The retrieval of snow properties from SLSTR/Sentinel-3 - part 2: results and validation

Linlu Mei1, Vladimir Rozanov1, Evelyn Jäkel2, Xiao Cheng3, Marco Vountas1, John P. Burrows1

1 Institute of Environmental Physics, University of Bremen, Germany
2 Leipziger Institut für Meteorologie, University of Leipzig, Germany
3 School of Geospatial Engineering and Science, Sun Yat-Sen University, Zhuhai, P.R. China, 519082

Abstract
To evaluate the performance of eXtensible Bremen Aerosol/cloud and surfacE parameters Retrieval (XBAER) algorithm, presented in part 1 of the companion paper, this manuscript applies the XBAER algorithm on the Sea and Land Surface Temperature Radiometer (SLSTR) and Ocean and Land Colour Instrument (OLCI) instruments onboard Sentinel-3. Snow properties: Snow Grain Size (SGS), Snow Particle Shape (SPS), and Specific Surface Area (SSA) are derived under cloud-free conditions. XBAER derived snow properties are compared to other existing satellite products and validated by ground-based/aircraft measurements. Cloud screening is performed by standard XBAER algorithm synergistically using OLCI and SLSTR instruments both onboard Sentinel-3. The atmospheric correction is performed on SLSTR for cloud-free scenarios using Modern-Era Retrospective Analysis for Research and Applications (MERRA) Aerosol Optical Thickness (AOT) and aerosol typing strategy according to the standard XBAER algorithm. The optimal SGS and SPS are estimated iteratively utilizing a Look-Up-Table (LUT) approach, minimizing the difference between SLSTR-observed and SCIATRAN simulated surface directional reflectances at 0.55 and 1.6 μm. The SSA is derived for a given SGS and SPS pair. XBAER derived SGS, SPS and SSA have been validated using in-situ measurements from the recent campaign SnowEx17 during February 2017. The comparison of the retrieved SGS with the in-situ data shows a relative difference between
XBAER-derived SGS and SnowEx17 measured SGS of less than 4%. The difference between XBAER-derived SSA and SnowEx17 measured SSA is 2.7 m²/kg. XBAER-derived SPS can be reasonable-explained by the SnowEx17 observed snow particle shapes. The comparison with aircraft measurements, during the Polar Airborne Measurements and Arctic Regional Climate Model Simulation Project (PAMARCMiP) campaign held in March 2018, also shows good agreement (with R=0.82 and R=0.81 for SGS and SSA, respectively). XBAER-derived SGS and SSA reveal the variability of the aircraft track of PAMARCMiP campaign. The comparison between XBAER-derived SGS results and MODIS Snow-Covered Area and Grain size (MODSCAG) product over Greenland shows similar spatial distributions. The geographic distribution of XBAER-derived SPS over Greenland and the whole Arctic can be reasonable-explained by campaign-based and laboratory investigations, indicating reasonable retrieval accuracy of the retrieved SPS. The geographic variabilities of XBAER-derived SGS and SSA over both Greenland and Arctic-wide agree with the snow metamorphism process.

1 Introduction

Change of snow properties is both a consequence and a driver of climate change (Barnett et al., 2005). Snow cover and snow season, especially in Northern Hemisphere, are reported by different models, to decrease due to climate change (Liston and Hiemstra, 2011). The reduction of snow cover leads to the change of surface energy budget (Cohen and Rind, 1991; Henderson et al., 2018), a reduction of Asian summer rainfall (Liu and Yanai, 2002; Zhang et al., 2019), a loss of Arctic plant species (Phoenix, 2018) and other impacts on societies and ecosystems (Bokhorst et al., 2016). Snow may influence the climate through both direct and indirect feedbacks (Lemke et al., 2007). The direct feedback is the snow-albedo feedback and the indirect feedbacks are involved by atmospheric circulation. The snow-albedo feedback describes the mechanism that melting snow, caused by global warming, reflects less solar radiation, and further enhances the warming (Thackeray and Fletcher, 2016). The snow indirect feedbacks describe the impact of change snow properties on monsoonal and annular atmospheric circulation (Lemke et al., 2007; Gastineau et al., 2017). However, the snow cover
may be declining even faster than thought due to large uncertainties of how models describe the snow feedback mechanisms (Flanner et al., 2011). The uncertainties to describe the snow feedback mechanisms are largely introduced by the uncertainties of knowledge of snow properties (Hansen et al., 1984; Groot Zwaaftink et al. 2011; Sarangi et al., 2019). Snow properties depend on snow age, moisture, and temperatures surrounding (LaChapelle, 1969; Sokratov and Kazakov, 2012).

Even though model simulations and field-based in-situ measurements provide valuable information of snow properties, such as Snow Grain Size (SGS), Snow Particle Shape (SPS), Specific Surface Area (SSA) for the understanding of changing snow and its corresponding impact on climate change, satellite observations offer an effective way to derive those snow properties on a large scale with high quality (e.g. Painter et al., 2003; 2009; Stamnes et al., 2007; Lyapustin et al., 2009; Wiebe et al., 2013). The similarities and differences of the required snow parameters and their accuracy between the snow remote sensing community and other communities (e.g. field-measurement community) are detailed discussed in part 1 of the companion paper (Mei et al., 2020), thus we will not summery again in this paper.

Different retrieval algorithms to derive SGS have been developed for different instruments. Airborne Visible / Infrared Imaging Spectrometer (AVIRIS) and Thematic Mapper (TM) onboard Landsat are pioneer instruments used for the retrieval of SGS (Hyvarinen and Lammasniemi, 1987; Li et al., 2001). Painter et al. (2003, 2009) retrieved SGS using AVIRIS and Moderate Resolution Imaging Spectroradiometer (MODIS) data, exploring the information from both visible and near-infrared spectral channels. There are several available satellite SGS products for MODIS (Klein and Stroeve, 2002; Painter et al., 2009; Rittger et al., 2013) and its successor, Visible Infrared Imaging Radiometer Suite (VIIRS) (Key et al., 2013). For instance, the MODIS Snow-Covered Area and Grain size (MODSCAG) product is created utilizing a spectral mixture analysis method based on prescribed endmember. The endmember is a spectrum library for snow, vegetation, rock, and soil (Painter et al., 2009). The MODSCAG algorithm can provide snow fraction and snow albedo besides SGS on a pixel base. Topographic effects in MODSCAG are not considered and the MODSCAG product tends to overestimate SGS (Mary et al., 2013). Other retrieval algorithms have also been designed for
and tested on the MODIS instrument (Stamnes et al., 2007; Aoki et al., 2007; Hori et al., 2007).

