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Authors’ Response to the Reviewers 

Authors appreciate thoughtful and constructive comments and suggestions given by anonymous 

referee #1 and Isobel R. Lawrence. By resolving the issues raised by the referee, the authors believe 

that the logical flow of this study was strengthened, especially by counting the radar freeboard.  

Please find the following point-by-point responses to the referee’s comments below. A marked-up 5 

version of the revised manuscript regarding the changes is attached at the end of this authors’ response. 

 

Response to anonymous referee #1 

1. Major Points 

1.1. Difference between radar freeboard and scattering horizon height  10 

L22: The statement “altimeters . . . measure sea ice freeboard” is only approximately correct in the case of 

radar altimeters. The instrument on board CS2 measures a time of flight, which can be related to the height of 

some radar scattering horizon only where no snow lies in between the scattering horizon and the instrument. 

When snow is in between and fully penetrated by the radar, the radar range to the scattering surface is 

overestimated due to slower pulse propagation in the overlying snow. Correcting for this and estimating the 15 

height of the ice-snow interface requires knowledge of the overlying snow (Mallett et al., 2020). 

This issue surfaces again when the authors identify the radar freeboard as the height from the sea surface to the 

radar scattering horizon in L28. This is only the case for bare ice. Where overlying snow is present and fully 

penetrated, the radar freeboard is a finite distance below the ice freeboard (the assumed scattering surface). In 

the freeboard product used in this manuscript (Kurtz et al., 2014) this displacement is hs (1 − cs/c). 20 

This is relevant to Fig. 1, where hrf is depicted as being above the ice freeboard. While it may be true that the 

radar scattering horizon is above the snow-ice interface, in products that assume full radar penetration of the 

snowpack the radar freeboard is lower than the ice freeboard. Theoretically for total radar penetration and a 

freeboard depressed to near the water by snow, the radar freeboard can be below the waterline (while the ice 

freeboard and scattering horizon are above). 25 

We became aware of that the definition of ‘radar freeboard’ used in the manuscript was not consistent 

with the one used in CS2 data-related references (e.g., Kurtz et al., 2014), which is difference in the 

radar ranging between the sea surface and the radar scattering horizon. Therefore, Fig. 1 in the 

manuscript was modified, by following your suggestion on using different notations for clarity. 

Now, the system includes correction terms regarding the wave propagation speed change in the snow 30 

layer (Fc), and the displacement of the scattering horizon from the ice surface (Fp) following Kwok 

and Cunningham (2015) and Armitage and Ridout (2015). 

𝐹𝑖 = 𝐹𝑟 + (𝐹𝑐 − 𝐹𝑝)                                                            (AR1) 

𝐹𝑐 = (𝜂𝑠 − 1) 𝑓ℎ𝑠                                                             (AR2) 

𝐹𝑝 = (1 − 𝑓)ℎ𝑠                                                               (AR3) 35 

Here, s denotes the refractive index of snow layer (s=c/cs) and f denotes the radar penetration 
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factor, which is the depth of the radar scattering horizon relative to the snow depth (e.g. f = 1 if the 

radar scattering horizon is at snow–ice interface and f = 0 if the radar scattering horizon is at air-snow 

interface), respectively. Combining three equations yields the following relationship. 

𝐹𝑖 = 𝐹𝑟 + (𝑓𝜂𝑠 − 1)ℎ𝑠                                                         (AR4) 40 

In the revision, new formulae are introduced for simultaneously solving snow depth and ice 

thickness even for radar-based freeboard measurements. These changes can be found in introduction, 

Sect. 2.3 and Fig. 1 in the revised manuscript. 

 

1.2 The freeboard product used by the authors has been created with mW99 45 

In the final sentence of the abstract, the authors state:  

“In conclusion, the developed α-based method has the capacity to derive ice thickness and 

snow depth, without relying on the snow depth information as input to the buoyancy 

equation for converting freeboard to ice thickness.” 

However, the method presented here works directly from ice freeboard data which can only be derived by relying 50 

on snow depth information (Sect. 5.1 & Eq. 15 of Kurtz et al., 2014). 

I feel that what the authors would like to present is a way to convert radar freeboards to ice thickness without 

relying on snow depth data, and this should be done before publication. I think it is possible for the authors to 

adapt their processing chain to deal with this, although it may complicate things. 

Thanks for the suggestion which in fact led us to deeper understanding of radar altimeter remote 55 

sensing. Luckily, we were able to include this issue in the retrieval, by modifying Eqs. (5) and (7) of 

the first version of manuscript (see below for Eqs. (5) and (7) written with new notation), using Eq. 

(AR4).  

Eq. (5): 𝐻𝑖 = (
𝜌𝑤

𝜌𝑤−𝜌𝑖
) 𝐹𝑖 + (

𝜌𝑠

𝜌𝑤−𝜌𝑖
) ℎ𝑠 

Eq. (7): 𝐻𝑖 =
𝜌𝑤

𝜌𝑤−𝜌𝑖−𝛼𝜌𝑠
𝐹𝑖 60 

It was possible because Eq. (AR4) does not include additional unknowns, for given parameterization 

and assumption on the radar penetration. We assumed f = 0.84 for CS2 (Armitage and Ridout, 2015). 

s can be parameterized as a function of the snow density, i.e., s=(1+0.51s)
1.5 (Ulaby et al., 1986). 

Here we present how the equations were solved. 

First, the traditional method for the ice thickness retrieval with the snow depth as input can be written 65 

in the following equation by substituting Fi with Fr using Eq. (AR4). 

𝐻𝑖 =
𝜌𝑤

𝜌𝑤−𝜌𝑖
𝐹𝑟 +

(𝑓𝜂𝑠−1)𝜌𝑤+𝜌𝑠

𝜌𝑤−𝜌𝑖
ℎ𝑠                                                  (AR5) 

Then, substituting hs with Hi and rearranging the equation yield the equation for Hi as a function 

of radar freeboard and , without snow depth information. 
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𝐻𝑖 =
𝜌𝑤

𝜌𝑤−𝜌𝑖−𝛼{(𝑓𝜂𝑠−1)𝜌𝑤+𝜌𝑠}
𝐹𝑟                                                    (AR6) 70 

Note that Eq. (AR6) becomes equivalent to the equation for the total freeboard if f = 0 (no wave 

penetration into snow layer).  

This new setup requires the data processing chain to be modified as well. Here we describe what 

changes were made (in Sect. 3.3 and 3.4 of the revised manuscript). First, CS2-like radar freeboard 

was derived from OIB total freeboard (Ft
OIB) and snow depth (hs

OIB). From Eq. (AR4) and the 75 

relationship Fi = Ft - hs, the radar freeboard can be expressed as follows. 

𝐹𝑟
𝑂𝐼𝐵 = 𝐹𝑡

𝑂𝐼𝐵 − ℎ𝑠
𝑂𝐼𝐵 − (𝑓𝜂𝑠 − 1)ℎ𝑠

𝑂𝐼𝐵                                             (AR7) 

Because the main objective of using OIB data is to evaluate the relative performance of the 

simultaneous retrieval method when the method is applied to CS2 data, the radar penetration factor (f) 

for OIB data processing was also set to be 0.84 (Artimage and Ridout, 2015). In the data processing 80 

chain, hs
OIB was removed if it is smaller than the given uncertainty level of the dataset (~5.7 cm) or it 

is larger than the total freeboard Ft
OIB. 

The CS2 radar freeboard (Fr
CS2) was obtained from CS2 ice freeboard dataset. The CS2 ice freeboard 

data (Fi
CS2) distributed by NSIDC (Kurtz et al. 2017) assume that radar scattering horizon locates at 

snow–ice interface and applies a wave propagation speed correction. However, the correction was 85 

made using the MW99 snow depth (hs
MW99) climatology with an erroneous correction form of hc = (1-

s
-1) hs, instead of the correct correction form of hc = (s - 1) hs (Mallet et al. 2020). Thus, at this point, 

it is straightforward to derive the CS2 radar freeboard by removing the correction term as in the 

following equation.  

𝐹𝑟
𝐶𝑆2 = 𝐹𝑖

𝐶𝑆2 − (1 − 𝜂𝑠
−1)ℎ𝑠

𝑀𝑊99                                                   (AR8) 90 

Finally, analyses in the first version of the manuscript were conducted again using the radar 

freeboard rather than using the ice freeboard. This time SIC criteria for  calculation was set to be 95% 

(original: 98%) for a wider coverage. Figs. 6–9 in the revised manuscript are the reprocessed results. 

Despite of these changes, we find little changes in the conclusions we made in the first version of the 

manuscript. In addition, for more comprehensive information, snow depth comparison results are 95 

provided in Fig. 9. 

The changes for method and data can be found in Sect. 2.3 and in Sect. 3.3–3.4, respectively. The 

corresponding results can be found in Sect. 4.2 and 4.3 and Figs. 6–9. 

 

1.3 Uncertainty Analysis 100 

The authors state in their Discussion and Conclusions section: 

Overall, the developed α-based method yields ice thickness and snow depth, without relying 

on a priori ‘uncertain’ snow depth information, which results in uncertainty in the ice 

thickness retrieval. 
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They are of course correct to identify that uncertainty in snow depth leads to uncertainty in the ice thickness 105 

retrieval. To avoid having to quantify snow depth, they instead rely on a parameter equal to h/H, which they 

empirically derive from the temperature of the air-snow and ice-snow interfaces. 

Clearly there is significant uncertainty in the value of α, and the authors should try to quantify how this 

propagates through into uncertainty in ice thickness. It’s possible that their α parameter is more uncertain than 

other published data for h, and if so this method will deliver lower quality estimates of H than the traditional 110 

method. 

It seems (looking at Fig. 1 of this review) that a given error in α would have a more serious impact on H than 

the same error in h, because the gradients of the lines are much more similar in on the left panel of Fig. 1 than 

on the right. This issue scales with the alpha parameter (i.e. as the freeboard goes down), and at high α very 

small uncertainties in alpha will lead to large uncertainties in H. 115 

As alpha becomes so large that the freeboard tends to zero (not that uncommon in the Atlantic sector of the 

Arctic), the method seems to lose its usefulness, whereas the traditional method continues to function. That is to 

say in the case of near-zero freeboard, the traditional method still provides an estimate of H, but that proposed 

by the authors does not (see Eq. 7 as hf → 0). 

This is addressed in L161/162, where a critical value is given for alpha, and it is explained that for alpha above 120 

this value data are not produced. How often does this occur? And what is the effect on H of small errors in alpha 

just below this critical threshold? 

To identify the uncertainty of simultaneous method, snow depth error (hs) equivalent to  error 

() was calculated for chosen three typical sea ice conditions (thicker / moderate / thinner). The 

simultaneous method showed a small sensitivity to  = 0.03, which is RMSE value of the regression 125 

equation when total freeboard was used. On the other hand, sensitivity was greater when radar 

freeboard was used, especially for thinner ice where  is close to crit. In case of ice thickness error 

(Hi), gap of sensitivity between total freeboard and radar freeboard methods was reduced because 

Hi is more sensitive to hs when the total freeboard is used. This characteristic of sensitivity is 

consistent with results from OIB analysis. 130 

Majority of data used in this study belong to moderate or thicker ice and retrieved  rarely exceeds 

crit. Therefore, there would not be many cases having great uncertainty that might be expected from 

thinner ice condition. As a matter of fact, it seems that retrieved  shows reasonable values upon 

presumed thermodynamic condition. Areas where thermodynamic condition is not met are located at 

around the marginal ice zones and in the east of Greenland. Details can be found in Appendix B in the 135 

revised manuscript. In addition, we clarify that “a priori ‘uncertain’ snow depth in formation’ is MW99 

snow depth climatology. 

 

2. Minor Points 

2.1. General 140 

• L21: The authors should consider directing the reader to Laxon et al. (2003) when illustrating that thickness 

has been estimated for nearly two decades. 

Laxon et al. (2003) is now included in the revised manuscript. 
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• When discussing studies indicating the height difference between the scattering horizon and the snow-ice 

interface, the authors should consider directing the reader to Nandan et al. (2017) and Willatt et al. (2010, 145 

2011). 

Nandan et al. (2017) and Willatt et al. (2011) are now referred in the revised manuscript. Because 

characteristic of sea ice is different between Arctic and Antarctic, study on Antarctic sea ice by Willatt 

et al. (2010) is not included. 

 150 

• L62 & 64: Define RTM before using the acronym 

The acronym ‘RTM’ stands for ‘Radiative Transfer Model’. It is now defined in the revised 

manuscript. 

 

• The font sizes of some annotations to Figure 3 should be increased so as to be legible and comparable to the 155 

(a), (b), (c) lettering. 

Annotations are now increased to be legible (see Fig. 3 in the revised manuscript). 

 

• In Fig. 2, the box that reads ‘Find temperature discontinuity point’. It is my understanding that the temperature 

is continuous (but not a smooth function), and therefore it has no discontinuities (but its gradient does). Should 160 

this box then read ‘Find temperature gradient discontinuity point’? 

Yes, what discontinuous is temperature gradient, not temperature. The text now reads ‘Find 

temperature gradient discontinuity point’ (see Fig. 2 in the revised manuscript). 

 

• I think the notation of H and h in combination with hf, hrf and htf is confusing to the casual reader. For instance, 165 

the fact that h and hf look so similar but are in fact unrelated confused me initially. Even changing H → Hice 

and h → hsnow would clarify this. 

Following your comment, we have changed our notations throughout the revised manuscript (See 

Fig. 1 in the revised manuscript). 

 170 

2.2. Validation of H against OIB Data 

The authors are able to create two products from freeboard data obtained by OIB and CryoSat-2, one for snow 

depth (h), and one for ice thickness (H). They then rightly try to assess the quality of these data products against 

other datasets, namely the OIB snow depth and ice thickness data. There are at least five algorithms published 

to process the raw OIB radar returns into along-track snow depth data, and they produce a spread in the mean 175 

snow depth (Kwok et al., 2017). ‘Validation’ of a model or data implies comparison to true or certain values, 

and it is unclear which OIB snow depth product (if any) represents the truth. This limits the strength of the 

validation exercise. Nonetheless, I understand that OIB snow depth values have historically been taken as the 

truth in published work so this is a perhaps not a big issue. It might also be argued that the spread of different 
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OIB data is sufficiently small relative to other methods of snow depth estimation to allow OIB to approximate 180 

the truth for validation purposes. 

I feel that there is however a more significant issue with the authors’ claims to have ‘validated’ their ice thickness 

data against OIB ice thickness data (HOIB). OIB aircraft instruments do not measure thickness (Htrue) directly, 

but instead estimate it based on freeboard, snow depth, snow density and ice density values. As such, OIB 

thickness data (while likely to be the most accurate data on Htrue outside of in-situ measurement), undoubtedly 185 

suffer from biases involving snow depth, snow density and ice density, and therefore should not be mistaken for 

Htrue. 

The technique for determining HOIB is very similar to that presented in this manuscript: the authors use identical 

freeboard, snow density and ice density values to estimate thickness with the hydrostatic equilibrium assumption. 

Given these similarities, comparing the thickness estimates in this paper with OIB thickness estimates doesn’t 190 

really qualify as independent validation. 

It seems more like the exercise of comparing H estimates is in fact comparing the novel snow depth estimates 

with OIB snow depths (Fig 7 top row; a valuable analysis), and then investigating how that singular difference 

propagates into sea ice thickness estimates. I suspect that the strong agreement between the two datasets 

presented in the middle row of Fig. 7. is largely a result of the identical radar freeboards and geophysical 195 

parameters used in each processing chain. 

After all, much of sea ice thickness is determined by radar freeboard information, independent of snow data. 

The fact that the ‘simultaneous’ method matches HOIB data more closely than MW99 is therefore evidence that 

the snow depth product produced by the ‘simultaneous’ method is closer to OIB snow depths than MW99 

(because everything else is equal). 200 

I think it is perfectly reasonable (and in fact expected) to compare H estimates from the new method with HOIB. 

However, I think this should be presented as a ‘comparison with’ or ’evaluation against’ OIB data, rather that 

implying that the new data are being validated against some true value. It is also an understandable bit of 

reasoning to say that values which are closer to HOIB are likely to be closer to Htrue, but if this assumption is 

made it should be stated explicitly. 205 

We agree upon your notion that snow depth and ice thickness comparisons are the same problem. 

To address your comment, we first clarified how Hi
OIB is calculated in Sect 3.3. Then, we changed the 

subtitle of Sect 4.2 from ‘Validation against OIB estimates’ to ‘Evaluation against OIB estimates’. 

Finally, validation on ice thickness contents were modified in the direction to address that the estimated 

snow depth showing a more consistency with hs
OIB implies improved ice thickness. Accordingly, the 210 

snow depth comparisons between hs (sat, Fr
OIB) vs. hs

MW99 and hs (sat, Fr
CS2) vs. hs

MW99 are included 

in Fig. 9 in the revised manuscript. 

 

2.3. Limitations of Other Data 

L66 - 69: Other approaches worth mentioning are snow depth retrieval using dual-frequency altimetry 215 

(Guerreiro et al., 2016; Lawrence et al., 2018, Kwok and Markus, 2018), snow on sea ice model accumulating 

snowfall from reanalysis (Petty et al., 2018), multilinear regression (Kilic et al., 2019), and the neural network 

approach (Braakmann-Folgmann and Donlon, 2019). However, these methods do not satisfactorily meet the 

criteria required for freeboard to ice conversion over the entire Arctic Ocean basin scale or multi-year time 
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scale. 220 

The approach of Guerreiro et al. (2016) and Lawrence et al. (2018) are limited latitudinally by the AltiKa orbital 

inclination and Lawrence et al. (2018) additionally through calibration with OIB which only operates in Spring. 

As the authors identify, they are limited in spatial or temporal extent. While there are limitations to the data 

products of Petty et al. (2018), Kilic et al. (2019) and Braakmann-Folgmann and Donlon (2019), it’s not obvious 

that these can be characterized by failure to cover the entire basin on a multiyear timescale. As such, the 225 

statement on L69 that they do not satisfactorily meet these criteria should be clarified. 

The purpose of this paragraph was to introduce recent researches to readers. Therefore, the last 

sentence describing limitations of other data, which is not necessary, was removed. In case of Petty et 

al. (2018), we decided to not include it in the text to keep manuscript’s focus on remote sensing, as 

characteristic of their product seems to be closer to model than remote sensing.  230 

 

2.4. Rainbow Color Schemes 

Where possible, authors should avoid presenting continuous data with ‘rainbow’ color schemes as in Figures 6 

& 8. This is because (among other reasons) the scheme tends to imply sharp transitions in the data where they 

do not exist (Borland and Taylor, 2007). Alternatives for geoscientists are given by Light and Bartlein (2004), 235 

Stauffer et al. (2015) and Thyng et al. (2016). 

Thanks for valuable comment. We changed our color scheme to generate figures from ‘jet (rainbow)’ 

from ‘viridis’, which is perceptually uniform colormap, available in matplotlib/python. Figs. 6, 8, and 

A1 in the revised manuscript are new plots with the new color scheme. 

 240 

 

Response to Isobel R. Lawrence 

1. Major comments 

In order to use this methodology with satellite data from CryoSat-2, ice freeboard (the elevation of the snow/ice 

interface above the ocean surface) is required. However, it is impossible to retrieve ice freeboard from CryoSat-245 

2 without a-priori knowledge of the snow layer. Since the radar pulse slows down as it travels through the snow, 

snow depth is required in order to correct for the slower speed of propagation and estimate sea ice freeboard. 

To compound the issue, the equation to convert radar freeboard into ice freeboard is incorrectly reported in a 

number of studies, including that of Kurtz et al. (2014, eq. 16) which describes the CS2 ice freeboard dataset 

you use in your analysis. 250 

Please see Mallett et al. (2020) for the correct derivation of the equation and details of its misreporting in the 

literature. The correct equation for sea ice thickness from radar altimetry (assuming full snow penetration) is: 

 

where fr is radar freeboard, as estimated from radar altimeters like CryoSat-2. If this equation cannot be solved 

by the proposed methodology (I do not believe it can be), then the paper should be restructured to focus on the 255 
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laser case. The methodology remains valid for use with snow freeboards, and these are available from ICESat 

and now ICESat-2, so perhaps section 4.3 could be changed to an application to ICESat data. I appreciate that 

this will require a substantial amount of work, which is why I consider this revision major. However I find this 

methodology novel and valuable and the results in section 4.2 are encouraging; I would like to reiterate 

therefore that I think the paper deserves publication subject to this alteration and the following minor revisions: 260 

Thanks for the comment on the fact that the radar algorithm depends on the snow depth, even before 

retrieving the snow depth. As a matter of fact, another reviewer raised the similar concern, and thus 

following responses are nearly same. 

Recognizing the problems related to the radar altimetry, we modified equations for the model system 

to handle the radar freeboard as well. The modified model system is delineated in Fig. 1 (with slightly 265 

changed notations).  

Now, the system includes correction terms regarding the wave propagation speed change in the snow 

layer (Fc), and the displacement of the scattering horizon from the ice surface (Fp) following Kwok 

and Cunningham (2015) and Armitage and Ridout (2015). 

𝐹𝑖 = 𝐹𝑟 + (𝐹𝑐 − 𝐹𝑝)                                                            (AR1) 270 

𝐹𝑐 = (𝜂𝑠 − 1) 𝑓ℎ𝑠                                                             (AR2) 

𝐹𝑝 = (1 − 𝑓)ℎ𝑠                                                               (AR3) 

Here, s denotes the refractive index of snow layer (s=c/cs) and f denotes the radar penetration 

factor, which is the depth of the radar scattering horizon relative to the snow depth (e.g. f = 1 if the 

radar scattering horizon is at snow–ice interface and f = 0 if the radar scattering horizon is at air-snow 275 

interface), respectively. Combining three equations yields the following relationship. 

𝐹𝑖 = 𝐹𝑟 + (𝑓𝜂𝑠 − 1)ℎ𝑠                                                         (AR4) 

Luckily, we were able to include this issue in the retrieval, by modifying Eqs. (5) and (7) of the first 

version of manuscript (see below for Eqs. (5) and (7) written with new notation), using Eq. (AR4).  

