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Abstract. A method of simultaneously estimating snow depth and sea ice thickness using satellite-based freeboard 

measurements over the Arctic Ocean during winter was proposed. The ratio of snow depth to ice thickness (referred to as ) 10 

was defined and used in constraining the conversion from the freeboard to ice thickness in satellite altimetry. Then,  was 

empirically determined using the ratio of temperature difference of the snow layer to the difference of the ice layer, to allow 

the determination of  from satellite-derived snow surface temperature and snow–ice interface temperature. The proposed 

method was validated against NASA’s Operation IceBridge measurements, and comparison results indicated that the 

algorithm adequately retrieves snow depth and ice thickness simultaneously: retrieved ice thickness was found to be better 15 

than the current satellite retrieval methods relying on the use of snow depth climatology as input, in terms of mean bias and 

RMSE. The application of the proposed method to CryoSat-2 ice freeboard measurements yields similar results. In 

conclusion, the developed -based method has the capacity to derive ice thickness and snow depth, without relying on the 

snow depth information as input to the buoyancy equation for converting freeboard to ice thickness. 

1 Introduction 20 

Satellite altimeters have been used to estimate sea ice thickness for nearly two decades (Kwok et al., 2009; Laxon et al., 

2013). The altimeters do not measure sea ice thickness directly but measure the sea ice freeboard which is then converted to 

sea ice thickness with assumptions, for example, regarding the snow depth, snow/ice densities, and radar penetration (Ricker 

et al., 2014). We hereafter refer to this procedure as ‘freeboard to thickness conversion’. 

Generally used two types of satellite altimeters measure different sea ice freeboards. Lidar altimeters such as NASA’s 25 

ICESat (Zwally et al., 2002) and ICESat-2 (Markus et al., 2017) missions measure total freeboard (htf): the height from the 

sea surface to the snow surface. On the other hand, radar altimeters such as ESA’s CryoSat-2 (CS2) (Wingham et al., 2006) 

measure radar freeboard (hrf): the height from the sea surface to radar scattering horizon. Several studies indicate that the 

radar scattering horizon is at or above the snow–ice interface depending on ice type and snow/ice conditions (Armitage and 

Ridout, 2015; Tonboe et al. 2010). However, the radar scattering horizon is often treated as the snow–ice interface (Kurtz et 30 
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al., 2014; Kwok and Cunningham, 2015). The height from the sea surface to the snow–ice interface is called ice freeboard 

(hf). The three different freeboards are indicated in Fig. 1. 

For both lidar and radar altimeters, snow depth (h) is required as an input to constrain the freeboard to thickness conversion; 

thus, the conversion results are highly dependent on snow depth (Ricker et al., 2014; Zygmuntowska et al., 2014; Kern et al. 

2015). The buoyancy equation used in the freeboard to thickness conversion describes the balance between buoyancy and the 35 

weight of snow and ice. For given freeboard and snow/ice densities, sea ice thickness (H) is a function of h. According to 

Zygmuntowska et al. (2014), up to 70% of uncertainty in the freeboard to thickness conversion stems from the poorly 

constrained snow depth. However, mapping the Arctic scale snow depth distribution is challenging. The most commonly 

used snow depth information necessary for the freeboard to thickness conversion is the modified version of the snow depth 

climatology by Warren et al. (1999) (hereafter W99). W99 is based on in-situ measurements at Soviet drifting stations 40 

(1954–1991) mostly on multi-year ice (MYI). Kurtz and Farrell (2011) compared W99 with Operation IceBridge (OIB) 

snow depth measurements in 2009 and claimed that W99 was still valid on the MYI region and significantly differed from 

OIB snow depth on first-year ice (FYI). Based on that study, Modified W99 (hereafter MW99) was developed, which halves 

W99 snow depth in regions covered by FYI. MW99 is often used in CS2 ice thickness products available at CPOM-UCL 

(Laxon et al., 2013), AWI (Ricker et al., 2014), and NSIDC (Kurtz et al., 2017).  45 

However, the use of MW99 for freeboard to thickness conversion understandably yields a substantial error, considering that 

W99 is a climatology. This is because the actual snow depth distribution is subject to the year-to-year variation of snow–ice 

system, thus the climatology based on the 37-year measurements of snow depth would deviate significantly from the actual 

distribution (Webster et al., 2014). Accordingly, such deviation causes errors in the estimation of ice thickness. Thus, 

additional snow observations covering both MYI and FYI on the Arctic basin scale would be ideal as a replacement of 50 

MW99. 

There have been various approaches aimed at obtaining the snow depth distribution over the Arctic scale using satellite 

observations. Markus and Cavalieri (1998) developed an algorithm based on the Brightness Temperatures (TBs) of Special 

Sensor Microwave/Imager (SSM/I) based on the negative correlation of the snow depth with the spectral gradient ratio 

between 18 and 37 GHz of vertically polarized TB’s on the Antarctic FYI. Comiso et al. (2003) have updated the 55 

coefficients of this algorithm for the Advanced Microwave Scanning Radiometer for EOS (AMSR-E). However, snow depth 

retrieval using this algorithm is relatively less accurate when the MYI fraction within the grid cell is significant (Brucker and 

Markus, 2013). Recently, Rostosky et al. (2018) suggested a new method: using the lower frequency pair of 7 and 19 GHz to 

overcome the limitation. Nonetheless, estimating the basin-scale distribution seems to be a difficult task. 

There are other approaches involving the use of the lower frequency measurements at L-band. Using Soil Moisture Ocean 60 

Salinity (SMOS) measurements, Maaß et al. (2013) found that 1.4 GHz TB depends on the snow depth through the 

insulation effect of snow layer, and they determined snow depth by matching RTM simulated TBs with SMOS-measured 

TBs. Zhou et al. (2018) simultaneously estimated the sea ice thickness and snow depth by adding additional laser altimeter 
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freeboard information, improving the Maaß et al. (2013) approach. However, both of these RTM-based approaches require a 

priori information on ice properties (e.g. temperature and salinity profiles). 65 

Other approaches worth mentioning are snow depth retrieval using dual-frequency altimetry (Guerreiro et al., 2016; 

Lawrence et al., 2018, Kwok and Markus, 2018), snow on sea ice model accumulating snowfall from reanalysis (Petty et al., 

2018), multilinear regression (Kilic et al., 2019), and the neural network approach (Braakmann-Folgmann and Donlon, 2019). 