Jin et al. (2008) retrieved SGS over the Antarctic continent using MODIS data based on an atmosphere-snow coupling radiative transfer model. Lyapustin et al. (2009) proposed a fast retrieval algorithm for SGS at a 1 km spatial resolution using MODIS observations. The algorithm is based on an analytical asymptotic radiative transfer model. Negi and Kokhanovsky (2011) proposed the usage of the Asymptotic Radiative Transfer (ART) theory to retrieve SGS. The retrieved snow albedo and grain size from Negi and Kokhanovsky (2011) were validated to be with good quality for clean and dry snow. However, potential problems have been reported for dirty snow (e.g., soot/dust contamination). The Snow Grain Size and Pollution (SGSP) algorithm retrieves SGS and pollution amount based on a snow model (Zege et al., 1998), without a-priori assumptions on SPS (Zege et al., 2011). The SGSP algorithm has been validated using the in-situ measurement over central Antarctica and an underestimation of SGSP-derived SGS was reported under a large solar zenith angle (Zege et al., 2011; Carlsen et al., 2017). The algorithm is currently implemented for the MODIS instrument and provides operational daily snow products. New instruments such as Earth Observing-1 (EO-1) Hyperion imagery and OLCI have also been used to derive SGS (Zhao et al., 2013; Kokhanovsky et al., 2019). The algorithm proposed by Kokhanovsky et al. (2019) is conceptually based on an analytical ART model, which estimates snow reflectance by given SGS and ice absorption (Kokhaovksy et al., 2018). The snow grains in the ART model are described as a fractal, to partly taking snow irregular shapes impacts on snow reflectance into account.

Snow particle shape is a fundamental parameter needed to describe snow properties (Räisänen et al. 2017). The SPS keeps relatively stable before falling on the ground under cold and dry conditions while it has large variabilities under warm and wet conditions (Dang et al., 2016). A classification system has been proposed in Nakaya and Sekido (1938) and has been updated recently by Kikuchi et al. (2013). Due to the complexity of the ice crystal shape, simplified ice crystal shapes, such as fractal (Macke et al., 1996; Kokhanovsky et al., 2019) and droxtal (Pirazzini et al., 2015), have been used in some satellite retrievals and model simulations. However, previous investigations show that non-fractal snow types occur more frequently in reality (Gordon and Taylo, 2009; Comola et al., 2017). The widely used spherical shape...
assumption in field measurements (e.g. Flanner and Zender, 2006) is not optimal for satellite-orientated retrievals, because the spherical shape assumption can not produce the angular distribution of snow reflectance with required accuracy (Leroux and Fily et al., 1998; Jin et al., 2008; Dumont et al., 2010), which will introduce an unacceptable magnitude of uncertainty in the satellite retrieved snow properties. Details of these issues have been discussed in Part 1 of the companion paper. Some attempts to derive ice crystal shape in ice clouds can be found in previous publications (McFarlane et al., 2005; Cole et al., 2014). However, there is no publication with respect to the retrieval of ice crystal shape in the snow layer, especially using passive multi-spectrum satellite observations. Although habit mixture models are preferable for the description of snow grain shapes (Saito et al., 2019; Tanikawa et al., 2020; Pohl et al., 2020), the information content from satellite observation is limited compared to field-based measurements. Thus, an optimal single complex shape, which provides the best agreement with satellite observation (e.g. Top of the Atmosphere (TOA) reflectance) is also needed.

A few attempts have been proposed to retrieve SSA from space-borne observations. The retrieval of SSA is actually performed based on the pre-retrieved SGS with an assumption of a given known SPS. Mary et al. (2013) retrieved SSA over mountain regions using MODIS data, assuming a spherical ice crystal shape. The retrieval performs a topographic correction for the surface reflectance to achieve a better retrieval accuracy. The overall difference, compared to field measurements, is 9.4 m2/kg. Xiong et al. (2018) retrieved SSA using a snow reflectance model. The model simulates the light scattering process using a Monte Carlo method and shows an improvement of bidirectional reflectance, thus a better retrieval accuracy of SSA, compared to the spherical assumption. The overall difference, compared to field measurements, is about 6 m2/kg.

This paper, as the companion paper of part 1, applies the XBAER algorithm on Sea and Land Surface Temperature Radiometer (SLSTR) onboard Sentinel-3 to derive SGS, SPS and SSA. The general concept is to use the channels, which are sensitive to SGS and SPS, simultaneously. The channels used in XBAER algorithms are 0.55 μm and 1.6 μm. An optimal SGS and SPS pair is achieved by minimizing the difference of atmospheric-corrected directional surface reflectances between satellite observations and SCIATRAN simulations.
SSA is then calculated based on the retrieved SGS and SPS. Nine predefined ice crystal particle shapes (aggregate of 8 columns, droxtal, hollow bullet rosette, hollow column, plate, aggregate of 5 plates, aggregate of 10 plates, solid bullet rosette, column) (Yang et al., 2013) are used to describe the snow optical properties and to simulate the snow surface reflectance at 0.55 and 1.6 μm. XBAER-derived SGS, SPS, and SSA will be used to support the analysis of MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) expedition measurements.

Besides the three points we mentioned in part 1 of the companion paper, we would like to emphasize one more point to avoid misunderstandings between different scientific communities.

➢ A comparison between field-measured and satellite-derived SPS. A field-measured SPS is an optical shape for a single ice crystal while satellite-derived SPS is an averaged radiative shape on a certain geographic area. The geographic area is determined by the instrument spatial resolution (1 kilometer as used in this study). Thus it is unreasonable to directly compare a kilometer average radiative shape to a single ice crystal shape. However, for a region with a similar snow metamorphism process (Colbeck et al., 1980;1983), the field measured SPS may provide some representative information with respect to if the ice crystal shape is convex (e.g. spherical shape) or non-convex(aggregate shape), which is also critical for further applications. This fundamental difference between field-measured and satellite-derived SPS restricts that only a qualitative evaluation of the satellite retrieved SPS is possible.

This paper is structured as follows: instrument characteristics of SLSTR and the in-situ and aircraft measurements used for validation are described in section 2. Section 3 describes the method including cloud screening, atmospheric correction, and the flowchart of the eXtensible Bremen Aerosol/cloud and surface parameters Retrieval (XBAER) algorithm. Some selected data products and comparisons with MODIS products and in-situ data are shown in section 4. The comparison with the recent campaign measurement is presented in section 5.
A discussion to show a time series of the retrieval results is shown in section 6. The conclusions are given in section 7.

2 Data

2.1 SLSTR instrument

After the loss of Environmental Satellite (Envisat) on 12 April 2012, the European Space Agency (ESA) launched Sentinel-3A, Sentinel-3B in February 2016, and April 2018, respectively. As the successor of Advanced Along-Track Scanning Radiometer (AATSR) onboard Envisat, Sentinel satellites take the SLSTR instrument. The SLSTR instrument has similar characteristics as compared to AATSR (see Table 1 for details). The instrument has nine spectral bands in the visible and infrared spectral range. It also has dual-view observation capability with swath widths of 1420 km and 750 km for nadir and oblique directions, respectively. The SLSTR/AATSR dual-view observations of the Earth’s surface make surface BRDF effect estimation possible, which is widely used to retrieve both surface and atmospheric geophysical parameters (Popp et al., 2016). Besides the heritage of AATSR, some new features (wider swath, new spectral bands and higher spectral resolution for certain bands) have been included in SLSTR instrument (https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-slstr/instrument).