Eq. (5): 𝐻𝑖 = (
𝜌𝑤

𝜌𝑤−𝜌𝑖
) 𝐹𝑖 + (

𝜌𝑠

𝜌𝑤−𝜌𝑖
) ℎ𝑠   280 

Eq. (7): 𝐻𝑖 =
𝜌𝑤

𝜌𝑤−𝜌𝑖−𝛼𝜌𝑠
𝐹𝑖  

It is because Eq. (AR4) does not include additional unknowns, for given parameterization and 

assumption on the radar penetration. We assumed f = 0.84 for CS2 (Armitage and Ridout, 2015). s 

can be parameterized as a function of the snow density, i.e., s=(1+0.51s)
1.5 (Ulaby et al., 1986). Here 

we present how the equations were solved. 285 

First, the traditional method for the ice thickness retrieval with the snow depth as input can be written 

in the following equation by substituting Fi with Fr using Eq. (AR4). 

𝐻𝑖 =
𝜌𝑤

𝜌𝑤−𝜌𝑖
𝐹𝑟 +

(𝑓𝜂𝑠−1)𝜌𝑤+𝜌𝑠

𝜌𝑤−𝜌𝑖
ℎ𝑠                                                  (AR5) 

Please note that this equation is equivalent to the equation assuming full snow penetration which 
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you presented. Then, substituting hs with Hi and rearranging the equation yield the equation for Hi as 290 

a function of radar freeboard and , without snow depth information. 

𝐻𝑖 =
𝜌𝑤

𝜌𝑤−𝜌𝑖−𝛼{(𝑓𝜂𝑠−1)𝜌𝑤+𝜌𝑠}
𝐹𝑟                                                    (AR6) 

Also note that Eq. (AR6) becomes equivalent to the equation for the total freeboard if f = 0 (no wave 

penetration into snow layer).  

This new setup requires the data processing chain to be modified as well. Here we describe what 295 

changes were made (in Sect. 3.3 and 3.4 of the revised manuscript). First, CS2-like radar freeboard 

was derived from OIB total freeboard (Ft
OIB) and snow depth (hs

OIB). From Eq. (AR4) and the 

relationship Fi = Ft - hs, the radar freeboard can be expressed as follows. 

𝐹𝑟
𝑂𝐼𝐵 = 𝐹𝑡

𝑂𝐼𝐵 − ℎ𝑠
𝑂𝐼𝐵 − (𝑓𝜂𝑠 − 1)ℎ𝑠

𝑂𝐼𝐵                                             (AR7) 

Because the main objective of using OIB data is to evaluate the relative performance of the 300 

simultaneous retrieval method when the method is applied to CS2 data, the radar penetration factor (f) 

for OIB data processing was also set to be 0.84 (Artimage and Ridout, 2015). In the data processing 

chain, hs
OIB was removed if it is smaller than the given uncertainty level of the dataset (~5.7 cm) or it 

is larger than the total freeboard Ft
OIB. 

The CS2 radar freeboard (Fr
CS2) was obtained from CS2 ice freeboard dataset. The CS2 ice freeboard 305 

data (Fi
CS2) distributed by NSIDC (Kurtz et al. 2017) assume that radar scattering horizon locates at 

snow–ice interface and applies a wave propagation speed correction. However, the correction was 

made using the MW99 snow depth (hs
MW99) climatology with an erroneous correction form of hc = (1-

s
-1) hs, instead of the correct correction form of hc = (s - 1) hs (Mallet et al. 2020). Thus, at this point, 

it is straightforward to derive the CS2 radar freeboard by removing the correction term as in the 310 

following equation.  

𝐹𝑟
𝐶𝑆2 = 𝐹𝑖

𝐶𝑆2 − (1 − 𝜂𝑠
−1)ℎ𝑠

𝑀𝑊99                                                   (AR8) 

Finally, analyses in the first version of the manuscript were conducted again using the radar 

freeboard rather than using the ice freeboard. This time SIC criteria for  calculation was set to be 95% 

(original: 98%) for a wider coverage. Figs. 6–9 in the revised manuscript are the reprocessed results. 315 

Despite of these changes, we find little changes in the conclusions we made in the first version of the 

manuscript. In addition, for more comprehensive information, snow depth comparison results are 

provided in Fig. 9. 

The changes for the definition of radar freeboard can be found in introduction (the second paragraph) 

and Fig. 1 in the revised manuscript. The changes for method and data can be found in Sect. 2.3 and 320 

in Sect. 3.3–3.4, respectively. The corresponding results can be found in Sect. 4.2 and 4.3 and Figs. 6–

9. 
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2. Minor comments 325 

• I think you need to include an uncertainty budget for your sea ice thickness and snow depth estimates. 

Sensitivity test for our method was conducted and the result is included as Appendix B in the revised 

manuscript. In Appendix B, snow depth error caused by  error is presented for different cases of  

and freeboard. 

 330 

• L30: “However, the radar scattering horizon is often treated as the snow–ice interface”. Include Hendricks et 

al. (2016), Guerreiro et al. (2017), Tilling et al. (2018) as refs here since AWI, LEGOS and CPOM CryoSat-2 

ice thickness products all make the same assumption. 

Hendricks et al. (2016), Guerreiro et al. (2017) and Tilling et al. (2018) are now referred in the 

revised manuscript.  335 

 

• L72: …”for given densities and freeboard” – (and assuming no snow penetration for laser and full snow 

penetration for radar) 

We rewrote the sentence as follow:  

“… for given densities, freeboard, and assumptions on radar penetration of the snow layer”. 340 

 

• L138: Could you say how many are discarded based on this criterion, and out of how many total. 

By examining the outputs from the program, we found no outputs discarded by this criterion, 

therefore, we removed this sentence from the revised manuscript. 

Here we provide total number of buoy data obtained from different averaging periods for your 345 

information (Table AR1, will not be included in the text). 

 

• L159: Can you provide a reference for the OIB data processing document where the densities are given? 

We now referred Kurtz et al. (2013) in the revised manuscript. 

 350 

• L160: I understand that you keep ice density constant in order to compare with OIB data, but later when 

comparing with satellite-derived ice thickness should you not then use the densities used in those products for 

a fair comparison? 

As you mentioned, ‘CS2 H’ in Fig 9 of the manuscript should not be same as the CS2 product 

available from NSIDC. Instead, CS2 ice thickness was reproduced with the same densities and MW99 355 

snow depth for the fair comparison. New figure is given in Fig. 9 in the revised manuscript. We also 

clarified this data processing in the comparison section.  
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• L198: “It was reported…” – By who? 

It was reported by Lee et al. (2018). We clarified this in the revised manuscript. 

 360 

• L200: Where does Tsi for March come from if the Lee et al. (2018) dataset is only December-February? 

We produced Tsi for March by applying the same algorithm. We clarified this in the revised 

manuscript. 

 

• L201: “…if data frequency is over 20”. Do you mean if 20 days out of the month contain data? Or are you 365 

referring to a number of points per grid cell? 

Monthly mean temperature was calculated by gird cell by grid cell and the average was done only 

for the grid cells where there are more than 20 data available during a month. We clarified this in the 

revised manuscript. 

 370 

• L205: Please could you provide the details and a reference for which OIB dataset you used and where it is 

available from? i.e. L2, L4, Quicklook? 

We utilized L4 dataset for 2011-2013 period, and Quick look dataset for 2014-2015 period. Details 

on OIB data are now provided in the revised manuscript. Reference and accessibility information were 

already included in ‘Data availability’ section.  375 

 

• Figure 4: Why do you choose to show us the 7-day averaged plot in Fig.4 when Figure 3 was showing 15-day 

averaged temperature profiles? 

We intended to show results from various averaging period to readers. The results for different 

averaging period can be found in Figs. 5 and 6 in the text. For your information, same figures for 380 

different averaging periods are presented in Fig. AR1 (will not be included in the text). 

 

• L235: At the end of this sentence you could refer the reader to the appendix. 

Appendix A is now referred at the end of the sentence. 

 385 

• L244: bias is not near-zero in Fig 4b, it is zero. 

Yes, it is zero. The comment is now applied in the revised manuscript. 

 

• L269: Did you calculate a different alpha for each year, and apply the different alpha to each year of OIB 
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data? Or did you just average all the years together? Please clarify this in the text. 390 

We calculated and applied a different  for each year. It is now clarified in the revised manuscript. 

 

• L295: Do you get the MW99 for input into Eqs. (4) and (5) from the CS2 data? If so is it monthly grid-averaged? 

How do you assign each OIB point a snow depth? 

Yes, MW99 was obtained from the CS2 dataset. OIB data were reformatted in a 25 km polar 395 

stereographic grid by method described in Sect. 3.3 in the manuscript. As OIB data is reformatted into 

the grid format, it is straightforward to assign the OIB snow depth to the MW99. 

One possible concern is that the monthly mean of daily MW99 might differ significantly from the 

daily MW99, because the MW99 depends on the sea ice type. However, it may not be a critical issue 

when following points are considered: 1) W99 is already a monthly climatology, 2) ice type distribution 400 

would not be changed significantly by the sea ice drift in March because the Arctic Ocean is nearly 

filled with sea ice and thus the sea ice mobility is reduced. 

 

• L301: “Therefore, if there are decreasing trends in both ice thickness and snow depth, the decreasing trend of 

ice thickness estimated from the constant snow depth will be diminished in radar, while being amplified in lidar” 405 

– This sentence seems overcomplicated. To me, all that the bottom two plots of Figure 7 demonstrate is that 

MW99 snow depth is larger than OIB snow depth. For the laser case, this means that using W99 causes ice 

thickness to be underestimated compared to H(OIB), and for the radar case using W99 results in ice thicknesses 

that are too thick compared to OIB. Perhaps you could plot MW99 against h(OIB) to clarify this? The retrieval 

of sea ice thickness from ICESat has not traditionally used the Warren climatology- see Kwok and Cunningham 410 

(2008) and Petty et al. (2020). Therefore I don’t think it’s justified to call this ‘ICESat-like thickness’ since you 

are not using the same snow depth product that they do. 

Yes, what you mentioned is the appropriate interpretation of Fig. 7; MW99 is larger than OIB snow 

depth. This can be verified by Fig. S1 (included as a supplementary figure). However, we attempted to 

address a possible unintended result of ‘diverging direction in errors in ice thickness retrieval, when 415 

the same snow depth error is applied to two different satellite altimetry measurements’. We modified 

this paragraph to deliver such message. 

Regarding the naming issue, we are not referring existing products when we call ICESat-like and 

CS2-like thickness. Those are explicitly defined in the revised manuscript text. Besides, there is an ice 

thickness dataset from ICESat total freeboard distributed by NSIDC (Yi and Zwally, 2009; doi: 420 

10.5067/SXJVJ3A2XIZT) which uses MW99. However, we think that the expression “current 

practices of retrieving sea ice thickness” might confuse readers. Therefore, we replaced such 

expression with “MW99 method” for clarity. 

 

 425 
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3. Typos / Grammar 

• L128: “Therefore, the interface searching algorithm…” -> “Therefore, an interface searching algorithm…” 

• L165: “Sea ice thicknesses converted from MW99 using Eqs. (4) and (5) are also compared to examine how 

simultaneous retrievals…” -> “Sea ice thicknesses are also calculated from Eqs. (4) and (5), using MW99 as 430 

snow depth, to examine how simultaneous retrievals…” 

• L194: “This reformatted AASTI-v2 data are called…” -> “This reformatted AASTI-v2 dataset is called…” 

• L293: “Examining how the current practices of retrieving the sea ice thickness through ICESat and CS2 

measurements are compared with the simultaneous retrievals is of interest” -> “We now examine how the 

current practises of retrieving sea ice thickness from ICESat and CS2 measurements compare with our method.” 435 

• L294: “In doing so, OIB-measured…” -> “To do so, OIB-measured…”  

• L297: “Apparently, ICESat-like thickness tends….” -> “According to our analysis, ICESat-like thickness 

tends….” 

• L416: “…which are hard to be quantified explicitly.” -> “…which are hard to quantify explicitly.” 

All comments were applied in the manuscript and some other grammatical errors were also corrected 440 

in the revised manuscript. 
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Table AR1. Number of outputs obtained from the interface searching algorithm 

Averaging period # of obtained outputs 

1 day 542 

7 days 97 

15 days 59 

30 days 36 

 

 500 

 

Figure AR1. (Left column) Scatterplots of the temperature difference ratio of the snow and ice layer (Tsnow/Tice) and the 

snow–ice thickness ratio () for averaging period of 1,7,15 and 30 days. Color denotes collected year of buoy data. The 

red lines are the regression lines (defined in Eq. (15) in the text). (Right column) The corresponding scatter plot of observed 

and regressed . 505 
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Abstract. A method of simultaneously estimating snow depth and sea ice thickness using satellite-based freeboard 

measurements over the Arctic Ocean during winter was proposed. The ratio of snow depth to ice thickness (referred to as ) 10 

was defined and used in constraining the conversion from the freeboard to ice thickness in satellite altimetry. without prior 

knowledge of snow depth. Then,  was empirically determined using the ratio of temperature difference of the snow layer to 

the difference of the ice layer, to allow the determination of  from satellite-derived snow surface temperature and snow–ice 

interface temperature. The proposed method was validatedevaluated against NASA’s Operation IceBridge measurements, and 

comparison results indicated that the algorithm adequately retrieves snow depth and ice thickness simultaneously: retrieved 15 

ice thickness was found to be better than the current satellite retrieval methods relying on the use of snow depth climatology 

as input, in terms of mean bias and RMSE. The application of the proposed method to CryoSat-2 iceradar freeboard 

measurements yields similar results. In conclusion, the developed -based method has the capacity to derive ice thickness and 

snow depth, without relying on the snow depth information as input to the buoyancy equation and radar penetration correction 

for converting freeboard to ice thickness. 20 

1 Introduction 

Satellite altimeters have been used to estimate sea ice thickness for nearly two decades (Laxon et al., 2003; Kwok et al., 2009; 

Laxon et al., 2013). The altimeters do not measure sea ice thickness directly but measure the sea ice freeboard which is then 

converted to sea ice thickness with assumptions, for example, regarding the snow depth, snow/ice densities, and radar 

penetration (Ricker et al., 2014). We hereafter refer to this procedure as ‘freeboard to thickness conversion’. 25 

Generally used, there are two types of satellite altimeters measuremeasuring different sea ice freeboards.: 1) Lidar altimeters 

such as NASA’s ICESat (Zwally et al., 2002) and ICESat-2 (Markus et al., 2017) missions measure the total freeboard (htfFt): 

the height from the sea surface in cracks and leads to the snow surface. On the other hand, radar2) Radar altimeters such as 

ESA’s CryoSat-2 (CS2) (Wingham et al., 2006) measure the radar freeboard (hrfFr): difference in the radar ranging between 

the sea surface and the radar scattering horizon. By applying two corrections terms regarding the wave propagation speed 30 
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change in the snow layer (Fc) and displacement of the scattering horizon from the ice surface (Fp), the radar freeboard is 

converted to the ice freeboard (Fi): the height from the sea surface to radar scattering horizon.the snow–ice interface (Fi). 

Several studies indicate that the radar scattering horizon is at or above the snow–ice interface depending on ice type and 

snow/ice conditions (Nandan et al., 2017; Armitage and Ridout, 2015; Willatt et al., 2011; Tonboe et al. 2010). However, the 

radar scattering horizon is often treated as the snow–ice interface (Kurtz et al., 2014; Kwok and Cunningham, 2015). The 35 

height from the sea surface to the snow–ice interface is called ice freeboard (hf).; Hendricks et al., 2016; Guerreiro et al., 2017, 

Tilling et al., 2018). The three different freeboards are indicated in Fig. 1.  

For both lidar and radar altimeters, snow depth (hhs) is required as an input to constrain the freeboard to thickness conversion; 

thus, the conversion results are highly dependent on snow depth (Ricker et al., 2014; Zygmuntowska et al., 2014; Kern et al. 

2015). The buoyancy equation used in the freeboard to thickness conversion describes the balance between buoyancy and the 40 

weight of snow and ice. For a given freeboard and, snow/ice densities, and assumptions on radar penetration of the snow layer, 

sea ice thickness (HHi) is a function of hhs. According to Zygmuntowska et al. (2014), up to 70% of uncertainty in the freeboard 

to thickness conversion stems from the poorly constrained snow depth. However, mapping the Arctic scale snow depth 

distribution is challenging. The most commonly used snow depth information necessary for the freeboard to thickness 

conversion is the modified version of the snow depth climatology by Warren et al. (1999) (hereafter W99). W99 is based on 45 

in-situ measurements at Soviet drifting stations (1954–1991) mostly on multi-year ice (MYI). Kurtz and Farrell (2011) 

compared W99 with Operation IceBridge (OIB) snow depth measurements in 2009 and claimed that W99 was still valid onin 

the MYI region and significantly differed from OIB snow depth on first-year ice (FYI). Based on that study, Modified W99 

(hereafter MW99) was developed, which halves W99 snow depth in regions covered by FYI. MW99 is often used in CS2 ice 

thickness products available at CPOM-UCL (Laxon et al., 2013), AWI (Ricker et al., 2014), and NSIDC (Kurtz et al., 2017).  50 

However, the use of MW99 for the freeboard to thickness conversion understandably yields a substantial error, considering 

that W99 is a climatology and not actual snow depth. This is because the actual snow depth distribution is subject to the year-

to-year variation of snow–ice system, thus the climatology based on the 37-year measurements of snow depth would deviate 

significantly from the actual distribution (Webster et al., 2014). Accordingly, such deviation causes errors in the estimation of 

ice thickness. Thus, additional snow observations covering both MYI and FYI on the Arctic basin -scale would be ideal as a 55 

replacement of MW99. 

There have been various approaches aimed at obtaining the snow depth distribution over the Arctic scale using satellite 

observations. Markus and Cavalieri (1998) developed an algorithm based on the Brightness Temperatures (TBs) of Special 

Sensor Microwave/Imager (SSM/I) based on the negative correlation of the snow depth with the spectral gradient ratio between 

18 and 37 GHz of vertically polarized TB’s on the Antarctic FYI. Comiso et al. (2003) have updated the coefficients of this 60 

algorithm for the Advanced Microwave Scanning Radiometer for EOS (AMSR-E). However, snow depth retrieval using this 

algorithm is relatively less accurate when the MYI fraction within the grid cell is significant (Brucker and Markus, 2013). 

Recently, Rostosky et al. (2018) suggested a new method: using the lower frequency pair of 7 and 19 GHz to overcome thethis 

limitation. Nonetheless, estimating the basin-scale snow depth distribution seems to be a difficult task. 
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There are other approaches involving the use of the lower frequency measurements at L-band. Using Soil Moisture Ocean 65 

Salinity (SMOS) measurements, Maaß et al. (2013) found that 1.4 GHz TB depends on the snow depth through the insulation 

effect of snow layer, and they determined snow depth by matching RTMRadiative Transfer Model (RTM) simulated TBs with 

SMOS-measured TBs. Zhou et al. (2018) simultaneously estimated the sea ice thickness and snow depth by adding additional 

laser altimeter freeboard information, improving the Maaß et al. (2013) approach. However, both of these RTM-based 

approaches require a priori information on ice properties (e.g. temperature and salinity profiles). 70 

 Other satellite remote sensing approaches worth mentioning areinclude the snow depth retrieval using dual-frequency 

altimetry (Guerreiro et al., 2016; Lawrence et al., 2018, Kwok and Markus, 2018), snow on sea ice model accumulating 

snowfall from reanalysis (Petty et al., 2018), multilinear regression (Kilic et al., 2019), and thea neural network approach 

(Braakmann-Folgmann and Donlon, 2019). However, these methods do not satisfactorily meet the criteria required for 

freeboard to ice conversion over the entire Arctic Ocean basin scale or multi-year time scale.  75 

In this situationHere, let us switch our point of view to solving the buoyancy equation instead of retrieving snow depth directly. 

Remember that there is one buoyancy equation withare two unknowns (snow depth and ice thickness) in the buoyancy equation 

for given snow/ice densities and, freeboard, and assumptions on radar penetration of the snow layer. The attempt so far has 

been to add one constraint (snow depth information) to the buoyancy equation for solving ice thickness. However, if a particular 

relationship between two unknowns is available, it can be used to constrain the equation yielding both ice thickness and snow 80 

depth. simultaneously.  

To identify such a relationship, this study examines the vertical thermal structure within the snow/ice layers observed by 

drifting buoys. The vertical thermal structure of a snow–ice system in winter is rather simple; the temperature profile of the 

snow–ice system can be assumed to be piecewise linear, as illustrated in Fig. 1. Therefore, the temperatures at three interfaces 

can represent the thermal state of the snow–ice system fairly well; they are (1) air–snow interface temperature (Tas), (2) snow–85 

ice interface temperature (Tsi), and (3) ice–water interface temperature (Tiw). Tiw is assumed to be almostnearly constant at the 

freezing temperature of seawater (Maaß et al., 2013), implying that two other interface temperatures (Tas and Tsi) are sufficient 

to describe the thermal structure of the system.  

Based on this thermal structure, there may existis a constraint relating the snow depth and ice thickness. In identifying athis 

constraint, conductive heat flux is assumed to be continuous through the snow–ice interface (Maykut and Untersteiner, 1971), 90 

implying that conductive heat fluxes within the snow and ice layers are same under the steady-state assumed in the given 

thermal structure. As the conductive heat flux is proportional to the bulk temperature difference of the layer divided by its 

thickness, it is possible to deduce the relationship between snow depth and ice thickness from the given thermal structure.  

Once the relationship is obtained, then it is possible to apply it to the Arctic Ocean basin -scale because the thermal structure 

can be resolved from satellites, as shown in the recently available basin-scale and long-term satellite-derived interface 95 

temperatures (Dybkjæ r et al., 2020; Lee et al., 2018). In determining the snow depth along with the ice thickness, instead of 

using the snow depth as an input to solve for the ice thickness, we intend to (1) examine the relationship between the vertical 

thermal structure of a snow–ice system (Tas and Tsi) and the thicknesses of the snow and ice layer (hhs and HHi) using buoy 
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measurements, (2) retrieve the sea ice thickness and the snow depth simultaneously by applying their relationship to the 

freeboard to thickness conversion as a constraint, thus replacing the snow depth information. The result may reduce uncertainty 100 

in the freeboard to ice thickness conversion by replacing the currently used snow depth informationclimatology. 

2 Method 

Here, we provide the theoretical background of how the snow–ice thickness ratio ( = h / Hhs / Hi) can be related to Tas and 

Tsi. Then, after empirically determining the relationship of  to Tas and Tsi from buoy measured temperature profiles,  obtained 

from satellite-observed Tas and Tsi is then used to constrain the conversion from freeboard to ice thickness over the Arctic 105 

Ocean during winter.  

