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Abstract. Field measurements have shown that cold-season methane (CH4) and carbon dioxide (CO2) emissions contribute a 

substantial portion to the annual net carbon emissions in permafrost regions. However, most earth system land models do not 

accurately reproduce cold-season CH4 and CO2 emissions, especially over the shoulder (i.e., thawing and freezing) seasons. 

Here we use the Energy Exascale Earth System Model (E3SM) land model version 1 (ELMv1-ECA) to tackle this challenge 10 

and fill the knowledge gap of how cold-season CH4 and CO2 emissions contribute to the annual totals at Alaska Arctic 

tundra sites. Specifically, we improved the ELMv1-ECA soil water phase-change scheme, environmental controls on 

microbial activity, and cold-season methane transport module. Results demonstrate that both soil temperature and the 

duration of zero-curtain periods (i.e., the fall period when soil temperatures linger around 0°C) simulated by the updated 

ELMv1-ECA were greatly improved, e.g., the Mean Absolute Error in zero-curtain durations at 12 cm depth was reduced by 15 

62% on average. Furthermore, the simulated cold-season emissions at three tundra sites were improved by 84% and 81% on 

average for CH4 and CO2, respectively. Overall, CH4 and CO2 emitted during the early cold season (Sep. and Oct.), which 

often includes most of the zero-curtain period in Arctic tundra, accounted for more than 50% of the total emissions 

throughout the entire cold season (Sep. to May). From 1950 to 2017, both CO2 emissions during the 12 cm depth zero-

curtain period and during the entire cold season showed increasing trends, for example, of 0.26 gC m-2 year-1 and 0.38 gC m-20 
2 year-1 at Atqasuk. This study highlights the importance of zero-curtain periods in facilitating CH4 and CO2 emissions from 

tundra ecosystems. 
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1 Introduction 

Cold-season carbon emissions from the Arctic tundra could potentially offset warm-season net carbon uptake under 21st 25 

century warming climate (Commane et al., 2017; Oechel et al., 2014; Oechel et al., 2000; Koven et al., 2011; Piao et al., 

2008; Natali et al., 2019; Belshe et al., 2013; Fahnestock et al., 1998; Jones et al., 1999). Field measurements have indicated 

large cold-season CO2 losses over Arctic tundra ecosystems (Oechel et al., 2014; Natali et al., 2019). Also, CH4 emitted from 

September to May were found to contribute more than 50% of the annual total CH4 emissions from Alaska upland tundra 

sites (Zona et al., 2016; Taylor et al., 2018). Despite the importance of cold-season carbon emissions and their sensitivity to 30 

changing climate, prevailing earth system land models do not accurately reproduce cold-season CH4 and CO2 emissions and 

their contributions to the annual budgets, largely because of the poorly understood mechanisms of cold-season soil 

heterotrophic respiration and therefore uncertain numerical representations (Natali et al., 2019; Zona et al., 2016; Wang et 

al., 2019; Commane et al., 2017). Thus, it remains challenging to assess the response of permafrost carbon dynamics to 

Arctic warming and to predict future annual carbon budgets with current Earth System Models (ESMs). 35 

 

In ESM land models, soil environment influences soil microbial heterotrophic respiration (HR) and decomposition of soil 

organic carbon (SOC) mainly through applying prescribed temperature and moisture functions to modify base decomposition 

rates. These functions, however, rely heavily on empirical or semi-empirical relationships which are highly uncertain (Sierra 

et al., 2017; Sierra et al., 2015; Yan et al., 2018; Moyano et al., 2013; Tang and Riley, 2019; Rafique et al., 2016; Bhanja and 40 

Wang, 2020; Kim et al., 2019). Specifically, the temperature sensitivities of soil carbon decomposition is often represented 

with a 𝑄ଵ଴ value (i.e., the increase in respiration rate from a 10°C increase in temperature) that is fixed at 1.5 or 2.0 (Meyer 

et al., 2018). However, the values of Q10 are controversial (Davidson and Janssens, 2006). Some studies found a uniform Q10 

across biomes and climate zones, e.g., as 1.4 (Mahecha et al., 2010). Other studies demonstrated that Q10 varies with 

environmental conditions, ecosystem types, and soil texture (Meyer et al., 2018; Graf et al., 2011; Kim et al., 2019), showing 45 

a large spatial heterogeneity with generally higher values in the high-latitudinal regions (Zhou et al., 2009). In addition, 

Wilkman et al. (2018) reported a temporal heterogeneity in Q10 over the Alaskan Arctic Tundra and suggested a higher value 

(e.g., 2.45) for early summer (e.g., June) but lower value (e.g., 1.58 to 1.67) for the peak growing season (e.g., July). 

Dynamic decomposition temperature sensitivities are also consistent with theory of microbial dynamics (Tang and Riley, 

2015). Also, the response of HR to changes in soil moisture is commonly expressed by empirical relationships in ESMs, 50 

which vary substantially (Sierra et al., 2015; Yan et al., 2018; Moyano et al., 2013). Although in-situ measurements reveal 

that microbial respiration occurs under very cold conditions (e.g., even when soil temperature is lower than -15 °C) (Natali et 

al., 2019; Zona et al., 2016), most process-based models completely shut down microbial activity due to limited liquid water 

in freezing and subfreezing soils, and few modelling studies have closely investigated the HR-moisture relationships in 

frozen conditions.  55 
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The strong dependency of CO2 and CH4 emission on soil temperature and moisture in ESM land models (Riley et al., 2011; 

Koven et al., 2017; Lawrence et al., 2015) requires accurate estimates of these two closely related soil variables, especially in 

cold regions where both increases and decreases in soil temperature could lead to soil “drying” due to drainage or freezing 

processes. However, current land models tend to significantly underestimate soil temperature during the cold season over 60 

permafrost regions (Dankers et al., 2011; Tao et al., 2017; Nicolsky et al., 2007; Yang et al., 2018b). One possible reason is 

that many land models fail to appropriately account for the latent heat released during soil water freezing (Yang et al., 2018a; 

Nicolsky et al., 2007). Latent heat released during freezing might be sufficient to offset heat conduction towards the surface, 

thus maintaining the subsurface soil temperature around the freezing point (i.e., 0°C) for weeks or even months during the 

fall (i.e., the so-called Zero-Curtain Period; ZCP) (Outcalt et al., 1990). The ZCP conditions allow for continued soil 65 

heterotrophic respiration at notable rates, and thus CO2 and CH4 production and emissions from subsurface soils (Kittler et 

al., 2017; Arndt et al., 2019; Commane et al., 2017). For instance, Zona et al. (2016) reported that a substantial portion of 

cold season CH4 emissions occurred during the ZCP from Alaskan upland tundra sites. Nevertheless, many land models 

cannot accurately capture the ZCP length due to their underestimation of soil temperatures, thus underestimating cold-season 

emissions of CO2 (Commane et al., 2017) and CH4 (Zona et al., 2016). 70 

 

We hypothesize that the underestimation of modelled cold-season CO2 and CH4 emissions in ESMs land models primarily 

results from underestimated soil temperatures during the cold season, the poor representations of environmental controls on 

heterotrophic respiration in subfreezing soils, and the lack of appropriate representation of cold-season methane transport 

processes. Here we apply the Energy Exascale Earth System Model (E3SM) land model version 1 (ELMv1-ECA) (Golaz et 75 

al., 2019; Zhu et al., 2019) to explore these hypotheses. We apply ELMv1-ECA to (i) improve simulations of subsurface soil 

temperatures, ZCPs, and CO2 and CH4 emissions over the permafrost tundra ecosystem; (ii) investigate the underlying 

processes that influence cold-season carbon emissions from freezing and subfreezing soils, including source characterization 

and transport pathways; and (iii) estimate historical trends (from 1950 to present) of cold-season CO2 and CH4 emissions at 

multiple Alaskan tundra sites. 80 

 