Table 1 Instrument characteristics of AATSR and SLSTR

<table>
<thead>
<tr>
<th>Band #</th>
<th>Central wavelength(μm)</th>
<th>Resolution(m)</th>
<th>Band #</th>
<th>Central wavelength(μm)</th>
<th>Resolution(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.555</td>
<td>500</td>
<td>4</td>
<td>0.555</td>
<td>1000</td>
</tr>
<tr>
<td>2</td>
<td>0.659</td>
<td>500</td>
<td>5</td>
<td>0.659</td>
<td>1000</td>
</tr>
<tr>
<td>3</td>
<td>0.865</td>
<td>500</td>
<td>6</td>
<td>0.865</td>
<td>1000</td>
</tr>
<tr>
<td>4</td>
<td>1.375</td>
<td>500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1.610</td>
<td>500</td>
<td>7</td>
<td>1.610</td>
<td>1000</td>
</tr>
<tr>
<td>6</td>
<td>2.25</td>
<td>500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3.74</td>
<td>1000</td>
<td>1</td>
<td>3.74</td>
<td>1000</td>
</tr>
<tr>
<td>8</td>
<td>10.85</td>
<td>1000</td>
<td>2</td>
<td>10.85</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>12</td>
<td>1000</td>
<td>3</td>
<td>12</td>
<td>1000</td>
</tr>
<tr>
<td>10</td>
<td>3.74</td>
<td>1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>10.85</td>
<td>1000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.2 Ground-based measurements

NASA established a terrestrial hydrology program (SnowEx mission) in order to better quantify the amount of water stored in snow-covered regions (Kim et al., 2017). The measurements for the first year (2016-2017) were carried out during February 2017 (between 08 February 2017 and 25 February 2017) at Grand Mesa and the Senator Beck Basin in Colorado (hereafter refer as SnowEx17) (See Fig. 1 (b)) (Elder et al., 2018). Grand Mesa is a forest region covered by relatively homogeneous snow cover with an area size similar to airborne instrument swath widths (Brucker et al., 2017) (See Fig. 1 (a)). Senator Beck Basin site has a complex topography and covered by snow. The campaign used more than 30 remote sensing instruments and most of the instruments are from the National Aeronautics and Space Administration (NASA) except some instruments such as the European Space Agency, ESA’s Radar (Kim et al., 2017). The snowpits measurements provide information of snow grain size and type/shape, stratigraphy profiles, and temperatures with certain information about surface conditions (e.g. snow roughness) (Rutter et al., 2018). The SnowEx17 campaign provides seven different shapes (New Snow, Rounds, Facets, Mixed Forms, Melt-Freeze, Crust, and Ice Lens). Table 2 lists both the SnowEx17 measured snow grain shapes and SPSs defined in Yang et al. (2013). An example of the snow structure/roughness can be seen from Fig. 1 (c). The measurements have been publicly released in nsidc.org/data/snowex.
Fig. 1 Photos taken during the SnowEx17 campaign. (a) An overview of the campaign environment; (b) Location of SnowEx17 campaign (red rectangles); (c) A detailed example of measured snow structure/roughness (Image/photo courtesy of A. Roy, A. Langlois, and L. Brucker; supplied by the National Snow and Ice Data Center, University of Colorado, Boulder.)

Table 2 Snow grain type (shape) provided by Yang et al (2013) and in-situ measurements in SnowEx campaign. Please note here the grain type in Yang and measured in SnowEx17 given in the same line have not linkage

<table>
<thead>
<tr>
<th>Grain Type</th>
<th>Abbriation</th>
<th>Schematic drawing</th>
<th>SnowEx17 Grain Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate of 8 columns</td>
<td>col8e</td>
<td></td>
<td>New Snow</td>
</tr>
<tr>
<td>Droxtal</td>
<td>droxa</td>
<td></td>
<td>Rounds</td>
</tr>
<tr>
<td>Hollow bullet rosettes</td>
<td>holbr</td>
<td></td>
<td>Facets</td>
</tr>
<tr>
<td>Hollow column</td>
<td>holco</td>
<td></td>
<td>Mixed Forms</td>
</tr>
<tr>
<td>Plate</td>
<td>pla_1</td>
<td></td>
<td>Melt-Freeze</td>
</tr>
<tr>
<td>Aggregate of 5 plates</td>
<td>pla_5</td>
<td></td>
<td>Crust</td>
</tr>
<tr>
<td>Aggregate of 10 plates</td>
<td>pla_10</td>
<td></td>
<td>Ice Lens</td>
</tr>
<tr>
<td>Solid bullet rosettes</td>
<td>solbr</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Column</td>
<td>solco</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

2.3 Aircraft observations

During the Polar Airborne Measurements and Arctic Regional Climate Model Simulation Project (PAMARCMiP) campaign held in March/April 2018 ground-based and airborne observations of surface, cloud and aerosol properties were performed near the Villum Research Station (North Greenland). One of the most important objectives of the PAMARCMiP 2018
campaign is to quantify the physical and optical properties of snow, sea ice and atmosphere (Egerer, et al., 2019; Nakoudi et al., 2020). Airborne spectral irradiance measurements by the Spectral Modular Airborne Radiation Measurement System (SMART) onboard the Polar 5 research aircraft operated by Alfred-Wegener-Institut were used to derive snow grain sizes along the flight track. The SMART provides solar up- and downward spectral irradiances in the range between 0.4 – 2.0 µm. The optical inlets are actively horizontally stabilized with respect to aircraft movement (Wendisch et al., 2001) within 5° pitch and roll angle. In particular, for high solar zenith angles (SZA) as present during PAMARCMiP (about 80° SZA) misalignment of the optical inlets implies significant measurement uncertainties (Wendisch et al., 2001). Further uncertainties are related to the spectral and radiometric calibration, as well as the correction of the cosine response which sums up to a total wavelength-dependent uncertainty (one sigma) for the irradiances ranging between 3 to 14% (Jäkel et al., 2015). The derivation of the surface albedo from aircraft observations requires atmospheric corrections due to the atmospheric masking by gases and molecules. There an iterative method to correct for these effects was applied according to the procedure described by Wendisch et al. (2004). The retrieval of the snow grain sizes is based on the method described in Carlsen et al. (2017) which uses a modified approach presented by Zege et al. (2011).

3 Methodology

3.1 Cloud screening

The algorithm synergistically uses SLSTR and OLCI data to identify clouds over the snow surface. The criteria for cloud screening over snow using SLSTR and OLCI measurements can be found in Istomina et al. (2010) and Mei et al. (2017), respectively. Short summaries of Istomina et al. (2010) and Mei et al. (2017) are presented below and more details can be found in the original publications. The algorithm proposed by Istomina et al. (2010) for the SLSTR instrument utilizes spectral behavior differences at SLSTR visible and thermal infrared channels. Relative thresholds have determined based on radiative transfer simulations under various atmospheric and surface conditions. The method proposed by Mei et al. (2017) for the OLCI instrument uses different cloud characteristics: cloud brightness, cloud height, and cloud
homogeneity. The TOA reflectance at 0.412 μm, the ratio of TOA reflectance at 0.76 and 0.753 μm, standard deviation of TOA reflectance at 0.412 μm are used to characterize cloud brightness, cloud height, and cloud homogeneity, respectively. A pixel is identified as a cloud-free snow pixel when both SLSTR and OLCI identify it as a cloud-free snow pixel. Identified clouds can be surrounded by a so-called “twilight zone” (Koren et al., 2007), which can extend more than ten kilometers from a cloud pixel to a cloud-free area. The surrounding 5×5 pixels of an identified cloud pixel will be marked as a cloud to avoid the “twilight zone” effect. A more details description of this cloud screening method can be found in Mei et al. (2020a).