2.1 Theoretical background 

We intend to find a relationship between snow depth and ice thickness in terms of the vertical thermal structure of athe snow–

ice system. Because the temperature gradientgradients within the snow and ice layer islayers are linked to both temperature 

and thickness, we focus on the temperature gradient. Owing to the physical reasoning that the conductive heat flux is 110 

continuous across the snow–ice interface (Maykut and Untersteiner, 1971), the following relationship is valid at the snow–ice 

interface: 

𝑘𝑠𝑛𝑜𝑤
𝜕𝑇𝑠𝑛𝑜𝑤

𝜕𝑧
|

𝑧=0
= 𝑘𝑖𝑐𝑒

𝜕𝑇𝑖𝑐𝑒

𝜕𝑧
|

𝑧=0
                                                                                                                                               (1) 

In Eq. (1), the subscripts snow and ice denote their respective layers while T, k, and z denote temperature, thermal conductivity, 

and depth, respectively. The snow–ice interface is defined as z = 0. Assuming a piecewise linear temperature profile within 115 

the snow–ice layer, Eq. (1) can be rewritten as follows: 

𝑘𝑠𝑛𝑜𝑤
𝑇𝑎𝑠−𝑇𝑠𝑖

ℎ

𝑇𝑎𝑠−𝑇𝑠𝑖

ℎ𝑠
= 𝑘𝑖𝑐𝑒

𝑇𝑠𝑖−𝑇𝑖𝑤

𝐻

𝑇𝑠𝑖−𝑇𝑖𝑤

𝐻𝑖
                                                                                                                                                        (2) 

where subscripts as, si, and iw denote the air–snow, snow–ice, and ice–water interface, respectively, and HHi and hhs denote 

the sea ice thickness and snow depth as in Fig. 1. Introducing a variable , which is the snow–ice thickness ratio, Eq. (2) 

becomes: 120 

𝛼 =
ℎ

𝐻

ℎ𝑠

𝐻𝑖
=

𝑘𝑠𝑛𝑜𝑤

𝑘𝑖𝑐𝑒

Δ𝑇𝑠𝑛𝑜𝑤

Δ𝑇𝑖𝑐𝑒
                                                                                                                                                                  (3) 

Here, T denotes the temperature difference between the top and bottom of each of the snow orand ice layerlayers (i.e. Tsnow 

= Tas - Tsi, Tice = Tsi - Tiw). As explained in detail in Sect. 2.3,  can be used to constrain the freeboard to thickness conversion. 

Thus, once  is known, both snow depth and ice thickness can be simultaneously estimated from altimeter-measured freeboard, 

instead of using snow depth data for ice thickness retrieval. 125 
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2.2 Empirical determination of ‘-prediction equation’ from buoy measurements 

To obtain , the conductivity ratio (ksnow/kice) should be known even if the temperature difference ratio (Tsnow/Tice) is given. 

In this study, instead of using the conventional conductivity ratio found in literature, it is empirically determined using buoy-

measured  and Tsnow/Tice. Thus, the interface should be defined and determined from buoy-measured temperature profiles, 

which show a piecewise linear temperature profile as shown in Fig. 1.   130 

The buoy-measured temperature profiles in the vertical resolution of 10 cm are used in this study (Sect. 3.1). Although the 

instrument initially sets the zero-depth reference position to be approximately at the snow–ice interface, the reference position 

can deviate from the initial location if the ice deforms, or if the snow refreezes after the temporary melt. into snow-ice. In 

addition, the interfaces (air–snow, snow–ice, and ice–water) may be located in between measurement levels in a 10 cm spacing. 

Therefore, thean interface searching algorithm is developed to determine three interfaces (yas, ysi, yiw) and their respective 135 

temperatures (Tas, Tsi, Tiw) by extrapolating each piecewise linear temperature profile iteratively.  

The interface searching algorithm iterates three processes to find the location and temperature of each interface: it (1) divides 

temperature profile into four layers using the most recently available locations of the three interfaces, (2) finds a linear 

regression line of the temperature profile at each layer, and (3) updates the location and temperature of each interface by 

finding an intersection between two adjacent regression lines. The algorithm fails if the temperature profile is far from linear, 140 

or the thickness of a certain layer is too thin to have less than two data points. More detailed procedures for determining the 

interface are provided in Fig. 2, as a flow chart. The outputs are Tas, Tsi, Tiw, HHi (= yas - ysi), and hhs (= ysi - yiw). Examples of 

the interface searching results for 15-day averaged temperature profiles are shown in Fig. 3. The algorithm works adequately 

for both CRREL-IMB (Fig. 3a–c) and SHEBA buoys (Fig. 3d–f). For the analysis, temperature profiles are used only if Tas is 

colder than Tsi. As the analysis period is winter, there are very few discarded profiles when this criterion is applied.buoy data 145 

(Fig. 3d–f).  

AsSince Tas, Tsi, Tiw, HHi, and hhs can be obtained from the previous interface determination with buoy data, the calculation of 

Tsnow/Tice and  becomes straight forward.is straightforward. Then, an empirical relationship can be obtained by relating  

to Tsnow/Tice by running a regression model, and details are given in Sect. 4. However, for the time being, we assume that 

the regression equation (referred to as an ‘-prediction equation’ that will be discussed in Sect. 4) is used to predict  from 150 

Tsnow/Tice. 

2.3 Simultaneous estimation of ice thickness and snow depth from satellite-based freeboard using   

In this section, we describe how  can be used to constrain the freeboard to thickness conversion. Based on the assumed 

hydrostatic balance, ice thickness can be obtained from satellite-borne total freeboard or ice freeboard as follows: 

𝐻 = ℎ𝑡𝑓 (
𝜌𝑤𝑎𝑡𝑒𝑟

𝜌𝑤𝑎𝑡𝑒𝑟−𝜌𝑖𝑐𝑒
) − ℎ (

𝜌𝑤𝑎𝑡𝑒𝑟−𝜌𝑠𝑛𝑜𝑤

𝜌𝑤𝑎𝑡𝑒𝑟−𝜌𝑖𝑐𝑒
) 𝐻𝑖 =

𝜌𝑤

𝜌𝑤−𝜌𝑖
𝐹𝑡 −

𝜌𝑤−𝜌𝑠

𝜌𝑤−𝜌𝑖
ℎ𝑠                                                                                                                                                            155 

(4) 
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𝐻 = ℎ𝑓 (
𝜌𝑤𝑎𝑡𝑒𝑟

𝜌𝑤𝑎𝑡𝑒𝑟−𝜌𝑖𝑐𝑒
) + ℎ (

𝜌𝑠𝑛𝑜𝑤

𝜌𝑤𝑎𝑡𝑒𝑟−𝜌𝑖𝑐𝑒
) 𝐻𝑖 =

𝜌𝑤

𝜌𝑤−𝜌𝑖
𝐹𝑖 +

𝜌𝑠

𝜌𝑤−𝜌𝑖
ℎ𝑠                                                                                                                                                             

(5) 

htf and hf are the total freeboard and ice freeboard, and  denotes the density.Here, w, i, and s denote the bulk densities of 

water, ice, and snow layer, respectively. Ice freeboard is obtained from radar freeboard by applying two correction terms 160 

regarding the change of the wave propagation speed in snow layer (Fc) and the displacement of the scattering horizon from the 

ice surface (Fp) (Kwok and Cunningham, 2015).  

𝐹𝑖 = 𝐹𝑟 + (𝐹𝑐 − 𝐹𝑝)                                                 With the use of , defined in Eq. (3), Eqs. (4) and (5) become 

𝐻 = ℎ𝑡𝑓
𝜌𝑤𝑎𝑡𝑒𝑟

𝜌𝑤𝑎𝑡𝑒𝑟−𝜌𝑖𝑐𝑒+𝛼(𝜌𝑤𝑎𝑡𝑒𝑟−𝜌𝑠𝑛𝑜𝑤)
                                                                                                                                          (6) 

𝐻 = ℎ𝑓
𝜌𝑤𝑎𝑡𝑒𝑟

𝜌𝑤𝑎𝑡𝑒𝑟−𝜌𝑖𝑐𝑒−𝛼𝜌𝑠𝑛𝑜𝑤
The correction terms are expressed in the following equations (Armitage and Ridout, 2015; Kwok 165 

and Markus, 2018). 

𝐹𝑐 = (𝜂𝑠 − 1)𝑓ℎ𝑠                                                                                                                                                                      (7) 

𝐹𝑝 = (1 − 𝑓)ℎ𝑠                                                                                                                                                                         (8) 

Here, s denotes the refractive index of the snow layer and f denotes the radar penetration factor (Armitage and Ridout, 2015), 

which is the depth of the radar scattering horizon relative to the snow depth (e.g. f = 1 if the radar scattering horizon is at snow–170 

ice interface and f = 0 if the radar scattering horizon is at air-snow interface), respectively. Combination of Eqs. (6)–(8) yields 

the following relationship. 

𝐹𝑖 = 𝐹𝑟 + (𝑓𝜂𝑠 − 1)ℎ𝑠                                                                                                                                                              (9) 

Ice freeboard in Eq. (5) can be substituted by radar freeboard and snow depth using Eq. (9), i.e.: 

𝐻𝑖 =
𝜌𝑤

𝜌𝑤−𝜌𝑖
𝐹𝑟 +

(𝑓𝜂𝑠−1)𝜌𝑤+𝜌𝑠

𝜌𝑤−𝜌𝑖
ℎ𝑠                                                                                                                                              (10) 175 

According to Eq. (10), the ice thickness can be estimated from the radar freeboard and the snow depth. Note that Eq. (10) 

becomes equivalent to the equation for the total freeboard (Eq. (4)) if f = 0 (i.e. if there is no radar penetration into snow layer). 

With the use of , defined in Eq. (3), Eqs. (4) and (10) become 

𝐻𝑖 =
𝜌𝑤

𝜌𝑤−𝜌𝑖+𝛼(𝜌𝑤−𝜌𝑠)
𝐹𝑡                                                                                                                                                            (11) 

𝐻𝑖 =
𝜌𝑤

𝜌𝑤−𝜌𝑖−𝛼{(𝑓𝜂𝑠−1)𝜌𝑤+𝜌𝑠}
𝐹𝑟                                                                                                                                                  (12) 180 

From Eqs. (3)–(7), (11) and (12), it is evident that the snow depth and ice thickness can be simultaneously estimated from the 

freeboards once , ,  f and s are known. 
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In order to obtain  from satellite measurements of Tas and Tsi, we need to calculate the temperature difference ratio 

(Tsnow/Tice). For the calculation, Tiw is set to be -1.5 °C. The freezing temperature of seawater is often assumed to be -1.8 °C; 

however, the value of -1.5 °C is chosen, based on the buoy observations. Nevertheless, aA sensitivity test indicated that the 185 

influence of a 0.3 °C difference in the freezing temperature on  was negligible.  values are calculated only at the pixel whose 

monthly sea ice concentration (SIC) is greater than 9895% and rejected if Tas is warmer than Tsi. The densities are prescribed 

with those used for OIB data processing: snow, ices, i, and waterw are 0.320 kg mg cm-3, 0.915 kg mg cm-3, and 1024 kg 

m1.024 g cm-3, respectively. (Kurtz et al., 2013). Although snows varies seasonally (Warren et al., 1999) and icei is greater 

infor MYI than in FYI (Alexandrov et al., 2010), we use the same densities as those of OIB data because we intend to compare 190 

outputs against OIB data. In solving Eq. (712), cases showing negative ice thickness ( >≥ crit = 0.341291 for the given 

densities and radar penetration factor) are rejected. Radar penetration factor f is set to be 0.84 for CS2 (Armitage and Ridout, 

2015) and s is parameterized as a function of the snow density, i.e., s =(1+0.51s)1.5 (Ulaby et al., 1986). 

Before the Arctic basin-scale retrieval, ice thickness is estimated from OIB total freeboard measurement using Eq. (611), and 

from OIB-derived ice freeboardradar freeboards (Sect. 3.3) using Eq. (712), using satellite-derived  as a constraint. At the 195 

same time, the corresponding snow depth is derived by multiplying the obtained sea ice thickness and . Sea ice thicknesses 

convertedare also calculated from MW99 using Eqs. (4) and (5) are also compared10), using MW99 as snow depth, to examine 

how simultaneous retrievals might be comparedcompare with ICESat and CS2 retrieval of ice thickness estimation using 

MW99. To differentiate various outputs, obtained snow depth and ice thickness are expressed with nomenclature such as 

‘[(constraint +, freeboard source])’. For example, the snow depth estimated from satellite-derived  and OIB total freeboard 200 

is referred to as ‘h [ + htf (OIB)]hs (sat,  Ft
OIB)’, and sea ice thickness from the MW99 snow depth and OIB iceradar freeboard 

is referred to as ‘H [h (MW99) + hf (OIB)]’.Hi (hs
MW99, Fr

OIB)’. Finally, ice thickness and snow depth are estimated from CS2 

iceradar freeboard (Sect. 3.4) over the Arctic Ocean. 

3 Data 

Here, we provide detailed information on the data sets used for the development of the retrieval algorithm, validationevaluation, 205 

and application to the Arctic ocean basin scale.  

3.1 CRREL and SHEBA buoy data 

To determine the empirical relationship between  and Tsnow/Tice using Eq. (3), we need information regarding h, H, Tas, Tsi, 

and Tiw (as depicted in Fig. 1). These are sourced from temperature profiles observed by buoys deployed over the Arctic, as 

parts of the Surface Heat Energy Budget of the Arctic (SHEBA) campaign (Perovich et al., 2007) and the Cold Regions 210 

Research and Engineering Laboratory Ice Mass Balance (CRREL-IMB) buoy program (Perovich et al., 2019). Those buoy 

observations are stored for further analysis if there isare no missing valuerecords over the entire period ranging from November 
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to March of the following year. Detailed information regarding ice typestype and initial snow/ice thicknessesthickness at 

deployment locations are given in Table 1. 

Time averages of temperature profiles are consideredused as inputsinput to the interface searching algorithm (described in 215 

Sect. 2.2) to meet the required near-equilibrium states (e.g. linear temperature profile). However, because of the possibility 

ofthat the results are depending on the averaging period, we examine the results by givingusing various averaging periods from 

one to 30 days.  

3.2 Satellite-derived skin and interface temperatures 

For applying the buoy-based -prediction equation in retrieving the snow/ice thicknesses over the Arctic Ocean, satellite-220 

derived Tas and Tsi data are necessary. In this study, Tas is obtained from Arctic and Antarctic ice Surface Temperatures from 

thermal Infrared satellites sensors – version 2 (AASTI-v2) data (Dybkjæ r et al., 2020), and the monthly mean for the 1982–

2015 period is obtained from daily products. AASTI Tas is derived from CM SAF cLoud, Albedo and surface Radiation dataset 

from AVHRR data - Edition 2 (CLARA-A2) dataset (Karlsson et al., 2017), based on the algorithm described in Dybkjæ r et 

al. (2018). Information on the validation of this product is found in Dybkjæ r and Eastwood (2016). It is available in a 0.25 225 

grid format, however, because other satellite data sets such as SIC are available in a 25 km Polar Stereographic SSM/I Grid, 

AASTI-v2 data are re-gridded in the same 25 km grid format. This reformatted AASTI-v2 data aredataset is called ‘satellite 

skin temperature’. 

Tsi is obtained from Snow/Ice Interface Temperature (SIIT) produced by Lee et al. (2018) over 30 years (1988–2017) of 

wintertime (December to February) using SSM/I and Special Sensor Microwave Imager/Sounder (SSMIS Fundamental 230 

Climate Data Record of) homogenized TBs (Berg et al., 2018). The daily data are in the 25 km grid format. It wasLee et al. 

(2018) reported that the satellite-derived Tsi is consistent with snow–ice interface temperatures observed by CRREL-IMB 

buoys, with the correlation coefficient, bias, and RMSE of 0.95, 0.15 K and 1.48 K, respectively. In this study, we also 

includeproduced Tsi for March using the same algorithm of Lee et al. (2018) for validatingevaluating results against OIB data 

which are mostly collected during spring. Monthly composites are constructed by averaging daily data iffor grid cells where 235 

the data frequency is over 20 days. This product is called ‘satellite interface temperature’. 

3.3 OIB snow depth, total freeboard, and ice freeboarddata  

In this study, OIB snow depth (hs
OIB) and total freeboard (Ft

OIB) are used as a reference in the validationevaluation of snow 

depth and ice thickness retrieved from the developed algorithm. NASA’s OIB is an aircraft mission and it measures snow 

depth and total freeboard over the Arctic using the snow radar, Digital Mapping System (DMS), and Airborne Topographic 240 

Mapper (ATM) (Kurtz et al., 2013). IceOIB ice thickness is derived from measured snow depth and total freeboard, for the 

given snow and ice densities. using Eq. (4). In this study, icethe OIB radar freeboard (Fr
OIB) is derived by subtracting the snow 

depth from Ft
OIB and hs

OIB using the total freeboard.combined relationship of Fi = Ft - hs and Eq. (9) as follows: 



 

9 

 

The OIB data are available during the two months of March–April over the 2011–2015 period (Kurtz et al., 2015).𝐹𝑟
𝑂𝐼𝐵 =

𝐹𝑡
𝑂𝐼𝐵 − ℎ𝑠

𝑂𝐼𝐵 − (𝑓𝜂𝑠 − 1)ℎ𝑠
𝑂𝐼𝐵                                                                                                                                     (13) 245 

Because the main objective of using OIB data is to evaluate the relative performance of the simultaneous retrieval method 

when the method is applied to CS2 data, the radar penetration factor (f) for OIB data processing is also set to be 0.84. In the 

data processing chain, hs
OIB is removed if it is smaller than the given uncertainty level of the dataset (~5.7 cm) or it is larger 

than the total freeboard Ft
OIB.  

Five years of OIB data during 2011-2015 period are utilized in this study. The level 4 dataset (Kurtz et al., 2015) during 2011-250 

2013 period and Quick look dataset (https://doi.org/10.5067/7Q8HCCWS4I0R, last access: 20 May 2020) during 2014-2015 

period are obtained from the NSIDC website. Because we use the November–March period for the buoy analysis, only March 

OIB data are considered for the validationevaluation. The OIB data are also reformatted into the 25 km grid format for 

comparison. If the location of one OIB individual data point falls within a certain 25 km grid area, then the point data is binned 

in a corresponding grid. After completing the grid assignment, grid value is determined by calculating a simple arithmetic 255 

mean of all data within that grid area.  

3.4 CS2 data 

For examining the Arctic Ocean basin distribution of ice thickness and snow depth, CS2 freeboard measurement summary 

data are used (Kurtz et al., 2017). They are monthly mean composites of CS2 ice freeboard data in the 25 km Polar 

Stereographic SSM/I Grid format, covering the entire Arctic, and available from September 2010. Detailed descriptions of the 260 

retracker algorithm used in this dataset are found in the study by Kurtz et al. (2014). The data setdataset also includes the sea 

ice thickness estimated from the use of MW99 (hs
MW99) and W99 snow depth as input to the conversion equation. Those ice 

thickness estimations and MW99 snow depth values aredensity climatology used for purposes of comparisonproducing the ice 

freeboard.  

The CS2 ice freeboard data (Fi
CS2) distributed by NSIDC (Kurtz et al. 2017) assumed that the radar scattering horizon is at the 265 

snow–ice interface and applied a wave propagation speed correction. However, the correction was made using hs
MW99 and W99 

snow density climatology with an erroneous form of hc = (1 - s
-1) hs, instead of the proper form of hc = (s - 1) hs (Mallett et 

al., 2020). In this dataset, s was parameterized as a function of the snow density, i.e., s = (1 + 1.7s + 0.7s
2)0.5 (Tiuri et al., 

1984). Thus, at this point, it is straightforward to derive the CS2 radar freeboard by removing the correction term as in the 

following equation.  270 

𝐹𝑟
𝐶𝑆2 = 𝐹𝑖

𝐶𝑆2 − (1 − 𝜂𝑠
−1)ℎ𝑠

𝑀𝑊99                                                                                                                                             (14) 

Then CS2 ice thickness is re-produced from Fr
CS2 and hs

MW99 by using Eq. (10) with the constant densities and the radar 

penetration factor described in Sect. 2.3. Those hs
MW99 and Hi (hs

MW99, Fr
CS2) values are used for comparison.  
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3.5 Sea ice concentration 

Calculation of  is done overfor those pixels where the pixel whose monthly SIC is greater than 9895% (as described in Sect. 275 

2.3). To determine pixels that meet this SIC criterion, ‘bootstrap sea ice concentrations from Nimbus-7 SMMR and DMSP 

SSM/I-SSMIS version 3’ produced by Comiso (2017) are used. This SIC dataset is provided in the 25-km Polar Stereographic 

SSM/I grid format. 

4 Results 

4.1 The empirical relationship between  and Tsnow/Tice  280 

We examine variables (i.e. Tas, Tsi, Tiw, H, and h) obtained from buoy observations by applying the interface searching algorithm. 

In the scatter plot of weekly-averaged Tsnow/Tice versus  (Fig. 4a), it appears that  linearly increases with Tsnow/Tice when 

the ratio is smaller than 1.8, but the linear slope becomes smaller when Tsnow/Tice is larger than 1.8. This naturepattern of the 

slopes is found to be nearly invariant from year to year, as observed in different colors appearing in the entire range of 

Tsnow/Tice ofin Fig. 4a. AlsoWe also found that this slope pattern is the consistent nature of the slopes even for different data 285 

sets; two different data sets (red points for SHEBA and other points for CRREL) covering various ranges of Tsnow/Tice, show 

similar distributions along the two different slopes. Thus, it suffices to conclude that the slope change maypattern is not be due 

to different data sources or different data periods.  Further analysis of the two slopes is found in Appendix A. 

Taking such changing a two-slope pattern with Tsnow/Tice into account, we introduce a piecewise linear function that may 

express the slope changepattern, i.e.: 290 

𝑦 = {
𝑎1𝑥 + 𝑏1    𝑥 ≤ 𝑥0

𝑎2𝑥 + 𝑏2    𝑥 > 𝑥0
 ,   𝑥0 =

𝑏1−𝑏2

𝑎2−𝑎1
                                                                                                                                      (8(15) 

In Eq. (815), x and y correspond to Tsnow/Tice and , respectively, and x0 is the point where the slope transition takes place. 