The paper is organized as follows: (1) We describe the study sites and the data used in the study. (2) We present the 

theoretical background of essential modules of ELMv1-ECA relevant to this study and our modifications to the model’s 

representations of phase-change, SOC decomposition, and methane dynamics. (3) We then describe the model configuration 

and experimental design. (4) We assess the modified phase-change scheme by comparing simulated soil temperatures and 85 

ZCPs against observations. (5) With the revised phase-change scheme and methane module, we analyze how the 

decomposition schemes impact simulated CO2 and CH4 emissions at the site scale. (6) Finally, we summarize the main 

findings and discuss needed observations and model development to further improve predictability. 
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2 Study Sites and Data  

We assembled daily observations of CO2 and CH4 fluxes from 2013 to 2017 at five eddy-covariance flux tower sites in 90 

Alaska's North Slope tundra (Figure 1) from the Arctic-Boreal Vulnerability Experiment (ABoVE) project (2015 - 2017) 

(Oechel and Kalhori, 2018) and Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) flight campaign (2013 - 

2014)  (Zona et al., 2016). CARVE CO2 measurements were not available; therefore, monthly winter-time CO2 flux data at 

the ABoVE towers assembled by Natali et al. (2019) are included to complement CO2 observations from 2013 to 2014. The 

five sites include three eddy covariance (EC) towers at Barrow (i.e., the Barrow Environmental Observatory (BEO) tower, 95 

the Biocomplexity Experiment South (BES) tower, and the Climate Monitoring and Diagnostics Laboratory (CMDL) tower), 

one tower at Atqasuk (ATQ) and another at Ivotuk (IVO) which is located at the foothills of the Brooks Range.  BES and 

CMDL are collocated with each other with sensors installed at different heights (i.e., 2 m for BES and 5 m for CMDL). 

Vegetation at Barrow is mainly moist acidic tundra. Instrument height at ATQ and IVO is 2 m and 4 m, respectively. ATQ is 

a well-drained upland site, and the vegetation consists of moist-wet coastal sedge tundra and moist-tussock tundra surfaces. 100 

Vegetation at IVO is polar tundra. Table S1 provides basic information including geolocations, vegetation mosaic, and 

climatologic air temperature at the sites. (Tables numbered with a prefix “S” are include in the supplementary file, which 

will not be repeated in the following context throughout the manuscript.) 

 

ABoVE and CARVE provide soil temperature and moisture measurements at various depths from 5 cm to 40 cm. The 105 

Permafrost Laboratory, Geophysical Institute of University of Alaska Fairbanks (GIPL-UAF), provides daily subsurface soil 

temperature observations down to various depths at permafrost sites across Alaska(http://permafrost.gi.alaska.edu/sites_map) 

(Romanovsky et al., 2009). We used the GIPL-UAF permafrost sites that are collocated with the ABoVE sites to 

complement the ABoVE observations at deeper depths, including BR2 (down to 15 m) and IV4 (down to 1 m). We first 

filled missing gaps vertically by fitting a polynomial to the soil temperature profile (Kurylyk and Hayashi, 2016) on a daily 110 

scale, then screened out outliers by examining the daily time series. Further, we aggregated both the ABoVE and the GIPL-

UAF soil temperature measurements to ELMv1-ECA soil layer node depths using the inverse distance weighting method 

(Tao et al., 2017), and then averaged the two sets of aggregated observations. We used the assembled subsurface temperature 

observation datasets to evaluate the ELMv1-ECA simulated soil temperature profiles and the zero-curtain periods. 

 115 

Due to the discontinuity of observed soil moisture over time and along with the vertical depth, evaluating ELMv1-ECA 

simulated liquid water content at layer node-depth was limited. We matched soil-moisture observations to the vertically 

closest model layer, and then evaluated the simulated volumetric fraction of soil liquid water content at layers for time 

periods during which observations were available. In addition, we used ABoVE soil moisture measurements to derive site-

scale soil porosity and organic carbon content (see Section 3.2). 120 
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3 Methodology 

3.1 Modifications to E3SM Land Model (ELM) 

The E3SM land model version 1 (ELMv1-ECA) couples essential biogeophysical and biogeochemical processes that solve 

terrestrial ecosystem energy, water, carbon, and nutrient dynamics (Golaz et al., 2019; Zhu et al., 2019). Figure 2 illustrates 

the coupling and interactions among the three components. In the appendix, we describe in detail its subsurface soil 125 

thermodynamics, the carbon decomposition module, and the methane module that are of particular relevance to our study. 

Here we identify the potential problems of ELMv1-ECA that are responsible for the underestimation of cold-season CH4 and 

CO2 emissions and summarize the modifications made to ELMv1-ECA, emphasizing the model enhancements, shown by the 

ellipses with red boundaries in Figure 2. 

3.1.1 Phase Change Scheme 130 

We first improved ELMv1-ECA’s numerical representation of coupled water and heat transport with freeze-thaw processes 

via improving the phase-change scheme. The freeze-thaw processes of soil water within ELMv1-ECA is simulated in a 

decoupled way, i.e., it solves soil temperatures ignoring the latent heat associated with phase change, determines the mass 

change of soil water required to adjust the initially solved soil temperature to the freezing point (i.e., 0°C; 𝑇௙), adjusts the soil 

liquid and ice content by mass and energy conservation, and then readjusts temperatures after accounting for the heat 135 

deduction or compensation resulted from melting or freezing (see the detailed description in the Appendix A). The 

underlying assumption here is, taking the freezing process as an example, the available liquid water at the initially solved 

temperature (𝑇௜
௡ାଵ) will be completely frozen, releasing latent heat (𝐻௜) to bring up 𝑇௜

௡ାଵ back to 𝑇௙. Then, the estimated 

phase-change rate will be tuned down and the current temperature (i.e., 𝑇௙) will be readjusted if the to-be-increased ice mass 

is larger than the required mass change ሺെ𝐻௠) (see (Eq. A4) in the Appendix A), which, however, only occasionally occurs. 140 

When the liquid water available to be frozen becomes small enough, the released latent heat is not sufficient to compensate 

for the required energy deficit (𝑇௙ െ 𝑇௜
௡ାଵ), and then the freezing process stops. Consequently, the model freezes soil water 

quickly, resulting in an underestimated duration of the soil water phase-change processes and the zero-curtain periods, and 

also cold-biased winter temperatures (Nicolsky et al., 2007; Yang et al., 2018a).  