However, these methods do not satisfactorily meet the criteria required for freeboard to ice conversion over the entire Arctic 

Ocean basin scale or multi-year time scale.  70 

In this situation, let us switch our point of view to solving the buoyancy equation instead of retrieving snow depth. 

Remember that there is one buoyancy equation with two unknowns (snow depth and ice thickness) for given densities and 

freeboard. The attempt so far has been to add one constraint (snow depth information) to the buoyancy equation for solving 

ice thickness. However, if a particular relationship between two unknowns is available, it can be used to constrain the 

equation yielding both ice thickness and snow depth.  75 

To identify such a relationship, this study examines the vertical thermal structure within the snow/ice layers observed by 

drifting buoys. The vertical thermal structure of a snow–ice system in winter is rather simple; the temperature profile of the 

snow–ice system can be assumed to be piecewise linear, as illustrated in Fig. 1. Therefore, the temperatures at three 

interfaces can represent the thermal state of the snow–ice system fairly well; they are (1) air–snow interface temperature (Tas), 

(2) snow–ice interface temperature (Tsi), and (3) ice–water interface temperature (Tiw). Tiw is assumed to be almost constant 80 

at the freezing temperature of seawater (Maaß et al., 2013), implying that two other interface temperatures (Tas and Tsi) are 

sufficient to describe the thermal structure of the system.  

Based on this thermal structure, there may exist a constraint relating the snow depth and ice thickness. In identifying a 

constraint, conductive heat flux is assumed to be continuous through the snow–ice interface (Maykut and Untersteiner, 1971), 

implying that conductive heat fluxes within the snow and ice layers are same under the steady-state assumed in the given 85 

thermal structure. As the conductive heat flux is proportional to the bulk temperature difference of the layer divided by its 

thickness, it is possible to deduce the relationship between snow depth and ice thickness from the given thermal structure.  

Once the relationship is obtained, then it is possible to apply it to the Arctic Ocean basin scale because the thermal structure 

can be resolved from satellites, as shown in the recently available basin-scale and long-term satellite-derived interface 

temperatures (Dybkjæ r et al., 2020; Lee et al., 2018). In determining snow depth along with ice thickness, instead of using 90 

the snow depth as an input to solve for the ice thickness, we intend to (1) examine the relationship between the vertical 

thermal structure of a snow–ice system (Tas and Tsi) and the thicknesses of the snow and ice layer (h and H) using buoy 

measurements, (2) retrieve sea ice thickness and snow depth simultaneously by applying their relationship to the freeboard to 

thickness conversion as a constraint, thus replacing the snow depth information. The result may reduce uncertainty in the 

freeboard to ice thickness conversion by replacing the currently used snow depth information. 95 
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2 Method 

Here, we provide the theoretical background of how the snow–ice thickness ratio ( = h / H) can be related to Tas and Tsi. 

Then, after empirically determining the relationship of  to Tas and Tsi from buoy measured temperature profiles,  obtained 

from satellite-observed Tas and Tsi is used to constrain the conversion from freeboard to ice thickness over the Arctic Ocean 

during winter.  100 

2.1 Theoretical background 

We intend to find a relationship between snow depth and ice thickness in terms of the vertical thermal structure of a snow–

ice system. Because the temperature gradient within the snow and ice layer is linked to both temperature and thickness, we 

focus on the temperature gradient. Owing to the physical reasoning that the conductive heat flux is continuous across the 

snow–ice interface (Maykut and Untersteiner, 1971), the following relationship is valid at the snow–ice interface: 105 

𝑘𝑠𝑛𝑜𝑤
𝜕𝑇𝑠𝑛𝑜𝑤

𝜕𝑧
|

𝑧=0
= 𝑘𝑖𝑐𝑒

𝜕𝑇𝑖𝑐𝑒

𝜕𝑧
|

𝑧=0
                                                                                                                                               (1) 

In Eq. (1), the subscripts snow and ice denote their respective layers while T, k, and z denote temperature, thermal 

conductivity, and depth, respectively. The snow–ice interface is defined as z = 0. Assuming a piecewise linear temperature 

profile within the snow–ice layer, Eq. (1) can be rewritten as follows: 

𝑘𝑠𝑛𝑜𝑤
𝑇𝑎𝑠−𝑇𝑠𝑖

ℎ
= 𝑘𝑖𝑐𝑒

𝑇𝑠𝑖−𝑇𝑖𝑤

𝐻
                                                                                                                                                        (2) 110 

where subscripts as, si, and iw denote the air–snow, snow–ice, and ice–water interface, respectively, and H and h denote the 

sea ice thickness and snow depth as in Fig. 1. Introducing a variable , which is the snow–ice thickness ratio, Eq. (2) 

becomes: 

𝛼 =
ℎ

𝐻
=

𝑘𝑠𝑛𝑜𝑤

𝑘𝑖𝑐𝑒

Δ𝑇𝑠𝑛𝑜𝑤

Δ𝑇𝑖𝑐𝑒
                                                                                                                                                                  (3) 

Here, T denotes the temperature difference between the top and bottom of each snow or ice layer (i.e. Tsnow = Tas - Tsi, 115 

Tice = Tsi - Tiw). As explained in detail in Sect. 2.3,  can be used to constrain the freeboard to thickness conversion. Thus, 

once  is known, both snow depth and ice thickness can be simultaneously estimated from altimeter-measured freeboard, 

instead of using snow depth data for ice thickness retrieval. 

2.2 Empirical determination of ‘-prediction equation’ from buoy measurements 

To obtain , the conductivity ratio (ksnow/kice) should be known even if the temperature difference ratio (Tsnow/Tice) is given. 120 

In this study, instead of using the conventional conductivity ratio found in literature, it is empirically determined using buoy-
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measured  and Tsnow/Tice. Thus, the interface should be defined and determined from buoy-measured temperature profiles, 

which show a piecewise linear temperature profile as shown in Fig. 1.   

