e. area of analysis) for each site ranges from approximately 

10,000 to 38,000 m2 (Table 1).  

The TLS data were then utilized to derive snow depths, vegetation metrics, and topographic indices. From these data, we 

utilized multiple linear regression to investigate relationships between the canopy and snow depths under the canopy at each 

of our sites. We also describe snow depth relationships with topography in open areas with no trees (of a least 0.5 m height) 125 

using decision tree regression. Methods on identifying individual trees, under the canopy and in the open, are described below. 

We processed the TLS data into returns from ground and vegetation (fall 2016) or snow and vegetation (winter 2017), and 

estimated snow depths at each of the sites, using several sub-routines in CloudCompare (v2.11 alpha; retrieved from 
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http://www.cloudcompare.org/). We also used the TLS data to perform individual tree segmentation and extract vegetation 

parameters using R 3.5.3 (R Core Team, 2019), lidR (v3.1.1; Roussel) and rLiDAR (v0.1.1; Silva) packages. These steps are 130 

outlined in Fig. 3. 

While we did not independently assess the snow depth accuracy of the TLS data, Currier et al. (2019) assessed the relative 

accuracy of the same TLS data to airborne lidar at two of our sites. They indicate that the median snow depth difference 

between the datasets (TLS and airborne) at sites A and K was less than 5 cm.  

3.1.1 Ground, snow, and vegetation classification 135 

We used the CANUPO method in CloudCompare to separate vegetation from ground and snow returns. This method includes 

training and classification. In the training step, we used 10,000 snow and vegetation samples to construct the classifier. We 

trained the algorithm at 15 different scales to assign features related to each class and selected the 9 best combinations of scales 

(0.1m, 0.2m, 0.25m, 0.5m, 0.75m, 1m, 2m, 3m, 5m) to properly separate different classes. The combination of information 

from these scales helped the algorithm detect the dimension of each feature and assign snow and vegetation labels to the 140 

unclassified point clouds (Lague et al., 2013). We found that CANUPO misclassified snow data points near tree stems as 

vegetation, and thus we reclassified these points manually using the software TerraScan (Helsinki, Finland). Manual 

classification included visually separating snow under the trees from tree trunks. 

3.1.2 Snow depth estimation 

To estimate under-canopy and open-area snow depths, we used the M3C2 algorithm (Lague et al., 2013) in CloudCompare. In 145 

this algorithm, for every single point in the ground point cloud we defined a cylinder with a range of different radii (projection 

scales) varying from 10 cm to 3 m and a length (height) of 3 m (see Lague et al., 2013, for details on these parameters) (Fig. 

B1). The orientation of the cylinder was along the normal vector of planes fitted on the ground points within a 10cm radius. 

We projected all points within the cylinder onto the cylinder axis, took the vertical distance between projected snow, and 

ground points as the snow depth estimation. Through iteration, we found a balance between including enough TLS points for 150 

subsequent analysis and the accuracy of the snow depths (assessed with standard deviation) by using a 1 m projection scale. 

Our resulting snow depth measurement has a relative accuracy of approximately 2.5 cm based on the maximum standard 

deviation from M3C2. Utilizing these measurements, we compared snow depths under the canopy and in the open at each site. 

We also defined a transition zone as a 10 m buffer beyond each tree polygon in the direction of the open to identify any relevant 

differences within this zone. 155 

3.1.3 Individual tree segmentation 

We developed a canopy height model at 0.5 m resolution and identified tree tops to segment individual trees in the R package 

lidR. We detected a local maxima to identify tree tops using window sizes ranging from 1-3 m and minimum tree heights from 

2-6m, depending upon the site. For areas with lower tree heights (0.5 – 2m), we tiled the data that contained these trees and 
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segmented them in a similar approach. This allowed us to more accurately segment distinctly shorter and taller tree populations 160 

within sites, by adjusting segmentation parameters that worked better for those areas. Based on our preliminary analyses, we 

found that the Marker-controlled watershed segmentation algorithm was most accurate (compared to li2012, dalponte2016, 

and watershed, all available in the lidR package). We found that in cases where tall and short trees are close to each other, the 

algorithm could not detect shorter trees with large crown radii, and if a small crown radii is used, the branches far from the top 

of the tree may be considered as an individual tree. We resolved this problem by tiling the las files, processing each separately, 165 

and then combining the results. An example of the segmentation results from site F is shown in Fig. B2. A similar process was 

performed for all sites. 

To define under the canopy and in the open, we first performed segmentation to identify individual trees. Under the canopy 

was defined by all snow depth points within the tree polygons. To define the open area, we merged individual tree polygons 

that were less than 3 m from each other (patches of trees) and used the remaining areas as open. Site A was the only site 170 

dominated by shrubs (Fig. 1, Table 1) and we considered the shrub area as open (we removed shrubs in the processing and 

retained the ground points below) at this site because the focus of our study was on tree-snow relationships.  