 145 

Here, we employed a phase-change efficiency and the temperature of the freezing-point depression to effectively solve the 

problem of overestimating phase-change rates within the current ELMv1-ECA modelling structure. These modification 

factors are explained below. The phase-change efficiency, introduced by Le Moigne et al. (2012) and adopted by Masson et 

al. (2013) and Yang et al. (2018a), introduces the dependency of available liquid water on the phase-change rate (Le Moigne 

et al., 2012). The phase-change efficiency for freezing, 𝜀௟௜௤,௜
௡  (see (Eq. A7)), is identical to the degree of moisture saturation, 150 

or the volumetirc fraction of soil liquid water content (i.e., 𝑆𝑓௟௜௤,௜
௡ ൌ 𝜃௟௜௤,௜

௡ 𝜃௦௔௧,௜⁄  where 𝜃௟௜௤,௜
௡  is soil liquid water content and 
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𝜃௦௔௧,௜ is porosity). The underlying assumption here is that the liquid water of soil resists freezing as the freezing process 

proceeds and 𝑆𝑓௟௜௤,௜
௡  decreases, analogous to how dry soils resist getting drier due to capillary force. We applied the phase-

change efficiency to the initially estimated energy and mass change involved, i.e., 𝐻௜ and 𝐻௠ (see (Eq. A4) in the Appendix) 

when freezing or thawing process occur. 155 

 

As in Nicolsky et al. (2007) and Yang et al. (2018a), the occurrence of a phase-change process is then determined by the 

temperature of the freezing point depression (i.e., an virtual temperature, see (Eq. A8)) instead of 𝑇௙. The virtual freezing 

point depression temperature is reversely derived from the freezing point temperature-depression equation (Fuchs et al., 

1978; Cary and Mayland, 1972). With an upper limit as 𝑇௙, the virtual temperature describes the lowest temperature that can 160 

hold current liquid water content in the freezing soils. That is, the soil temperature has to be lower than the current virtual 

temperature to allow the freezing process to occur further. 

 

We describe in detail the revised phase-change scheme in the Appendix A. In short, we improved the phase-change scheme 

of ELMv1-ECA by incorporating two modifications: 1) applying a phase-change efficiency to implicitly account for the heat 165 

compensation/deduction to the system from latent heat released/absorbed by soil water freezing/melting,  and 2) replacing 

the constant freezing point with the temperature of the freezing point depression, as a virtual temperature, to determine the 

occurrence of phase change in subfreezing soils. 

3.1.2 Environmental Modifiers to the Decomposition Rate 

We revisited ELMv1-ECA’s representation for soil heterotrophic respiration dynamics in subfreezing soils and then 170 

scrutinized the environmental scalars of soil temperature and moisture. Within ELMv1-ECA’s decomposition cascade 

model, the environmental factors that impact the decomposition rates of soil organic matter include soil temperature (𝑓 ), 

soil moisture (𝑓ௐ), oxygen stress (𝑓ை) and a depth scalar (𝑓஽) (See Appendix B). Within freezing and subfreezing soils, the 

soil water potential is related to temperature through the freezing point depression equation (Niu and Yang, 2006). The 

current moisture factor 𝑓ௐ, therefore, can predict zero respiration rates for subfreezing soils given a minimum soil water 175 

potential 𝜓௠௜௡, as shown by Figure S1a in the supplementary file. (Figures numbered with a prefix “S” are include in the 

supplementary file, which will not be repeated in the following context throughout the manuscript.) We thus imposed a 

minimum threshold (𝑓ௐ_௠௜௡) to prevent zero respiration within the active layer when soil becomes subfreezing during cold-

season months (Figure S1b). 

 180 

For wet soils, the factor that primarily limits the decomposition rates is oxygen availability (Sierra et al., 2017), since 

increases in soil moisture result in decreased dissolved oxygen. ELMv1-ECA approximates oxygen stress (𝑓ை) as a ratio of 

available oxygen to the demand by decomposers, which, however, is highly uncertain and unstable (Oleson et al., 2013). 
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Adapting the concept and formulation of Yan et al. (2018), we incorporated oxygen stress into the moisture scalar to account 

for the inhibition of decomposition in wet anoxic conditions. The revised form of the moisture scalar 𝑓ௐ
∗  (Eq. B11) 185 

gradually decreases when the degree of saturation exceeds an optimal wetness threshold (𝑆𝑓௢௣) that represents the most 

favorable soil moisture condition for decomposition, as shown by Figure S1b. We also tested several modified moisture 

schemes with different shape parameters (𝑏 in Eq. B11) and optimal wetness thresholds and minimum thresholds (𝑆𝑓௢௣ and 

𝑓ௐ_௠௜௡ in Eq. B11). When using the modified moisture scalar with the built-in oxygen stress, the total environmental impacts 

on decomposition, i.e., 𝑓௧௢௧௔௟ ൌ 𝑓 𝑓ௐ𝑓ை𝑓஽ will be modified accordingly as 𝑓௧௢௧௔௟ ൌ 𝑓 𝑓ௐ𝑓஽ to avoid double-counting of the 190 

oxygen stress. 

 

ELMv1-ECA uses a Q10-based standard exponential function to account for the temperature effect on SOC decomposition 

(Eq. B9), with 𝑄ଵ଴ as 1.5 and 𝑇௥௘௙ as 25°C. Here, rather than striving for a single value of Q10, or a spatial map of Q10 as 

discussed in the introduction, we seek an optimized scheme at the site scale and a generic scheme at the regional scale for the 195 

total environmental modifier (𝑓௧௢௧௔௟ ) that combines moisture (𝑓ௐ ) and temperature (𝑓 ) sensitivity. Specifically, we 

assembled and tested 200 cases of 𝑓௧௢௧௔௟ using the newly modified moisture scalars with different parameters 𝑏, 𝑆𝑓௢௣, and 

𝑓ௐ_௠௜௡, temperature scalars with different values of Q10 and 𝑇௥௘௙, and a variety of other empirical moisture and temperature 

functions, as documented by Sierra et al. (2015). A full list of the specific moisture and temperature scalars used is provided 

in Table S2. 200 

3.1.3 Cold-season Methane Process 

The ELMv1-ECA methane model solves the reaction and diffusion equation for CH4 and O2 fluxes with the Crank-

Nicholson method. It includes the representations of CH4 production, oxidation, and three pathways of transport, including 

aerenchyma tissues, ebullition, aqueous and gaseous diffusion (Riley et al. (2011)). A short description of the ELMV1-ECA 

methane module is provided in Appendix C. The ELMv1-ECA methane model has been found to underestimate cold-season 205 

methane emissions over northern wetlands (Xu et al., 2016). The modifications to the phase-change scheme impact 

simulations of soil water and heat transfer (3.1.1); the changes in environmental scaler affect substrate availability (3.1.2). 

Both (3.1.1) and (3.1.2) influence carbon decomposition and soil heterotrophic respiration (Figure 2), and could potentially 

lead to improvements in simulated CO2 and CH4 production, but not necessarily CH4 emissions which are also controlled by 

transport mechanisms (Figure 2). Thus, we further refined the cold-season methane transport processes. 210 

 

Here, we first modified the ELMV1-ECA CH4 transport mechanism in cold seasons by mimicking possible pathways for 

CH4 emissions from freezing and subfreezing soils. Specifically, we mimic the emissions from ice cracks by plant 

aerenchyma transport (Zona et al., 2016), approximating the gas diffusion through ice cracks to the similar mechanism of 

diffusion through the aerenchyma tissues. Although in-situ experiments demonstrated that during winter, produced CH4 in 215 
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frozen soils is predominately emitted to the atmosphere through vascular plants aerenchyma tissues (e.g., Kim et al., 2007), 

here we integrate the possible transport pathways including ice cracks and remnants of aerenchyma tissues together through 

equation (Eq. C14). 