The buoy-measured temperature profiles in the vertical resolution of 10 cm are used in this study (Sect. 3.1). Although the 

instrument initially sets the zero-depth reference position to be approximately at the snow–ice interface, the reference 125 

position can deviate from the initial location if the ice deforms, or if the snow refreezes after the temporary melt. In addition, 

the interfaces (air–snow, snow–ice, and ice–water) may be located in between measurement levels in a 10 cm spacing. 

Therefore, the interface searching algorithm is developed to determine three interfaces (yas, ysi, yiw) and their respective 

temperatures (Tas, Tsi, Tiw) by extrapolating each piecewise linear temperature profile iteratively.  

The interface searching algorithm iterates three processes to find the location and temperature of each interface: it (1) divides 130 

temperature profile into four layers using the most recently available locations of the three interfaces, (2) finds a linear 

regression line of temperature profile at each layer, and (3) updates the location and temperature of each interface by finding 

an intersection between two adjacent regression lines. The algorithm fails if the temperature profile is far from linear, or the 

thickness of a certain layer is thin to have less than two data points. More detailed procedures for determining the interface 

are provided in Fig. 2, as a flow chart. The outputs are Tas, Tsi, Tiw, H (= yas - ysi), and h (= ysi - yiw). Examples of the interface 135 

searching results for 15-day averaged temperature profiles are shown in Fig. 3. The algorithm works adequately for both 

CRREL-IMB (Fig. 3a–c) and SHEBA buoys (Fig. 3d–f). For the analysis, temperature profiles are used only if Tas is colder 

than Tsi. As the analysis period is winter, there are very few discarded profiles when this criterion is applied. 

As Tas, Tsi, Tiw, H, and h can be obtained from the previous interface determination with buoy data, the calculation of 

Tsnow/Tice and  becomes straight forward. Then, an empirical relationship can be obtained by relating  to Tsnow/Tice by 140 

running a regression model, and details are given in Sect. 4. However, for the time being, we assume that the regression 

equation (referred to as an ‘-prediction equation’ that will be discussed in Sect. 4) is used to predict  from Tsnow/Tice. 

2.3 Simultaneous estimation of ice thickness and snow depth from satellite-based freeboard using   

In this section, we describe how  can be used to constrain the freeboard to thickness conversion. Based on the assumed 

hydrostatic balance, ice thickness can be obtained from satellite-borne total freeboard or ice freeboard as follows: 145 

𝐻 = ℎ𝑡𝑓 (
𝜌𝑤𝑎𝑡𝑒𝑟

𝜌𝑤𝑎𝑡𝑒𝑟−𝜌𝑖𝑐𝑒
) − ℎ (

𝜌𝑤𝑎𝑡𝑒𝑟−𝜌𝑠𝑛𝑜𝑤

𝜌𝑤𝑎𝑡𝑒𝑟−𝜌𝑖𝑐𝑒
)                                                                                                                                 (4) 

𝐻 = ℎ𝑓 (
𝜌𝑤𝑎𝑡𝑒𝑟

𝜌𝑤𝑎𝑡𝑒𝑟−𝜌𝑖𝑐𝑒
) + ℎ (

𝜌𝑠𝑛𝑜𝑤

𝜌𝑤𝑎𝑡𝑒𝑟−𝜌𝑖𝑐𝑒
)                                                                                                                                     (5) 

htf and hf are the total freeboard and ice freeboard, and  denotes the density. With the use of , defined in Eq. (3), Eqs. (4) 

and (5) become 

𝐻 = ℎ𝑡𝑓
𝜌𝑤𝑎𝑡𝑒𝑟

𝜌𝑤𝑎𝑡𝑒𝑟−𝜌𝑖𝑐𝑒+𝛼(𝜌𝑤𝑎𝑡𝑒𝑟−𝜌𝑠𝑛𝑜𝑤)
                                                                                                                                          (6) 150 
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𝐻 = ℎ𝑓
𝜌𝑤𝑎𝑡𝑒𝑟

𝜌𝑤𝑎𝑡𝑒𝑟−𝜌𝑖𝑐𝑒−𝛼𝜌𝑠𝑛𝑜𝑤
                                                                                                                                                         (7) 

From Eqs. (3)–(7), it is evident that snow depth and ice thickness can be simultaneously estimated from freeboards once  

and  are known. 

In order to obtain  from satellite measurements of Tas and Tsi, we need to calculate the temperature difference ratio 

(Tsnow/Tice). For the calculation, Tiw is set to be -1.5 °C. The freezing temperature of seawater is often assumed to be -155 

1.8 °C; however, the value of -1.5 °C is chosen based on the buoy observations. Nevertheless, a sensitivity test indicated that 

the influence of a 0.3 °C difference in the freezing temperature on  was negligible.  values are calculated only at the pixel 

whose monthly sea ice concentration (SIC) is greater than 98% and rejected if Tas is warmer than Tsi. The densities are 

prescribed with those used for OIB data processing: snow, ice, and water are 320 kg m-3, 915 kg m-3, and 1024 kg m-3, 

respectively. Although snow varies seasonally (Warren et al., 1999) and ice is greater in MYI than in FYI (Alexandrov et al., 160 

2010), we use the same densities as those of OIB data because we intend to compare outputs against OIB data. In solving Eq. 

(7), cases showing negative ice thickness ( > 0.341 for the given densities) are rejected.  

Before the Arctic basin-scale retrieval, ice thickness is estimated from OIB total freeboard measurement using Eq. (6), and 

from OIB-derived ice freeboard (Sect. 3.3) using Eq. (7), using satellite-derived  as a constraint. At the same time, the 

corresponding snow depth is derived by multiplying obtained sea ice thickness and . Sea ice thicknesses converted from 165 

MW99 using Eqs. (4) and (5) are also compared to examine how simultaneous retrievals might be compared with ICESat 

and CS2 retrieval of ice thickness. To differentiate various outputs, obtained snow depth and ice thickness are expressed with 

nomenclature such as ‘[constraint + freeboard source]’. For example, snow depth from  and OIB total freeboard is referred 

to as ‘h [ + htf (OIB)]’, and sea ice thickness from the MW99 snow depth and OIB ice freeboard is referred to as ‘H [h 

(MW99) + hf (OIB)]’. Finally, ice thickness and snow depth are estimated from CS2 ice freeboard (Sect. 3.4) over the Arctic 170 

Ocean. 