Applying Eq. (815) to data points from buoy-based variables, the regression coefficients (a1, b1, a2, b2) and the transition point 

(x0) in Eq. (8) are determined by minimizing the total variance - obtained regression line is plotted in Fig. 4a.  is predicted 

using the determined regression equation (hereafter referred to as -prediction equation) and compared againstto the original 295 

 values to see how well the regression was performed. The comparison of  with predicted values in Fig. 4b shows that the 

regression equation is well fitted because of the near-zero bias and 91.9% of explained variance.  

Although the slope changepattern discussed with Eq. (815) and Fig. 4 is based on the weekly averages, the nature of changing 

slope pattern seems to be consistent among the data averaging periods except for a very shortan averaging period. shorter than 

five days. Regressions given in the form of Eq. (815) are performed with buoy data averaged with different averaging periods 300 

to understand the nature of changing slope pattern. Regression coefficients and transition point for the chosen averaging periods 

are examined, and results for four averaging periods are given in Table 2. Detailed information on the coefficients and 
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associated statistics varying with the averaging period is given in Fig. 5. The positions of slope change (x0) are located at 

approximately 1.8, delineating a nearly invariant slope changepattern, regardless of different data averaging periods. Fig. 5a 

shows that coefficients do not vary much with different averaging periods while coefficients of the first part of the regression 305 

line (a1 and b1, x ≤ x0) vary less than those of the second part (a2 and b2, x > x0). The regression equations show that the 

explained variance (R2) rises quickly when the averaging period is longer but levels off when data are averaged over a period 

that is longer than seven days. The bias appears to be near zero over the various averaging periods. Thus, regression 

performance is found to be comparable if data are averaged over a period that is longer than a week. Further analysis of 

explanations of the possible causes of two slopes is found in Appendix A.  310 

4.2 ValidationEvaluation against OIB estimates 

According to the regression results, it is possible to estimate  from the Tsnow/Tice. Since the Tsnow/Tice can be calculated 

from the satellite skin and interface temperature (as described in Sect. 3.2), the corresponding  can be estimated from satellite 

measurements. Thus, we are able to simultaneously retrieve sea ice thickness and snow depth from altimeter-based freeboard 

measurements, following Eqs. (611) and (712). We test and validateevaluate this simultaneous retrieval approach using OIB 315 

data. Accordingly, ice thickness and snow depth are simultaneously estimated from OIB freeboard measurements and 

validatedevaluated against the OIB snow depth (h (OIB))hs
OIB) and ice thickness (H (OIB)).Hi

OIB).  

To calculate , a data averaging period must be selected. Considering that the monthly composite of satellite freeboard 

measurements is needed to retrieve snow/ice thickness in the Arctic basin scale, it seems appropriate to use the monthly 

averaging period to calculate the monthly  distribution. Thus, we use the monthly averaged satellite temperatures and the 320 

coefficients for the 30-day averaging period (Table 2) to calculate .  

We simultaneously retrieved HHi and hhs for each year’s March of theduring 2011- –2015 period from the reformatted OIB 

freeboard measurements (Sect. 3.3) together with satellite-derived . (sat). As expressed in Eqs. (611) and (712), two 

different ice thickness retrievals are possible, depending on the use of the freeboard type (i.e. total freeboard htfFt vs. iceradar 

freeboard hfFr). Two accordingly associated retrievals of snow depth are available. Retrieved results of ice thickness (HHi) 325 

and snow depth (hhs) from the use of OIB total freeboard and iceradar freeboard are given in the first and second row of Fig. 

6, respectively. Corresponding OIB measurements are given at the bottom of Fig. 6. The comparison between any snow/ice 

retrievals and OIB measurements appear to be consistent with each other for both snow depth and ice thickness, in terms of 

magnitudes and distribution. 

To compare the results quantitatively, scatterplots of comparing retrievals against OIB measurements are made, along with 330 

statistics for the snow depth and ice thickness retrievals, in the top four panels of Fig 7. The top-two left panels are derived 

from the use of OIB total freeboard (htfFt
OIB) while the top-two right panels are derived from the OIB iceradar freeboard 

(hfFr
OIB). The comparison is done only for pixels where all four products (i.e. snow/ice thicknesses from two different 

freeboards) are available. This indicates that the snow depth from the total freeboard (top left) is fairly consistent with the OIB 
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snow depth, with a correlation coefficient of 0.73 and with a near-zero bias. The retrieved ice thickness from the total freeboard 335 

(middle left) appears to be consistent with OIB ice thickness, with a correlation coefficient of 0.93 and a bias around 28.5 cm. 

The RMSEs for snow depth and ice thickness are 6.8 cm and 44.3 cm, respectively. Based on the comparison results, Eq. (815) 

obtained from buoy measurements can be successfully implemented with space-borne total freeboard measurements for the 

simultaneous retrieval of snow depth and ice thickness.  

Following Eq. (712), snow depth and ice thickness retrievals are made from the use of iceradar freeboard measurements, and 340 

results are presented in the top-two right panels in Fig. 7. TheOn the one hand, the comparison of obtained ice thickness against 

the OIB ice thickness indicates that the retrieved ice thickness shows nearly the same quality as that retrieved from the total 

freeboard measurements. On the other hand, snow retrievals from the iceradar freeboard show more scattered features, 

compared with snow retrieval results from the total freeboard. More scattered features found in the snow depth from the 

iceradar freeboard are likely due to the relatively more sensitive nature tolarger sensitivity of the retrieved  and the prescribed 345 

densities, as noted in Eq. (712). Note that Eq. (712) has a smaller denominator than that for Eq. (6).  (11). Results of associated 

sensitivity analysis can be found in Appendix B. 

ExaminingWe now examine how the current practicesuse of MW99 for retrieving the sea ice thickness throughfrom ICESat 

and CS2 measurements are comparedcompares with theresults from our simultaneous retrievals is of interest. In doingmethod. 

To do so, OIB-measured total freeboard and iceradar freeboard are converted into ice thickness using MW99 as input to solve 350 

Eqs. (4) and (5). These10). In this study, these two ice thickness retrievals with the use of MW99 are referred to as “ICESat-

like” thickness and “CS2-like” thickness, respectively, and their comparisons are now observed in two panels at the bottom of 

Fig. 7. ApparentlyAccording to our analysis, ICESat-like thickness tends to underestimate the ice thickness by about 5047.9 

cm when MW99 is used, in comparison to OIB thickness. On the other hand, and CS2-like ice thickness shows an overestimate 

of about 2325.5 cm. Nevertheless, their correlation coefficients and RMSEs are similar to the results obtained from the  355 

method.  

The different directionBetter agreement of Hi from the simultaneous method with Hi
OIB may be due to the fact that the 

simultaneously estimated hs is more consistent with hs
OIB (hs

MW99 is likely larger than hs
OIB, as shown in Fig. S1). Note that all 

inputs are the same except the snow depth. The negative bias betweenof ICESat-like andthickness and positive bias of CS2-

like thicknesses is thought to be attributable to the thickness reflect expected responses in different signs to the same snow 360 

depth error according to, as shown in different signs in the last terms of Eqs. (4) and (5). Therefore10) (also note Eq. (B2) in 

Appendix B). Because of this reasoning, if there are decreasing trends in bothnot only ice thickness andbut also snow depth, 

the decreasing trend of ice thickness estimated from the constant snow depth will be diminished in radar, while being amplified 

in lidar. Because of this, the construction of the ice thickness (or volume) trend from the two different satellite altimeters would 

be problematic if MW99 snow depth is used for the freeboard to thickness conversion. For example, it would be hard to 365 

compare the sea ice thickness records estimated from ICESat and CS2 observations and to extend the current ice thickness 

record from CS2 with recently launched NASA’s ICESat-2 which carries a lidar altimeter, for the same reason. 
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4.3 Simultaneous retrieval of ice thickness and snow depth from CS2 measurements 

We have demonstrated that the method of simultaneously retrieving the sea ice thickness and snow depth was successfully 

implemented with OIB measurements. Now we extend the proposed approach to satellite freeboard measurements. Here, the 370 

method is tested with CS2 freeboard measurements, solving for HHi in Eq. (712), and  is obtained from the collocated satellite 

skin and interface temperature data.   

Monthly means of CS2-estimated freeboard (hfFr), retrieved , ice thickness (H)Hi), and snow depth (hhs) for December 2013 

to March 2014 are given in Fig. 8. The geographical distribution of  indicates that  is largest in January and becomes smaller 

induring the following months. Geographically, there seems to be no coherentparticular distribution of  between months, 375 

although interestingly the lowest  values are always found over the north of the Canadian Archipelago and the western part 

of the Arctic Ocean shows  values that is generally larger than that over the eastern part.  

Retrieved ice thickness from the CS2 freeboard (hfFr) using obtained  is presented in the third row of Fig. 8. As expected, as 

noted in Eq. (7), H12), Hi shows a similar geographical distribution as shown in the freeboard (the first row). The thickest area 

is located north of the Canadian Archipelago, where the ice appears thicker than 4 m. On the other hand, most of the FYI 380 

thickness appears to range from 1.0 m to 2.0 m. The snow depth hhs is obtained by multiplying  by HHi (in 2nd and 3rd rows), 

following Eq. (3), and results are given at the bottom. The obtained snow distribution indicates that thicker snow areas are 

generally coincident with thicker MYI areas. Likewise, the thinner snow area coincides with the thinner FYI area. Such 

similarity should be consistent with the notion that MYI should accumulate more precipitation than FYI because of its longer 

existence.  385 

The accuracies of CS2 retrievals using the current  approach can be indirectly tested againstwith OIB measurements. We do 

so by examining whether the relationship between H [ + hf (OIB)]relationships of hs (sat, Fr
OIB) vs. hs

MW99 and H [h (MW99) 

+ hf (OIB)],Hi (sat, Fr
OIB) vs. Hi (hs

MW99, Fr
OIB), in which each snow/ice thickness retrieval has its own accuracy against OIB 

measurements, can be reproduced in CS2-based retrievals. If similar results are found, we can deduce respective accuracies 

against those found from the validationevaluation efforts against OIB measurements. The relationshiprelationships, which can 390 

be obtained from analysis in Fig. 7, is compared with the relationship found in the current results in Fig. 8, (i.e. , H [ + hf 

(CS2)]hs (sat, Fr
CS2) vs. hs

MW99 and H [h (MW99) + hf (CS2)]);Hi (sat, Fr
CS2) vs. Hi (hs

MW99, Fr
CS2)); the results are presented 

in Fig. 9. Observably, the relationshiprelationships from CS2 freeboard data (Fig. 9b) is, d) are very similar to the relationship 

obtained from the comparison results from OIB measurements. (Fig. 9a, c). This similarity of the slope strongly indicates that 

the CS2-based sea ice thickness from the current  method has similar accuracy to that found in the validationevaluation 395 

against OIB measurements (Sect 4.2). 
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5. Conclusions and Discussion 

A new approach towards simultaneously estimating snow depth and ice thickness from space-borne freeboard measurements 

was proposed and tested using OIB data and CS2 freeboard measurements. In developing the algorithm, the vertical 

temperature slopes were assumed to be linear within the snow and ice layers so that continuous heat flux could be maintained 400 

in both layers. This assumption allowed for the description of the snow–ice vertical thermal structure with snow skin 

temperature, snow–ice interface temperature, the water temperature at the ice–water interface, snow depth, and ice thickness. 

Based on the continuous heat transfer assumption, the snow–ice thickness ratio ( = h / Hhs / Hi) was introduced and could 

then be embedded into the freeboard to ice thickness conversion equations. Thus, information on both ice thickness and snow 

depth can be derived once  is known in case of the availability of a freeboard, without relying on the snow depth information 405 

as an input to the conversion from freeboard to ice thickness. From the drifting buoy measurements of the temperature profile, 

snow depth, and ice thickness over the Arctic Ocean, we demonstrated that  can be reliably determined using the ratio of the 

vertical difference of the snow-layer temperature to the vertical difference of ice-layer temperature (Tsnow/Tice). An empirical 

regression equation was obtained for predicting  from three interface temperatures.  

Before applying -prediction equation to simultaneously retrieve the ice thickness and snow depth from satellite-borne 410 

freeboard measurements, the algorithm was validatedevaluated using OIB measurements, in conjunction with satellite-derived 

snow skin temperature and snow–ice interface temperature. ValidationEvaluation results demonstrated that our proposed 

algorithm adequately retrieved both parameters simultaneously. As a matter of fact, the ice thickness results were more accurate 

than they were from the current retrieval methods relying on the input of snow depth (this time MW99 snow climatology), in 

terms of mean bias and RMSE. It should be noted that in this case, snow depth is a retrieval product, instead of being input to 415 

the freeboard to ice thickness conversion adopted by CS2 or ICESat retrieval. ApplicationThe application was finally made 

for the retrieval of the snow depth and ice thickness from CS2 iceradar freeboard measurements from December 2013 to March 

2014 using  as a constraint. Results showed that the quality of the obtained ice thickness was similar to that obtained from 

validationevaluation results against OIB measurements. Retrieved snow depth distributions were also found to be consistent 

with expectations. 420 

In the retrieval process, we may be concerned about the applicability of the algorithm developed with buoy observations 

representing the point circumstancesmeasurements, to the larger spatial and temporal scales that are inevitable in theof satellite 

measurements. This concern may be relevant upon observing the range of  values.  in the satellite’s monthly and 25 km x 

25 km spatial scales was found to be generally smaller than 0.2. The smaller range of  compared to that shown in the buoy 

analysis results is likely due to the scale differences, indicating that extreme  values often shown in buoy measurements (due 425 

to very thick snow and/or very thin ice) may never be observed in satellite measurements. However, the range may not be a 

problem because the relationship (Eq. (3)) expresses the thermal equilibrium condition described by the temperature at three 

interfaces, the ratio of snow and ice thickness, and the ratio of thermal conductivity between snow and ice. Considering that 

the algorithm is based on the equilibrium conditions, results should be valid regardless of spatial and temporal scales if the 
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prerequisite equilibrium conditions are met. Apparently, buoy observations contain so many different cases that equilibrium 430 

conditions are met with different thermal and physical conditions of the snow–ice system. Sound validationevaluation results 

and the consistency between OIB and CS2 ice thickness retrieval results, which are subject to different scales, all suggest that 

point-measured -prediction equation can be applicableapply to satellite measurements.  

Overall, the developed -based method yields ice thickness and snow depth, without relying on a priori ‘uncertain’ snow depth 

information, (MW99), which results in uncertainty in the ice thickness retrieval. The results that iceradar freeboard and the 435 

total freeboard yielded had nearly the same outputs when the -approach was used. The proposed method is applicableapplies 

to both lidar and radar altimeter data, although lidar-based altimeter data tend to offer relatively more suitable snow depth 

information. with smaller RMSE. We expect to continuously monitor the Arctic scale snow depth and ice thickness by applying 

the proposed  method to total freeboard observations by the recently launched ICESat-2, using temperature observations from 

the upcoming MetOp SG Meteorological Imager (MetImage), the Microwave Imager (MWI) and the proposed Copernicus 440 

Imaging Microwave Radiometer (CIMR). 

Appendix A: Physical interpretation of the piecewise linearity between  and Tsnow/Tice 

The relationship found between  and Tsnow/Tice showed a piecewise linearity, which is almost invariant with the data 

averaging period. Because the slope change is neither attributable to different data sources nor different data periods, it is likely 

caused by the physical properties of the snow and ice, as shown in Fig. A1. If the slope change is caused by the snow/ice 445 

condition, there will be a significant difference in snow/ice properties between the two parts showing different slopes. Here, 

we examine the possibility of different physical properties causing the difference in slopes. Through this comparison using 

buoy data, we may identify important properties that might be responsible for the piecewise linearity. 

First, the meanaverages of basic properties available from buoy measurements are compared. They include ice thickness, snow 

depth, snow–ice interface temperature, ice temperature (Tice = (Tas + Tsi) / 2), and so on. The comparison revealed that snow–450 

ice system within the first part (x ≤ x0) is found to consist of relatively thicker ice (mean value: 1.84 m), thinner snow (0.29 

m), and colder ice (-9.13 °C) while the second part (x > x0) is found to consist of relatively thinner ice (1.10 m), thicker snow 

(0.46 m), and warmer ice (-5.00 °C). In general, a thicker snow or ice layer exhibits a greater temperature difference withinfrom 

top to bottom of the layer. There is no significant difference between the air–snow interface temperature (Tas) in the two slope 

parts. 455 

The thermal conductivities, ksnow and kice, are also compared because what connects  and Tsnow/Tice is the ratio of thermal 

conductivities. Before showing the results, we describe how to calculate ksnow and kice. First, the thermal conductivity ratio is 

calculated from buoy measured variables (i.e. Tas, Tsi, Tiw, hhs, and HHi) using Eq. (3). Because the underlying physics in ksnow 

is significantly more complex, kice is estimated first, and then ksnow is obtained by multiplying the calculated kice and ksnow/kice. 

To calculate kice, the parameterization of Maykut and Untersteiner (1971), which describes kice as a function of salinity and 460 

temperature, is used. 
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𝑘𝑖𝑐𝑒 = 2.03 + 0.117
𝑆𝑖𝑐𝑒

𝑇𝑖𝑐𝑒
                                                                                                                                                         (A1) 

Here, Sice and Tice is the salinity (in ppt) and temperature (in Celsius) of sea ice, respectively. For the calculation, Sice is estimated 

according to the empirical relationship between sea ice thickness and mean salinity from Cox and Weeks (1974) as follows: 

𝑆𝑖𝑐𝑒 = {
14.24 − 19.39𝐻,    𝐻 ≤ 0.4 𝑚
7.88 − 1.59𝐻,         𝐻 > 0.4 𝑚

{
14.24 − 19.39𝐻𝑖 ,    𝐻𝑖 ≤ 0.4 𝑚
7.88 − 1.59𝐻𝑖 ,         𝐻𝑖 > 0.4 𝑚

                                                                                                                                  465 

(A2) 

Although Trodahl et al. (2001) reported that kice depends on depth and temperature; here we do not estimate accurate thermal 

conductivities but attempt to examine the physical consequences withinof the piecewise linearitytotal ice layer. 

The comparison of calculated thermal conductivities isare presented in Fig. A2. The calculated kice ranges from 1.8 W K-1 m-1 

to 2.0 W K-1 m-1 (left two panels in Fig. A2). These values are consistent with the in-situ measurements by Pringle et al. (2006). 470 

The mean values of kice of the first part (1.96 W K-1 m-1) and the second part (1.88 W K-1 m-1) show almost no difference. The 

calculated ksnow ranges from 0.2 W K-1 m-1 to 1.05 W K-1 m-1 (right two panels in Fig. A2). This range is consistent with reported 

values in Sturm et al. (1997). The first part shows the greater and significantly spread in the distribution of ksnow compared to 

the second part. The mean ksnow values are 0.44 and 0.27 for the first part and second part, respectively. 

As a significant difference is observed in ksnow, let uswe would like to find a possible reason for this difference. To do so, we 475 

should first review the factors determining ksnow; they are density, temperature, and crystal structure (Sturm et al., 1997). Snow 

is a mixture of ice particles and air, and air has lower thermal conductivity than ice. Thus, snow with a relatively lower density 

including a greater portion of air should have relatively lower thermal conductivity. Besides, the thermal conductivity of ice 

particles depends on the temperature, and the path of heat transfer depends on the crystal structure which describes how the 

particles are connected. The heat transfer occurs not only by conduction but also by water vapor latent heat transportation and 480 

convection through the pore spaces (Sturm et al, 2002), which are hard to be quantifiedquantify explicitly. These two factors 

are closely related to the temperature gradient (or difference) imposed within the snow layer. 

Based on this knowledge, we can infer the condition of the snow layer of the two parts. The relatively higher and varying ksnow 

of the first part would be related to the compaction process resulting in high density, and metamorphic diversity which changes 

the crystal structure. According to Sturm et al. (2002), the value of ksnow of hard wind slap attains up to 0.5 W m-1 K-1, while 485 

that of ksnow of depth hoar is below 0.1 W m-1 K-1. On the other hand, the lower and nearly constant ksnow of the second part 

implies that the snow layer of the second part would consist of fresh and dry snow having relatively lower density and a 

relatively lower likelihood of experiencing particular metamorphism.  

In summary, it is concluded that the physical properties of snow and ice can account for the piecewise linearity, based on the 

differences in the physical properties between the first and second parts. Especially, the thermal conductivity of the snow, ksnow, 490 

seems to play an important role. Nevertheless, further analysis is required to fully understand this phenomenon. 
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Appendix B: Sensitivity test for the proposed method 

Here we present results of a sensitivity test for showing how the snow depth and ice thickness retrieval results are dependent 

on the uncertainties in . To do so, the uncertainty in the snow depth (hs) due to the  error (i.e. ) and associated ice 

thickness error (Hi) are estimated. From this sensitivity test, we expect to understand why the simultaneous method for the 495 

radar freeboard shows more scattered features than those from the lidar total freeboard. 

First, hs is defined by the difference of retrieved hs between with error ( +) and without error ().  

𝛥ℎ𝑠 = {
ℎ𝑠(𝛼 + 𝛥𝛼, 𝐹𝑡) − ℎ𝑠(𝛼, 𝐹𝑡)    (using 𝐹𝑡)

ℎ𝑠(𝛼 + 𝛥𝛼, 𝐹𝑟) − ℎ𝑠(𝛼, 𝐹𝑟)     (using 𝐹𝑟)
                                                                                                                    (B1) 

Then, hs can be converted to the error in the ice thickness (Hi) using the following equation derived from Eq. (10). 