 

During the cold season over the tundra ecosystem, snow on the land surface provides strong resistance to CH4 transport to 220 

the atmosphere in ELMv1-ECA, as shown in Figure 2. But in reality, studies have shown methane can diffuse through 

snowpack at varying rates (Kim et al., 2007). We thus decreased snow resistance at the upper boundary by introducing a new 

scale factor when snow is present. Also, in ELMv1-ECA, the aqueous diffusion coefficients in freezing and subfreezing soils 

below the water table are based on the volumetric fraction of the liquid water content, which is quite small (i.e., the 

supercooled liquid water) and thus limits diffusion. We revised the formulation (Eq. C15), assuming a higher scaling factor 225 

for frozen soils (𝑓௙௥௭௦௢௜௟) upon sensitivity experiments (not shown). Table 1 summarized all the specific modifications made 

to ELMv1-ECA. These modifications involve new parameters that are all tuneable and can be systematically optimized via 

calibration. Here, we seek to reproduce the first-order cold-season process relevant to this study with these default formation 

and values listed in Table 1. 

3.2 Climate Forcing, Model Configuration, and Experiment Design 230 

We conducted transient simulations at 30-minute temporal resolution driven by climate forcing from 0.5°×0.5° CRU JRA 

(Harris, 2019) from 1901 to 2017 at the four Alaska tundra site locations. Before the transient simulation, we conducted a 

200-year Accelerated Decomposition (AD) spin-up period followed by a 200-year regular spin-up period (Koven et al., 

2013b; Zhu et al., 2019) to initialize land carbon pools. Spin-up simulations start from a wet and cold condition. Specifically, 

sub-surface temperatures were initialized as 274 K for the 1st to 5th soil layers, 273 K for the 6th to 10th layer, and 272 K for 235 

the 11th to the 15th layer, and volumetric soil water content was initialized fully saturated for all layers. In this manner, 

consistent vertical soil water content profiles were built in over the permafrost regions. 

 

Baseline simulations were conducted with ELMv1-ECA default physics, parameters, and surface datasets, i.e., 

OriPC_OriDecom_OriCH4 using original phase-change scheme, original decomposition scheme and methane module (Table 240 

2). To improve the model representation of the site-level soil environment, we first examined the global soil organic matter 

data at the ABoVE sites by evaluating ELMv1-ECA simulated subsurface soil temperature with the topsoil temperature 

prescribed to observations (as did in Tao et al., 2017). Using the top soil layer as the upper boundary, the modelling system 

excluded potential errors induced by inaccurate meteorological forcing and vegetation cover that impact the simulation of 

heat transfer from the atmosphere to the shallow soil (Tao et al., 2017). Then, the accuracy of simulated soil subsurface 245 

temperature is directly determined by the factors impacting heat transfer along the “shallow-to-deep soil” gradient (Koven et 

al., 2013a), e.g., soil thermal properties which are mostly determined by SOC content (Tao et al., 2017; Lawrence and Slater, 

2008). Results well reproduced the subsurface soil temperatures except at IVO, where summer soil temperatures were 
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notably overestimated (see Figure S2a). This result indicates that the SOC content at IVO was too small, leading to a large 

thermal conductivity, small soil porosity, and small heat capacity, altogether resulting in fast penetration of heat into the 250 

subsurface soil during summer (Tao et al., 2017; Lawrence and Slater, 2008). Thus, we derived the organic matter density at 

IVO based on ABoVE soil moisture data through a linear relationship between SOC content and soil porosity (i.e., Equation 

3 in Lawrence and Slater (2008)), assuming the observed maximum volumetric water content was porosity (see Figure S3 

for details). With the newly derived profile of soil organic matter density at IVO, the simulation showed large improvements 

in summer soil temperatures compared to that using the original global carbon dataset (see Figure S2b). The derived SOC 255 

content is also consistent with the soil survey data reported in Davidson and Zona (2018). Hereafter, the simulations at IVO 

presented in this paper use the newly derived organic carbon data without repeated clarification. 

 

The representative spatial scale of the eddy flux tower is small compared to the grid cell of global surface datasets and the 

climate forcing data used by ELMv1-ECA, although the forcing dataset was interpolated to the site scale with a bilinear or 260 

nearest-neighbor method. The site-scale vegetation cover also shows a large diversity of vegetation types according to the 

detailed vegetation survey at ABoVE flux tower footprints obtained in 2014 (Davidson and Zona, 2018). We analyzed the 

vegetation composition from the closet survey plot to the flux tower and examined the rationality of ELMv1-ECA’s 

percentage of plant type function (PFT) for the site-scale simulation. We confirmed that ELMv1-ECA’s PFT dataset was a 

good compromise between representing the site-scale ecosystem and other global parameters and surface datasets within 265 

ELM. The simulated saturated and unsaturated CH4 emissions were weighted with the estimated inundation fractions at the 

footprint of ABoVE eddy-covariance flux towers (see details in (Xu et al., 2016)) in order to compare simulated CH4 

emissions with ABoVE measurements at the site scale. 

 

Table 2 lists the experiments conducted in this study. We modified each model component (i.e., the heat transfer model, 270 

carbon decomposition model, and methane model) serially. For the temperature- and moisture-dependency functions, we 

analyzed 200 environmental modifiers within the carbon decomposition module and identified an optimal scheme for each 

site and a generic scheme that can be applied for the regional simulation over Alaskan North Slope tundra (see next section). 

 

3.3 Evaluation Method and Trend Analysis 275 

We define the early cold season as September and October, the cold-season period as September to May which includes the 

two shoulder seasons (both thawing and freezing) as consistent with Zona et al. (2016), and the warm season from June to 

August. We define the zero-curtain period (ZCP) as the set of successive days when the soil temperature is within the range 

of [-0.75°C, 0.75°C] starting in fall (i.e., the freezing season) based on Zona et al. (2016). We computed the ZCP duration 

for each soil layer every year from 1950 to 2017 and estimated the historical trend as the regression slope between ZCP 280 

duration and time. Similarly, we estimated the trends of cold-season CH4 and CO2 emissions through linear regression 
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analysis. A p-value of 0.05 is used to determine if the computed trend is statistically significant. Results vary with soil 

depths; thus, we choose a common modelling depth, i.e., 12 cm, which locates within the active layer for all the sites, to give 

an example. 

 285 

We used Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 1970) to examine the performance of the ELMv1-ECA 

simulated time series of CH4 and CO2 net fluxes in comparison with assembled observations (Section 2) at the monthly time 

scale. The NSE ranges from negative infinity to one, calculated as Eq. (1): 

𝑁𝑆𝐸 ൌ 1 െ ቀ
ଵ

ே
∑ ൫𝐸෠௧ െ 𝑂௧൯

ଶே
௧ୀଵ ቁ 𝜎௢

ଶൗ , (1) 

where t means monthly time step, N is the total number of time steps, 𝐸෠௧ and 𝑂௧ is simulated and observed flux at time step t, 

respectively; and 𝜎௢ is the standard deviation of observations. Note we only used observed monthly averages when the 290 

number of daily observations was more than 20 days. The model performance is generally considered satisfactory with an 

NSE > 0.50 (Moriasi et al., 2007), and perfect with an NSE as one. To simultaneously evaluate CH4 and CO2 fluxes, we 

combined both 𝑁𝑆𝐸஼ுସ and 𝑁𝑆𝐸஼ைଶ in the form of 𝑑𝑖𝑠𝑡 ൌ  ඥሺ1 െ 𝑁𝑆𝐸஼ுସሻଶ ൅ ሺ1 െ 𝑁𝑆𝐸஼ைଶሻଶ, representing the distance 

from (𝑁𝑆𝐸஼ுସ, 𝑁𝑆𝐸஼ைଶ) to (1, 1) in a coordinate plane with x-axis as 𝑁𝑆𝐸஼ுସ and y-axis as 𝑁𝑆𝐸஼ைଶ. The optimal simulation 

thereby is the one having the shortest distance to the ideal scenario (1, 1). We also define a satisfactory model performance 295 

in terms of simulating CH4 and CO2 fluxes as the case with both 𝑁𝑆𝐸஼ுସ and 𝑁𝑆𝐸஼ைଶ larger than 0.5. The generic scheme 

then is the common satisfactory scheme that provides the best overall performance for all the sites. 