3 Data 

Here, we provide detailed information on the data sets used for development of the retrieval algorithm, validation, and 

application to the Arctic ocean basin scale.  

3.1 CRREL and SHEBA buoy data 175 

To determine the empirical relationship between  and Tsnow/Tice using Eq. (3), we need information regarding h, H, Tas, 

Tsi, and Tiw (as depicted in Fig. 1). These are sourced from temperature profiles observed by buoys deployed over the Arctic, 

as parts of the Surface Heat Energy Budget of the Arctic (SHEBA) campaign (Perovich et al., 2007) and the Cold Regions 

Research and Engineering Laboratory Ice Mass Balance (CRREL-IMB) buoy program (Perovich et al., 2019). Those buoy 
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observations are stored for further analysis if there is no missing value over the entire period ranging from November to 180 

March of the following year. Detailed information regarding ice types and initial snow/ice thicknesses at deployment 

locations are given in Table 1. 

Time averages of temperature profiles are considered as inputs to the interface searching algorithm (described in Sect. 2.2) to 

meet the required near-equilibrium states (e.g. linear temperature profile). However, because of the possibility of results 

depending on the averaging period, we examine the results by giving various averaging periods from one to 30 days.  185 

3.2 Satellite-derived skin and interface temperatures 

For applying the buoy-based -prediction equation in retrieving the snow/ice thicknesses over the Arctic Ocean, satellite-

derived Tas and Tsi data are necessary. In this study, Tas is obtained from Arctic and Antarctic ice Surface Temperatures from 

thermal Infrared satellites sensors – version 2 (AASTI-v2) data (Dybkjæ r et al., 2020), and the monthly mean for the 1982–

2015 period is obtained from daily products. AASTI Tas is derived from CM SAF cLoud, Albedo and surface Radiation 190 

dataset from AVHRR data - Edition 2 (CLARA-A2) dataset (Karlsson et al., 2017), based on the algorithm described in 

Dybkjæ r et al. (2018). Information on the validation of this product is found in Dybkjæ r and Eastwood (2016). It is available 

in a 0.25 grid format, however, because other satellite data sets such as SIC are available in a 25 km Polar Stereographic 

SSM/I Grid, AASTI-v2 data are re-gridded in the same 25 km grid format. This reformatted AASTI-v2 data are called 

‘satellite skin temperature’. 195 

Tsi is obtained from Snow/Ice Interface Temperature (SIIT) produced by Lee et al. (2018) over 30 years (1988–2017) of 

wintertime (December to February) SSM/I and SSMIS Fundamental Climate Data Record of TBs (Berg et al., 2018). The 

daily data are in the 25 km grid format. It was reported that the satellite-derived Tsi is consistent with snow–ice interface 

temperatures observed by CRREL-IMB buoys, with correlation coefficient, bias, and RMSE of 0.95, 0.15 K and 1.48 K, 

respectively. In this study, we also include Tsi for March for validating results against OIB data which are mostly collected 200 

during spring. Monthly composites are constructed by averaging daily data if data frequency is over 20. This product is 

called ‘satellite interface temperature’. 

3.3 OIB snow depth, total freeboard, and ice freeboard 

In this study, OIB snow depth and total freeboard are used as a reference in the validation of snow depth and ice thickness 

retrieved from the developed algorithm. NASA’s OIB is an aircraft mission and it measures snow depth and total freeboard 205 

over the Arctic using the snow radar, Digital Mapping System (DMS), and Airborne Topographic Mapper (ATM) (Kurtz et 

al., 2013). Ice thickness is derived from measured snow depth and total freeboard, for the given snow and ice densities. In 

this study, ice freeboard is derived by subtracting the snow depth from the total freeboard. 

The OIB data are available during the two months of March–April over the 2011–2015 period (Kurtz et al., 2015). Because 

we use the November–March period for the buoy analysis, only March OIB data are considered for the validation. The OIB 210 

data are also reformatted into the 25 km grid format for comparison. If the location of one OIB individual data point falls 
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within a certain 25 km grid area, then the point data is binned in a corresponding grid. After completing the grid assignment, 

grid value is determined by calculating a simple arithmetic mean of all data within that grid area.  

3.4 CS2 data 

For examining the Arctic Ocean basin distribution of ice thickness and snow depth, CS2 freeboard measurement summary 215 

data are used (Kurtz et al., 2017). They are monthly mean composites of CS2 ice freeboard data in the 25 km Polar 

Stereographic SSM/I Grid format, covering the entire Arctic, and available from September 2010. Detailed descriptions of 

the retracker algorithm used in this dataset are found in the study by Kurtz et al. (2014). The data set also includes the sea ice 

thickness estimated from the use of MW99 snow depth as input to the conversion equation. Those ice thickness estimations 

and MW99 snow depth values are used for purposes of comparison.  220 

3.5 Sea ice concentration 

Calculation of  is done over the pixel whose monthly SIC is greater than 98% (as described in Sect. 2.3). To determine 

pixels that meet this SIC criterion, ‘bootstrap sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS 

version 3’ produced by Comiso (2017) are used. This SIC dataset is provided in the 25-km Polar Stereographic SSM/I grid 

format. 225 

4 Results 

4.1 The empirical relationship between  and Tsnow/Tice  

We examine variables (i.e. Tas, Tsi, Tiw, H, and h) obtained from buoy observations by applying the interface searching 

algorithm. In the scatter plot of weekly-averaged Tsnow/Tice versus  (Fig. 4a), it appears that  linearly increases with 

Tsnow/Tice when the ratio is smaller than 1.8, but the linear slope becomes smaller when Tsnow/Tice is larger than 1.8. This 230 

nature of slopes is found to be nearly invariant from year to year, as observed in different colors appearing in the entire range 

of Tsnow/Tice of Fig. 4a. Also found is the consistent nature of the slopes even for different data sets; two different data sets 

(red points for SHEBA and other points for CRREL) covering various ranges of Tsnow/Tice, show similar distributions 

along two different slopes. Thus, it suffices to conclude that the slope change may not be due to different data sources or 

different data periods.   235 

Taking such changing slope with Tsnow/Tice into account, we introduce a piecewise linear function that may express the 

slope change, i.e.: 

𝑦 = {
𝑎1𝑥 + 𝑏1    𝑥 ≤ 𝑥0

𝑎2𝑥 + 𝑏2    𝑥 > 𝑥0
 ,   𝑥0 =

𝑏1−𝑏2

𝑎2−𝑎1
                                                                                                                                      (8) 
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In Eq. (8), x and y correspond to Tsnow/Tice and , respectively, and x0 is the point where the slope transition takes place. 