𝛥𝐻𝑖 =
(𝑓𝜂𝑠−1)𝜌𝑤+𝜌𝑠

𝜌𝑤−𝜌𝑖
𝛥ℎ𝑠 = {

−6.46Δℎ𝑠    (using 𝐹𝑡)
   3.44Δℎ𝑠     (using 𝐹𝑟)

                                                                                                                (B2) 500 

Because hs is a combination of freeboard and , as in Eqs. (11) and (12), we only examine the uncertainty with some typical 

sea ice types. Here physical states for thicker ice (type A), moderate ice (type B), and thinner ice (type C) are chosen, which 

are summarized in Table B1. Typical values for those three types are shown in the scatterplots of OIB-based (OIB vs. Ft
OIB) 

and of satellite-based (sat vs. Fr
CS2) – Fig. B1. It is shown that the majority of data points are located around type B, followed 

by type A. There seems a very small portion of total samples showing values around type C. 505 

With  = ±0.03, which is an RMSE range in the -prediction equation, hs and Hi are estimated for three ice types. Table 

B2 summarizing results show that |hs| is within 5 cm and it tends to decrease as the ice becomes thinner when the current 

method is applied to the total freeboard. On the other hand, the use of radar freeboard shows that |hs| tends to be more sensitive 

for the same . Especially, the sensitivity of type C is the greatest. This is because the denominator of Eq. (12) becomes 

smaller when  approaches to crit, resulting in an unstable solution. For the ice thickness, |Hi| is smaller when the total 510 

freeboard is used since Hi is proportional to hs. However, the gap between the results from two freeboards has narrowed 

because Hi from the total freeboard is more sensitive than the radar freeboard to hs, according to Eq. (B2). The sensitivity 

characteristics shown here are consistent with the analysis results given in Sect 4.2. Because there is a much small number of 

data points belonging to type C, at least in the data used for this study, the overall sensitivity would likely be in between B and 

A types. 515 

It is also of importance to ask to what degree of retrievals is successfully yielded. In this study, cases showing Tas > Tsi or 

retrieved  ≥ crit are considered to be failures. Statistics on success/fail ratio of  retrieval for December−March of 2011−2015 

period are provided in Table B3. Overall, the success ratio was over 82% in December−February, while it was reduced to ~74% 

in March. Most of the failures appear associated with cases showing the temperature inversion (i.e. Tas > Tsi), whose areas are 

shaded with grey in the -distributions of Fig. 8. Those failure areas are generally found around the marginal ice zones and in 520 
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the east of Greenland. On the other hand, there was a near-zero failure (0.02% of total pixels) for retrieved  ≥ crit. This near-

zero failure implies that almost all calculated  meet the satisfactory condition after the removal of cases showing the 

temperature inversion. It may be concluded that the calculated  appears to be physically reasonable (i.e.  < crit) as long as 

presumed thermodynamic conditions are met. 
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Table 1. Information on the measurement sites of buoys whose observations were used in this study. 

Name 
Deployment 

Location 
Ice Type 

Initial 

Snow Depth [m] 

Initial  

Ice Thickness [m] 

CRREL 

2010F Beaufort Sea Multi-Year 0.25 1.97 

2011M Central Arctic Multi-Year 0.07 1.67 

2012G Central Arctic First-Year 0.16 1.41 

2013F Beaufort Sea Multi-Year 0.00 1.40 

2013G Beaufort Sea Multi-Year 0.00 1.40 

2014G Beaufort Sea Multi-Year 0.10 1.08 

2014I Beaufort Sea Multi-Year 0.23 1.32 

SHEBA 

Q2 Beaufort Sea Multi-Year 0.06* 1.75* 

PIT Beaufort Sea Multi-Year 0.12* 2.01* 

BALT Beaufort Sea First Year 0.07* 1.40* 

R4 Beaufort Sea Second-Year Ridge 0.09* 4.23* 

SEA Beaufort Sea Ponded Area 0.10* 1.54* 

*The initial snow depth and ice thickness of the SHEBA sites are average values of all thickness gauge measurements in the corresponding 

site because there was one thermistor string but several thickness gauges in each measurement site 680 

 

 

 

 

 685 

Table 2. Coefficients of the regression equation for averaging periods of 1, 7, 15, and 30 days. a1, b1, a2, b2, and x0 are given in Eq. (815). 

Averaging Periods a1 b1 a2 b2 x0 

1 day 0.166 0.047 0.050 0.263 1.864 

7 days 0.179 0.028 0.053 0.254 1.796 

15 days 0.180 0.034 0.029 0.339 2.022 

30 days 0.185 0.022 0.076 0.214 1.769 
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Table B1. The physical state of typical cases of points A, B, and C. 695 

Type Hi [m] hs [m]  Ft [m] Fr [m] 

A 3.961 0.332 0.084 0.65 0.30 

B 1.646 0.123 0.075 0.26 0.13 

C 0.616 0.152 0.246 0.17 0.01 

 

 

 

 

 700 
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Table B2. Errors of snow depth (hs) and ice thickness (Hi) for snow depth to ice thickness ratio error () of ±0.03. 

 Total Freeboard Method Radar Freeboard Method 

 -0.03 0.03 -0.03 0.03 

 hs (cm) 

A -4.070 3.161 -14.59 19.54 

B -1.913 1.471 -5.840 7.730 

C -0.045 0.039 -7.230 37.62 

 Hi (m) 

A 0.263 -0.204 -0.502 0.672 

B 0.124 -0.095 -0.201 0.266 

C 0.003 -0.003 -0.249 1.294 
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Table B3. Statistics of success/fail ratio  retrieval for 2011-2015 winter. 705 

Year Month 
Total Pixels 

(SIC > 95%) 
Success 

Fail 

(Tas > Tsi) 

Fail 

(  > crit) 

2010 12 13879 12080 (87.04%) 1799 (12.96%) 0 (0.00%) 

2011 01 16246 14004 (86.20%) 2242 (13.80%) 0 (0.00%) 

2011 02 17986 14779 (82.17%) 3206 (17.82%) 1 (0.01%) 

2011 03 17610 12871 (73.09%) 4738 (26.91%) 1 (0.01%) 

2011 12 13915 11405 (81.96%) 2510 (18.04%) 0 (0.00%) 

2012 01 16812 13765 (81.88%) 3047 (18.12%) 0 (0.00%) 

2012 02 17528 14131 (80.62%) 3397 (19.38%) 0 (0.00%) 

2012 03 18741 13586 (72.49%) 5155 (27.51%) 0 (0.00%) 

2012 12 14059 11144 (79.27%) 2915 (20.73%) 0 (0.00%) 

2013 01 16413 13510 (82.31%) 2903 (17.69%) 0 (0.00%) 

2013 02 18640 15526 (83.29%) 3114 (16.71%) 0 (0.00%) 

2013 03 19078 14134 (74.09%) 4944 (25.91%) 0 (0.00%) 

2013 12 14515 12071 (83.16%) 2444 (16.84%) 0 (0.00%) 

2014 01 16880 14201 (84.13%) 2678 (15.86%) 1 (0.01%) 

2014 02 16987 14731 (86.72%) 2247 (13.23%) 9 (0.05%) 

2014 03 17699 13300 (75.15%) 4391 (24.81%) 8 (0.05%) 

2014 12 14071 11119 (79.02%) 2952 (20.98%) 0 (0.00%) 

2015 01 17008 15095 (88.75%) 1913 (11.25%) 0 (0.00%) 

2015 02 18076 15907 (88.00%) 2169 (12.00%) 0 (0.00%) 

2015 03 17618 14042 (79.70%) 3576 (20.30%) 0 (0.00%) 

December 70439 57819 (82.08%) 12620 (17.92%) 0 (0.00%) 

January 83359 70575 (84.66%) 12783 (15.33%) 1 (0.00%) 

February 89217 75074 (84.15%) 14133 (15.84%) 10 (0.01%) 

March 90746 67933 (74.86%) 22804 (25.13%) 9 (0.01%) 

crit=0.291 for s=320 kg m-3, i=915 kg m-3, w=1024 kg m-3, and f=0.84. 
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Figure 1. Schematic diagram of a typical snow–ice system during the winter. Snow depth (hhs), ice thickness (HHi), total freeboard (htfFt), 

radar freeboard (hrfFr), and ice freeboard (hfFi) are indicated. Correction terms regarding the wave propagation speed change in snow layer 710 
(Fc) and the displacement of the scattering horizon from the ice surface (Fp) are indicated by blue arrows. The red line denotes a typical 

temperature profile with air–snow interface temperature (Tas), snow–ice interface temperature (Tsi)), and ice–water interface temperature 

(Tiw).  
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Figure 2. The flow chart of the interface searching algorithm. yi and Ti denote the position and temperature of a data point in the temperature 

profile. yas, ysi, and yiw denote the position of the interfaces, and Tlayer denotes a set of temperature data points. 
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Figure 3. Examples of interface searching results with an averaging period of 15 days: (a) 2012G period 2, (b) 2013F period 8, (c) 2014G 

period 1, (d) Q2 period 6, (e) R4 period 6, and (f) SEA period 10. The period number is equivalent to the number of time -averaging bin. 
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Blue dots are buoy-measured temperature profiles and red lines are regression lines. Black dashed lines indicate the intersections between 

adjacent regression lines. 725 
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Figure 4. (a) Scatterplots of the temperature difference ratio of the snow and ice layer (Tsnow/Tice) and the snow–ice thickness ratio (). 

Color denotes the collected year of buoy data. The red lines are the regression lines (defined in Eq. (815)). (b) The scatter plot of observed 730 
and regressed . 
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Figure 5. (a) The regression coefficients (a1, b1, a2, b2) in Eq. (815) and (b) the error statistics of the regression with averaging periods from 

1 to 30 days. 735 
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Figure 6. Simultaneously retrieved ice thickness and snow depth from OIB total/iceradar freeboard in March of the 2011–2015 period. 

Corresponding OIB products are at the bottom. 740 
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Figure 7. Scatter plots between OIB products and the simultaneously retrieved snow depth and ice thickness from OIB total/iceradar 

freeboards during the March 2011–2015 period. Corresponding ice thicknesses estimated from MW99 snow depth are in the third row. The 745 
red lines are linear regression lines.   
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Figure 8. Geographical distributions of observed CS2 iceradar freeboard (hfFr) and estimated snow–ice thickness ratio (), ice thickness 750 
(HHi), and snow depth (hhs) from December 2013 to March 2014. Grey areas in the second row denote where  retrieval is failed because 

Tas is warmer than Tas. 
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Figure 9. Comparison of simultaneous retrieved snow depth and ice thickness betweento those from the MW99 method and the  method 

using. (a) Snow depth from OIB iceradar freeboard and, (b) snow depth from CS2 radar freeboard on March 2014. CS2-like H (OIB) denotes 

the, (c) ice thickness estimated from the MW99 snow depth and OIB iceradar freeboard., and (d) ice thickness from CS2 radar freeboard. 760 
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Figure A1. Distribution of physical variables on scatterplots of the temperature difference ratio of snow and ice layer (Tsnow/Tice) and the 765 
snow–ice thickness ratio (). Color denotes the value of physical variables: (a) ice thickness (H), (b) snow depth (h), (c) air–snow interface 

temperature (Tas), (d) snow–ice interface temperature (Tsi), (e) temperature difference within snow layer (|Tsnow|), and (f) temperature 

difference within ice layer (|Tice|). 
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 770 

Figure A2. Histogram of estimated (left column) kice and (right column) ksnow. The top and bottom row denote the first and the second part, 

respectively. The size of the bins is 0.05 W K-1 m-1. 
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Figure B1. Locations of physical states for typical types (A, B, C) on the freeboard-thickness ratio space. Blue dots are from (left) OIB data 775 
and (right) retrieved thickness ratio and CS2 radar freeboard. 
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The authors have done a thorough job responding to and addressing my comments. In 

particular, the application of the methodology to radar freeboard from CryoSat-2 has been 

demonstrated (I apologise for assuming it would not be possible!). The only thing outstanding 

is an uncertainty estimate for the CS2-derived snow depth and ice thickness. The sensitivity 

analysis that has been included in the appendix explores the impact Δ𝛼 has on snow depth and 

sea ice thickness, but this alone is not sufficient to describe the uncertainty on these products 

since, for example, error on radar freeboard should also be accounted for. If these products are 

to be made available, in particular to the modelling community, they must come with an error 

budget. 

The methodology presented in this manuscript is a novel and valuable addition to the sea ice 

community. I therefore recommend the paper for publication following minor revisions. 

Authors appreciate Dr. Isobel R. Lawrence for providing constructive comments. This time, 

we included uncertainty budget analysis by conducting error propagation analysis. Please find 

the following point-by-point responses to the referee’s comments below. A marked-up version 

of the revised manuscript regarding the changes is attached at the end of this authors’ response. 

 

 

Minor revisions 

The accuracies of CS2 retrievals / Error budget 

I find the final paragraph of section 4.3 (L359-369) extremely difficult to follow. Indeed, after 

studying Figure 9 for some ten minutes I am still at a loss as to what these plots actually tell 

us. If the aim is to perform a validation against OIB measurements, why not just show a scatter 

plot of hs
OIB vs hs(𝛼sat, Fr

CS2) and Hi
OIB vs Hi(𝛼sat, Fr

CS2)? That would be a far simpler and more 

relevant plot which the reader will understand immediately. 

Sorry for the confusion. We should have provided the reason why we did it in an indirect way. 

We clarify the paragraph and provide the reason.  

“To assess the accuracy of CS2 retrievals, reference snow depth and ice thickness collocated 

with CS2 freeboard in space and time are necessary. However, different from simultaneous 

retrievals from OIB freeboards in Sect. 4.2, evaluation with the required matching data may 

not be possible from the monthly composite of CS2 data used in this study. Here, instead of 

using monthly collocated match-up data, an indirect way is used to examine the accuracy of 

CS2 retrievals. We do so by examining whether the relationship between the simultaneous 

method and the MW99 method, based on retrievals from the OIB freeboard, can be reproduced 

by CS2-based retrievals. If similar results are obtained, respective accuracies can be deduced 

against those noted from the evaluation against OIB measurements.” 

 



I think an uncertainty estimate for the satellite-derived products needs including in section 4.3. 

A simple propagation of errors could be performed on Equation 12 to estimate the error on Hi, 

and similarly error on hs could then be propagated from Equation 3. For this, the uncertainty 

on radar freeboard and 𝛼 are required. In the manuscript Δ𝛼 is estimated to be 0.036, equal to 

the RMSE between observed and regressed 𝛼, where regressed 𝛼 are derived from buoy-

measured interface temperatures. Does the same Δ𝛼 apply for 𝛼 derived from satellite 

temperatures? Evidently errors in Tsi
sat and Tas

sat will result in errors in 𝛼. This should at least 

be discussed in section 4.3, even if it is not possible to incorporate errors on Tsi
sat and Tas

sat 

into the final uncertainty budget (if for example the satellite temperature products do not come 

with an uncertainty). Errors on radar freeboard should be available with the CS2 product you 

are using. If not, see discussion in Tilling et al (2018) for their estimate of CS2 radar freeboard 

uncertainty. 

Your understanding is correct. The value of 0.036 is for buoy temperatures, not for satellite 

derived temperatures. Incorporating your comment, the difference in root mean square between 

OIB and sat is calculated and is used for . Appendix B is updated accordingly. 

Then, we calculated the uncertainty budget for satellite derived  and CS2 freeboard 

measurements on ice thickness and snow depth by using Gaussian error propagation equation. 

The results are in Appendix C and referred at the end of Sect. 4.3. 

In the case of ice thickness, freeboard-related uncertainty is greater than -related uncertainty. 

Total uncertainty of ice thickness estimate ranges from 0.8 m to 2.0 m and total uncertainty of 

snow depth estimate ranges from 4 cm to 40 cm. It is noted that -related uncertainty is greater 

than freeboard-related uncertainty for snow depth estimation. Both uncertainties in ice 

thickness and snow depth are greater for MYI region than for FYI region. It is thought that the 

improvement of accuracy in satellite derived temperatures can reduce the snow depth 

uncertainty while the improvement of freeboard accuracy can reduce the ice thickness 

uncertainty.  

 

 

Other minor comments 

L15: “retrieved ice thickness was found to be better than the methods relying on the use of 

snow depth climatology as input, in terms of mean bias and RMSE.” - This is not true, RMSE 

on ice thickness from radar freeboard is smaller using the MW99 method (0.344 vs 0.5 𝛼-

method, figure 7) 

The sentence is corrected by removing RMSE. Now the new sentence reads as follow. 

“retrieved ice thickness was found to be better than the methods relying on the use of snow 

depth climatology as input, in terms of mean bias.” 

 

L68: “Other satellite remote sensing approaches include the snow depth retrieval using dual-

frequency altimetry (Guerreiro et al., 2016; Lawrence et al., 2018, 70 Kwok and Markus, 2018), 



multilinear regression (Kilic et al., 2019), and a neural network approach (Braakmann-

Folgmann and Donlon, 2019).” – I think here you need to add something about the limitations 

of these methods. Otherwise it is unclear why a new snow product is necessary. 

The following sentence is now added regarding limitations of those studies. 

“In spite of promising results, the dual frequency altimetry method is available only for regions 

where two altimeters overlap with each other, reducing the great deal of spatial coverage. On 

the other hands, the regression/neural network methods based on AMSR-2 TBs are prone to 

the overfitting problem, limiting their applications to other microwave sensors.” 

 

L170: “A sensitivity test indicated that the influence of a 0.3°C difference in the freezing 

temperature on 𝛼 was negligible”. Could you give a percentage value or some quantification 

of it being negligible? 

Additional information is now provided at the end of the sentence. 

“… (e.g. approximately 1.2% difference for typical interface temperatures of Tas = -30 °C and 

Tsi = -20 °C)” 

 

L233: The Quicklook dataset URL you provide takes you to ‘Bootstrap Sea ice concentrations”. 

Please check the DOI. Also I suggest moving the url to the end of the sentence.  

Thanks for the comment. DOI is corrected and the url has been moved to the data availability 

section. It is now located at the end of the sentence. 

 

L235: “The OIB data are also reformatted into the 25 km grid format for comparison. If the 

location of one OIB individual data point falls within a certain 25 km grid area, then the point 

data is binned in a corresponding grid. After completing the grid assignment, grid value is 

determined by calculating a simple arithmetic mean of all data within that grid area.” – Do 

you just mean “the OIB data are averaged on the same 25km grid”? 

The sentence is now clarified, as follows:  

“The OIB data are also reformatted into the 25 km grid format by averaging pixel-level OIB 

observations on the 25 km grid.” 

 

L251: I find lines 245 to 250 slightly confusing. I suggest you move the equation for 𝜂s to after 

equation 14. i.e: 

“[Eq 14], 

where 𝜂s = […] and 𝜌s is taken from the Warren climatology, after Kurtz (2017)” 

Following the comment, the equation for 𝜂s is located after Eq. (14): 



[Eq. (14)] 

“Here, s was parameterized as a function of the snow density, i.e. s = (1 + 1.7s + 0.7s
2)0.5 

(Tiuri et al., 1984), and s is taken from the W99 climatology, after Kurtz and Harbeck (2017).” 

 

Figure 3 caption: “The period number is equivalent to the number of time-averaging bin.” – I 

do not understand what the period number is. 

If time averaging period is 15 days, there are 10 time-averaging bins because 151 days 

(November 1 to March 30) are divided into 15-day increments. We sequentially numbered each 

time averaging bin which has a 15-day length. That number is the period number in Fig. 3 

caption. The following figure for the averaging period of 15 days would help understanding. 

 

For clarification, the description is changed as follow. 

“The period number indicates the sequential 15-day period from November 1 (e.g. ‘period: 2’ 

denotes a time-averaging period of November 16th to November 30th).” 

 

 

Typos / Grammar 

L19: “…buoyancy equation and radar penetration…” -> “…buoyancy equation or the radar 

penetration…” 

L26: “…the height from the sea surface in cracks and leads to the snow surface.” -> “…the 

height from the sea surface in leads, to the snow surface.”  

L51: “variation of snow–ice system” -> “variation of the snow–ice system” 

L58: “TB’s” -> “TBs” 

L156: Remove “respectively” 

L181: “…by multiplying the obtained sea ice thickness and 𝛼.” -> “…by multiplying the 

obtained sea ice thickness and 𝛼 (Eq. (3)).” 

L194 “…as parts…” -> “…as part…” 

L201: “depending” -> “dependent” 

Sentences are corrected following your suggestion. 

 



L248: “In this dataset, 𝜂s was parameterized as a function of the snow density” -> “𝜂s was 

parameterized as a function of the snow density” – The ‘in this dataset’ suggests to me that you 

mean your dataset!  

Sorry for the confusion. ‘in this dataset’ is now removed from the sentence. 

 

L253: “…values are used for comparison.” -> “…values are used for comparison with results 

from our simultaneous method.” 

L307: “scatterplots of comparing retrievals” -> “scatterplots comparing retrievals” 

L351: “shows 𝛼 values that is generally larger than that over” -> “shows 𝛼 values that are 

generally larger than those over” 

L353: “Hi shows a similar geographical distribution as shown in the freeboard (the first row)” 

-> “Hi shows a similar geographical distribution to radar freeboard (the first row)” 

L356: “and results are given at the bottom” -> “and results are shown in the bottom row” 

L356: “The obtained snow distribution indicates that thicker snow areas are generally 

coincident with thicker MYI areas. Likewise, the thinner snow area coincides with the thinner 

FYI area” -> “The obtained snow distribution indicates that thicker (thinner) snow areas are 

generally coincident with thicker MYI (thinner FYI) areas.” 

Sentences are corrected following your suggestion. 

 

L385: “As a matter of fact, the ice thickness results were more accurate than they were from 

the current retrieval methods relying on the input of snow depth (this time MW99 snow 

climatology), in terms of mean bias and RMSE.” – This sentence is not accurate. RMSE on ice 

thickness from radar freeboard is smaller using the MW99 method (0.344 vs 0.5 𝛼-method, 

figure 7) 

Sentence is corrected (removed RMSE). 

 

L406: “The results that radar freeboard and the total freeboard yielded had nearly the same 

outputs when the 𝛼 -approach was used” – This sentence does not make sense to me. 

This sentence is removed. 

 

L455: “hard wind slap” -> “hard wind slab” 

Sentence is corrected. 

 

L471: “Because hs is a combination of freeboard and 𝛼” - Do you mean “Because Hi is a 

combination of freeboard and 𝛼”? 



Both ice thickness and snow depth are combination of freeboard and . Sentence is corrected 

as follow. 

“Because Hi and hs are the combination of freeboard and 𝛼 ” 

 

L476: “With Δ= ±0.03, which is an RMSE range in the 𝛼 -prediction equation” – From figure 

4b, the RMSE = 0.04, not 0.03. 

±0.03 was RMSE range in the 𝛼 -prediction equation for the 30-day averaging period. However, 

regarding your comment, root mean square difference value between OIB and sat is used for 

. This part has changed as follow: 

“With  = ±0.05, which is the root mean square difference (RMSD) value between OIB and 

sat” 

 

L483: “a much small number” -> “a much smaller number” 

Figure 8 caption: “Grey areas in the second row denote where 𝛼 retrieval is failed because Tas 

is warmer than Tas.” -> “Grey areas in the second row denote where 𝛼 retrieval failed because 

Tas is warmer than Tsi.” 