 

To evaluate ELMv1-ECA simulated soil temperature and moisture, we calculated the RMSE for each soil layer, 

i.e.,ට∑ ൫𝐸෠௧ െ 𝑂௜൯
ଶே

௧ୀଵ 𝑁⁄  where the 𝐸෠௧ and 𝑂௧ is simulated and observed soil temperature or moisture, respectively, and t is a 300 

daily time step. We used the Mean Absolute Error (MAE, 𝑖. 𝑒. ,
ଵ

ே
∑ ห𝐸෠௧ െ 𝑂௜หே

௧ୀଵ  to assess the simulated duration of ZCP of 

each soil layer. Note that, depending on the amount of soil liquid water content, the whole course of the freezing process 

may or may not entirely fall into the ZCP, i.e., the ending time of ZCP does not necessarily align with the end of the freezing 

process. The onset of freezing, though, is always later than the starting day of the ZCP, and the main course of the freezing 

process is still within the ZCP. 305 

 

Here the modelled active layer thickness (ALT), i.e., maximum thaw depth during an annual cycle, is computed as the 

bottom depth of the deepest thawed soil layer (i.e., with a maximum annual temperature above 0°C) further extended down 

to the possible non-frozen fraction of the layer below, as in Tao et al. (2019; 2017). We only derived the length of ZCP for 

soil layers with a maximum annual temperature above 0°C since limited phase-change processes occur in deeper layers. 310 

Then, the soil layers containing or below the permafrost table have a zero-day ZCP. We computed the MAE of ALT 
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simulated with both original (OriPC) and the new phase-change (NewPC) scheme. Also, we computed the relative 

improvement in simulated soil temperature (Ts) and ZCP compared to the baseline results. Specifically, we calculated 100% 

× (RMSE_Ts_OriPC – RMSE_Ts_NewPC) / RMSE_Ts_OriPC and 100% × (MAE_ZCP_OriPC – MAE_ZCP_NewPC) / 

MAE_ZCP_OriPC to quantify the enhancement by employing the new phase-change scheme. 315 

 

In general, we use NSE to evaluate the model’s performance in capturing seasonality (i.e., time series of CH4 and CO2 net 

fluxes) and use RMSE and MAE to assess the model’s capability in simulating the magnitudes of soil temperature, moisture 

saturation, and ZCP durations. 

4 Results and Discussion  320 

4.1 Evaluation of Soil Temperature and Zero-curtain Period  

We first evaluated the simulated daily soil temperature profiles against the observations from ABoVE and GIPL-UAF at the 

four site locations. Then, we examined improvements in simulations of soil temperature, soil moisture, and the durations of 

ZCPs by employing the newly revised phase-change scheme (i.e., “NewPC_OriDecom_OriCH4”; Table 2). 

 325 

Results for the BES/CMDL and IVO site are shown in Figure 3; results for other sites are shown in supplementary Figure 

S4. At BES/CMDL, the baseline (i.e., “OriPC_OriDecom_OriCH4”; Table 2) simulated soil temperatures (Ts) with the 

default phase-change scheme (Ts_OriPC; cyan lines; Figure 3a) decrease rapidly in fall due to the overestimated freezing 

rate (i.e., the slope of decreasing liquid water fraction), notably underestimating the duration of the ZCP (greenish shaded 

area). Consequently, liquid water saturation (Sf_OriPC, green lines; Figure 3a) quickly drops to a lower bound (i.e., the 330 

supercooled liquid water content divided by porosity), and the freezing process generally completes within a short period 

(days for top layers to one month at the most for deeper layers). The baseline model soil temperature drops (Ts_OriPC) 

sharply after the freezing process ends (i.e., Sf_OriPC decreases to the lower bound). In contrast, the new phase-change 

scheme effectively slows freezing rates, showing relatively smaller slopes of decreasing liquid water saturation (Sf_NewPC; 

magenta lines; Figure 3a) within the ZCPs than the baseline simulation (Sf_OriPC; green lines) especially in the 4th and 5th 335 

layer. Hence, the gradually released latent heat maintains soil temperatures around the freezing point for a longer period 

(Ts_NewPC; blue lines; Figure 3a), effectively extending the ZCPs (blue shaded area) which agree better with observations 

than the baseline results. The ZCP duration increases with depth and can extend into December for deep soil layers. 

Similarly improved performance was found at the BEO and ATQ sites (supplementary Figure S4). At IVO, however, while 

the new phase-change scheme greatly improved simulated results relative to the baseline simulation (Figure 3b), the model 340 

still slightly underestimated ZCP durations and also underestimated winter (December to April) soil temperature (blue vs. 

red). This result at IVO is consistent with the underestimation of late-season soil liquid water available to be frozen, and 

thereby to release sufficient latent heat (Figure S5). 
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Simulated ZCP durations with the revised phase-change scheme (NewPC) demonstrated notable improvements over the 345 

baseline (original) phase-change scheme (OriPC) (solid circles vs. open diamonds)  (Figure 3), showing greatly reduced 

mean absolute errors (MAEs) (Table 3). For example, at 12 cm depth (4th layer), the relative improvements in MAE of the 

ZCP durations were 65%, 65%, 66%, and 50% for the four site locations (Table 3). The largest improvement in MAE was as 

large as 65 days for the 6th layer at BES/CMDL, with a relative improvement of 84% (Table 3). This large improvement 

stems from the better-estimated ALT at this site; the OriPC simulated 6th layer temperature remained below freezing, leading 350 

to a zero-day ZCP (diamonds on the x-axis in Figure 4). The new phase-change scheme not only improved simulation of the 

ZCP and cold-season soil temperatures, but also affected the warm season dynamics and thus ALT estimates. As Figure 4 

indicates, the NewPC improved simulated ALTs at all four site locations with reduced bias in multi-year averaged ALT, 

resulting in more reasonable ZCP durations for the 6th layer (and also 7th layer for IVO), while the baseline results were zero 

days. 355 

 

The deeper active layer simulated by NewPC implies more soil water storage capacity, resulting in lower soil moisture in 

shallow soil layers and higher soil water in deep layers (Sf_NewPC; magenta lines; Figure 3) compared to baseline results. 

The changes in soil liquid water content, in turn, impact phase-change and soil temperature simulations. Comparison with 

the observed soil liquid water content reveals a better agreement with observations (Table S3). For example, at ATQ (Figure 360 

S6), the RMSEs of the liquid water content were reduced by 5.4%, 35.3%, 42.6%, and 25.4% for the 3rd through 6th layers, 

respectively (Table S3). 