3.2 Atmospheric correction

Due to the low atmospheric aerosol loading over the Arctic snow covered regions (e.g. Greenland), atmospheric correction using path radiance representation (Chandrasekhar, 1950; Kaufman et al., 1997) can provide accurate estimation of surface reflection even under relatively large SZA (Lyapustin, 1999). The TOA reflectance at selected channels (0.55 and 1.6 μm) is described by the path radiance representation (Chandrasekhar, 1950; Kaufman et al., 1997) as:

\[
R(\theta, \theta_0, \phi, \tau, AT) = R^A(\theta, \theta_0, \phi, \tau, AT) - \frac{T(\theta, \theta_0, \tau, AT)}{1 - s(\tau, AT)} A,
\]

where \(R^A(\theta, \theta_0, \phi, \tau, AT) \) is the TOA reflectance calculated assuming black surface (surface reflectance equal 0) under VZA, SZA and RAA of \(\theta, \theta_0, \phi \). \(\tau \) and AT are AOT and aerosol type. \(T(\theta, \theta_0, \tau, AT) \) is the total (diffuse and direct) transmittance from the sun to the surface and from surface to the satellite, \(s(\tau, AT) \) is spherical albedo, \(A \) is Lambertian surface albedo. The atmospheric correction is performed based on the following equation:

\[
A = \frac{R(\theta, \theta_0, \phi, \tau, AT) - R^A(\theta, \theta_0, \phi, \tau, AT)}{(R(\theta, \theta_0, \phi, \tau, AT) - R^A(\theta, \theta_0, \phi, \tau, AT)) s(\tau, AT) + T(\theta, \theta_0, \tau, AT)}.
\]

The atmospheric correction is based on the Look-Up-Table (LUT) precalculated using radiative transfer code SCIATRAN (Rozanov et al., 2014). The radiative transfer calculations
were performed assuming AOT values provided by MERRA simulations and aerosol type defined as weakly absorbing according to our previous investigation (Mei et al., 2020b).

3.3 XBAER Algorithm

The theoretical background of the retrieval algorithm is given in section 4 of the companion paper. The XBAER algorithm consists of three stages to derive SGS, SPS, and SSA: 1) derivation of SGSs for each predefined SPS; 2) selection of the optimal SGS and SPS pairs for each scenario; 3) calculation of SSA for each retrieved SGS and SPS. This section describes some implementation details such as the selection of the first guess for the retrieval parameters and the flowchart of the algorithm.

A reasonable first guess value for the iteration process can significantly reduce the computation time, which is important for retrievals of atmospheric and surface properties over large geographic and temporal scales with different instrument spatial resolutions. The first guess of SGS in the XBAER algorithm is obtained employing the semi-analytical snow reflectance model (Kokhanovsky and Zege, 2004; Kokhanovsky et al., 2018). Details of using this model to derive SGS can be found in Lyapustin et al. (2009). Due to the different band settings in MODIS and SLSTR (SLSTR has no 2.1 μm channel as MODIS), one non-absorption channel (0.55 μm) and one absorption channel (1.6 μm) are used in our SLSTR retrieval algorithm.

Fig. 2 shows the flowchart of how XBEAR derives SGS, SPS, and SSA. The flowchart includes pre-processing of cloud screening using the synergy of OLCI and SLSTR and the atmospheric correction using MERRA providing AOT and weakly absorbing aerosol type. The SGS and SPS are obtained using the LUT-based minimization routine. SSA is then calculated using the retrieved SGS and SPS.
XBAER: eXtensible Bremen Aerosol/cloud and surface parameters Retrieval (snow)

XBAER input for SLSTR nadir observations
- SLSTR TOA reflectance at 0.55, 0.67, 0.87, 1.6 μm
- Sun Zenith Angle(μ₀), Viewing Zenith Angle(μ), Relative Azimuth Angle(φ)
- Longitude, Latitude, Time

Identify bright pixels, mask out dark pixels and fill the values
Cloud Mask with the following criteria (P₁, P₂, and P₃ are threshold values)
- \((R₃ - R₄)/R₃ > P₁\) and \((R₁ - R₂)/R₃ < P₂\) and \((R₂ - R₃)/R₂ < P₃\)

5x5 pixel to remove cloud adjacency effect
XBAER_standard cloud screening

OLCI TOA reflectance
- 0.412 μm, 0.756 μm, 0.76 μm

No retrieval

Cloud free snow

First iteration
- SGS first guess \((r₀)\)

For 0.55 and 1.6 μm, interpolate LUT on geometry and SGS
Snow surface reflectance estimation based on Eq. (1) in part 1 of companion paper for a given ice crystal shape.

For 0.55 and 1.6 μm, interpolate LUT on geometry and AOT
Atmospheric Correction (AC) based on Eq. (2) for a given AOT(τ) and aerosol type

Find SGS and SPS such that \(l_{A,e}(r,SPS) - R_s(r,SPS)\) → min

XBAER output
- SGS
- SSA

\(r_i\) - SGS for iteration step \(i\)
\(r_{i-1}\) - SGS for iteration step \(i-1\)

Fig. 2 Flow chart of the XBAER retrieval algorithm
4 Results

Greenland is the largest ice-covered land mass in the northern hemisphere and the biggest cryospheric contributor to the global sea-level rise (Ryan et al., 2019). XBAER derived SGS, SPS, and SSA over Greenland enable a good understanding of the retrieval accuracy with a large and representative geographic scale. Kokhanovsky et al., (2019) reported that July is an optimal month to analyze satellite-derived snow properties over Greenland because Greenland has a strong Snow Particle Metamorphism Process (SPMP) due to higher temperatures in July (Nakamura et al. 2001). The SPMP, affected strongly by temperature, is a dominant factor for the variabilities of SGS, SPS, and SSA (LaChapelle, 1969; Sokratov and Kazakov, 2012; Saito et al., 2019). Snow particle size increases dramatically and the ice crystal particles are compacted in the strong SPMP (Aoki et al., 1999; Nakamura et al. 2001; Ishimoto et al. 2018).

Fig. 3 shows an example of the XBAER-derived SGS on 28 July 2017 from SLSTR and its comparison with the same scenario from MODSCAG product (Painter et al., 2009). Here we chose MODIS/Aqua rather than MODIS/Terra to avoid the impact of instrument degradation of MODIS/Terra (Lyapustin et al., 2014). The visualization of XBAER-derived SGS is shown to be between 10 and 500 μm. The XBAER and MODSCAG derived SGS show good agreement on the geographic distribution. The slight difference of cloud covered regions (white parts) is explained by the different overpass time between SLSTR and MODIS. Both algorithms demonstrate that SGSs in central Greenland are smaller than those at coastline regions. This is attributed to the geographic distribution of surface temperature over Greenland. In particular, central Greenland has a significantly higher elevation and the impacts of imperfect atmospheric correction on retrieved snow properties are ignorable. The lower temperature under higher elevation regions has weaker SPMP, producing more irregular SPS. The situation is opposite in the coastline regions over Greenland.