 

3.1.4 Vegetation and topography 

We computed three vegetation metrics (Fig. 4) for each individual tree identified in the segmentation process (Table A1). We 175 

then used these, along with topographic metrics, to predict snow depths at each site using a multiple linear regression. Trees 

with at least 50 % snow cover below the tree crown (based on the segmented tree polygons) were used for analysis. The metrics 

included foliage height diversity (FHD), crown volume and the cumulative percentage of vegetation returns (zpcum). FHD 

represents the complexity of multi-layered vegetation structures (Clawges et al., 2008, Simonson et al., 2014). Trees with 

lower FHD have a lower number of layers, and thus less interception with snow. Crown volume describes the overstory cover 180 

of individual trees and is estimated by multiplication of crown surface area and crown height. Studies have shown overstory 

cover is negatively related to snow depth under the canopy (Hanley et al., 1987). Note that high crown volume does not 

necessarily equate to high FHD. The cumulative percentage of vegetation returns assessed across multiple layers within a tree 

allows us to understand whether a tree (as a whole) or a specific layer (cumulative) of the tree crown controls snow 

accumulation. We used 10 layers, starting at the bottom of each tree crown. In our preliminary analyses we used the first 185 

cumulative layer that explains the majority of vegetation returns within the crown (the first layer in which zpcumx > 50 %). 

We found zpcum4 met this threshold at Site A and zpcum5 met this threshold for all other sites. By using these metrics, we 

are able to examine the effects of structural complexity (FHD), a specific cumulative layer (zpcumx) within the canopy, and/or 

the crown volume as a whole on snow depth. 

Topographical metrics like elevation, eastness (sin (aspect) × slope) and northness (cos (aspect) × slope) are possible controls 190 

on snow depth for both under the canopy and open areas. We assumed that eastness represents the effect of wind based on the 
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predominant wind direction at the study site, and northness expresses the effect of solar radiation on snow. Slope and aspect 

were derived for each site using a nearest neighbor method in Arc Map 10.4.1 (ESRI, 2015) at 1m grid resolution.  

To investigate the collinearity amongst and between the vegetation and topographic metrics, a variance inflation factor was 

computed. The variance inflation factor was close to 1 for all metrics at all sites except site O. We standardized the metrics to 195 

make sure that the scale of the independent variables did not affect the regression. We then used the vegetation and topographic 

metrics for each site (except site O) in a multiple linear regression model to assess their effect on snow depth under the canopy. 

At site O and in the open areas, we utilized a decision tree regression in lieu of the multiple linear regression model. In the 

open areas, we examined the effect of elevation, northness and eastness on snow depths. Splits in the decision tree continued 

until the model could not improve beyond a R2 = 0.001. To avoid overfitting, we validated the model by a range of complexity 200 

parameters (from 0.001 to 0.2) and pruned the tree by choosing the one with the smallest cross validation error. We trained the 

tree using 70 % of the data and validated the model prediction using 30 % of the data. 

3.1.5 Influence of canopy edge on snow depth  

We used individual trees to assess snow depth variation at distances of 1 to 10 m away from the canopy edge. This represents 

how snow depth changes from the edge of individual trees to the open within a 10 m distance from the edge. We subsampled 205 

our data to only include trees that had good snow coverage (from TLS) within the buffer. This was determined based on the 

area around the tree having at least 50 % snow cover (see above).  

Snow depth variation from the edge of trees had both increasing and decreasing trends. Thus, we split the data between 

increasing and decreasing snow depth trends and fit a model to each. We standardized the snow depth for each 1 to 10 m 

interval of individual trees. This allowed us to investigate all of the changes in snow depth across the same scale. We fit 210 

logarithmic (standardized snow depth = Intercept + Coefficient ×log (distance)) and linear (standardized snow depth = 

Intercept + Coefficient × distance) models to the increasing and decreasing snow depths, respectively, for both individual sites 

and all sites together. 

 

3.1.6 Gap distribution and directional analysis 215 

We explored whether any of our sites were suitable for understanding the role of forest gaps (i.e. shading, interception) on 

snow depth distributions. While our study was not designed to analyze a range of gap distributions, the inherent forest density 

and distribution gradient that spanned our sites across Grand Mesa provided this opportunity. In particular, we sought to 

identify if sites had a dispersed tree pattern, such that the gaps were large enough to prevent canopy interception of snow, and 

thus accumulated deeper snow. Seyednasrollah and Kumar, (2014) used a relationship of tree height and gap radius for 220 

evaluation of net radiation. We derived a similar but simplified gap distribution approach (Equation 1). We calculated the 

average distance of 10 nearest trees to each individual tree. This gave us a rough estimate of a gap size around each tree (D). 