 

The changes to model representations of phase change led to large reductions in soil temperature bias. The relative 

improvements in RMSE of simulated soil temperatures during Sep. and Oct. (i.e., the two months that the ZCPs usually 365 

cover), generally increased with depth for surface layers (within about 20 cm of the surface, i.e., 1st to 4th layer), and were 

above 80% for the intermediate layers (5th to 8th) at all the sites (Figure 5). At the two Barrow sites where observed soil 

temperatures were available, the relative improvements for the deepest (13th) layer were 72.6% and 71.1%, on average, for 

the early winter and annual cycle, respectively. Therefore, incorporating the new phase-change scheme also resulted in 

improved bottom temperature boundary conditions, which is critical for accurately simulating permafrost dynamics (Sapriza-370 

Azuri et al., 2018). Improvements between Septemper and December and the whole annual cycle also increased with soil 

depth, showing site-averaged reductions in RMSEs ranging from 47% to 63% and from 36% to 46% for the two periods, 

respectively. The whole cold-season period (Sep. to May) showed, on average, 44% to 53% reduction in RMSEs from the 1st 

to 6th layer at relatively warmer sites (i.e., ATQ and IVO), and from 19% to 69% for the top 13 layers for the two Barrow 

sites. 375 
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Soil temperatures were still slightly underestimated during the thawing season (i.e., May) at all four sites, showing later 

onset of thawing indicated by the timing when warming soil temperatures cross 0°C and soil moisture starts to rise (Figure 

3). One possible reason for this bias is the lack of representation of advective heat transport. That is, the model does not 

represent the heat of spring rain that is advectively transported into soils (Neumann et al., 2019; Mekonnen et al., 2020); nor 380 

does it account for advective heat transport associated with water fluxes in subsurface soils after the spring-rainwater mix 

with existing cold liquid water in soils. Also, after the freezing process ends, simulated deeper soil layer temperatures were 

underestimated (e.g., December through April). This bias might be caused by underestimated snow depth (not shown) 

resulting from inaccurate forcing (particularly snowfall), land cover, microtopography, and/or wind-blown snow 

redistribution. 385 

 

The improved simulations of soil temperature, liquid water content, and ZCP duration greatly impacted soil HR and methane 

production (Figure 6). Increases in the baseline modeled HR and CH4 production resulted from changes in soil temperature 

and moisture (Figure 6b1 and b2 vs. Figure 6c1 and c2) and mainly occured within the two-dimensional “zero-curtain zone” 

across the vertical soil profile spanning multiple months, i.e., from September to November (Figure 6c1). However, still very 390 

small HR and CO2 and CH4 production were predicted during the following cold season months (Figure 6c3 and c4) due to 

the moisture scalar for subfreezing soils estimated by ELMv1-ECA’s original moisture-dependency function on 

decomposition (Eq. B10), as discussed in Section 3.1.2. In addition, the sharp decreases of HR and CH4 production around 

the end of September were caused by the dramatically increased oxygen stress (i.e., the decreased oxygen scalar) to 

decomposition when freezing began (Figure 6c3 and c4). By replacing the original moisture scalar with the modified soil 395 

moisture-dependency function scheme-2 with oxygen stress ((Eq. B11), also see Figure S1) along with the modified total 

environmental modifier, both the near-zero respiration and sharp drawdown trends in HR and CO2 and CH4 production were 

greatly alleviated (Figure 6c3 and c4 vs. Figure 6d3 and d4). In the next section, we analyze 200 environmental modifier 

schemes to the base decomposition rate (Table S2) that assembled commonly used empirical soil temperature- and moisture-

dependency functions as documented by Sierra et al. (2015) and the modified functions proposed in this study. 400 

 

4.2 Evaluation of CO2 and CH4 Emissions  

Here we evaluate the simulated monthly CO2 and CH4 fluxes at the site scale against EC tower observations.  Figure 7 

displays the NSEs of 200 ELMV1-ECA ensemble simulations with different combination of temperature and moisture 

scalers on soil decomposition, i.e., “NewPC_NewDecom_NewCH4” (grey dots) (see configurations in Table 2). (Daily time 405 

series of all the simulations are provided in Figure S7). The failure of simulated CH4 emissions to capture the methane 

seasonality at IVO (as indicated by Figure S7) might occur because of the lack of 1) a reasonable wetland module that can 

adequately account for inundated hydro-ecological dynamics, 2) advective heat transport at the air-ground interface through 

rainfall infiltration and within subsurface soils through water transfer, and 3) the geological micro-seepage emission of CH4, 
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as reported in previous studies (Anthony et al., 2012; Etiope and Klusman, 2010; Russell et al., 2020). For instance, Lyman 410 

et al. (2020) showed large temporal variability of CH4 at natural gas well pad soils, similar to the observations at IVO 

(Anthony et al., 2012). Controlled experiments (not shown) that imposed observed soil temperature and moisture into the 

modelling system at all the layers with observations available do not demonstrate improvement for the simulation of CH4, 

although showing better performance for CO2. These results confirm that impacts from the soil environment (e.g., soil 

temperature and moisture) within the current water and heat transfer framework cannot explain the seasonal variability of 415 

CH4 emissions. Thus, the three mechanisms discussed above (i.e., wetland dynamics, advective heat transport, and 

geological micro-seepage CH4 emission) currently missing in our model are likely necessary to simulate CH4 emissions at 

this site and we therefore do not include analysis at IVO in the following sections. 

 

The improved phase-change scheme, and thus improved simulations of ZCP durations and soil temperature and moisture, 420 

resulted in greatly improved performance for CO2 emissions at BES/CMDL and BEO, and slightly better performance for 

CH4 emissions at ATQ, compared to the baseline (cyan for “NewPC_OriDecom_OriCH4” vs. green for baseline; Figure 7), 

even though the carbon decomposition and methane modules remained the same. Incorporating the revised CH4 model 

(discussed in section 3.1.3) improved simulated CH4 emissions at BES/CMDL, BEO, and ATQ (blue for 

“NewPC_OriDecom_NewCH4” vs. cyan for “NewPC_OriDecom_OriCH4”), especially during the cold season (Figure 8). 425 

The improved NSEs for CH4 emissions mainly resulted from increased emissions over early winter (Sep. and Oct.) and slight 

but persistent enhancements throughout the rest of the cold season (blue in Figure 8), which were related to our 

modifications to CH4 transport mechanisms. Further, with the identified optimal scheme of environmental modifiers to the 

base decomposition rate, results demonstrate substantial improvements to the simulation of cold-season CO2 and CH4 

emissions compared to baseline results (yellow vs. others; i.e., shortest distance from (𝑁𝑆𝐸஼ுସ, 𝑁𝑆𝐸஼ைଶ) to (1, 1)). Among 430 

the common schemes providing good performance for both CO2 and CH4 emissions (i.e., both 𝑁𝑆𝐸஼ுସ and 𝑁𝑆𝐸஼ைଶ larger 

than 0.5, indicated by the gray dots within the boxes in Figure 7), we identified a generic scheme of environmental modifier 

to the decomposition rate by selecting the common scheme that provided best overall performance for all the sites (except 

IVO). The specific functions for the optimal and generic scheme of environmental modifiers are provided in Table S4. 