The sentences are corrected accordingly. 
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Abstract. A method of simultaneously estimating snow depth and sea ice thickness using satellite-based freeboard 

measurements over the Arctic Ocean during winter was proposed. The ratio of snow depth to ice thickness (referred to as ) 

was defined and used in constraining the conversion from the freeboard to ice thickness in satellite altimetry without prior 

knowledge of snow depth. Then,  was empirically determined using the ratio of temperature difference of the snow layer to 

the difference of the ice layer, to allow the determination of  from satellite-derived snow surface temperature and snow–ice 15 

interface temperature. The proposed method was evaluated against NASA’s Operation IceBridge measurements, and results 

indicated that the algorithm adequately retrieves snow depth and ice thickness simultaneously: retrieved ice thickness was 

found to be better than the methods relying on the use of snow depth climatology as input, in terms of mean bias and RMSE. 

The application of the proposed method to CryoSat-2 radar freeboard measurements yields similar results. In conclusion, the 

developed -based method has the capacity to derive ice thickness and snow depth, without relying on the snow depth 20 

information as input to the buoyancy equation andor the radar penetration correction for converting freeboard to ice thickness. 

1 Introduction 

Satellite altimeters have been used to estimate sea ice thickness for nearly two decades (Laxon et al., 2003; Kwok et al., 2009; 

Laxon et al., 2013). The altimeters do not measure sea ice thickness directly but measure the sea ice freeboard which is then 

converted to sea ice thickness with assumptions, for example, regarding the snow depth, snow/ice densities, and radar 25 

penetration (Ricker et al., 2014). We hereafter refer to this procedure as ‘freeboard to thickness conversion’. 

Generally, there are two types of satellite altimeters measuring different sea ice freeboards: 1) Lidar altimeters such as NASA’s 

ICESat (Zwally et al., 2002) and ICESat-2 (Markus et al., 2017) missions measure the total freeboard (Ft): the height from the 

sea surface in cracks and leads, to the snow surface. 2) Radar altimeters such as ESA’s CryoSat-2 (CS2) (Wingham et al., 

2006) measure the radar freeboard (Fr): difference in the radar ranging between the sea surface and the radar scattering horizon. 30 
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By applying two corrections terms regarding the wave propagation speed change in the snow layer (Fc) and displacement of 

the scattering horizon from the ice surface (Fp), the radar freeboard is converted to the ice freeboard (Fi): the height from the 

sea surface to the snow–ice interface (Fi). Several studies indicate that the radar scattering horizon is at or above the snow–ice 

interface depending on ice type and snow/ice conditions (Nandan et al., 2017; Armitage and Ridout, 2015; Willatt et al., 2011; 

Tonboe et al. 2010). However, the radar scattering horizon is often treated as the snow–ice interface (Kurtz et al., 2014; Kwok 35 

and Cunningham, 2015; Hendricks et al., 2016; Guerreiro et al., 2017, Tilling et al., 2018). The three different freeboards are 

indicated in Fig. 1.  

For both lidar and radar altimeters, snow depth (hs) is required as an input to constrain the freeboard to thickness conversion; 

thus, the conversion results are highly dependent on snow depth (Ricker et al., 2014; Zygmuntowska et al., 2014; Kern et al. 

2015). The buoyancy equation used in the freeboard to thickness conversion describes the balance between buoyancy and the 40 

weight of snow and ice. For a given freeboard, snow/ice densities, and assumptions on radar penetration of the snow layer, sea 

ice thickness (Hi) is a function of hs. According to Zygmuntowska et al. (2014), up to 70% of uncertainty in the freeboard to 

thickness conversion stems from the poorly constrained snow depth. However, mapping the Arctic scale snow depth 

distribution is challenging. The most commonly used snow depth information necessary for the freeboard to thickness 

conversion is the modified version of the snow depth climatology by Warren et al. (1999) (hereafter W99). W99 is based on 45 

in-situ measurements at Soviet drifting stations (1954–1991) mostly on multi-year ice (MYI). Kurtz and Farrell (2011) 

compared W99 with Operation IceBridge (OIB) snow depth measurements in 2009 and claimed that W99 was still valid in the 

MYI region and significantly differed from OIB snow depth on first-year ice (FYI). Based on that study, Modified W99 

(hereafter MW99) was developed, which halves W99 snow depth in regions covered by FYI. MW99 is often used in CS2 ice 

thickness products available at CPOM-UCL (Laxon et al., 2013), AWI (Ricker et al., 2014), and NSIDC (Kurtz et al.,and 50 

Harbeck, 2017).  

However, the use of MW99 for the freeboard to thickness conversion understandably yields a substantial error, considering 

that W99 is climatology and not actual snow depth. This is because the actual snow depth distribution is subject to the year-

to-year variation of the snow–ice system, thus the climatology based on the 37-year measurements of snow depth would deviate 

significantly from the actual distribution (Webster et al., 2014). Accordingly, such deviation causes errors in the estimation of 55 

ice thickness. Thus, additional snow observations covering both MYI and FYI on the Arctic basin-scale would be ideal as a 

replacement of MW99. 

There have been various approaches aimed at obtaining the snow depth distribution over the Arctic scale using satellite 

observations. Markus and Cavalieri (1998) developed an algorithm based on the Brightness Temperatures (TBs) of Special 

Sensor Microwave/Imager (SSM/I) based on the negative correlation of the snow depth with the spectral gradient ratio between 60 

18 and 37 GHz of vertically polarized TB’sTBs on the Antarctic FYI. Comiso et al. (2003) have updated the coefficients of 

this algorithm for the Advanced Microwave Scanning Radiometer for EOS (AMSR-E). However, snow depth retrieval using 

this algorithm is relatively less accurate when the MYI fraction within the grid cell is significant (Brucker and Markus, 2013). 
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Recently, Rostosky et al. (2018) suggested a new method: using the lower frequency pair of 7 and 19 GHz to overcome this 

limitation. Nonetheless, estimating the basin-scale snow depth distribution seems to be a difficult task. 65 

There are other approaches involving the use of the lower frequency measurements at L-band. Using Soil Moisture Ocean 

Salinity (SMOS) measurements, Maaß et al. (2013) found that 1.4 GHz TB depends on the snow depth through the insulation 

effect of snow layer, and they determined snow depth by matching Radiative Transfer Model (RTM) simulated TBs with 

SMOS-measured TBs. Zhou et al. (2018) simultaneously estimated the sea ice thickness and snow depth by adding additional 

laser altimeter freeboard information, improving the Maaß et al. (2013) approach. However, both of these RTM-based 70 

approaches require a priori information on ice properties (e.g. temperature and salinity profiles).  

Other satellite remote sensing approaches include the snow depth retrieval using dual-frequency altimetry (Guerreiro et al., 

2016; Lawrence et al., 2018, Kwok and Markus, 2018), multilinear regression (Kilic et al., 2019), and a neural network 

approach (Braakmann-Folgmann and Donlon, 2019). In spite of promising results, the dual frequency altimetry method is 

available only for regions where two altimeters overlap with each other, reducing the great deal of spatial coverage. On the 75 

other hands, the regression/neural network methods based on AMSR-2 TBs are prone to the overfitting problem, limiting their 

applications to other microwave sensors. 

Here, let us switch our point of view to solving the buoyancy equation instead of retrieving snow depth directly. Remember 

that there are two unknowns (snow depth and ice thickness) in the buoyancy equation for given snow/ice densities, freeboard, 

and assumptions on radar penetration of the snow layer. The attempt so far has been to add one constraint (snow depth 80 

information) to the buoyancy equation for solving ice thickness. However, if a particular relationship between two unknowns 

is available, it can be used to constrain the equation yielding both ice thickness and snow depth simultaneously.  

To identify such a relationship, this study examines the vertical thermal structure within the snow/ice layers observed by 

drifting buoys. The vertical thermal structure of a snow–ice system in winter is rather simple; the temperature profile of the 

snow–ice system can be assumed to be piecewise linear, as illustrated in Fig. 1. Therefore, the temperatures at three interfaces 85 

can represent the thermal state of the snow–ice system fairly well; they are (1) air–snow interface temperature (Tas), (2) snow–

ice interface temperature (Tsi), and (3) ice–water interface temperature (Tiw). Tiw is assumed to be nearly constant at the freezing 

temperature of seawater (Maaß et al., 2013), implying that two other interface temperatures (Tas and Tsi) are sufficient to 

describe the thermal structure of the system.  

Based on this thermal structure, there is a constraint relating the snow depth and ice thickness. In identifying this constraint, 90 

conductive heat flux is assumed to be continuous through the snow–ice interface (Maykut and Untersteiner, 1971), implying 

that conductive heat fluxes within the snow and ice layers are same under the steady-state assumed in the given thermal 

structure. As the conductive heat flux is proportional to the bulk temperature difference of the layer divided by its thickness, 

it is possible to deduce the relationship between snow depth and ice thickness from the given thermal structure.  

Once the relationship is obtained, then it is possible to apply it to the Arctic Ocean basin-scale because the thermal structure 95 

can be resolved from satellites, as shown in the recently available basin-scale and long-term satellite-derived interface 

temperatures (Dybkjæ r et al., 2020; Lee et al., 2018). In determining the snow depth along with the ice thickness, instead of 
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using the snow depth as an input to solve for the ice thickness, we intend to (1) examine the relationship between the vertical 

thermal structure of a snow–ice system (Tas and Tsi) and the thicknesses of the snow and ice layer (hs and Hi) using buoy 

measurements, (2) retrieve the sea ice thickness and the snow depth simultaneously by applying their relationship to the 100 

freeboard to thickness conversion as a constraint, thus replacing the snow depth information. The result may reduce uncertainty 

in the freeboard to ice thickness conversion by replacing the currently used snow depth climatology. 

2 Method 

Here, we provide the theoretical background of how the snow–ice thickness ratio ( = hs / Hi) can be related to Tas and Tsi. 

Then, after empirically determining the relationship of  to Tas and Tsi from buoy measured temperature profiles,  obtained 105 

from satellite- observed Tas and Tsi is then used to constrain the conversion from freeboard to ice thickness over the Arctic 

Ocean during winter.  

2.1 Theoretical background 

We intend to find a relationship between snow depth and ice thickness in terms of the vertical thermal structure of the snow–

ice system. Because the temperature gradients within the snow and ice layers are linked to both temperature and thickness, we 110 

focus on the temperature gradient. Owing to the physical reasoning that the conductive heat flux is continuous across the snow–

ice interface (Maykut and Untersteiner, 1971), the following relationship is valid at the snow–ice interface: 

𝑘𝑠𝑛𝑜𝑤
𝜕𝑇𝑠𝑛𝑜𝑤

𝜕𝑧
|

𝑧=0
= 𝑘𝑖𝑐𝑒

𝜕𝑇𝑖𝑐𝑒

𝜕𝑧
|

𝑧=0
                                                                                                                                               (1) 

In Eq. (1), the subscripts snow and ice denote their respective layers while T, k, and z denote temperature, thermal conductivity, 

and depth, respectively. The snow–ice interface is defined as z = 0. Assuming a piecewise linear temperature profile within 115 

the snow–ice layer, Eq. (1) can be rewritten as follows: 

𝑘𝑠𝑛𝑜𝑤
𝑇𝑎𝑠−𝑇𝑠𝑖

ℎ𝑠
= 𝑘𝑖𝑐𝑒

𝑇𝑠𝑖−𝑇𝑖𝑤

𝐻𝑖
                                                                                                                                                        (2) 

where subscripts as, si, and iw denote the air–snow, snow–ice, and ice–water interface, respectively, and Hi and hs denote the 

sea ice thickness and snow depth as in Fig. 1. Introducing a variable , which is the snow–ice thickness ratio, Eq. (2) becomes: 

𝛼 =
ℎ𝑠

𝐻𝑖
=

𝑘𝑠𝑛𝑜𝑤

𝑘𝑖𝑐𝑒

Δ𝑇𝑠𝑛𝑜𝑤

Δ𝑇𝑖𝑐𝑒
                                                                                                                                                                  (3) 120 

Here, T denotes the temperature difference between the top and bottom of each of the snow and ice layers (i.e. Tsnow = Tas - 

Tsi, Tice = Tsi - Tiw). As explained in detail in Sect. 2.3,  can be used to constrain the freeboard to thickness conversion. Thus, 

once  is known, both snow depth and ice thickness can be simultaneously estimated from altimeter-measured freeboard, 

instead of using snow depth data for ice thickness retrieval. 
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2.2 Empirical determination of ‘-prediction equation’ from buoy measurements 125 

To obtain , the conductivity ratio (ksnow/kice) should be known even if the temperature difference ratio (Tsnow/Tice) is given. 

In this study, instead of using the conventional conductivity ratio found in literature, it is empirically determined using buoy-

measured  and Tsnow/Tice. Thus, the interface should be defined and determined from buoy-measured temperature profiles, 

which show a piecewise linear temperature profile as shown in Fig. 1.   

The buoy-measured temperature profiles in the vertical resolution of 10 cm are used in this study (Sect. 3.1). Although the 130 

instrument initially sets the zero-depth reference position to be approximately at the snow–ice interface, the reference position 

can deviate from the initial location if the ice deforms, or if the snow refreezes after the temporary melt into snow-ice. In 

addition, the interfaces (air–snow, snow–ice, and ice–water) may be located in between measurement levels in a 10 cm spacing. 

Therefore, an interface searching algorithm is developed to determine three interfaces (yas, ysi, yiw) and their respective 

temperatures (Tas, Tsi, Tiw) by extrapolating each piecewise linear temperature profile iteratively.  135 

The interface searching algorithm iterates three processes to find the location and temperature of each interface: it (1) divides 

temperature profile into four layers using the most recently available locations of the three interfaces, (2) finds a linear 

regression line of the temperature profile at each layer, and (3) updates the location and temperature of each interface by 

finding an intersection between two adjacent regression lines. The algorithm fails if the temperature profile is far from linear, 

or the thickness of a certain layer is too thin to have less than two data points. More detailed procedures for determining the 140 

interface are provided in Fig. 2, as a flow chart. The outputs are Tas, Tsi, Tiw, Hi (= yas - ysi), and hs (= ysi - yiw). Examples of the 

interface searching results for 15-day averaged temperature profiles are shown in Fig. 3. The algorithm works adequately for 

both CRREL-IMB (Fig. 3a–c) and SHEBA buoy data (Fig. 3d–f).  

Since Tas, Tsi, Tiw, Hi, and hs can be obtained from the previous interface determination with buoy data, the calculation of 

Tsnow/Tice and  is straightforward. Then, an empirical relationship can be obtained by relating  to Tsnow/Tice by running 145 

a regression model, and details are given in Sect. 4. However, for the time being, we assume that the regression equation 

(referred to as an ‘-prediction equation’ that will be discussed in Sect. 4) is used to predict  from Tsnow/Tice. 

2.3 Simultaneous estimation of ice thickness and snow depth from satellite-based freeboard using   

In this section, we describe how  can be used to constrain the freeboard to thickness conversion. Based on the assumed 

hydrostatic balance, ice thickness can be obtained from satellite-borne total freeboard or ice freeboard as follows: 150 

𝐻𝑖 =
𝜌𝑤

𝜌𝑤−𝜌𝑖
𝐹𝑡 −

𝜌𝑤−𝜌𝑠

𝜌𝑤−𝜌𝑖
ℎ𝑠                                                                                                                                                            (4) 

𝐻𝑖 =
𝜌𝑤

𝜌𝑤−𝜌𝑖
𝐹𝑖 +

𝜌𝑠

𝜌𝑤−𝜌𝑖
ℎ𝑠                                                                                                                                                             (5) 



 

6 

 

Here, w, i, and s denote the bulk densities of water, ice, and snow layer, respectively. Ice freeboard is obtained from radar 

freeboard by applying two correction terms regarding the change of the wave propagation speed in snow layer (Fc) and the 

displacement of the scattering horizon from the ice surface (Fp) (Kwok and Cunningham, 2015).  155 

𝐹𝑖 = 𝐹𝑟 + (𝐹𝑐 − 𝐹𝑝)                                                                                                                                                                                          (6) 

The correction terms are expressed in the following equations (Armitage and Ridout, 2015; Kwok and Markus, 2018). 

𝐹𝑐 = (𝜂𝑠 − 1)𝑓ℎ𝑠                                                                                                                                                                      (7) 

𝐹𝑝 = (1 − 𝑓)ℎ𝑠                                                                                                                                                                         (8) 

Here, s denotes the refractive index of the snow layer and f denotes the radar penetration factor (Armitage and Ridout, 2015), 160 

which is the depth of the radar scattering horizon relative to the snow depth (e.g. f = 1 if the radar scattering horizon is at snow–

ice interface and f = 0 if the radar scattering horizon is at air-snow interface), respectively.). Combination of Eqs. (6)–() – (8) 

yields the following relationship. 

𝐹𝑖 = 𝐹𝑟 + (𝑓𝜂𝑠 − 1)ℎ𝑠                                                                                                                                                              (9) 

Ice freeboard in Eq. (5) can be substituted by radar freeboard and snow depth using Eq. (9), i.e.: 165 

𝐻𝑖 =
𝜌𝑤

𝜌𝑤−𝜌𝑖
𝐹𝑟 +

(𝑓𝜂𝑠−1)𝜌𝑤+𝜌𝑠

𝜌𝑤−𝜌𝑖
ℎ𝑠                                                                                                                                              (10) 

According to Eq. (10), the ice thickness can be estimated from the radar freeboard and the snow depth. Note that Eq. (10) 

becomes equivalent to the equation for the total freeboard (Eq. (4)) if f = 0 (i.e. if there is no radar penetration into snow layer). 

With the use of , defined in Eq. (3), Eqs. (4) and (10) become 

𝐻𝑖 =
𝜌𝑤

𝜌𝑤−𝜌𝑖+𝛼(𝜌𝑤−𝜌𝑠)
𝐹𝑡                                                                                                                                                            (11) 170 

𝐻𝑖 =
𝜌𝑤

𝜌𝑤−𝜌𝑖−𝛼{(𝑓𝜂𝑠−1)𝜌𝑤+𝜌𝑠}
𝐹𝑟                                                                                                                                                  (12) 

From Eqs. (3), (11) and (12), it is evident that the snow depth and ice thickness can be simultaneously estimated from the 

freeboards once , ,  f and s are known. 

In order to obtain  from satellite measurements of Tas and Tsi, we need to calculate the temperature difference ratio 

(Tsnow/Tice). For the calculation, Tiw is set to be -1.5 °C. The freezing temperature of seawater is often assumed to be -1.8 °C; 175 

however, the value of -1.5 °C is chosen, based on the buoy observations. A sensitivity test indicated that the influence of a 

0.3 °C difference in the freezing temperature on  was negligible. (e.g. approximately 1.2% difference for typical interface 

temperatures of Tas = -30 °C and Tsi = -20 °C).  values are calculated only at the pixel whose monthly sea ice concentration 

(SIC) is greater than 95% and rejected if Tas is warmer than Tsi. The densities are prescribed with those used for OIB data 

processing: s, i, and w are 0.320 g cm-3, 0.915 g cm-3, and 1.024 g cm-3, respectively (Kurtz et al., 2013). Although s varies 180 
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seasonally (Warren et al., 1999) and i is greater for MYI than FYI (Alexandrov et al., 2010), we use the same densities as 

those of OIB data because we intend to compare outputs against OIB data. In solving Eq. (12), cases showing negative ice 

thickness ( ≥ crit = 0.291 for the given densities and radar penetration factor) are rejected. Radar penetration factor f is set to 

be 0.84 for CS2 (Armitage and Ridout, 2015) and s is parameterized as a function of the snow density, i.e., s =(1+0.51s)1.5 

(Ulaby et al., 1986). 185 

Before the Arctic basin-scale retrieval, ice thickness is estimated from OIB total freeboard measurement using Eq. (11), and 

from OIB-derived radar freeboards (Sect. 3.3) using Eq. (12), using satellite-derived  as a constraint. At the same time, the 

corresponding snow depth is derived by multiplying the obtained sea ice thickness and . (Eq. (3)). Sea ice thicknesses are 

also calculated from Eqs. (4) and (10), using MW99 as snow depth, to examine how simultaneous retrievals compare with ice 

thickness estimation using MW99. To differentiate various outputs, obtained snow depth and ice thickness are expressed with 190 

nomenclature such as ‘(constraint, freeboard source)’. For example, the snow depth estimated from satellite-derived  and 

OIB total freeboard is referred to as ‘hs (sat,  Ft
OIB)’, and sea ice thickness from the MW99 and OIB radar freeboard is referred 

to as ‘Hi (hs
MW99, Fr

OIB)’. Finally, ice thickness and snow depth are estimated from CS2 radar freeboard (Sect. 3.4) over the 

Arctic Ocean. 

3 Data 195 

Here, we provide detailed information on the data sets used for the development of the retrieval algorithm, evaluation, and 

application to the Arctic ocean basin scale.  

3.1 CRREL and SHEBA buoy data 

To determine the empirical relationship between  and Tsnow/Tice using Eq. (3), we need information regarding h, Hhs, Hi, 

Tas, Tsi, and Tiw (as depicted in Fig. 1). These are sourced from temperature profiles observed by buoys deployed over the 200 

Arctic, as partspart of the Surface Heat Energy Budget of the Arctic (SHEBA) campaign (Perovich et al., 2007) and the Cold 

Regions Research and Engineering Laboratory Ice Mass Balance (CRREL-IMB) buoy program (Perovich et al., 2019). Those 

buoy observations are stored for further analysis if there are no missing records over the entire period ranging from November 

to March of the following year. Detailed information regarding ice type and initial snow/ice thickness at deployment locations 

are given in Table 1. 205 

Time averages of temperature profiles are used as input to the interface searching algorithm (described in Sect. 2.2) to meet 

the required near-equilibrium states (e.g. linear temperature profile). However, because of the possibility that the results are 

dependingdependent on the averaging period, we examine the results using various averaging periods from one to 30 days.  
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3.2 Satellite-derived skin and interface temperatures 

For applying the buoy-based -prediction equation in retrieving the snow/ice thicknesses over the Arctic Ocean, satellite-210 

derived Tas and Tsi data are necessary. In this study, Tas is obtained from Arctic and Antarctic ice Surface Temperatures from 

thermal Infrared satellites sensors – version 2 (AASTI-v2) data (Dybkjæ r et al., 2020), and the monthly mean for the 1982–

2015 period is obtained from daily products. AASTI Tas is derived from CM SAF cLoud, Albedo and surface Radiation dataset 

from AVHRR data - Edition 2 (CLARA-A2) dataset (Karlsson et al., 2017), based on the algorithm described in Dybkjæ r et 

al. (2018). Information on the validation of this product is found in Dybkjæ r and Eastwood (2016). It is available in a 0.25 215 

grid format, however, because other satellite data sets such as SIC are available in a 25 km Polar Stereographic SSM/I Grid, 

AASTI-v2 data are re-gridded in the same 25 km grid format. This reformatted AASTI-v2 dataset is called ‘satellite skin 

temperature’. 