8 
 

In the next step, we divided that average distance (D) by the average height (H) of those 10 nearest trees (D/H). This ultimately 

provides a ratio by which we can investigate the impact of shading from trees on gaps combined with gap size. 
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Equation (1), illustrates the gap distribution for an individual tree (j) where, 𝐷& is the mean distance of the k closest trees to 

tree j; 𝐻& is the average height of k closest trees to tree j; k is the number of neighbors and 𝑑'& and ℎ'& are the distance and 

height of tree i to tree j, respectively. 

Secondly, we performed an average nearest neighbor analysis of the distribution of trees at each of the sites. In this analysis, 

we tested for tightly clustered trees in which gaps were minimal (clustered), randomly distributed trees where gaps could 230 

potentially lead to deeper snow accumulation (random), or dispersed trees where no particular pattern exists and thus gaps are 

likely not prevalent (dispersed). 

We also investigated whether relationships between tree heights and snow depth variation are significant based on direction. 

We did this using the 10 m transition zone (buffer) for each individual tree. We classified snow depths within each buffer in 

the four cardinal directions and fitted a linear (𝑠𝑛𝑜𝑤	𝑑𝑒𝑝𝑡ℎ = 	𝛼 × (𝑡𝑟𝑒𝑒	ℎ𝑒𝑖𝑔ℎ𝑡) + 𝛽 ) or nonlinear (𝑠𝑛𝑜𝑤	𝑑𝑒𝑝𝑡ℎ	 =235 

	𝛼 × 	𝑒𝑥𝑝(𝛽 × 	𝑡𝑟𝑒𝑒	ℎ𝑒𝑖𝑔ℎ𝑡) 	+ 	𝜃) model, depending upon the site, between tree heights and mean snow depth per each 

direction. We also performed a directional analysis with a Wilcoxon signed-rank test for comparing snow depth on the north 

and south sides (and east and west) for individual trees at each site. Note that due to sampling extents, our transition zone 

analysis was performed at 1 m increments instead of at multiples of mean tree height as in previous literature (e.g. Currier and 

Lundquist, 2018). 240 

4 Results 

4.1 Snow depths 

Using our individual tree analysis, we found higher snow depths in open regions and lower snow depths in areas dominated 

with trees (see Figs. 5 and 6). Snow depths were 12-28 % higher in the open than under canopy. Mean snow depth percent 

change between the 10m transition zone and under the canopy ranges from less than 1 % for sites A and K to a maximum of 245 

7 % at site M. We found the lowest mean snow depths in our most westerly site (A), which is dominated by dense clusters of 

relatively rigid shrubs (Dasiphora fruticosa) and has the lowest tree cover of all sites. The standard deviation (SD) of snow 

depths was similar between the transition zone and under the canopy for four sites (A, F, K, and O). We found a lower SD of 

open area snow depths at site O compared with under-canopy and transition zones (Fig. 6). 
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4.2 Influence of vegetation and topography on snow depth under the canopy 250 

Multiple linear regression explained 43, 54, 27, 25 and 28 percent of snow depth variation at sites A, F, K, M, and N 

respectively (Table 2). Based on the models, foliage height diversity (FHD) was the most influential vegetation metric at five 

sites (Table 2). Figure B3 shows the distribution of FHD at each of the sites, with higher FHD demonstrating more evenly 

spaced foliar arrangement along an individual tree. Most of the sites had two peaks of FHD distributions. FHD and snow depth 

were negatively related at all sites, i.e. a vertically-sparse foliar arrangement resulted in higher snow depths. At site A, a 255 

negative relationship (-0.21) between cumulative percentage of returns within the fourth layer (zpcum4) and snow depth 

occurred. FHD also showed a higher negative relationship at this site (-0.27) with snow depth. The results indicate that the 

effect of eastness, northness and crown volume was not significant (p-value > 0.001) and elevation positively affected (with a 

coefficient of 0.14) the snow depth under the canopy at this site. At site F, elevation and FHD were the most important features 

that explained 54 % of snow depth variation. Vegetation and topography could not explain more than 30 % of snow depth 260 

variance under the canopy at sites K, M and N. 

Because of collinearity between eastness and northness at site O, we used a regression tree to investigate the effect of different 

features on snow depth under the trees. Eastness and FHD were the most important features at site O respectively (Fig. 7). A 

decision tree regression for this site explains 74 % of snow depth variance under the trees. The results also indicate as we move 

from east (positive) to west (negative), the snow increases with higher slopes. In other words, larger, west-facing slopes are 265 

covered by deeper snow. In addition, shallower snow depths are predicted in the canopy with higher FHD at this site. 