 435 

Figure 8 illustrates the uncertainty associated with the model representations of environmental influences on heterotrophic 

respiration. Most simulations within the grey area (corresponding to the grey dots within the good-performance boxes in 

Figure 7) employed the modified ELMV1-ECA moisture scalar and the Q10-based temperature scalar, differing from each 

other by using different parameter values (e.g., Q10, 𝑆𝑓௢௣, and 𝑏). At ATQ, the site with the thicker active layer, results from 

simulations using moisture-dependency functions documented in Sierra et al. (2015) (Table S2 and Figure S1) were notably 440 

different than those using the moisture scalar of ELMv1-ECA. For the Sierra et al. (2015) empirical moisture functions, the 

influence of liquid moisture content on heterotrophic respiration is uniformly applied to all active soil layers, even though 

the soil properties are quite different vertically. ELMv1-ECA’s moisture scalars (including the original scheme), in contrast, 
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reasonably explained the varying influence along the vertical soil profile. Thus, the simulations with moisture functions 

documented in Sierra et al. (2015) (i.e., different than the improved ELMV1-ECA moisture scalar) generally overestimated 445 

CO2 and CH4 emissions, especially during the warm season when the thaw depth is deep and soil wetness is high, thus 

permitting large moisture modifier scalar applied to the base decomposition rates. 

 

Both the optimal and the generic decomposition scheme used the modified ELMv1-ECA moisture scalar (see Table S4), 

which assigns small thresholds for the moisture scalar and also incorporates oxygen stress when soil wetness exceeds a 450 

favourable threshold (0.65 here) for decomposition. Imposing small thresholds for moisture scalar effectively prevents the 

possibility of zero respiration in subfreezing soils during wintertime. This change exerts more impact on cold sites, such as 

the two Barrow sites, due to the smaller supercooled liquid water under the colder temperature. Thus, the improved NSEs for 

CO2 and CH4 emissions at BES/CMDL and BEO were larger than those at ATQ (Figure 7; yellow or magenta vs. blue). 

Since the temperature at ATQ was not cold enough to make the supercooled liquid water content small enough to give a zero 455 

moisture scalar, the microbial respiration was not completely shut down with the original decomposition modifier at this site. 

Indeed, at ATQ, where cold-season temperatures are relatively warmer than at BES/CMDL and BEO, simulations with the 

original ELMv1-ECA environmental modifier (i.e., “NewPC_OriDecom_NewCH4”; discussed in Section 3.1.2), already 

released much more CO2 and CH4 throughout the cold season than in the baseline simulations, owning to the improved 

simulations of soil temperature and moisture, and the modifications for CH4 transport. 460 

 

The Q10-based temperature functions mediate the response of microbial respiration more over the warm season than the cold 

season due to the larger sensitivity of heterotrophic respiration to warm temperatures than to subfreezing temperatures (see 

Figure S1d). The different SOC decomposition Q10 values employed directly impact soil HR and thus CH4 and CO2 

emissions, and also indirectly impact vegetation nutrient assimilation and thus primary productivity (Figure 2). Vegetation 465 

growth, on the other hand, impacts CH4 emissions because the CH4 component transported to the surface via vegetation 

aerenchyma tissue generally dominates the total emissions and thus determines the seasonal peak and general seasonality of 

CH4 emissions. When temperature is below the reference temperature (i.e., 𝑇௥௘௙, here is 25°C), a smaller Q10 permits larger 

HR and produces more CH4 and CO2, increases warm-season CO2 uptake via photosynthesis; and increases belowground 

biomass and aerenchyma tissue and thereby CH4 transport to the atmosphere. Thus, the seasonality of CH4 and CO2 net 470 

emissions are closely linked through vegetation primary productivity, which vary from site to site. For cold sites (i.e., 

BES/CMDL and BEO), the sensitivity of simulated CH4 to Q10 values is larger than the sensitivity of CO2 net flux to Q10 

because cold temperature suppresses vegetation growth (i.e., CO2 uptake); while for the warm site (i.e., ATQ), both CH4 and 

CO2 net flux are very sensitive to the Q10 values. Summarizing, the cold sites (i.e., BES/CMDL and BEO) better match CO2 

and CH4 emissions observations with smaller Q10 values (1.7 or 1.8) than for the warmer site (i.e., 2.1 for ATQ; Table S4). 475 

The generic decomposition scheme used a Q10 value of 2.0, which provided the best overall performance at all three sites 

(Table S4). 
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The extended ZCPs, the revised environmental modifier to decomposition, and the modified cold-season CH4 transport 

mechanism, together resulted in the largest improvements for both CO2 and CH4 emissions, especially over the cold season. 480 

In the next section, we quantify the cold season contribution of CO2 and CH4 emissions and then estimate the historical 

trends of seasonal CO2 and CH4 emissions from 1950 to 2017. 

 

4.3 Cold-season Contribution of CH4 and CO2 net emissions and Historical Trends   

To better verify the cold-season contribution of CH4 and CO2 emissions to the annual budget, a multi-year average approach 485 

was taken because of discontinuity in the observed time series. The new simulation results with the optimal decomposition 

scheme (yellow; Figure 9) showed greatly enhanced performance at three of the study sites in terms of capturing the 

averaged seasonal cycle, especially for the cold-season months (Sep. to May; Figure 9), reducing site-averaged MAEs in 

cold-season total CH4 and CO2 emissions by 84% and 81% , respectively. Specifically, compared to baseline results, the new 

simulation results showed 0.94 gC m-2  and 55.6 gC m-2 increases in site-averaged cold-season CH4 and CO2 emissions, 490 

respectively. The observed cold-season CH4 emissions contributed at least ~40% to the annual total at three of the study 

sites, of which about half occurred in September and October (Figure 10, Table 5), i.e., the two months hosting the major 

part of ZCPs for the top to intermediate soil layers. The simulated percentage of cold-season contributions to the annual 

totals were close to observed values, i.e., 38%, 41%, 28% vs. 45%, 42%, 45% for BES/CMDL, BEO, and ATQ, 

respectively. The simulated contribution of early cold season (Sep. and Oct.) CH4 emissions to the cold-season total was 495 

62%, 52%, and 60% for the three sites, in comparison with the observed 47%, 58%, and 43%, showing slightly 

overestimations. 

 

The new simulations accurately captured the observed cold-season contributions of both CH4 and CO2 emissions (Table 5), 

and the model improvements were larger for cold sites (i.e., BES/CMDL and BEO) than for the warmer site (i.e., ATQ), as 500 

discussed above. Specifically, at ATQ, despite the small biases in the annual total CH4 emission (i.e., -0.16 gC m-2) and the 

early cold season component (i.e., -0.05 gC m-2), the new simulation underestimated the cold-season proportion of annual 

emissions, i.e., simulated 28% vs. observed 45%. In contrast, biases in contribution percentages were only 2% and 7% at 

BES/CMDL, and 3% and 1% at BEO for the early cold season and cold-season period, respectively. The updated ELMv1-

ECA also provided improved cold-season CO2 emissions, showing small biases of -2.44 gC m-2 (3% of the observation) and 505 

-1.5 gC m-2 (2% of the observation) for BES/CMDL and BEO, respectively. Compared to BES/CMDL and BEO, results for 

ATQ showed relatively larger bias of -23.9 gC m-2 (41% of the observation). The observed multi-year averaged annual CO2 

net flux was 19.9 gC m-2 (source), 31.8 gC m-2 (source), and -3.8 gC m-2 (sink) at BES/CMDL, BEO, and ATQ, respectively. 