Tsi is obtained from Snow/Ice Interface Temperature (SIIT) produced by Lee et al. (2018) over 30 years (1988–2017) of 

wintertime (December to February) using SSM/I and Special Sensor Microwave Imager/Sounder (SSMIS) homogenized TBs 220 

(Berg et al., 2018). The daily data are in the 25 km grid format. Lee et al. (2018) reported that the satellite-derived Tsi is 

consistent with snow–ice interface temperatures observed by CRREL-IMB buoys, with the correlation coefficient, bias, and 

RMSE of 0.95, 0.15 K and 1.48 K, respectively. In this study, we also produced Tsi for March using the same algorithm of Lee 

et al. (2018) for evaluating results against OIB data which are mostly collected during spring. Monthly composites are 

constructed by averaging daily data for grid cells where the data frequency is over 20 days. This product is called ‘satellite 225 

interface temperature’. 

3.3 OIB data  

In this study, OIB snow depth (hs
OIB) and total freeboard (Ft

OIB) are used as a reference in the evaluation of snow depth and ice 

thickness retrieved from the developed algorithm. NASA’s OIB is an aircraft mission and it measures snow depth and total 

freeboard over the Arctic using the snow radar, Digital Mapping System (DMS), and Airborne Topographic Mapper (ATM) 230 

(Kurtz et al., 2013). OIB ice thickness is derived from measured snow depth and total freeboard, for the given snow and ice 

densities using Eq. (4). In this study, the OIB radar freeboard (Fr
OIB) is derived from Ft

OIB and hs
OIB using the combined 

relationship of Fi = Ft - hs and Eq. (9) as follows: 

𝐹𝑟
𝑂𝐼𝐵 = 𝐹𝑡

𝑂𝐼𝐵 − ℎ𝑠
𝑂𝐼𝐵 − (𝑓𝜂𝑠 − 1)ℎ𝑠

𝑂𝐼𝐵                                                                                                                                     (13) 

Because the main objective of using OIB data is to evaluate the relative performance of the simultaneous retrieval method 235 

when the method is applied to CS2 data, the radar penetration factor (f) for OIB data processing is also set to be 0.84. In the 

data processing chain, hs
OIB is removed if it is smaller than the given uncertainty level of the dataset (~5.7 cm) or it is larger 

than the total freeboard Ft
OIB.  
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Five years of OIB data during 2011-2015 period are utilized in this study. The level 4 dataset (Kurtz et al., 2015) during 2011-

2013 period and Quick look dataset (https://doi.org/10.5067/7Q8HCCWS4I0R, last access: 20 May 2020) during 2014-2015 240 

period are obtained from the NSIDC website. (see the data availability section). Because we use the November–March period 

for the buoy analysis, only March OIB data are considered for the evaluation. The OIB data are also reformatted into the 25 

km grid format for comparison. If the location of one OIB individual data point falls within a certain 25 km grid area, then the 

point data is binned in a corresponding grid. After completing the grid assignment, grid value is determined by calculating a 

simple arithmetic mean of all data within that grid area.by averaging pixel-level OIB observations on the 25 km grid.  245 

3.4 CS2 data 

For examining the Arctic Ocean basin distribution of ice thickness and snow depth, CS2 freeboard measurement summary 

data are used (Kurtz et al.,and Harbeck, 2017). They are monthly mean composites of CS2 ice freeboard data in the 25 km 

Polar Stereographic SSM/I Grid format, covering the entire Arctic, and available from September 2010. Detailed descriptions 

of the retracker algorithm used in this dataset are found in the study by Kurtz et al. (2014). The dataset also includes MW99 250 

(hs
MW99) and W99 snow density climatology used for producing the ice freeboard.  

The CS2 ice freeboard data (Fi
CS2) distributed by NSIDC (Kurtz et al.and Harbeck, 2017) assumed that the radar scattering 

horizon is at the snow–ice interface and applied a wave propagation speed correction. However, the correction was made using 

hs
MW99 and W99 snow density climatology with an erroneous form of hc = (1 - s

-1) hs, instead of the proper form of hc = (s - 

1) hs (Mallett et al., 2020). In this dataset, s was parameterized as a function of the snow density, i.e., s = (1 + 1.7s + 255 

0.7s
2)0.5 (Tiuri et al., 1984). Thus, at this point, it is straightforward to derive the CS2 radar freeboard by removing the 

correction term as in the following equation.  

𝐹𝑟
𝐶𝑆2 = 𝐹𝑖

𝐶𝑆2 − (1 − 𝜂𝑠
−1)ℎ𝑠

𝑀𝑊99                                                                                                                                             (14) 

Here, s was parameterized as a function of the snow density, i.e. s = (1 + 1.7s + 0.7s
2)0.5 (Tiuri et al., 1984), and s is taken 

from the W99 climatology, after Kurtz and Harbeck (2017). Then CS2 ice thickness is re-produced from Fr
CS2 and hs

MW99 by 260 

using Eq. (10) with the constant densities and the radar penetration factor described in Sect. 2.3. Those hs
MW99 and Hi (hs

MW99, 

Fr
CS2) values are used for comparison.  with results from our simultaneous method. 

3.5 Sea ice concentration 

Calculation of  is done for those pixels where the monthly SIC is greater than 95% (as described in Sect. 2.3). To determine 

pixels that meet this SIC criterion, ‘bootstrap sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS version 265 

3’ produced by Comiso (2017) are used. This SIC dataset is provided in the 25-km Polar Stereographic SSM/I grid format. 
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4 Results 

4.1 The empirical relationship between  and Tsnow/Tice  

We examine variables (i.e. Tas, Tsi, Tiw, HHi, and hhs) obtained from buoy observations by applying the interface searching 

algorithm. In the scatter plot of weekly-averaged Tsnow/Tice versus  (Fig. 4a), it appears that  linearly increases with 270 

Tsnow/Tice when the ratio is smaller than 1.8, but the linear slope becomes smaller when Tsnow/Tice is larger than 1.8. This 

pattern of the slopes is found to be nearly invariant from year to year, as observed in different colors appearing in the entire 

range of Tsnow/Tice in Fig. 4a. We also found that this slope pattern is the consistent nature even for different data sets; two 

different data sets (red points for SHEBA and other points for CRREL) covering various ranges of Tsnow/Tice, show similar 

distributions along the two different slopes. Thus, the slope pattern is not due to different data sources or different data periods. 275 

Further analysis of the two slopes is found in Appendix A. 

Taking such a two-slope pattern with Tsnow/Tice into account, we introduce a piecewise linear function that may express the 

slope pattern, i.e.: 

𝑦 = {
𝑎1𝑥 + 𝑏1    𝑥 ≤ 𝑥0

𝑎2𝑥 + 𝑏2    𝑥 > 𝑥0
 ,   𝑥0 =

𝑏1−𝑏2

𝑎2−𝑎1
                                                                                                                                     (15) 

In Eq. (15), x and y correspond to Tsnow/Tice and , respectively, and x0 is the point where the slope transition takes place. 280 

Applying Eq. (15) to data points from buoy-based variables, the regression coefficients (a1, b1, a2, b2) and transition point (x0) 

are determined by minimizing the total variance - obtained regression line is plotted in Fig. 4a.  is predicted using the 

determined regression equation (hereafter referred to as -prediction equation) and compared to the original  values to see 

how well the regression was performed. The comparison of  with predicted values in Fig. 4b shows that the regression 

equation is well fitted because of the zero bias and 91.9% of explained variance.  285 

Although the slope pattern discussed with Eq. (15) and Fig. 4 is based on the weekly averages, the slope pattern seems to be 

consistent among the data averaging periods except for an averaging period shorter than five days. Regressions in the form of 

Eq. (15) are performed with buoy data averaged with different averaging periods to understand the slope pattern. Regression 

coefficients and transition point for the chosen averaging periods are examined, and results for four averaging periods are 

given in Table 2. Detailed information on the coefficients and associated statistics varying with the averaging period is given 290 

in Fig. 5. The positions of slope change (x0) are located at approximately 1.8, delineating a nearly invariant slope pattern, 

regardless of different data averaging periods. Fig. 5a shows that coefficients do not vary much with different averaging periods 

while coefficients of the first part of the regression line (a1 and b1, x ≤ x0) vary less than those of the second part (a2 and b2, x 

> x0). The regression equations show that the explained variance (R2) rises quickly when the averaging period is longer but 

levels off when data are averaged over a period that is longer than seven days. The bias appears to be near zero over the various 295 

averaging periods. Thus, regression performance is found to be comparable if data are averaged over a period that is longer 

than a week.  
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4.2 Evaluation against OIB estimates 

According to the regression results, it is possible to estimate  from the Tsnow/Tice. Since the Tsnow/Tice can be calculated 

from the satellite skin and interface temperature (as described in Sect. 3.2), the corresponding  can be estimated from satellite 300 

measurements. Thus, we are able to simultaneously retrieve sea ice thickness and snow depth from altimeter-based freeboard 

measurements, following Eqs. (11) and (12). We test and evaluate this simultaneous retrieval approach using OIB data. 

Accordingly, ice thickness and snow depth are simultaneously estimated from OIB freeboard measurements and evaluated 

against the OIB snow depth (hs
OIB) and ice thickness (Hi

OIB).  

To calculate , a data averaging period must be selected. Considering that the monthly composite of satellite freeboard 305 

measurements is needed to retrieve snow/ice thickness in the Arctic basin scale, it seems appropriate to use the monthly 

averaging period to calculate the monthly  distribution. Thus, we use the monthly averaged satellite temperatures and the 

coefficients for the 30-day averaging period (Table 2) to calculate .  

We simultaneously retrieved Hi and hs for each year’s March during 2011–2015 period from the reformatted OIB freeboard 

measurements (Sect. 3.3) together with satellite-derived  (sat). As expressed in Eqs. (11) and (12), two different ice thickness 310 

retrievals are possible, depending on the use of the freeboard type (i.e. total freeboard Ft vs. radar freeboard Fr). Two 

accordingly associated retrievals of snow depth are available. Retrieved results of ice thickness (Hi) and snow depth (hs) from 

the use of OIB total freeboard and radar freeboard are given in the first and second row of Fig. 6, respectively. Corresponding 

OIB measurements are given at the bottom of Fig. 6. The comparison between any snow/ice retrievals and OIB measurements 

appear to be consistent with each other for both snow depth and ice thickness, in terms of magnitudes and distribution. 315 

To compare the results quantitatively, scatterplots of comparing retrievals against OIB measurements are made, along with 

statistics for the snow depth and ice thickness retrievals, in the top four panels of Fig 7. The top-two left panels are derived 

from the use of OIB total freeboard (Ft
OIB) while the top-two right panels are derived from the OIB radar freeboard (Fr

OIB). 

The comparison is done only for pixels where all four products (i.e. snow/ice thicknesses from two different freeboards) are 

available. This indicates that the snow depth from the total freeboard (top left) is fairly consistent with the OIB snow depth, 320 

with a correlation coefficient of 0.73 and with a near-zero bias. The retrieved ice thickness from the total freeboard (middle 

left) appears to be consistent with OIB ice thickness, with a correlation coefficient of 0.93 and a bias around 8.5 cm. The 

RMSEs for snow depth and ice thickness are 6.8 cm and 44.3 cm, respectively. Based on the comparison results, Eq. (15) 

obtained from buoy measurements can be successfully implemented with space-borne total freeboard measurements for the 

simultaneous retrieval of snow depth and ice thickness.  325 

Following Eq. (12), snow depth and ice thickness retrievals are made from the use of radar freeboard measurements, and results 

are presented in the top-two right panels in Fig. 7. On the one hand, the comparison of obtained ice thickness against the OIB 

ice thickness indicates that the retrieved ice thickness shows nearly the samesimilar quality as that retrieved from the total 

freeboard measurements. On the other hand, snow retrievals from the radar freeboard show more scattered features, compared 

with snow retrieval results from the total freeboard. More scattered features found in the snow depth from the radar freeboard 330 
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are likely due to the larger sensitivity of the retrieved  and the prescribed densities, as noted in Eq. (12). Note that Eq. (12) 

has a smaller denominator than that for Eq. (11). Results of associated sensitivity analysis can be found in Appendix B. 

We now examine how the use of MW99 for retrieving sea ice thickness from ICESat and CS2 measurements compares with 

results from our simultaneous method. To do so, OIB-measured total freeboard and radar freeboard are converted into ice 

thickness using MW99 as input to solve Eqs. (4) and (10). In this study, these two ice thickness retrievals with the use of 335 

MW99 are referred to as “ICESat-like” thickness and “CS2-like” thickness, respectively, and their comparisons are now 

observed in two panels at the bottom of Fig. 7. According to our analysis, ICESat-like thickness tends to underestimate the ice 

thickness by about 47.9 cm when MW99 is used, in comparison to OIB thickness and CS2-like ice thickness shows an 

overestimate of about 25.5 cm. Nevertheless, their correlation coefficients and RMSEs are similar to the results obtained from 

the  method.  340 

Better agreement of Hi from the simultaneous method with Hi
OIB may be due to the fact that the simultaneously estimated hs is 

more consistent with hs
OIB (hs

MW99 is likely larger than hs
OIB, as shown in Fig. S1). Note that all inputs are the same except the 

snow depth. The negative bias of ICESat-like thickness and positive bias of CS2-like thickness reflect expected responses in 

different signs to the same snow depth error, as shown in different signs in the last terms of Eqs. (4) and (10) (also note Eq. 

(B2) in Appendix B). Because of this reasoning, if there are decreasing trends in not only ice thickness but also snow depth, 345 

the decreasing trend of ice thickness estimated from the constant snow depth will be diminished in radar, while being amplified 

in lidar. Because of this, the construction of the ice thickness (or volume) trend from the two different satellite altimeters would 

be problematic if MW99 is used for the freeboard to thickness conversion. For example, it would be hard to compare the sea 

ice thickness records estimated from ICESat and CS2 observations and to extend the current ice thickness record from CS2 

with recently launched NASA’s ICESat-2 which carries a lidar altimeter, for the same reason. 350 

4.3 Simultaneous retrieval of ice thickness and snow depth from CS2 measurements 

We have demonstrated that the method of simultaneously retrieving the sea ice thickness and snow depth was successfully 

implemented with OIB measurements. Now we extend the proposed approach to satellite freeboard measurements. Here, the 

method is tested with CS2 freeboard measurements, solving for Hi in Eq. (12), and  is obtained from the collocated satellite 

skin and interface temperature data.   355 

Monthly means of CS2-estimated freeboard (Fr), retrieved , ice thickness (Hi), and snow depth (hs) for December 2013 to 

March 2014 are given in Fig. 8. The geographical distribution of  indicates that  is largest in January and becomes smaller 

during the following months. Geographically, there seems to be no particular distribution of  between months, although 

interestingly the lowest  values are always found over the north of the Canadian Archipelago and the western part of the 

Arctic Ocean shows  values that isare generally larger than thatthose over the eastern part.  360 

Retrieved ice thickness from the CS2 freeboard (Fr) using obtained  is presented in the third row of Fig. 8. As expected, as 

noted in Eq. (12), Hi shows a similar geographical distribution as shown in theto radar freeboard (the first row). The thickest 
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area is located north of the Canadian Archipelago, where the ice appears thicker than 4 m. On the other hand, most of the FYI 

thickness appears to range from 1.0 m to 2.0 m. The snow depth hs is obtained by multiplying  by Hi (in 2nd and 3rd rows), 

following Eq. (3), and results are given atshown in the bottom row. The obtained snow distribution indicates that thicker 365 

(thinner) snow areas are generally coincident with thicker MYI areas. Likewise, the thinner snow area coincides with the 

(thinner FYI area) areas. Such similarity should be consistent with the notion that MYI should accumulate more precipitation 

than FYI because of its longer existence.  

The accuracies To assess the accuracy of CS2 retrievals using the current  approach can be indirectly tested with OIB 

measurements. We do so by examining whether the relationships of, reference hs (sat, Fr
OIB) vs. hs

MW99 and Hi (sat, Fr
OIB) vs. 370 

Hi (hs
MW99, Fr

OIB), in which each snow/ depth and ice thickness retrieval has its own accuracy against OIB measurements, can 

be reproduced in collocated with CS2-based  freeboard in space and time are necessary. However, different from simultaneous 

retrievals. If similar results are found, we can deduce respective accuracies against those found from the  from OIB freeboards 

in Sect. 4.2, evaluation effortswith the required matching data may not be possible from the monthly composite of CS2 data 

used in this study. Here, instead of using monthly collocated match-up data, an indirect way is used to examine the accuracy 375 

of CS2 retrievals. We do so by examining whether the relationship between the simultaneous method and the MW99 method, 

based on retrievals from the OIB freeboard, can be reproduced by CS2-based retrievals. If similar results are obtained, 

respective accuracies can be deduced against those noted from the evaluation against OIB measurements.  

The relationships, which can be obtained from analysis in Sect. 4.2 (i.e. hs (sat, Fr
OIB) vs. hs

MW99 and Hi (sat, Fr
OIB) vs. Fig. 7, 

is Hi (hs
MW99, Fr

OIB)), are compared with the relationship relationships found in the current results in Fig. 8, (i.e.,. hs (sat, Fr
CS2) 380 

vs. hs
MW99 and Hi (sat, Fr

CS2) vs. Hi (hs
MW99, Fr

CS2)); the results are presented in Fig. 9. Observably, the relationships from CS2 

freeboard data (Fig. 9b, d) are very similar to the relationship obtained from the comparison results from OIB measurements 

(Fig. 9a, c). This similarity of the slope strongly indicates that the CS2-based sea ice thickness from the current  method has 

similar accuracy to that found in the evaluation against OIB measurements (Sect 4.2). Further uncertainty estimates for CS2-

derived products can be found in Appendix C. 385 

5. Conclusions and Discussion 

A new approach towards simultaneously estimating snow depth and ice thickness from space-borne freeboard measurements 

was proposed and tested using OIB data and CS2 freeboard measurements. In developing the algorithm, the vertical 

temperature slopes were assumed to be linear within the snow and ice layers so that continuous heat flux could be maintained 

in both layers. This assumption allowed for the description of the snow–ice vertical thermal structure with snow skin 390 

temperature, snow–ice interface temperature, the water temperature at the ice–water interface, snow depth, and ice thickness. 

Based on the continuous heat transfer assumption, the snow–ice thickness ratio ( = hs / Hi) was introduced and could then be 

embedded into the freeboard to ice thickness conversion equations. Thus, information on both ice thickness and snow depth 
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can be derived once  is known in case of the availability of a freeboard, without relying on the snow depth information as an 

input to the conversion from freeboard to ice thickness. From the drifting buoy measurements of the temperature profile, snow 395 

depth, and ice thickness over the Arctic Ocean, we demonstrated that  can be reliably determined using the ratio of the vertical 

difference of the snow-layer temperature to the vertical difference of ice-layer temperature (Tsnow/Tice). An empirical 

regression equation was obtained for predicting  from three interface temperatures.  

Before applying -prediction equation to simultaneously retrieve the ice thickness and snow depth from satellite-borne 

freeboard measurements, the algorithm was evaluated using OIB measurements, in conjunction with satellite-derived snow 400 

skin temperature and snow–ice interface temperature. Evaluation results demonstrated that our proposed algorithm adequately 

retrieved both parameters simultaneously. As a matter of fact, the ice thickness results were more accurate than they were from 

the current retrieval methods relying on the input of snow depth (this time MW99 snow climatology), in terms of mean bias 

and RMSE. It should be noted that in this case, snow depth is a retrieval product, instead of being input to the freeboard to ice 

thickness conversion adopted by CS2 or ICESat retrieval. The application was finally made for the retrieval of the snow depth 405 

and ice thickness from CS2 radar freeboard measurements from December 2013 to March 2014 using  as a constraint. Results 

showed that the quality of the obtained ice thickness was similar to that obtained from evaluation results against OIB 

measurements. Retrieved snow depth distributions were also found to be consistent with expectations. 

In the retrieval process, we may be concerned about the applicability of the algorithm developed with buoy observations 

representing the point measurements, to the larger spatial and temporal scales of satellite measurements. This concern may be 410 

relevant upon observing the range of  values.  in the satellite’s monthly and 25 km x 25 km spatial scales was found to be 

generally smaller than 0.2. The smaller range of  compared to that shown in the buoy analysis results is likely due to the scale 

differences, indicating that extreme  values often shown in buoy measurements (due to very thick snow and/or very thin ice) 

may never be observed in satellite measurements. However, the range may not be a problem because the relationship (Eq. (3)) 

expresses the thermal equilibrium condition described by the temperature at three interfaces, the ratio of snow and ice thickness, 415 

and the ratio of thermal conductivity between snow and ice. Considering that the algorithm is based on the equilibrium 

conditions, results should be valid regardless of spatial and temporal scales if the prerequisite equilibrium conditions are met. 

Apparently, buoy observations contain so many different cases that equilibrium conditions are met with different thermal and 

physical conditions of the snow–ice system. Sound evaluation results and the consistency between OIB and CS2 ice thickness 

retrieval results, which are subject to different scales, all suggest that point-measured -prediction equation can apply to 420 

satellite measurements.  

Overall, the developed -based method yields ice thickness and snow depth, without relying on a priori ‘uncertain’ snow depth 

information (MW99), which results in uncertainty in the ice thickness retrieval. The results that radar freeboard and the total 

freeboard yielded had nearly the same outputs when the -approach was used. The proposed method applies to both lidar and 

radar altimeter data, although lidar-based altimeter data tend to offer relatively more suitable snow depth information with 425 

smaller RMSE. We expect to continuously monitor the Arctic scale snow depth and ice thickness by applying the proposed  
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method to total freeboard observations by the recently launched ICESat-2, using temperature observations from the upcoming 

MetOp SG Meteorological Imager (MetImage), the Microwave Imager (MWI) and the proposed Copernicus Imaging 

Microwave Radiometer (CIMR). 