4.3 Influence of slope, aspect and elevation on snow depth in open 

We examined the effect of topography on snow depth in open areas using a decision tree regression for each site. According 

to the regression tree (Table 3), elevation was the most important feature at sites A, F, K and was the second most important 

feature at site M and N. Decision trees could predict 38, 36, 36, 31, 18 and 64 percent of snow depth variations at sites A, F, 270 

K, M, N and O respectively. The model slightly overfitted for sites A, M and N. However, the R2 for the training and testing 

datasets at the other three sites are similar. Eastness and northness represent wind and solar radiation impacts on snow depth 

variation with regard to topography. Except site O where topography (eastness and northnes) explained 64 % of snow depth 

variation, topographical metrics could not explain more than 38 % of snow depth at the other sites (Table 3). This is likely a 

result of scale, in which our plot sampling size did not adequately sample the effects of topography and wind on snow depth 275 

variation. 

We found that at site A, elevation and northness were influential on snow depths in the open. High snow depths were found in 

open northeast facing slopes (same as predominant wind direction) at site A (see Figs. 1, 8b). Site O was the only site that we 

found an influence of both eastness and northness on snow depth. The influence of eastness occurred in both the open and 

under the canopy (Table 3, Figs. 7, 8a, b). This site has high north and west facing slopes (in both under canopy and the open) 280 

with relatively higher snow depths; whereas south facing slopes have relatively lower snow depths. 
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4.4 Influence of canopy edge on snow depth 

We found that snow depths increase with distance from the canopy edge into the open for the majority of individual trees (Figs. 

B4-9). However, at some sites we found a decreasing snow depth trend by moving farther from tree edges. For example, this 

occurred on the northwest side of the tree patches in the southeast portion of site O. This is the area of site O where the north-285 

west facing slope has likely the largest influence on snow depths. The increasing snow depth trend from the canopy edge 

occurs in the north where snow depths are low (less than 1 m). Site A also showed a decreasing snow depth pattern in the 

north/northwestern sampled region, and this is likely due to northeast winds and deeper snow depths in the northeast facing 

slopes in the southern portion of the site. 

Results show that a logarithmic regression can explain more than 85 % of an increasing snow depth trend at each site. Figure 290 

9a illustrates the logarithmic regression between snow depth and distance from the edge for all sites together. The model 

coefficients were almost the same for individual sites as well as all sites together (Table 4). This indicates that within a 10 m 

distance from the edge of the trees, snow depth increases with a unique logarithmic trend. 

For decreasing snow depth, a linear regression explained 72 % of snow depth variation at all sites together. However, snow 

depth decreases at site K followed a second order polynomial, which covers only 4 % more variation than simple linear 295 

regression. The coefficient and p-values for linear regressions are illustrated in Table 5. Figure 9b also shows the regression 

fit between decreasing snow depth and distance from the tree edge. 

4.5 Gap distribution and directional analysis 

Our results show that site N has the largest median D/H ratio (0.74) compared to all other sites of <0.5 (Table 1). Site N is the 

only site with a randomly dispersed tree pattern (Table A2) and thus the most likely site to experience lower interception, 300 

possibly resulting in deeper snow. 

We found a negative relationship between tree heights and snow depths based on direction at sites A, K and O (Table A3, Fig. 

10). Snow depth decreased exponentially at site A with an increase in tree height. However, this relationship was linear for 

sites K and O and was not significant for the other three sites. An exponential fit could explain 56, 61, 76, and 32 percent of 

snow depth change on north, west, south, and east directions at site A, respectively (Table A3, Fig. 10a). We found snow 305 

depths were different between the north and south sides of trees at sites A, K, and O but not for any other sites or directions 

(Table A4). 

5 Discussion 

We observed several interesting relationships between vegetation canopies, topography, wind and snow depths across our 

sites. As expected, snow depths were deeper in the open compared to under canopy. However, describing the relationships 310 

between vegetation and snow is complicated by the structure, distribution (pattern), and type of vegetation. The relationship is 

further convoluted by local topography and wind speed/direction. For example, we found that slope, aspect, and wind (rather 
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than vegetation) might control snow depths at local scales at two of the sites, A and O. This is not surprising, as site A was 

dominated by 0.4-0.6 m tall shrubs and wind exposed, and site O had a relatively low tree canopy cover. While site A had the 

lowest tree canopy cover in our dataset, we only sampled the edge of a much larger patch of trees (based on field observations). 315 

Our results indicate that local topographic interactions with wind have a major influence on snow accumulation, especially 

when we do not consider the much larger landscape controls. While sites A and O have slopes within the overall range of all 

of our sites, the combination of local slope and aspect for site O, appear to be driving factors in snow depths. In fact, site O 

has the highest mean snow depth (1.44 m), likely due to these local site conditions. 