Applying Eq. (8) to data points from buoy-based variables, regression coefficients (a1, b1, a2, b2) and the transition point (x0) 240 

in Eq. (8) are determined by minimizing the total variance - obtained regression line is plotted in Fig. 4a.  is predicted using 

the determined regression equation (hereafter referred to as -prediction equation) and compared against original  values to 

see how well the regression was performed. The comparison of  with predicted values in Fig. 4b shows that the regression 

equation is well fitted because of the near-zero bias and 91.9% of explained variance.  

Although the slope change discussed with Eq. (8) and Fig. 4 is based on the weekly averages, the nature of changing slope 245 

seems to be consistent among the data averaging periods except for a very short averaging period. Regressions given in the 

form of Eq. (8) are performed with buoy data averaged with different averaging periods to understand the nature of changing 

slope. Regression coefficients and transition point for the chosen averaging periods are examined, and results for four 

averaging periods are given in Table 2. Detailed information on the coefficients and associated statistics varying with the 

averaging period is given in Fig. 5. The positions of slope change (x0) are located at approximately 1.8, delineating a nearly 250 

invariant slope change, regardless of different data averaging periods. Fig. 5a shows that coefficients do not vary much with 

different averaging periods while coefficients of the first part of the regression line (a1 and b1, x ≤ x0) vary less than those of 

the second part (a2 and b2, x > x0). The regression equations show that the explained variance (R2) rises quickly when the 

averaging period is longer but levels off when data are averaged over a period that is longer than seven days. The bias 

appears to be near zero over the various averaging periods. Thus, regression performance is found to be comparable if data 255 

are averaged over a period that is longer than a week. Further analysis of explanations of the possible causes of two slopes is 

found in Appendix A.  

4.2 Validation against OIB estimates 

According to the regression results, it is possible to estimate  from the Tsnow/Tice. Since the Tsnow/Tice can be calculated 

from the satellite skin and interface temperature (as described in Sect. 3.2), the corresponding  can be estimated from 260 

satellite measurements. Thus, we are able to simultaneously retrieve sea ice thickness and snow depth from altimeter-based 

freeboard measurements, following Eqs. (6) and (7). We test and validate this simultaneous retrieval approach using OIB 

data. Accordingly, ice thickness and snow depth are simultaneously estimated from OIB freeboard measurements and 

validated against the OIB snow depth (h (OIB)) and ice thickness (H (OIB)).  

To calculate , a data averaging period must be selected. Considering that the monthly composite of satellite freeboard 265 

measurements is needed to retrieve snow/ice thickness in the Arctic basin scale, it seems appropriate to use the monthly 

averaging period to calculate the monthly  distribution. Thus, we use the monthly averaged satellite temperatures and the 

coefficients for the 30-day averaging period (Table 2) to calculate .  

We simultaneously retrieved H and h for March of the 2011- 2015 period from the reformatted OIB freeboard measurements 

(Sect. 3.3) together with satellite-derived . As expressed in Eqs. (6) and (7), two different ice thickness retrievals are 270 
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possible, depending on the use of the freeboard type (i.e. total freeboard htf vs. ice freeboard hf). Two accordingly associated 

retrievals of snow depth are available. Retrieved results of ice thickness (H) and snow depth (h) from the use of OIB total 

freeboard and ice freeboard are given in the first and second row of Fig. 6, respectively. Corresponding OIB measurements 

are given at the bottom of Fig. 6. The comparison between any snow/ice retrievals and OIB measurements appear to be 

consistent with each other for both snow depth and ice thickness, in terms of magnitudes and distribution. 275 

To compare the results quantitatively, scatterplots of comparing retrievals against OIB measurements are made, along with 

statistics for the snow depth and ice thickness retrievals, in the top four panels of Fig 7. The top-two left panels are derived 

from the use of OIB total freeboard (htf) while the top-two right panels are derived from the OIB ice freeboard (hf). The 

comparison is done only for pixels where all four products (i.e. snow/ice thicknesses from two different freeboards) are 

available. This indicates that the snow depth from the total freeboard (top left) is fairly consistent with the OIB snow depth, 280 

with a correlation coefficient of 0.73 and with a near-zero bias. The retrieved ice thickness from the total freeboard (middle 

left) appears to be consistent with OIB ice thickness, with a correlation coefficient of 0.93 and a bias around 2 cm. The 

RMSEs for snow depth and ice thickness are 6.8 cm and 44 cm, respectively. Based on the comparison results, Eq. (8) 

obtained from buoy measurements can be successfully implemented with space-borne total freeboard measurements for the 

simultaneous retrieval of snow depth and ice thickness.  285 

Following Eq. (7), snow depth and ice thickness retrievals are made from the use of ice freeboard measurements, and results 

are presented in the top-two right panels in Fig. 7. The comparison of obtained ice thickness against the OIB ice thickness 

indicates that the retrieved ice thickness shows nearly the same quality as that retrieved from the total freeboard 

measurements. On the other hand, snow retrievals from the ice freeboard show more scattered features, compared with snow 

retrieval results from the total freeboard. More scattered features found in snow depth from the ice freeboard are likely due to 290 

the relatively more sensitive nature to the prescribed densities, as noted in Eq. (7). Note that Eq. (7) has a smaller 

denominator than that for Eq. (6).   