Fig. 4 shows XBAER retrieved SGS, SPS, and SSA for 28 July 2017. Since there are no available products of SPS and SSA from MODSCAG, it is a great challenge to do a similar comparison as in the case of SGS. Fortunately, campaign-based and laboratory investigations provide valuable information on typical snow shapes under different times/locations with a wide range of atmospheric conditions (humidity, temperature, ... etc.). Kikuchi et al. (2013)
proposed a global classification of snow particle shape based on 21 snow/ice crystal observation sites. According to Kikuchi et al. (2013), the typical SPSs in the polar regions include column crystal (e.g. solid column, bullet-type crystal) with SGS of about 50 μm for solid column and between 100 μm and 500 μm for bullet-type, the germ of ice crystal group with SGS of less than 50 μm. Saito et al. (2019) pointed out that SPSs of fresh snow in the polar regions are typically a mixture of irregular shapes such as column and platelike shape. Ishimoto et al. (2018) found that aged snow can have an aggregate structure. The optical properties of small ice crystal particles in aged snow may be well-characterized by granular/roundish shapes, while SPS tends to be irregular or severely roughened shapes during the SPMP (Ishimoto et al., 2018). Pirazzini et al (2015) investigated the impact of ice crystal sphericity on the estimation of snow albedo and found droxtal is a reasonable assumption to take ice particle non-sphericity into account. The above conclusions can be used as „qualitative reference“ to understand the satellite-derived SPS. According to Fig. 4, central Greenland is largely covered by small particles with roundish/droxtal shape while coastline regions are covered to be aggregated shapes (aggregate of 8 columns, aggregate of 5 plates, the aggregate of 10 plates) with large particle sizes, are essentially attributed to the different SPMP over different regions of Greenland. Bullet-type crystal (solid bullet rosettes) occurred with SGS of about 100 μm. The examples shown in Fig. 4 can be reasonably explained by previous publications (Kikuchi et al., 2013; Pirazzini et al., 2015; Ishimoto et al., 2018; Saito et al., 2019).

The geographic distribution of SSA is somehow anti-correlated with the geographic distribution of SGS, due to the definition of SSA. Most SSA fall into the range of 10-40 m²/kg, which agrees with previous publication (Kokhanovsk et al., 2019). The change of SSA occurs especially after snowfall (Carlsen et al., 2017; Xiong et al., 2018). Since SSA contains both information of SGS and SPS and field measurements provide SSA, the validation of SSA can be also used as an „indirect quantitative validation“ of SPS, which will be quantitatively presented in the next section.
Fig 3. A comparison of the MODISSCAG snow grain size (a) and XBAER derived snow grain size (b) over Greenland on 28 July, 2017.

Fig 4. XBAER derived snow grain size and snow grain shape over Greenland for the same scenario as in Fig. 3.
5 Comparison and Validation

In this section, we will quantitatively compare/validate XBAER derived snow properties with ground-based/aircraft measurements. We emphasize that the results presented in this section is considered as preliminary and the validation of our satellite-derived snow products will be complemented by the MOSAiC expedition, which is now ongoing.

5.1 Comparison with the observations of SnowEx17 campaign

The above analysis shows that the XBAER is capable to derive SGS, SPS, and SSA, which agrees reasonably well with existing satellite products or can be qualitatively explained by campaign-based and laboratory findings. In order to have a quantitative evaluation of XBAER-derived SGS, SPS, and SSA, we have collocated the SLSTR observations with recent campaign measurements provided by SnowEx17, as described in section 2. Due to overpass time and cloud cover, only limited match-ups between XBAER retrievals and SnowEx17 measurements have been obtained.

Table 3 summarizes match-up information. The first three columns in Table 3 show the observation time and locations (longitude and latitude). The fourth and fifth columns indicate the cloud conditions. Cloud conditions in Table 3 are given by three categories: cloud-free snow, cloud-contaminated snow, and cloud-covered snow. These three categories are classified by the XBAER cloud identification results and are illustrated by the RGB composition figures, covering the SnowEx campaign area, as presented in Fig. 4. An optically thin cloud over a melting snow layer, a thick cloud over snow, and snow scenarios are presented in Fig. 4 (a), (b) and (c), respectively. The cloud optical thickness (COT), estimated using the independent XBAER cloud retrieval algorithm, as presented in Mei et al (2018), is \sim0.5 and \sim10 for 9th and 11th February, respectively.

<table>
<thead>
<tr>
<th>Date</th>
<th>Lon(°)</th>
<th>Lat(°)</th>
<th>COT</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>02-09</td>
<td>-108.1092</td>
<td>39.0369</td>
<td>~0.5</td>
<td>cloud-contaminated snow</td>
</tr>
<tr>
<td>02-22</td>
<td>-108.0634</td>
<td>39.0444</td>
<td>0</td>
<td>cloud-free snow</td>
</tr>
<tr>
<td>02-22</td>
<td>-108.0625</td>
<td>39.0459</td>
<td>0</td>
<td>cloud-free snow</td>
</tr>
<tr>
<td>02-22</td>
<td>-108.0617</td>
<td>39.047</td>
<td>0</td>
<td>cloud-free snow</td>
</tr>
<tr>
<td>02-11</td>
<td>-108.0462</td>
<td>39.0278</td>
<td>~10</td>
<td>cloud-covered snow</td>
</tr>
</tbody>
</table>

https://doi.org/10.5194/tc-2020-270
Preprint. Discussion started: 7 October 2020
© Author(s) 2020. CC BY 4.0 License.
Even though the synergistical use of SLSTR and OLCI provides valuable information to separate cloud and snow, the identification of an optically thin cloud above a snow layer is a great challenge due to the similar wavelength dependence of snow and cloud reflectance, especially between snow and ice cloud (Mei et al., 2020). The identification of the cloud from an underlying snow layer in XBAER relies mainly on the O$_2$ channel on OLCI instrument, which provides the cloud height information (Mei et al., 2017). Fig. 5 shows the performance of XBAER cloud identification results for cloud contamination and cloud-covered snow scenarios. The red star indicates the measurement location. The zoom-in figures around the measurement site is presented in Fig. 4 above. XBAER cloud screening shows, in general, a good performance according to the RGB visual interpretation. However, part of the thin cirrus cloud on the 9th of February is not correctly avoided. For 9th of February, XBAER cloud identification give a result of clean snow while it contains a thin cloud above a snow layer. For the 11th of February, XBAER has successfully detected the cloud from an underlaying snow layer. For a comprehensive investigation of XBAER derived snow properties under all snow-cloud coupled conditions, the fifth match-up on 11th February 2017 (labeled as grey) has been manually set to be “cloud free snow”. The reason to perform the validation for different cloud conditions is that the satellite retrieval can only be performed under cloud-free conditions while...
field measurements may be obtained under cloud conditions, especially when fresh snow properties are measured. Thus, the field-measurements under full-cloud or partly-cloudy conditions are still valuable in the validation process. According to the sensitivity study, cloud contamination leads to an underestimation of SGS and the overestimation of SSA, depending on the cloud fraction.

Fig 5. The RGB composition (left column) for 9 (a) and 22 (c) February when XBAER detect as cloud free snow and provides the retrieval. The XBAER cloud screening results (right column) for the corresponding days are given in (b) and (d).