When our analyses were confined to under the canopy of individual trees, we generally found a significant relationship between 320 

the vertical spatial arrangement of the foliage (based on the FHD) and snow depth, but this relationship did not hold across all 

sites. For example, FHD and northness explained 25 % of the variance of snow depth at site M. This site has the highest mean 

tree heights of the study. Taken together with northness as the most important feature at this site, solar radiation likely had 

higher control on snow depths than on the particular foliar arrangement of the trees at this site. Overall, sites M and N had the 

least effect of vegetation metrics on snow depth. This may be due to the vegetation patterns at these sites (under the canopy 325 

slope and aspect have no effect at site N (Table 2, Fig. 8a)). Site M is a relatively open area with mature Engelmann spruce 

and subalpine fir trees in the SW and NE areas of our site. Subalpine fir trees are generally more slender than Engelmann 

spruce, and thus their shape may not be as influential on accumulation of under canopy snow depths. Site N has the highest 

percent cover and the smallest trees (mean tree height 10.5 m, SD of 2.62 m, Table 1). This second growth canopy is the only 

site dominated by lodgepole pine, which are also slender. While the mean FHD is similar to the other sites, site N is the only 330 

site with trees in a dispersed pattern in which the size of the gaps likely prevents snow interception, and thus provides an 

opportunity for snow accumulation. In fact, site N had the second highest mean snow depth under the canopy (1.38 m, 

compared with 1.44 m at site O, Figs. 6 and 8a). Testing for a dispersed tree pattern could be beneficial to future studies, 

especially because previous research (e.g. Ning Sun et al., 2018) found gap size to be a control on snowmelt timing; however, 

our study was during the accumulation phase so we cannot draw similar conclusions at site N. 335 

Our models show that FHD is the only control on snow depth at site K, explaining 27 % of snow variation under the canopy. 

The standard deviation of elevation at this site is less than the other sites (Table 1), likely indicating that snow depth under the 

canopy is not affected by topography. This indicates that in the absence of large changes in topography, snow depth under the 

canopy is most likely controlled by trees. In the open, elevation and eastness are predominant controls on snow depth. The 

latter is perplexing because a wind effect was not observed under the canopy (Table 2) nor along east-west sides of trees (Table 340 

A4). In the absence of other information, we conclude that the spatial arrangements of the trees around the open may shelter 

the area, causing higher snow depths with no interception. Elevation and FHD at site F explain 54 % of snow depth variation, 

which is the greatest among the sites. The site’s large standard deviation of elevation (Table 1) explains why elevation is the 

most important control in both under the canopy and in open areas. The predominant wind direction is from west to east at the 

nearby LSOS station. However, our models indicate that wind has little influence on snow distribution, and rather solar 345 

radiation along with elevation control snow patterns in the open at our scale of analysis. 
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Our canopy edge analyses generally found that as the distance increases from the canopy edge, snow depths also increase. This 

finding is congruent with previous studies which used airborne lidar across larger spatial extents and lower vertical resolutions 

in the canopy (e.g. Moeser et al., 2015a; Mazzotti et al., 2019). We leveraged the fine-scale observations in our dataset to 

model snow depth increases from the canopy edge, and found the trend to generally follow a logarithmic model at individual 350 

and all sites together. In contrast to our observations, Hardy and Albert (1995) indicate that snow depth changes uniformly 

from the tree edges towards the open. However, the patterns we observed in our TLS data are similar to those Mazzotti et al. 

(2019) observed from airborne lidar at Grand Mesa, over the same time frame. While we observed snow depth to decrease 

nonlinearly with distance from canopy edge at one site, a linear decrease was the norm amongst sites and was likely mediated 

by wind and/or topography feedbacks at sites A and O. In summary, we expect snow depth increases from the canopy edge 355 

toward the open, but wind and topographic controls may affect this trend. 

We did not find high snow depth accumulation or variability within a transition zone similar to the findings of Broxton et al. 

(2015). While their study included similar tree species, wind speeds and elevation, their spatial scale of analysis was larger 

with the use of airborne lidar. The relation between tree height and snow depth in cardinal directions from individual trees 

indicate that we expect shallower snow within the 10 m transition zone from taller trees (Fig. 10) . In other words, two adjacent 360 

trees with different heights affect snow depth differently in any one direction and shorter trees generally deeper snow in all 

directions. We expected the opposite to occur i.e. taller trees should create larger shadows and provide more shading/sheltering. 

As our snow-on datasets are from the accumulation season, we may not see shading effects of taller trees in the transition zone; 

negligible melt had occurred at the time of these surveys. If our datasets extended throughout the season (our data is a single 

measurement in time), we might expect these relationships to change.  365 

Following previous studies that show a directional relationship with snow depths (e.g. Mazzotti et al., 2019; Currier and 

Lundquist, 2018), we found significantly different snow depths between the north and south sides of trees at site A, K, and O. 