Examining how the current practices of retrieving the sea ice thickness through ICESat and CS2 measurements are compared 

with the simultaneous retrievals is of interest. In doing so, OIB-measured total freeboard and ice freeboard are converted into 

ice thickness using MW99 as input to solve Eqs. (4) and (5). These two ice thickness retrievals are referred to as ICESat-like 295 

thickness and CS2-like thickness, respectively, and their comparisons are now observed in two panels at the bottom of Fig. 7. 

Apparently, ICESat-like thickness tends to underestimate the ice thickness by about 50 cm when MW99 is used, in 

comparison to OIB thickness. On the other hand, CS2-like ice thickness shows an overestimate of about 23 cm. Nevertheless, 

their correlation coefficients and RMSEs are similar to the results obtained from the  method.  

The different direction of the bias between ICESat-like and CS2-like thicknesses is thought to be attributable to the snow 300 

depth error according to Eqs. (4) and (5). Therefore, if there are decreasing trends in both ice thickness and snow depth, the 

decreasing trend of ice thickness estimated from the constant snow depth will be diminished in radar, while being amplified 

in lidar. Because of this, the construction of the ice thickness (or volume) trend from the two different satellite altimeters 

would be problematic if MW99 snow depth is used for the freeboard to thickness conversion. For example, it would be hard 
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to compare the sea ice thickness records estimated from ICESat and CS2 observations and to extend the current ice thickness 305 

record from CS2 with recently launched NASA’s ICESat-2 which carries a lidar altimeter, for the same reason. 

4.3 Simultaneous retrieval of ice thickness and snow depth from CS2 measurements 

We have demonstrated that the method of simultaneously retrieving the sea ice thickness and snow depth was successfully 

implemented with OIB measurements. Now we extend the proposed approach to satellite freeboard measurements. Here, the 

method is tested with CS2 freeboard measurements, solving for H in Eq. (7), and  is obtained from the collocated satellite 310 

skin and interface temperature data.   

Monthly means of CS2-estimated freeboard (hf), retrieved , ice thickness (H) and snow depth (h) for December 2013 to 

March 2014 are given in Fig. 8. The geographical distribution of  indicates that  is largest in January and becomes smaller 

in the following months. Geographically, there seems to be no coherent distribution of  between months, although 

interestingly the lowest  values are always found over the north of the Canadian Archipelago and the western part of the 315 

Arctic Ocean shows  that is generally larger than that over the eastern part.  

Retrieved ice thickness from the CS2 freeboard (hf) using obtained  is presented in the third row of Fig. 8. As expected, as 

noted in Eq. (7), H shows a similar geographical distribution as shown in the freeboard (the first row). The thickest area is 

located north of the Canadian Archipelago, where the ice appears thicker than 4 m. On the other hand, most of the FYI 

thickness appears to range from 1.0 m to 2.0 m. The snow depth h is obtained by multiplying  by H (in 2nd and 3rd rows), 320 

following Eq. (3), and results are given at the bottom. The obtained snow distribution indicates that thicker snow areas are 

generally coincident with thicker MYI areas. Likewise, the thinner snow area coincides with the thinner FYI area. Such 

similarity should be consistent with the notion that MYI should accumulate more precipitation than FYI because of its longer 

existence.  

The accuracies of CS2 retrievals using the current  approach can be indirectly tested against OIB measurements. We do so 325 

by examining whether the relationship between H [ + hf (OIB)] and H [h (MW99) + hf (OIB)], in which each ice thickness 

retrieval has its own accuracy against OIB measurements, can be reproduced in CS2-based retrievals. If similar results are 

found, we can deduce respective accuracies against those found from the validation efforts against OIB measurements. The 

relationship, which can be obtained from analysis in Fig. 7, is compared with the relationship found in the current results in 

Fig. 8, (i.e., H [ + hf (CS2)] and H [h (MW99) + hf (CS2)]); the results are presented in Fig. 9. Observably, the relationship 330 

from CS2 freeboard data (Fig. 9b) is very similar to the relationship obtained from the comparison results from OIB 

measurements. This similarity of the slope strongly indicates that the CS2-based sea ice thickness from the current  method 

has similar accuracy to that found in the validation against OIB measurements (Sect 4.2). 
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5. Conclusions and Discussion 

A new approach towards simultaneously estimating snow depth and ice thickness from space-borne freeboard measurements 335 

was proposed and tested using OIB data and CS2 freeboard measurements. In developing the algorithm, the vertical 

temperature slopes were assumed to be linear within the snow and ice layers so that continuous heat flux could be 

maintained in both layers. This assumption allowed for the description of the snow–ice vertical thermal structure with snow 

skin temperature, snow–ice interface temperature, water temperature at the ice–water interface, snow depth, and ice 

thickness. Based on the continuous heat transfer assumption, the snow–ice thickness ratio ( = h / H) was introduced and 340 

could then be embedded into the freeboard to ice thickness conversion equations. Thus, information on both ice thickness 

and snow depth can be derived once  is known in case of the availability of a freeboard, without relying on the snow depth 

information as an input to the conversion from freeboard to ice thickness. From the drifting buoy measurements of 

temperature profile, snow depth, and ice thickness over the Arctic Ocean, we demonstrated that  can be reliably determined 

using the ratio of the vertical difference of the snow-layer temperature to the vertical difference of ice-layer temperature 345 

(Tsnow/Tice). An empirical regression equation was obtained for predicting  from three interface temperatures.  

Before applying -prediction equation to simultaneously retrieve the ice thickness and snow depth from satellite-borne 

freeboard measurements, the algorithm was validated using OIB measurements, in conjunction with satellite-derived snow 

skin temperature and snow–ice interface temperature. Validation results demonstrated that our proposed algorithm 

adequately retrieved both parameters simultaneously. As a matter of fact, the ice thickness results were more accurate than 350 

they were from the current retrieval methods relying on the input of snow depth (this time MW99 snow climatology), in 

terms of mean bias and RMSE. It should be noted that in this case, snow depth is a retrieval product, instead of being input 

to the freeboard to ice thickness conversion adopted by CS2 or ICESat retrieval. Application was finally made for the 

retrieval of the snow depth and ice thickness from CS2 ice freeboard measurements from December 2013 to March 2014 

using  as a constraint. Results showed that the quality of the obtained ice thickness was similar to that obtained from 355 

validation results against OIB measurements. Retrieved snow depth distributions were also found to be consistent with 

expectations. 