Table 4 summarizes the comparison between XBAER retrieval results and SnowEx17 campaign measurements. The first three columns in Table 4 are the same as Table 3, showing the observation time and locations (longitude and latitude). The second three columns are the SnowEx17 measured SGS. Since the SnowEx17 provides the SGS profile up to 1 meter depth, the minimum (SnowEx_min), average (SnowEx_avg), and maximum (SnowEx_max) values of SGS are listed in Table 3. The last column is XBAER derived SGS. For the four cloud-filter-passed match-ups, XBAER-derived SGS shows good agreement with SnowEx17 measurements, especially for the 22nd of February. The average absolute difference is less than 10 μm (4 % in relative difference). The relatively large SGS (≥ 250μm) caused mainly by the
warm-up on the 21st of February (see the comment in Table 5, reported by campaign participators), the warmer condition leads to a quicker snow metamorphism process, forming large ice crystal particles.

An underestimation is found for the first match-up on the 9th of February. This is explained by the cirrus cloud contamination as presented in Fig. 4 and 5. According to our independent XBAER cloud retrieval (Mei et al., 2018), the COT is \sim0.5, cloud contamination with COT=0.5 introduces \sim30% underestimation according to Fig. 11 in part 1 of the companion paper. So for SGS\sim100 μm, provided by SnowEx, XBAER is expected to have a theoretically retrieved SGS of \sim 70 μm while a value of 78.2 μm is obtained from the real satellite retrieval. In order to further confirm this negative bias feature caused by cloud contamination, 11th February (a snowstorm at the measurement site is reported by campaign participators), although filtered by the XBAER cloud screening routine, is forced to retrieve the full-cloud-covered scenario as a cloud-free case. According to the theoretical investigations presented in part 1 of the companion paper, for COT\geq5, the XBAER algorithm retrieves cloud effective radius, rather than SGS. The retrieved ice crystal size depends on the cloud effective radius of the cloud above the underlying snow layer. The independent XBAER cloud retrieval provides SGS value of \sim38 μm while 32.3 μm is obtained by the XBAER snow retrieval, for a reference value of 100 μm as provided by SnowEx17 measurement. This is consistent with a typical ice cloud effective radius (King et al., 2013; Mei et al., 2018), under a snowstorm condition.

Table 4 The comparison between SnowEx SGS and XBAER retrieved SGS during February, 2017.

<table>
<thead>
<tr>
<th>Date</th>
<th>Lon(°)</th>
<th>Lat(°)</th>
<th>SnowEx_min(μm)</th>
<th>SnowEx_avg(μm)</th>
<th>SnowEx_max(μm)</th>
<th>XBAER(μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>02-09</td>
<td>-108.1092</td>
<td>39.0369</td>
<td>50</td>
<td>100</td>
<td>150</td>
<td>78.2</td>
</tr>
<tr>
<td>02-22</td>
<td>-108.0634</td>
<td>39.0444</td>
<td>100</td>
<td>250</td>
<td>500</td>
<td>254.4</td>
</tr>
<tr>
<td>02-22</td>
<td>-108.0625</td>
<td>39.0459</td>
<td>150</td>
<td>250</td>
<td>400</td>
<td>254.4</td>
</tr>
<tr>
<td>02-22</td>
<td>-108.0617</td>
<td>39.047</td>
<td>100</td>
<td>200</td>
<td>300</td>
<td>215.7</td>
</tr>
<tr>
<td>02-11</td>
<td>-108.0462</td>
<td>39.0278</td>
<td>50</td>
<td>100</td>
<td>200</td>
<td>32.3</td>
</tr>
</tbody>
</table>
Table 5 shows the same match-up information as in Table 4, but for SPS. We would like to highlight again, the SPSs proposed by Yang et al (2013) are used for the radiative transfer calculation. From a single ice crystal point of view, those shapes are very unlikely to occur exactly in reality. This is similar to the issue in field measurements. Spherical shape assumption is widely used (e.g., the measurement of SSA), however, a pure spherical shape is also very unlikely to occur in natural snow. To have a reasonable comparison between satellite-derived SPS and field-measured SPS, the quantitative information of “roundish” or “irregular” shapes from both satellite and field measurement communities may be an option. Under this comparison strategy, a „droxtal” shape derived from satellite observation is somehow identical with a „spherical shape” in field measurement.

The second and third column in Table 5 are SnowEx17-measured and XBAER-derived SPS. The abbreviations of the SPS are listed in Table 2. The 4-6th columns are the temperature, wetness of snow and the comments provided by campaign, respectively. Previous publications show that ice cloud and fresh snow are best described by aggregate of 8 columns (Järvinen et al., 2018). Both 9th and 11th February are retrieved to be aggregate of 8 columns because both of them are affected by ice cloud. The first sample on 22nd February is reported to be aggregate of 8 columns and the observation of SnowEx17 is fresh snow. The SPS of the second sample on 22nd February is “facet” while XBAER says “droxtal” (no exact facet shape is defined in Yang et al., 2013), both tend to be roundish. It is interesting to compare the SPS for the third sample on 22nd February. The SPSs are round and aggregate of 8 columns for SnowEx17 measurement and XBAER retrieval, respectively. The atmospheric condition is reported to be “windy” and the snow layer is wind-affected and not very well-banded ice crystal. Ice crystal shape in blowing snow is likely to be irregular and aggregated (Lawson et al., 2006; Fang and Pomeroy, 2009; Beck et al., 2018), which is strongly affected by the near surface processes (Beck et al., 2018). The wind blowing snow may be well-represented optically by a “aggregate of 8 columns” shape, as retrieved by XBAER.
Table 5 The comparison between SnowEx snow grain shape and XBAER retrieved SGP during February, 2017.

<table>
<thead>
<tr>
<th>Date</th>
<th>SnowEx shape</th>
<th>XBAER shape</th>
<th>Temperature (°)</th>
<th>Wetness</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>02-09</td>
<td>Rounds</td>
<td>col8e</td>
<td>0.2</td>
<td>Wet</td>
<td>-</td>
</tr>
<tr>
<td>02-22</td>
<td>New Snow</td>
<td>col8e</td>
<td>-5.1</td>
<td>Dry</td>
<td>Very surface has sparse surface hoar, affected by yesterday's warm up, bit of crust fragments</td>
</tr>
<tr>
<td>02-22</td>
<td>Facets</td>
<td>droxa</td>
<td>-3.6</td>
<td>Dry</td>
<td>Very very thin layer of tiny surface facets, still standing not well formed</td>
</tr>
<tr>
<td>02-22</td>
<td>Rounds</td>
<td>col8e</td>
<td>-1.8</td>
<td>Dry</td>
<td>Surface very wind-affected very thin (3mm) melt- freeze layer not very well-banded</td>
</tr>
<tr>
<td>02-11</td>
<td>New Snow</td>
<td>col8e</td>
<td>-2.5</td>
<td>Middle</td>
<td>Storm snow, some grapple, some aggregation of crystals</td>
</tr>
</tbody>
</table>