Appendix A: Physical interpretation of the piecewise linearity between  and Tsnow/Tice 430 

The relationship found between  and Tsnow/Tice showed a piecewise linearity, which is almost invariant with the data 

averaging period. Because the slope change is neither attributable to different data sources nor different data periods, it is likely 

caused by the physical properties of the snow and ice, as shown in Fig. A1. If the slope change is caused by the snow/ice 

condition, there will be a significant difference in snow/ice properties between the two parts showing different slopes. Here, 

we examine the possibility of different physical properties causing the difference in slopes. Through this comparison using 435 

buoy data, we may identify important properties that might be responsible for the piecewise linearity. 

First, the averages of basic properties available from buoy measurements are compared. They include ice thickness, snow 

depth, snow–ice interface temperature, ice temperature (Tice = (Tas + Tsi) / 2), and so on. The comparison revealed that snow–

ice system within the first part (x ≤ x0) is found to consist of relatively thicker ice (mean value: 1.84 m), thinner snow (0.29 

m), and colder ice (-9.13 °C) while the second part (x > x0) is found to consist of relatively thinner ice (1.10 m), thicker snow 440 

(0.46 m), and warmer ice (-5.00 °C). In general, a thicker snow or ice layer exhibits a greater temperature difference from top 

to bottom of the layer. There is no significant difference between the air–snow interface temperature (Tas) in the two slope 

parts. 

The thermal conductivities, ksnow and kice, are also compared because what connects  and Tsnow/Tice is the ratio of thermal 

conductivities. Before showing the results, we describe how to calculate ksnow and kice. First, the thermal conductivity ratio is 445 

calculated from buoy measured variables (i.e. Tas, Tsi, Tiw, hs, and Hi) using Eq. (3). Because the underlying physics in ksnow is 

significantly more complex, kice is estimated first, and then ksnow is obtained by multiplying the calculated kice and ksnow/kice. To 

calculate kice, the parameterization of Maykut and Untersteiner (1971), which describes kice as a function of salinity and 

temperature, is used. 

𝑘𝑖𝑐𝑒 = 2.03 + 0.117
𝑆𝑖𝑐𝑒

𝑇𝑖𝑐𝑒
                                                                                                                                                         (A1) 450 

Here, Sice and Tice is the salinity (in ppt) and temperature (in Celsius) of sea ice, respectively. For the calculation, Sice is estimated 

according to the empirical relationship between sea ice thickness and mean salinity from Cox and Weeks (1974) as follows: 

𝑆𝑖𝑐𝑒 = {
14.24 − 19.39𝐻𝑖 ,    𝐻𝑖 ≤ 0.4 𝑚
7.88 − 1.59𝐻𝑖 ,         𝐻𝑖 > 0.4 𝑚

                                                                                                                                  (A2) 

Although Trodahl et al. (2001) reported that kice depends on depth and temperature; here we do not estimate accurate thermal 

conductivities but attempt to examine the physical consequences of the total ice layer. 455 
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The calculated thermal conductivities are presented in Fig. A2. The calculated kice ranges from 1.8 W K-1 m-1 to 2.0 W K-1 m-

1 (left two panels in Fig. A2). These values are consistent with the in-situ measurements by Pringle et al. (2006). The mean 

values of kice of the first part (1.96 W K-1 m-1) and the second part (1.88 W K-1 m-1) show almost no difference. The calculated 

ksnow ranges from 0.2 W K-1 m-1 to 1.05 W K-1 m-1 (right two panels in Fig. A2). This range is consistent with reported values 

in Sturm et al. (1997). The first part shows the greater spread in the distribution of ksnow compared to the second part. The mean 460 

ksnow values are 0.44 and 0.27 for the first part and second part, respectively. 

As a significant difference is observed in ksnow, we would like to find a possible reason for this difference. To do so, we should 

first review the factors determining ksnow; they are density, temperature, and crystal structure (Sturm et al., 1997). Snow is a 

mixture of ice particles and air, and air has lower thermal conductivity than ice. Thus, snow with a relatively lower density 

including a greater portion of air should have relatively lower thermal conductivity. Besides, the thermal conductivity of ice 465 

particles depends on the temperature, and the path of heat transfer depends on the crystal structure which describes how the 

particles are connected. The heat transfer occurs not only by conduction but also by water vapor latent heat transportation and 

convection through the pore spaces (Sturm et al, 2002), which are hard to quantify explicitly. These two factors are closely 

related to the temperature gradient (or difference) imposed within the snow layer. 

Based on this knowledge, we can infer the condition of the snow layer of the two parts. The relatively higher and varying ksnow 470 

of the first part would be related to the compaction process resulting in high density, and metamorphic diversity which changes 

the crystal structure. According to Sturm et al. (2002), the value of ksnow of hard wind slapslab attains up to 0.5 W m-1 K-1, 

while that of ksnow of depth hoar is below 0.1 W m-1 K-1. On the other hand, the lower and nearly constant ksnow of the second 

part implies that the snow layer of the second part would consist of fresh and dry snow having relatively lower density and a 

relatively lower likelihood of experiencing particular metamorphism.  475 

In summary, it is concluded that the physical properties of snow and ice can account for the piecewise linearity, based on the 

differences in the physical properties between the first and second parts. Especially, the thermal conductivity of the snow, ksnow, 

seems to play an important role. Nevertheless, further analysis is required to fully understand this phenomenon. 

Appendix B: Sensitivity test for the proposed method 

Here we present results of a sensitivity test for showing how the snow depth and ice thickness retrieval results are dependent 480 

on the uncertainties in . To do so, the uncertainty in the snow depth (hs) due to the  error (i.e. ) and associated ice 

thickness error (Hi) are estimated. From this sensitivity test, we expect to understand why the simultaneous method for the 

radar freeboard shows more scattered features than those from the lidar total freeboard. 

First, hs is defined by the difference of retrieved hs between with error ( +) and without error ().  

𝛥ℎ𝑠 = {
ℎ𝑠(𝛼 + 𝛥𝛼, 𝐹𝑡) − ℎ𝑠(𝛼, 𝐹𝑡)    (using 𝐹𝑡)

ℎ𝑠(𝛼 + 𝛥𝛼, 𝐹𝑟) − ℎ𝑠(𝛼, 𝐹𝑟)     (using 𝐹𝑟)
                                                                                                                    (B1) 485 
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Then, hs can be converted to the error in the ice thickness (Hi) using the following equation derived from Eq. (10). 

𝛥𝐻𝑖 =
(𝑓𝜂𝑠−1)𝜌𝑤+𝜌𝑠

𝜌𝑤−𝜌𝑖
𝛥ℎ𝑠 = {

−6.46Δℎ𝑠    (using 𝐹𝑡)
   3.44Δℎ𝑠     (using 𝐹𝑟)

                                                                                                                (B2) 

Because Hi and hs is aare the combination of freeboard and , as in Eqs. (3), (11) and (12), we only examine the uncertainty 

with some typical sea ice types. Here physical states for thicker ice (type A), moderate ice (type B), and thinner ice (type C) 

are chosen, which are summarized in Table B1. Typical values for those three types are shown in the scatterplots of OIB-based 490 

(OIB vs. Ft
OIB) and of satellite-based (sat vs. Fr

CS2) – Fig. B1. It is shown that the majority of data points are located around 

type B, followed by type A. There seems a very small portion of total samples showing values around type C. 

With  = ±0.0305, which is an RMSE range in the -prediction equationroot mean square difference (RMSD) value between 

OIB and sat, hs and Hi are estimated for three ice types. Table B2 summarizing results show that |hs| is within 58 cm and 

it tends to decrease as the ice becomes thinner when the current method is applied to the total freeboard. On the other hand, 495 

the use of radar freeboard shows that |hs| tends to be more sensitive for the same . Especially, the sensitivity of type C is 

the greatest. This is because the denominator of Eq. (12) becomes smaller when  approaches to crit, resulting in an unstable 

solution. For the ice thickness, |Hi| is smaller when the total freeboard is used since Hi is proportional to hs. However, the 

gap between the results from two freeboards has narrowed because Hi from the total freeboard is more sensitive than the radar 

freeboard to hs, according to Eq. (B2). The sensitivity characteristics shown here are consistent with the analysis results given 500 

in Sect 4.2. Because there is a much smallsmaller number of data points belonging to type C, at least in the data used for this 

study, the overall sensitivity would likely be in between B and A types. 

It is also of importance to ask to what degree of retrievals is successfully yielded. In this study, cases showing Tas > Tsi or 

retrieved  ≥ crit are considered to be failures. Statistics on success/fail ratio of  retrieval for December−March of 2011−2015 

period are provided in Table B3. Overall, the success ratio was over 82% in December−February, while it was reduced to ~74% 505 

in March. Most of the failures appear associated with cases showing the temperature inversion (i.e. Tas > Tsi), whose areas are 

shaded with grey in the -distributions of Fig. 8. Those failure areas are generally found around the marginal ice zones and in 

the east of Greenland. On the other hand, there was a near-zero failure (0.02% of total pixels) for retrieved  ≥ crit. This near-

zero failure implies that almost all calculated  meet the satisfactory condition after the removal of cases showing the 

temperature inversion. It may be concluded that the calculated  appears to be physically reasonable (i.e.  < crit) as long as 510 

presumed thermodynamic conditions are met. 

Appendix C: Uncertainty estimation for CS2 retrievals 

Although the sensitivity test regarding uncertainty of satellite derived  has been conducted in Appendix B, the uncertainty of 

CS2 freeboard measurements and prescribed parameters should be considered as well for the satellite snow depth and ice 

thickness estimates. To do so, a simple propagation analysis of errors is performed, regarding the uncertainty of satellite 515 



 

18 

 

products (sat and Fr
CS2) and prescribed parameters (i, s, and f). Uncertainty due to the variability of w is neglected (Kurtz 

and Harbeck, 2017; Hendricks et al., 2016; Ricker et al., 2014). Here we assume that sat and Fr
CS2 are not correlated, with no 

systematic bias. Such assumption may not be true in the real world. However, it allows us to estimate the retrieval uncertainty 

from satellite-derived products, with a certain limit. Uncertainty of ice thickness can be estimated by following Gaussian error 

propagation equation. 520 

𝜖𝑦,𝑡𝑜𝑡𝑎𝑙
2 = ∑ 𝜖𝑦(𝑥)2

𝑥                                                                                                                                                                 (C1) 

Here, y,total denotes the total uncertainty of retrieved variable y (hs or Hi) and y (x) denotes the uncertainty of y related to input 

variable x (, Fr, i, s, or f). The uncertainties on the right-hand side are obtained by following equation. 

𝜖𝑦(𝑥) =
𝜕𝑦

𝜕𝑥
𝜎𝑥 = lim

𝛿→0

𝑦(𝑥+𝛿)−𝑦(𝑥)

𝛿
𝜎𝑥                                                                                                                                        (C2) 

Here, x denotes the uncertainty of x and  is set to be 10-6 for numerical calculation of the partial derivative using Eqs. (3) 525 

and (12).  is estimated to be an RMSD value between OIB and sat. Fr is given by Kurtz and Harbeck (2017) and f is 

adopted from Armitage and Ridout (2015). Uncertainties of snow/ice densities are from relevant literatures (Alexandrov et al., 

2020; Hendricks et al., 2016; Kern and Spreen, 2015; Ricker et al., 2014; Warren et al., 1999). Those values are summarized 

in Table C1.  

Using Eqs. (C1) and (C2), uncertainties of snow depth and ice thickness retrievals can be estimated. Ice thickness uncertainty 530 

estimates are presented in Fig. C1. Total uncertainty of ice thickness estimate ranges from 0.8 m to 2.0 m. Generally, Fr-related 

uncertainty in the third row is greater than -related uncertainty in the second row. Snow depth uncertainty estimates are 

presented in Fig. C2. Total uncertainty of snow depth ranges from 0.04 m to 0.4 m. In the case of the snow depth, -related 

uncertainty is greater than Fr-related uncertainty. Both uncertainties of ice thickness and snow depth are greater for MYI region 

than FYI region. It is thought that the improvement of accuracy in satellite derived temperatures can reduce the snow depth 535 

uncertainty while the improvement of freeboard accuracy can reduce the ice thickness uncertainty. Uncertainties induced from 

densities and radar penetration factors are found to be relatively smaller than uncertainties related to  and Fr (shown in Fig. 

S2 and Fig. S3). 
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Table 1. Information on the measurement sites of buoys whose observations were used in this study. 

Name 
Deployment 

Location 
Ice Type 

Initial 

Snow Depth [m] 

Initial 

Ice Thickness [m] 

CRREL 

2010F Beaufort Sea Multi-Year 0.25 1.97 

2011M Central Arctic Multi-Year 0.07 1.67 

2012G Central Arctic First-Year 0.16 1.41 

2013F Beaufort Sea Multi-Year 0.00 1.40 

2013G Beaufort Sea Multi-Year 0.00 1.40 

2014G Beaufort Sea Multi-Year 0.10 1.08 

2014I Beaufort Sea Multi-Year 0.23 1.32 

SHEBA 

Q2 Beaufort Sea Multi-Year 0.06* 1.75* 

PIT Beaufort Sea Multi-Year 0.12* 2.01* 

BALT Beaufort Sea First Year 0.07* 1.40* 

R4 Beaufort Sea Second-Year Ridge 0.09* 4.23* 

SEA Beaufort Sea Ponded Area 0.10* 1.54* 

*The initial snow depth and ice thickness of the SHEBA sites are average values of all thickness gauge measurements in the corresponding 

site because there was one thermistor string but several thickness gauges in each measurement site 

 

 695 

 

 

 

Table 2. Coefficients of the regression equation for averaging periods of 1, 7, 15, and 30 days. a1, b1, a2, b2, and x0 are given in Eq. (15). 

Averaging Periods a1 b1 a2 b2 x0 

1 day 0.166 0.047 0.050 0.263 1.864 

7 days 0.179 0.028 0.053 0.254 1.796 

15 days 0.180 0.034 0.029 0.339 2.022 

30 days 0.185 0.022 0.076 0.214 1.769 
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Table B1. The physical state of typical cases of points A, B, and C. 

Type Hi [m] hs [m]  Ft [m] Fr [m] 

A 3.961 0.332 0.084 0.65 0.30 

B 1.646 0.123 0.075 0.26 0.13 

C 0.616 0.152 0.246 0.17 0.01 

 

 

 

 710 

 

 

Table B2. Errors of snow depth (hs) and ice thickness (Hi) for snow depth to ice thickness ratio error () of ±0.0305. 

 Total Freeboard Method Radar Freeboard Method 

 -0.0305 0.0305 -0.0305 0.0305 

 hs (cm) 

A -4.0707.502 3.1614.903 -14.5922.417 19.5436.719 

B -1.9133.543 1.4712.277 -5.8409.002 7.73014.437 

C -0.045080 0.039062 -7.2309.499 
37.62Retrieval 

Fail* 

 Hi (m) 

A 0.263485 -0.204317 -0.502771 0.6721.264 

B 0.124229 -0.095147 -0.201310 0.266497 

C 0.003005 -0.003004 -0.249327 
1.294Retrieval 

Fail* 

 

*Retrieval fail occurs if  +  > crit (crit = 0.291 for s = 320 kg m-3, I = 915 kg m-3, w = 1024 kg m-3, and f = 0.84). 715 

  



 

26 

 

Table B3. Statistics of success/fail ratio  retrieval for 2011-2015 winter. 

Year Month 
Total Pixels 

(SIC > 95%) 
Success 

Fail 

(Tas > Tsi) 

Fail 

(  > crit) 

2010 12 13879 12080 (87.04%) 1799 (12.96%) 0 (0.00%) 

2011 01 16246 14004 (86.20%) 2242 (13.80%) 0 (0.00%) 

2011 02 17986 14779 (82.17%) 3206 (17.82%) 1 (0.01%) 

2011 03 17610 12871 (73.09%) 4738 (26.91%) 1 (0.01%) 

2011 12 13915 11405 (81.96%) 2510 (18.04%) 0 (0.00%) 

2012 01 16812 13765 (81.88%) 3047 (18.12%) 0 (0.00%) 

2012 02 17528 14131 (80.62%) 3397 (19.38%) 0 (0.00%) 

2012 03 18741 13586 (72.49%) 5155 (27.51%) 0 (0.00%) 

2012 12 14059 11144 (79.27%) 2915 (20.73%) 0 (0.00%) 

2013 01 16413 13510 (82.31%) 2903 (17.69%) 0 (0.00%) 

2013 02 18640 15526 (83.29%) 3114 (16.71%) 0 (0.00%) 

2013 03 19078 14134 (74.09%) 4944 (25.91%) 0 (0.00%) 

2013 12 14515 12071 (83.16%) 2444 (16.84%) 0 (0.00%) 

2014 01 16880 14201 (84.13%) 2678 (15.86%) 1 (0.01%) 

2014 02 16987 14731 (86.72%) 2247 (13.23%) 9 (0.05%) 

2014 03 17699 13300 (75.15%) 4391 (24.81%) 8 (0.05%) 

2014 12 14071 11119 (79.02%) 2952 (20.98%) 0 (0.00%) 

2015 01 17008 15095 (88.75%) 1913 (11.25%) 0 (0.00%) 

2015 02 18076 15907 (88.00%) 2169 (12.00%) 0 (0.00%) 

2015 03 17618 14042 (79.70%) 3576 (20.30%) 0 (0.00%) 

December 70439 57819 (82.08%) 12620 (17.92%) 0 (0.00%) 

January 83359 70575 (84.66%) 12783 (15.33%) 1 (0.00%) 

February 89217 75074 (84.15%) 14133 (15.84%) 10 (0.01%) 

March 90746 67933 (74.86%) 22804 (25.13%) 9 (0.01%) 

crit=0.291 for s=320 kg m-3, i=915 kg m-3, w=1024 kg m-3, and f=0.84. 
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Table C1. Values and uncertainties of input variables for uncertainty estimation. 720 

  Fr [m] i [kg m-3] s [kg m-3] f 

Value sat Fr
CS2 915 320 0.84 

Uncertainty 0.05 0.065 20 50 0.04 
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Figure 1. Schematic diagram of a typical snow–ice system during the winter. Snow depth (hs), ice thickness (Hi), total freeboard (Ft), radar 

freeboard (Fr), and ice freeboard (Fi) are indicated. Correction terms regarding the wave propagation speed change in snow layer (Fc) and 725 
the displacement of the scattering horizon from the ice surface (Fp) are indicated by blue arrows. The red line denotes a typical temperature 

profile with air–snow interface temperature (Tas), snow–ice interface temperature (Tsi), and ice–water interface temperature (Tiw).  
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Figure 2. The flow chart of the interface searching algorithm. yi and Ti denote the position and temperature of a data point in the temperature 730 
profile. yas, ysi, and yiw denote the position of the interfaces, and Tlayer denotes a set of temperature data points. 

  



 

30 

 

 

Figure 3. Examples of interface searching results with an averaging period of 15 days: (a) 2012G period 2, (b) 2013F period 8, (c) 2014G 

period 1, (d) Q2 period 6, (e) R4 period 6, and (f) SEA period 10. The period number is equivalent to indicates the number of sequential 15-735 
day period from November 1 (e.g. ‘period: 2’ denotes a time-averaging bin.period of November 16th to November 30th). Blue dots are buoy-

measured temperature profiles and red lines are regression lines. Black dashed lines indicate the intersections between adjacent regression 

lines. 
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 740 

Figure 4. (a) Scatterplots of the temperature difference ratio of the snow and ice layer (Tsnow/Tice) and the snow–ice thickness ratio (). 

Color denotes the collected year of buoy data. The red lines are the regression lines (defined in Eq. (15)). (b) The scatter plot of observed 

and regressed . 
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 745 

Figure 5. (a) The regression coefficients (a1, b1, a2, b2) in Eq. (15) and (b) the error statistics of the regression with averaging periods from 

1 to 30 days. 
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Figure 6. Simultaneously retrieved ice thickness and snow depth from OIB total/radar freeboard in March of the 2011–2015 period. 750 
Corresponding OIB products are at the bottom. 
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Figure 7. Scatter plots between OIB products and the simultaneously retrieved snow depth and ice thickness from OIB total/radar freeboards 

during the March 2011–2015 period. Corresponding ice thicknesses estimated from MW99 are in the third row. The red lines are linear 755 
regression lines. 

  



 

35 

 

 

Figure 8. Geographical distributions of observed CS2 radar freeboard (Fr) and estimated snow–ice thickness ratio (), ice thickness (Hi), 

and snow depth (hs) from December 2013 to March 2014. Grey areas in the second row denote where  retrieval is failed because Tas is 760 
warmer than TasTsi. 
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Figure 9. Comparison of simultaneous retrieved snow depth and ice thickness to those from the MW99 method. (a) Snow depth from OIB 

radar freeboard, (b) snow depth from CS2 radar freeboard, (c) ice thickness from OIB radar freeboard, and (d) ice thickness from CS2 radar 765 
freeboard. 
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Figure A1. Distribution of physical variables on scatterplots of the temperature difference ratio of snow and ice layer (Tsnow/Tice) and the 770 
snow–ice thickness ratio (). Color denotes the value of physical variables: (a) ice thickness (HHi), (b) snow depth (hhs), (c) air–snow 

interface temperature (Tas), (d) snow–ice interface temperature (Tsi), (e) temperature difference within snow layer (|Tsnow|), and (f) 

temperature difference within ice layer (|Tice|). 
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 775 

Figure A2. Histogram of estimated (left column) kice and (right column) ksnow. The top and bottom row denote the first and the second part, 

respectively. The size of the bins is 0.05 W K-1 m-1. 
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Figure B1. Locations of physical states for typical types (A, B, C) on the freeboard-thickness ratio space. Blue dots are from (left) OIB data 780 
and (right) retrieved thickness ratio and CS2 radar freeboard. 
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Figure C1. Geographical distributions of sea ice thickness uncertainty: (first row) total uncertainty, (second row) -related uncertainty, and 

(third row) Fr-related uncertainty for the period from December 2013 to March 2014. 785 
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Figure C2. Geographical distributions of snow depth uncertainty: (first row) total uncertainty, (second row) -related uncertainty, and (third 

row) Fr-related uncertainty for the period from December 2013 to March 2014. 

 790 
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