In the retrieval process, we may be concerned about the applicability of the algorithm developed with buoy observations 

representing the point circumstances, to the larger spatial and temporal scales that are inevitable in the satellite 

measurements. This concern may be relevant upon observing the range of  values.  in the satellite’s monthly and 25 km x 360 

25 km spatial scales was found to be generally smaller than 0.2. The smaller range of  compared to that shown in the buoy 

analysis results is likely due to the scale differences, indicating that extreme  values often shown in buoy measurements 

(due to very thick snow and/or very thin ice) may never be observed in satellite measurements. However, the range may not 

be a problem because the relationship (Eq. (3)) expresses the thermal equilibrium condition described by temperature at three 

interfaces, ratio of snow and ice thickness, and ratio of thermal conductivity between snow and ice. Considering that the 365 

algorithm is based on the equilibrium conditions, results should be valid regardless of spatial and temporal scales if the 
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prerequisite equilibrium conditions are met. Apparently, buoy observations contain so many different cases that equilibrium 

conditions are met with different thermal and physical conditions of snow–ice system. Sound validation results and the 

consistency between OIB and CS2 ice thickness retrieval results, which are subject to different scales, all suggest that point-

measured -prediction equation can be applicable to satellite measurements.  370 

Overall, the developed -based method yields ice thickness and snow depth, without relying on a priori ‘uncertain’ snow 

depth information, which results in uncertainty in the ice thickness retrieval. The results that ice freeboard and the total 

freeboard yielded had nearly the same outputs when the -approach was used. The proposed method is applicable to both 

lidar and radar altimeter data, although lidar-based altimeter data tend to offer relatively more suitable snow depth 

information. We expect to continuously monitor the Arctic scale snow depth and ice thickness by applying the proposed  375 

method to total freeboard observations by the recently launched ICESat-2, using temperature observations from the 

upcoming Meteorological Imager (MetImage) and Copernicus Imaging Microwave Radiometer (CIMR). 

Appendix A: Physical interpretation of the piecewise linearity between  and Tsnow/Tice 

The relationship found between  and Tsnow/Tice showed a piecewise linearity, which is almost invariant with the data 

averaging period. Because the slope change is neither attributable to different data sources nor different data periods, it is 380 

likely caused by the physical properties of snow and ice, as shown in Fig. A1. If the slope change is caused by the snow/ice 

condition, there will be a significant difference in snow/ice properties between the two parts showing different slopes. Here, 

we examine the possibility of different physical properties causing the difference in slopes. Through this comparison using 

buoy data, we may identify important properties that might be responsible for the piecewise linearity. 

First, the mean of basic properties available from buoy measurements are compared. They include ice thickness, snow depth, 385 

snow–ice interface temperature, ice temperature (Tice = (Tas + Tsi) / 2), and so on. The comparison revealed that snow–ice 

system within the first part (x ≤ x0) is found to consist of relatively thicker ice (1.84 m), thinner snow (0.29 m), and colder 

ice (-9.13 °C) while the second part (x > x0) is found to consist of relatively thinner ice (1.10 m), thicker snow (0.46 m), and 

warmer ice (-5.00 °C). In general, a thicker layer exhibits greater temperature difference within the layer. There is no 

significant difference between the air–snow interface temperature (Tas) in the two parts. 390 

The thermal conductivities, ksnow and kice, are also compared because what connects  and Tsnow/Tice is the ratio of thermal 

conductivities. Before showing the results, we describe how to calculate ksnow and kice. First, the thermal conductivity ratio is 

calculated from buoy measured variables (i.e. Tas, Tsi, Tiw, h, and H) using Eq. (3). Because the underlying physics in ksnow is 

significantly more complex, kice is estimated first and then ksnow is obtained by multiplying the calculated kice and ksnow/kice. To 

calculate kice, the parameterization of Maykut and Untersteiner (1971), which describes kice as a function of salinity and 395 

temperature, is used. 

𝑘𝑖𝑐𝑒 = 2.03 + 0.117
𝑆𝑖𝑐𝑒

𝑇𝑖𝑐𝑒
                                                                                                                                                         (A1) 
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Here, Sice and Tice is the salinity (in ppt) and temperature (in Celsius) of sea ice, respectively. For the calculation, Sice is 

estimated according to the empirical relationship between sea ice thickness and mean salinity from Cox and Weeks (1974) as 

follows: 400 

𝑆𝑖𝑐𝑒 = {
14.24 − 19.39𝐻,    𝐻 ≤ 0.4 𝑚
7.88 − 1.59𝐻,         𝐻 > 0.4 𝑚

                                                                                                                                  (A2) 

Although Trodahl et al. (2001) reported that kice depends on depth and temperature; here we do not estimate accurate thermal 

conductivities but attempt to examine the physical consequences within the piecewise linearity. 

The comparison of calculated thermal conductivities is presented in Fig. A2. The calculated kice ranges from 1.8 W K-1 m-1 to 

2.0 W K-1 m-1 (left two panels in Fig. A2). These values are consistent with the in-situ measurements by Pringle et al. (2006). 405 

The mean values of kice of the first part (1.96 W K-1 m-1) and the second part (1.88 W K-1 m-1) show almost no difference. 

The calculated ksnow ranges from 0.2 W K-1 m-1 to 1.05 W K-1 m-1 (right two panels in Fig. A2). This range is consistent with 

reported values in Sturm et al. (1997). The first part shows the greater and significantly spread distribution of ksnow compared 

to the second part. The mean values are 0.44 and 0.27 for the first part and second part, respectively. 

As a significant difference is observed in ksnow, let us find a possible reason for this difference. To do so, we should first 410 

review the factors determining ksnow; they are density, temperature, and crystal structure (Sturm et al., 1997). Snow is a 

mixture of ice particles and air, and air has lower thermal conductivity than ice. Thus, snow with a relatively lower density 

including a greater portion of air should have relatively lower thermal conductivity. Besides, the thermal conductivity of ice 

particles depends on the temperature, and the path of heat transfer depends on the crystal structure which describes how the 

particles are connected. The heat transfer occurs not only by conduction but also by water vapor latent heat transportation 415 

and convection through the pore spaces (Sturm et al, 2002), which are hard to be quantified explicitly. These two factors are 

closely related to the temperature gradient (or difference) imposed within the snow layer. 