This may be due to the local topography and wind at sites A and O. Additionally, previous lidar-based canopy snow interaction 

studies (Trujillo et al., 2007, 2009; Deems et al., 2006) relied on simple canopy models using maximum height. Our results 

show that in nearly all situations, structural information contained in denser lidar point clouds have more predictive capability. 370 

A limitation of our study is that the results are site specific and cannot be generalized to all forest conditions. In addition, our 

data are best suited to fine scale interactions between individual trees, or clusters of trees, and under the canopy or surrounding 

snow depths. Data gaps may exist from occlusion within dense canopies. We minimized the effect of occlusion by performing 

our analysis on individual trees. Notably, the directional analysis is not affected by occlusion as we used tree height in the 

analysis and trees having at least 50 % snow cover. Occlusion with TLS can be eliminated using UAS and/or airborne lidar as 375 

their nadir/off-nadir scan positions can cover the canopies at different angles. However, mapping dense canopies and mapping 

snow depth under dense canopies may still be a challenge. Ultimately, TLS provides data for investigating fine-scale controls, 

and is highly complementary to UAS and airborne lidar, which can help test larger scale features, such as gap area across 

space. 
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6 Conclusions 380 

Our study indicates that even with fine scale, individual tree observations from TLS, vegetation structural metrics are not 

enough to describe snow depth during the accumulation season. Local scale topography and wind should also be considered. 

While our sites were not designed solely for intercomparison, we found notable trends in our site comparisons. The vertical 

arrangement of foliage (e.g. FHD) of individual trees influences under canopy snow depths, and in some cases, quite strongly. 

Whereas cumulative percentage of returns and crown volume were less powerful explanatory variables. Further studies should 385 

be designed to test this within and between species. For example, our sites were primarily Engleman spruce, subalpine fir, and 

lodgepole pine, all of which have different canopy structural shapes. Further studies targeting samples of each of these with 

different foliar arrangements and heights should be undertaken to fully understand the implications of FHD and tree heights 

on snow depths at local scales. 

We also found that topography had greater control than vegetation at sites where slopes favored wind conditions for increasing 390 

snow depths, or where vegetation presence was minimal. While the latter may be obvious, increased observations with varying 

vegetation cover, wind, and topography should be considered with TLS. 

This study highlights the complementary nature of TLS observations to UAS and airborne lidar, where TLS can provide fine 

scale observations within the canopy and relationships with under the canopy snow depth. Data from TLS can also be used to 

validate airborne lidar (e.g. Currier et al., 2019), and further studies should investigate how vegetation metrics such as FHD 395 

compare between TLS, UAS, and airborne lidar in these snow-dominated forest ecosystems. Further, along with UAS and 

airborne lidar, TLS provides a complementary dataset for upscaling to similar types of vegetation structure and topography 

observed from satellites such as ICESat-2, or missions such as GEDI. Importantly, results from this study and others with TLS, 

UAS and airborne lidar for forest-snow observations can also be the foundation for the 2017 Decadal Survey designated 

observable, Surface Topography Vegetation study (National Academy of Sciences, Engineering, Medicine, 2018). 400 
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Figure 1: Study area and location of TLS sites and meteorological stations. 
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Figure 2: Rose diagrams of meteorological stations A, LSOS, and M. 565 

 
Figure 3: TLS data processing workflow. 
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Figure 4: Graphical examples of trees with different structures and the metrics of foliage height diversity (FHD), crown volume and 570 
the cumulative percentage of vegetation returns (zpcum). Crown volume is estimated using crown area (CA) x height (h). Zpcum is 
based on 10 layers (zpcum1–zpcum10) (see example in (a)). Red dashed lines are examples of the cumulative layer with > 50 % of 
vegetation returns. The foliar complexity (FHD) of (a) and (c) are similar but the crown volumes and cumulative percentage of 
vegetation returns are different; whereas the FHD of (b) is the lowest. 
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 575 
Figure 5: Snow depths at each site from TLS data. 
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Figure 6: Snow depth under the canopy, within the 10 m transition zone, and in the open. 
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 580 
Figure 7: Decision tree at site O. Snow depth (m) are represented along with percent of the individual trees used for analysis. 

 

 
Figure 8: Under the canopy (a) and open area (b) snow depth at different aspects. 
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 585 
Figure 9: Increasing (a) and decreasing (b) snow depth trends and regression within a 10 m distance from the tree edges for all sites 
together. The confidence interval depicted in this figure is 95 %. 

 

 
Figure 10: Tree height and snow depth within the 10 m transition zone in the south direction for (a) site A and (b) site K. The 590 
exponential and linear fit is shown with a red line along with 95 % confidence interval (grey). 
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Table 1. Terrestrial laser scanning site descriptions. Sd = standard deviation. D/H = Distance/Height. FHD = foliar height diversity 
(described below). 

 595 

Site 

Area of 

Analysis 

(m2) 

Mean 

Elevation 

(m) (sd) 

Elevation 

Range (m) 

Wind 

Direction 

Vegetation 

Type 

Tree % 

Cover 
D/H 

Range of 

Tree Height 

(m) 

Mean Tree 

Height (m) 

(sd) 

Median 

FHD (m) 

(sd) 

Comments 

A 29128 3037 (3.6) 3027-3045 Westerly 

Mostly 

Shrubs with 

Engelmann 

Spruce 

9 % 0.36 2-27 16.6(5.77) 2.27(0.48) 

Sampled edge of 

larger tree cover 

extent. 