Table 6 shows the comparison of SSA. For the three cloud-free samples, the difference of XBAER-derived SSA and SnowEx17 measured SSA is 2.7 m²/kg, which is significantly smaller than what has been reported by previous publications. For instance, the differences between satellite retrievals and field measurements are reported to be 9 m²/kg and ~6 m²/kg as presented in Mary et al (2013) and Xiong et al (2018). An interesting case is observed for the two-sample on 22nd February (samples 3 and 4). The SGSs show the same values for these two match-ups (both are 254.4 μm from XBAER and 250 μm from SnowEx), however, ground-based measurement shows almost two times the difference of SSA (29.8 m²/kg vs 14.6 m²/kg) for these two samples, which is due to the different SPSs. SnowEx shows that the SPSs are new snow and facets for these two samples, respectively. XBAER derived SSAs are 24.5 and 12.9 m²/kg, which agrees well with SnowEx measurement. Since both SnowEx and XBAER provide very similar SGS (250 μm vs 254.4 μm), the agreement of SSA indicates that XBAER derived “aggregate of 8 columns” is comparable to „new snow“ while XBAER derived „droxtal“ is somehow „identical“ to “facets” in SnowEx. Cloud contamination introduces an overestimation of SSA, especially for 11th February. According to the investigation from the companion paper, for reference SSAs of 37.3 and 25.9 m²/kg, SSA is expected to be ~ 65 m²/kg and >100 m²/kg for cloud contamination with COT ~ 0.5 and 10, respectively. The real satellite retrieval values are 56.5 and 136.8 m²/kg, respectively.
Table 6 The comparison between SnowEx SSA and XBAER retrieved SSA during February, 2017.

<table>
<thead>
<tr>
<th>Date</th>
<th>Lon(°)</th>
<th>Lat(°)</th>
<th>SnowEx(m²/kg)</th>
<th>XBAER(m²/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>02-09</td>
<td>-108.1092</td>
<td>39.0369</td>
<td>37.3</td>
<td>56.5</td>
</tr>
<tr>
<td>02-22</td>
<td>-108.0634</td>
<td>39.0444</td>
<td>18.5</td>
<td>17.4</td>
</tr>
<tr>
<td>02-22</td>
<td>-108.0625</td>
<td>39.0459</td>
<td>14.6</td>
<td>12.9</td>
</tr>
<tr>
<td>02-22</td>
<td>-108.0617</td>
<td>39.047</td>
<td>29.8</td>
<td>24.5</td>
</tr>
<tr>
<td>02-11</td>
<td>-108.0462</td>
<td>39.0278</td>
<td>25.9</td>
<td>136.8</td>
</tr>
</tbody>
</table>

The above validation for the retrieval of SGS, SPS, and SSA using the XBAER algorithm, although with limited samples, indicate the consistent of the sensitivity study from the companion paper in part 1 and the retrieval results in part 2, as presented in this section.

5.2 Comparison with observations of aircraft campaign

The optical snow grain size over Arctic sea ice was derived from airborne SMART measurements as described in Sect. 2.3. Fig. 6 (a) shows the retrieved grain size along the flight track (black encircled area) taken on 26 March 2018 between 12 and 14 UTC north of Greenland. During this period of cloudless conditions, a Sentinel3 overpass (12:29 UTC) delivered SGS data based on the XBAER algorithm as displayed in the background of this map with 1 km spatial resolution. In general, lower SGS were observed by both methods in the vicinity of Greenland, while in particular in the North-East region of the map (red dashed circle in Fig. 6 (a)) SGS- values of up to 350 µm were derived from the aircraft albedo measurements. Also the XBAER algorithm reveals higher values in this region. For a direct comparison XBAER data were allocated to the time series of the SMART measurements along the flight track. Afterwards all successive SMART data points assigned to the same XBAER location were averaged to compile a joint time series of both data sets as displayed in Fig. 6 (b). Overall a correlation coefficient of $R = 0.82$ and a root mean squared error of RMSE = 12.4 µm was derived, where SMART (mean SGS: 165±40 µm) generally shows lower grain sizes than XBAER (mean SGS: 138±21 µm). The course of the SGS follows a similar pattern for both methods, with largest deviations when the aircraft measured in the red dashed circled area from Fig. 6 (a). The corresponding time periods are indicated by the light red shaded area.
observations along the flight track have revealed an increase of surface roughness in this area. Note, that the flight altitude varied for the flight section shown in Fig. 6 (a). Due to the low sun, such a non-smooth surface produces a significant fraction of shadows which lowers the measured albedo. Consequently, the retrieved SGS is affected in particular for the lowest flight section when SMART collects the reflected radiation with high spatial resolution. This might explain why the deviation of the retrieved SGS values in this area are largest around 13 UTC when flight altitude was in the range of 100 m.

The SGS retrieval based on the algorithm suggested by Zege et al. (2011) and Carlsen et al. (2017) give the optical radius of the snow grains, such that the SSA can be derived applying Eq. (A1) from companion paper. The map of the SSA (Fig. 6 (c)) reflects a similar pattern than observed for the SGS, showing an inverse behavior to Fig. 6 (a). In average, XBAER (mean SSA: 24±3 m2/kg) and SMART (mean SSA: 21±5 m2/kg) agree within the 1-sigma standard deviation. The correlation of SSA between XBAER and SMART is similar as for the SGS with a correlation coefficient R = 0.81 and RMSE = 2.0 m2/kg.
Figure 6: (a) Map of SGS retrieval results from Sentinel measurements in the North of Greenland from 26 March 2018. The black encircled area represent the SMART retrievals of the SGS along the flight track. The red dashed circle marks a region with increased surface roughness. (b) Time series of both retrieval data sets adapted to the aircraft flight path. Periods matching with the circled area in (a) are shaded in light red. (c) and (d) are similar to (a) and (b) but for SSA. Additionally, the flight altitude is given.

Since XBAER is also designed to support MOSAiC campaign on an Arctic-wide scale (Mei et al., 2020c), it is important to have an overview of how snow properties look like on an Arctic-wide scale for existing campaign. Fig. 7 shows the SGS, SPS and SSA geographic distribution over the whole Arctic for 26 March 2018. Northern Greenland, North America, and central Russia show large snow particles, especially over North America. And the SPS shows
more diversities in lower latitude compared to the central Arctic, indicating stronger SPMP. An aggregated shape such as aggregate of 8 columns is the dominant shape in the central Arctic while column is one of the dominant shapes in lower latitude. SSA shows large values in the lower latitude Arctic (northern Canada, southern Greenland, western Norway, southern Finland, northern Russia) while the values are smaller in the central Arctic.