Based on this knowledge, we can infer the condition of the snow layer of the two parts. The relatively higher and varying 

ksnow of the first part would be related to the compaction process resulting in high density, and metamorphic diversity which 

changes the crystal structure. According to Sturm et al. (2002), the value of ksnow of hard wind slap attains up to 0.5 W m-1 K-420 

1, while that of ksnow of depth hoar is below 0.1 W m-1 K-1. On the other hand, the lower and nearly constant ksnow of the 

second part implies that the snow layer of the second part would consist of fresh and dry snow having relatively lower 

density and a relatively lower likelihood of experiencing particular metamorphism.  

In summary, it is concluded that the physical properties of snow and ice can account for the piecewise linearity, based on the 

differences in the physical properties between the first and second parts. Especially, the thermal conductivity of the snow, 425 

ksnow, seems to play an important role. Nevertheless, further analysis is required to fully understand this phenomenon. 
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Table 1. Information on the measurement sites of buoys whose observations were used in this study. 

Name 
Deployment 

Location 
Ice Type 

Initial 

Snow Depth [m] 

Initial  

Ice Thickness [m] 

CRREL 

2010F Beaufort Sea Multi-Year 0.25 1.97 

2011M Central Arctic Multi-Year 0.07 1.67 

2012G Central Arctic First-Year 0.16 1.41 

2013F Beaufort Sea Multi-Year 0.00 1.40 

2013G Beaufort Sea Multi-Year 0.00 1.40 

2014G Beaufort Sea Multi-Year 0.10 1.08 

2014I Beaufort Sea Multi-Year 0.23 1.32 

SHEBA 

Q2 Beaufort Sea Multi-Year 0.06* 1.75* 

PIT Beaufort Sea Multi-Year 0.12* 2.01* 

BALT Beaufort Sea First Year 0.07* 1.40* 

R4 Beaufort Sea Second-Year Ridge 0.09* 4.23* 

SEA Beaufort Sea Ponded Area 0.10* 1.54* 

*The initial snow depth and ice thickness of the SHEBA sites are average values of all thickness gauge measurements in the 560 

corresponding site because there was one thermistor string but several thickness gauges in each measurement site 

 

 

 

 565 

Table 2. Coefficients of the regression equation for averaging periods of 1, 7, 15, and 30 days. a1, b1, a2, b2, and x0 are given in Eq. (8). 

Averaging Periods a1 b1 a2 b2 x0 

1 day 0.166 0.047 0.050 0.263 1.864 

7 days 0.179 0.028 0.053 0.254 1.796 

15 days 0.180 0.034 0.029 0.339 2.022 

30 days 0.185 0.022 0.076 0.214 1.769 
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Figure 1. Schematic diagram of a typical snow–ice system during winter. Snow depth (h), ice thickness (H), total freeboard (htf), radar 

freeboard (hrf), and ice freeboard (hf) are indicated. The red line denotes a typical temperature profile with air–snow interface temperature 570 
(Tas), snow–ice interface temperature (Tsi) and ice–water interface temperature (Tiw). 
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Figure 2. The flow chart of the interface searching algorithm. yi and Ti denote the position and temperature of a data point in the 

temperature profile. yas, ysi, and yiw denote the position of the interfaces, and Tlayer denotes a set of temperature data points. 575 
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Figure 3. Examples of interface searching results with an averaging period of 15 days: (a) 2012G period 2, (b) 2013F period 8, (c) 2014G 

period 1, (d) Q2 period 6, (e) R4 period 6, and (f) SEA period 10. The period number is equivalent to the number of time averaging bin. 

Blue dots are buoy-measured temperature profiles and red lines are regression lines. Black dashed lines indicate the intersections between 580 
adjacent regression lines. 
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Figure 4. (a) Scatterplots of the temperature difference ratio of the snow and ice layer (Tsnow/Tice) and the snow–ice thickness ratio (). 

Color denotes collected year of buoy data. The red lines are the regression lines (defined in Eq. (8)). (b) The scatter plot of observed and 585 
regressed . 
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Figure 5. (a) The regression coefficients (a1, b1, a2, b2) in Eq. (8) and (b) the error statistics of the regression with averaging periods from 590 
1 to 30 days. 
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Figure 6. Simultaneously retrieved ice thickness and snow depth from OIB total/ice freeboard in March of the 2011–2015 period. 

Corresponding OIB products are at the bottom. 595 
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Figure 7. Scatter plots between OIB products and the simultaneously retrieved snow depth and ice thickness from OIB total/ice freeboards 

during the March 2011–2015 period. Corresponding ice thicknesses estimated from MW99 snow depth are in the third row. The red lines 

are linear regression lines.   600 
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Figure 8. Geographical distributions of observed CS2 ice freeboard (hf) and estimated snow–ice thickness ratio (), ice thickness (H), and 

snow depth (h) from December 2013 to March 2014. 
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Figure 9. Comparison of retrieved ice thickness between the MW99 method and the  method using (a) OIB ice freeboard and (b) CS2 

freeboard on March 2014. CS2-like H (OIB) denotes the ice thickness estimated from the MW99 snow depth and OIB ice freeboard. 
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 610 

 

Figure A1. Distribution of physical variables on scatterplots of the temperature difference ratio of snow and ice layer (Tsnow/Tice) and 

the snow–ice thickness ratio (). Color denotes the value of physical variables: (a) ice thickness (H), (b) snow depth (h), (c) air–snow 

interface temperature (Tas), (d) snow–ice interface temperature (Tsi), (e) temperature difference within snow layer (|Tsnow|), and (f) 

temperature difference within ice layer (|Tice|). 615 
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Figure A2. Histogram of estimated (left column) kice and (right column) ksnow. The top and bottom row denote the first and the second part, 

respectively. The size of the bins is 0.05 W K-1 m-1. 
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