            

F 37838 3105 (6.6) 3090-3118 … 
Engelmann 

Spruce 
24 % 0.32 2-29.2 21.4(6.38) 2.64(0.42) 

Patchy Dense 

Trees. 

            

K 31497 3253 (1.4) 3249-3257 … 
Engelmann 

Spruce 
38 % 0.41 1.7-30 18.7(6.45) 2.75(0.38) Patchy Trees. 

            

M 21994 3122 (4.7) 3114-3142 NW to SE 
Engelmann 

Spruce 
45 % 0.39 5.7-33.7 21.6(7.45) 2.7(0.46) Patchy Trees. 

            

N 10187 3054 (2.4) 3047-3061 … 
Lodge Pole 

Pine 
52 % 0.74 1.7-28.3 10.5(2.62) 2.77(0.42) 

Second-growth, 

dispersed Lodge 

Pole Pine. 

            

O 24302 3067 (4.0) 3055-3078 … 

Subalpine 

Meadow 

with 

Engelmann 

Spruce 

14 % 0.39 5-33.4 16.4(7.65) 2.82(0.37) 

Two main 

slopes, one 

towards the 

south and other 

towards the 

NW. The later 

has the deepest 

snow. 
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Table 2. The first and second highest coefficients and their associated p-values for multiple linear regression between vegetation, 
topography and snow depth under individual trees. 

Site Highest coefficient P-value 2nd highest coefficient P-value Adjusted R-squared 

A FHD (-0.27) 2.50e-08 Zpcum4 (-0.21) 2.89e-06 0.43 

F Elevation (-0.08) 1.41e-11 FHD (-0.07) 5.1e-12 0.54 

K FHD (-0.11) 2e-16 Not significant Not significant 0.27 

M Northness (0.08) 3.73e-06 FHD (-0.05) 8.25e-04 0.25 

N FHD (-0.09) 2.66e-12 Elevation (0.06) 2.27e-06 0.28 

 
Table 3. The first and second important features from decision tree regressed between topographical features and snow depth in the 
open areas. 600 

Site First important feature Second important feature Train R2 Test R2 

A Elevation Northness 0.46 0.38 

F Elevation Northness 0.36 0.36 

K Elevation Eastness 0.39 0.36 

M Northness Elevation 0.39 0.31 

N Northness Elevation 0.30 0.18 

O Eastness Northness 0.68 0.64 

 

 
Table 4. Logarithmic regression between distance from the tree edge and increasing snow depth within a 10 m buffer toward the 
open. 

Site Intercept Coefficient p-value Adjusted R2 

A -1.91 1.27 < 2e-16 0.86 

F -1.97 1.3 < 2e-16 0.91 

K -1.9 1.26 < 2e-16 0.85 

M -1.92 1.27 < 2e-16 0.87 

N -1.95 1.29 < 2e-16 0.89 
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O -1.9 1.26 < 2e-16 0.85 

All sites together -1.92 1.27 < 2e-16 0.87 

 605 
Table 5. Linear regression between distance from the tree edge and decreasing snow depth within a 10 m buffer toward the open. 
Site F had no trees with a decreasing trend. 

Site Coefficient p-value Adjusted R2 

A -7.6 < 2e-16 0.70 

F … … … 

K -6.2 < 2e-16 0.70 

M -3.6 1.83 e-05 0.47 

N -4.2 9.16 e-08 0.63 

O -9.0 < 2e-16 0.82 

All sites together -14.6 < 2e-16 0.72 
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Appendix A 

Table A1. Vegetation metrics derived for individual trees at each of the sites with equations and references. 610 

Vegetation metrics Equation 

 Cumulative percentage of return in the xth layer (zpcum*) 

 

𝒛𝒑𝒄𝒖𝒎𝒙 =	)
#	𝒗𝒆𝒈	𝒓𝒆𝒕𝒖𝒓𝒏𝒔	(𝒊)
𝒕𝒐𝒕𝒂𝒍	𝒗𝒆𝒈	𝒓𝒆𝒕𝒖𝒓𝒏𝒔 ∗ 𝟏𝟎𝟎

𝒙

𝒊#𝟏

	

 
Where i is the ith layer of tree. 
 
(Reference: R 3.5.3 (R Core Team, 2019), lidR (v3.1.1; Roussel) package). 

Foliage Height Diversity (FHD) 

 

𝑭𝑯𝑫 =	−)𝑷𝒊𝐥𝐧	(𝑷𝒊) 

 

Where 𝑷𝒊 is the proportion of the number of lidar returns in the ith layer to 
the sum of lidar points of all the layers (using all points) (bcal lidar tools 
documentation) 

(Reference: BCAL Lidar Tools, Boise State University, Department of 
Geosciences, URL: https://github.com/bcal-lidar/tools). 