Fig. 7 The distribution of XBAER-derived SGS, SPS and SSA over the whole Arctic for 26 March 2018

6 Discussion

The above analysis shows the promising quality of XBAER-derived SGS, SPS and SSA results. The XBAER retrieved SGS, SPS and SSA can be used to understand the change of snow properties temporally. Aoki et al. (2000) and Saito et al. (2019) pointed out that a 4-days time scale is a reasonable time-span to see the temporal change of snow properties. Fig. 8 shows
XBAER-derived SGS (upper panel), SPS (middle panel) and SSA (lower panel) over Greenland during 27 – 30 July, 2017. Large variability for SGS, SPS and SSA can be seen during these four days, indicating the impacts of snow metamorphism on the snow properties. Fig. 8 shows snow melting process in both western and northeastern parts of Greenland, especially during 28 July. The strong melting in July over Greenland has also been reported by Lyapustin et al (2009). SPS over southeastern part of Greenland becomes smaller during those four days. No snowfall has been reported according to POLAR PORTAL report (http://polarportal.dk/en/greenland/surface-conditions/) during these four days, thus the smaller SGS may be caused by the wind-blown fresh snow, transported from central Greenland to southeastern parts. This is consistent with the wind direction reported as https://www.windy.com/?62.083,2.900,4. The change of SGS is also consistent with the change of SPS. According to Fig. 8, SPSs over Greenland derived from the XBAER algorithm are mainly droxtals and solid bullet rosettes for the selected days. The solid bullet rosettes and droxtal are typical ice crystal shapes for fresh snow and aged snow (Nakamura et al.,2001), respectively. The wind-blown fresh snow might be transported to the eastern part of Greenland, and fresh snow covers the original aged snow, thus a solid bullet rosettes shape is retrieved. The change of SSA follows the change of SGS and SPS. SSA over central Greenland is larger while it is smaller in the coastline regions. This can be explained by the reduced SPMP impact on the snow properties due to the increase of elevation in central Greenland. Inversely proportional to SGS, the SSA reduces. The coverage of large SSA over the eastern part of Greenland increase during these four days, indicating the „snowfall” feature due to transport. This wind-induced transport feature, similar to fresh snowfall, changes both SGS and SPS. And this process is revealed by and superimposed on the SPMP during the temporal change of SSA retrieved from satellite observations (Carlsen et al., 2017).
Fig 8. XBAER derived SGS, SPS and SSA over Greenland during 27 – 30 July 2017.

7 Conclusions

SGS, SPS and SSA are three important parameters to describe snow properties. Both SGS, SPS and SSA play important roles in the changes of snow albedo/reflectance, further impact the atmospheric and energy-exchange processes. A better knowledge of SGS, SPS and SSA can provide more accurate information to describe the impact of snow on Arctic amplification processes. The information about SGS, SPS and SSA may also explore new applications to understand the atmospheric conditions (e.g. aerosol loading). Although some previous attempts (e.g. Lyapustin et al., 2009) show the capabilities of using passive remote sensing to derive SGS over a large scale, no publications have been found to derive SGS, SPS and SSA simultaneously. This is the first paper, to our best knowledge, attempting to retrieve both SGS, SPS and SSA using passive remote sensing observations.

The new algorithm is designed within the framework of XBAER algorithm. The XBAER algorithm has been applied to derive SGS, SPS and SSA using the newly launched SLSTR instrument onboard Sentinel-3 satellite. The cloud screening is performed with a synergistical technique using both OLCI and SLSTR measurements. The synergistical usage of OLCI and
SLSTR explore the maximum wavelength information provided by both instruments. The O$_2$-623 A channel in OLCI and infrared channel in SLSTR instrument provide valuable information to detect cloud over snow surfaces. The use of OLCI and SLSTR, rather than SLSTR alone, show good performance of cloud screening compared to previous publications (e.g. Istomina et al., 2010). The synergistical cloud screening in XBAER is easy-implementable and effective-runable on a global scale, with high-quality, enables a cloud-contamination-minimized SGS, SPS and SSA retrieval using passive remote sensing.

Besides the cloud screening, another pre-process is the atmospheric correction. Aerosol plays a non-ignorable impact on the retrieval of SGS, SPS and SSA, even over the Arctic regions, where aerosol loading is small (AOT, at 0.55μm is around 0.05) (Mei et al., 2020b). In the XBAER algorithm, the MERRA simulated AOT at 0.55μm, together with a weakly absorption aerosol type (Mei et al., 2020b) is used as the inputs for the atmospheric corrections.

The SGS, SPS and SSA retrieval algorithm is based on the publication by Yang et al (2013), in which a database of optical properties for nine typical ice crystal shapes (aggregate of 8 columns, droxtal, hollow bullet rosettes, hollow column, plate, aggregate of 5 plates, aggregate of 10 plates, solid bullet rosettes, column) are provided. Previous publications show that this database can be used to retrieve ice crystal properties in both ice cloud and snow layer (e.g., Järvinen et al., 2018; Saito et al., 2019). The algorithm is a LUT-based approach, in which the minimization is achieved by the comparison between atmospheric corrected TOA reflectance at 0.55 and 1.6 μm observed by SLSTR and pre-calculated LUT under different geometries and snow properties. The retrieval is relatively time-consuming because the minimization has to be performed for each ice crystal shape and the optimal SGS and SPS are selected after the 9 minimization are done. The SSA is then calculated using the retrieved SGS and SPS based on another pre-calculated LUT.

The comparison between XBAER derived SGS, SPS and SSA show good agreement with the SnowEx17 campaign measurements. The average absolute and relative difference between XBAER derived SGS and SnowEx17 measured SGS is about 10 μm and 4%, respectively. XBAER derived SGS also shows good agreement with MODIS SGS product. XBAER
retrieved SPS reveals reasonable and explainable linkage with SnowEx17 measurements. The difference of XBAER-derived SSA and SnowEx17 measured SSA is 2.7 m²/kg. The retrieval results over Greenland reveal the general patterns of snow properties over Greenland, which is consistent with previous publications (Lyapustin et al. 2009). SGS is smaller over central Greenland and larger over coastline regions due to the meteorological conditions. The spatial distribution of SSA is somehow anti-correlated with SGS. The fresh snow and aged snow over Greenland are well-captured by droxtals and solid bullet rosettes. The change of SGS, SPS and SSA on a 4 days time span is also observed using XBAER retrieved SGS, SPS and SSA. The comparison with aircraft measurement during PAMARCMiP campaign held in March 2018 also indicates good agreement (R = 0.82 and R=0.81 for SGS and SSA, respectively). XBAER-derived SGS and SSA reveal the variabilities of the aircraft track of the PAMARCMiP campaign. XBAER-derived SGS/SSA show smoother patterns compared to aircraft measurements due to spatial resolution, height, and observation geometries. XBAER derived SGS, SPS and SSA over the whole Arctic for the aircraft measurement period show strong variabilities for SGS, SPS and SSA.

Although the presented version of the XBAER retrieval algorithm shows promising results, we see at least three possibilities to improve its accuracy. An intensive validation with the support of MOSAiC campaign is needed. Currently only single ice crystal shape is used in the retrieval, the mixture of different ice crystal shapes i.e., the snow grain habit mixture model (e.g., Saito et al. 2019) will be tested in further work. Another potential improvement may be linked to the usage of polydisperse ice crystals (e.g. gamma distribution). The potential impacts of the vertical structure of SGS and SPS also need to be investigated in the future.
Acknowledgements

This research was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 268020496 – TRR 172. The authors would like to thank Prof. Knut von Salzen from Environment Canada for the valuable discussion. We thank the support from Dr. Lisa Booker from National Snow and Ice Data Center, Boulder to understand the SnowEx17 campaign data. We thank Dr. Alexander Kokhanovsky from VITROCISET, Darmstadt, Germany and Prof. Jason E. Box from Geologic Survey of Denmark and Greenland (GEUS) for the valuable discussion. We thank Salguero Jaime for providing the MODSCAG snow products. The MODIS snow product data are provided by MODSCAG team and SLSTR/OLCI data are provided by ESA.

Reference

Yang, P., Bi, L., Baum, B. A., Liou, K.-N., Kattawar, G. W., Mishchenko, M. I. And Cole, B.: Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 μm, J. Atmos. Sci., 70, 330–347, 2013.