Crown volume (crwnvlm) (Reference: R 3.5.3 (R Core Team, 2019), rLiDAR (v0.1.1; Silva) package). 

 
Table A2. Average nearest neighbour results for each site. The null hypothesis here is that trees are randomly distributed. The 
nearest neighbour ratio is the mean of observed mean distance over the expected mean distance between neighbours assuming a 
random distribution. The ratio equal or close to one is considered random. Only site N has a random distribution pattern of trees. 
As site A contains a dense canopy and several trees far from it, the method takes it as dispersed. 615 

Site P-value  Z-score Nearest Neighbor Ratio Tree pattern 

A 0.00 6.92 1.28 Dispersed 

F 0.00 -3.72 0.91 Clustered 

K 0.00 -7.60 0.85 Clustered 

M 0.00 -8.18 0.79 Clustered 

N 0.28 -1.09 0.97 Random 

O 0.00 -12.66 0.55 Clustered 
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Table A3. Relationship between tree height and snow depth (within a 10 m transition zone) based on cardinal direction. The columns 
are site, adjusted r-squared, tree height range, and number of trees. Ranges of tree heights vary within sites because not all trees 
had adequate snow samples to test in all cardinal directions. 620 

 

 
Table A4: Wilcoxon signed-rank test results for comparing snow depth on the north and south sides (and east and west) for 
individual trees at each site. Note only trees that have snow depth data on both north and south or east and west are considered. 
Statistically significant are bolded. 625 

Site P-value (North-South) Number of Samples P-value (East-West) Number of Samples 

A 0.0004484 59 0.3498 60 

F 0.807 138 0.704 130 

K 0.0348 390 0.78 397 

M 0.65 170 0.78 163 

N 0.72 202 0.495 195 

O 0.024 90 0.43 94 

 

Site North 
Tree height 

range (m) 

# of 

trees 
West 

Tree height 

range (m) 

# of 

trees 
South 

Tree height 

range (m) 

# of 

trees 
East 

Tree height 

range (m) 

# of 

trees 

A 0.56 2.05– 25.52 95 0.61 2.05– 28.05 91 0.76 2.05– 28.05 94 0.32 2.05–28.05 101 

K 0.16 1.51 – 29.34 486 0.11 1.51 – 29.34 485 0.15 1.51– 29.97 474 0.17 1.51–29.97 483 

O 0.29 5.46– 33.42 122 0.51 5.09– 33.42 127 0.44 5.09– 33.42 133 0.4 5.46– 32.46 131 
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Appendix B 

 

 

 630 
Figure B1: M3C2 method for computing snow depth. Vector N shows the normal on the reference surface (ground) and d is the 
projection scale. Surface roughness is the standard deviation of the point clouds within the cylinder (𝝈). Misorientation on rough 
surfaces (𝑵%) is seen by high standard deviation (𝝈𝟐) and is resolved by choosing the proper normal scale. Snow depth is the vertical 
distance between the average positions of ground and snow point clouds within the cylinder (distance between 𝒊𝟏 and 𝒊𝟐). Redrawn 
from Lague et al., 2013. 635 
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Figure B2: As an example, segmentation results for one las tile at site F. 
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 640 
Figure B3: Foliage Height Diversity (FHD) distribution for each site. 
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Figure B4: Snow depth change within a 10 m buffer from the edge of a tree at site A. Red color indicates snow depth increases 
moving from the tree edge toward the open and blue indicates snow depth decreases. Increasing and decreasing patterns are shown 645 
for individual trees at each site with adequate snow coverage. 
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Figure B5: Snow depth change within a 10 m buffer from the edge of a tree at site F. Red color indicates snow depth increases 
moving from the tree edge toward the open and blue indicates snow depth decreases. Increasing and decreasing patterns are shown 
for individual trees at each site with adequate snow coverage. 650 
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Figure B6: Snow depth change within a 10 m buffer from the edge of a tree at site K. Red color indicates snow depth increases 
moving from the tree edge toward the open and blue indicates snow depth decreases. Increasing and decreasing patterns are shown 
for individual trees at each site with adequate snow coverage. 
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 655 
Figure B7: Snow depth change within a 10 m buffer from the edge of a tree at site M. Red color indicates snow depth increases 
moving from the tree edge toward the open and blue indicates snow depth decreases. Increasing and decreasing patterns are shown 
for individual trees at each site with adequate snow coverage. 
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Figure B8: Snow depth change within a 10 m buffer from the edge of a tree at site N. Red color indicates snow depth increases 660 
moving from the tree edge toward the open and blue indicates snow depth decreases. Increasing and decreasing patterns are shown 
for individual trees at each site with adequate snow coverage. 
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Figure B9: Snow depth change within a 10 m buffer from the edge of a tree at site O. Red color indicates snow depth increases 
moving from the tree edge toward the open and blue indicates snow depth decreases. Increasing and decreasing patterns are shown 665 
for individual trees at each site with adequate snow coverage. 

 

 