However, due to the large discontinuity in CO2 observations, especially over the warm season (Figure 8), the calculated 

annual CO2 budget is uncertain. Still, we can characterize the CO2 budget with simulated results using the updated ELMv1-510 
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ECA. We find that the simulated cold-season CO2 emissions were larger than the warm-season CO2 net uptake at all three 

sites (Figure 10, Table 5). The released CO2 over the early cold season (September and October) accounted for 54%, 50%, 

and 72% of the total emissions throughout the cold season for BES/CMDL, BEO, and ATQ, respectively. 

 

Through trend analysis between 1950 and 2017, we found that the ZCP durations showed increasing trends at all three sites, 515 

with ZCP trends increasing with depth (Table 6). At ATQ, a warmer site than BES/CMDL and BEO, the trends of ZCP 

durations increase from 0.14 to 0.49 days yr-1 along the vertical soil profile. The CO2 emissions during the 12 cm ZCP and 

during cold-season months (September to May) both showed increasing trends at all three sites (Table 7), ranging from 0.19 

to 0.26 gC m-2 yr-1 for the 12 cm ZCP, and from 0.33 to 0.38 gC m-2 yr-1 for the entire cold season period. The annual CO2 

net flux showed positive trends, but they were not statistically significant. Annual CH4 emissions showed an increasing trend 520 

at ATQ with a rate of 10.6 mgC m-2 yr-1, but not at the two Barrow sites; cold-season CH4 emissions did not show significant 

trends at all the sites. In a companion paper, we discuss the regional trends of the spatially averaged CO2 emissions 

simulated by the updated ELMv1-ECA with the identified generic decomposition scheme. 

5 Summary and Discussion  

In this study, we improved ELMv1-ECA simulated subsurface soil temperature, zero-curtain period durations, and cold-525 

season CH4 and CO2 net emissions at Alaskan North Slope tundra sites. We first improved the numerical representation of 

coupled water and heat transport with freeze-thaw processes via modifying ELMv1-ECA’s phase-change scheme. Then, we 

revised the dependency of soil decomposition rates on soil temperature and moisture. We further refined the cold-season 

methane processes by updating upper boundary resistance that allows CH4 to be emitted from frozen soils through snow to 

the atmosphere. We also used the updated ELMV1-ECA to estimate historical trends of cold-season CH4 and CO2 net 530 

emissions at the Alaskan tundra sites from 1950 to 2017. This study is among the first efforts toward improving simulations 

of zero-curtain periods and cold-season carbon emissions over Arctic tundra by ESMs. The strategy of improving ELMV1-

ECA phase-change scheme and environmental controls on microbial activity can be easily applied to other global land 

models. 

 535 

With the revised phase-change scheme, the updated ELMv1-ECA greatly improved site-scale simulations of soil 

temperature, soil moisture, and zero-curtain period. Specifically, the RMSE of daily subsurface soil temperature was 

substantially reduced compared to the baseline simulation, showing site-averaged improvements ranging from 58% to 87% 

over the early cold season (Sep. to Oct.) and from 36% to 46% over the annual cycle for soil layers within the active layer. 

The evaluation of simulated liquid water content with the new phase-change scheme, although limited by availability of 540 

observations, showed a relative reduction in RMSE as high as 43% for the 5th layer at ATQ, and site-averaged improvements 

of 15% and 21% for the 4th and 5th layer, respectively. Simulated ZCP durations were also greatly improved, with, e.g., 
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relative reductions in MAEs of 65%, 65%, 66%, and 50% for the 4th layer (about 12 cm) at BES/CMDL, BEO, ATQ, and 

IVO, respectively. 

 545 

Based upon the improved simulations of soil temperature and moisture with the new phase-change scheme, the identified an 

optimal SOC decomposition scheme, and the revised methane module, the site-averaged mean annual errors of cold-

season  emissions were reduced by 84% and 81% for CH4 and CO2, respectively. We also found that CH4 and CO2 emissions 

over the early cold season, i.e., September and October, which usually accounts for most of the zero-curtain period, 

contributed more than 50% of the total emissions throughout the cold season (September to May). Zero-curtain period 550 

durations showed increasing trends from 1950 to 2017, with larger trends in deeper soil layers. Although the annual CO2 

emissions did not show statistically significant trends, both CO2 emissions during the 12 cm depth zero-curtain period and 

the entire cold-season period (Sep. to May) showed increasing trends.  

 

Although showing improvements compared to baseline results, the new simulations generally overestimated the contribution 555 

of early cold season CO2 emissions. Many reasons could contribute to the overestimations, including poor representation of 

coupled biogeochemical and hydrological processes in the localized permafrost soil environment, the lack of accurate 

representation of inundated hydro-ecological dynamics, underestimation of snow accumulation due to micro-topographic 

effects and thus the snow insulation to the ground (e.g., Bisht et al., 2018), among others. Strong microtopographic impacts 

on CO2 and CH4 emissions across seven landscape types in Barrow, Alaska, were recently reported (Wang et al. (2019); 560 

Grant et al., 2017a; Grant et al., 2017b). In addition, the single static multiplicative function (𝑓௧௢௧௔௟ ൌ 𝑓 𝑓ௐ𝑓ை𝑓஽) used to 

parameterize the total impact of environmental conditions on respiration might not be appropriate (Tang and Riley, 2019). 

Also, inappropriately prescribed land cover at the site scale or inaccurate climate forcing (particularly air temperature and 

precipitation; Chang et al. (2019)) could all impact snow accumulation processes (Tao et al., 2017), which can significantly 

impact CO2 and CH4 emission simulations. Customizing the complex local ecosystem vegetation community might be 565 

feasible at the site scale, however, it is less possible for regional or global land model simulations. This issue calls for the 

importance of upscaling methods to model (e.g., Pau et al., 2016; Liu et al., 2016) and measure (e.g., Natali et al., 2019; 

Virkkala et al., 2019) carbon and water cycle dynamics at the regional and global scales. 

 

Given the persistent warming and the continued more severe warming in the cold season (Box et al., 2019), we envision 570 

continuing increases in cold-season CO2 and CH4 emissions from the permafrost tundra ecosystem. The increasing rate of 

cold-season heterotrophic respiration (releasing CO2) may become larger than the trend of warm-season vegetation CO2 

uptake under future climate. To accurately characterize cold-season emissions and warm-season net uptake, models have to 

correctly simulate both components, which, however, few models can do. The updated ELMv1-ECA, with the enhanced 

capacity to reproduce cold-season CO2 and CH4 emissions proven by this study, can serve as a starting point to better predict 575 

permafrost carbon responses to future climate. Finally, the complex water-carbon interactions require modelling systems 
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with fully coupled hydrological-thermal-biogeochemical processes to better predict the carbon budget in permafrost regions 

under future climate. 
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Appendices: Description of Relevant Modules within ELMv1-ECA 

Here we describe the heat transfer in subsurface soils, the carbon decomposition, and the methane module within the 595 

ELMv1-ECA that are of particular relevance to our study. 

Appendix A Subsurface Heat Transfer 

ELMv1-ECA approximates the subsurface heat transfer process with a one-dimensional heat diffusion equation: 
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𝑐 డ்

డ௧
ൌ డ

డ௭
ቀ𝜆 డ்

డ௭
ቁ, (Eq. A1) 

where 𝑇 is the soil temperature (K), 𝑐 is the volumetric soil heat capacity (J m-3 K-1), 𝜆 is soil thermal conductivity (W m-1 K-

1), and 𝑧 is the soil depth (m) of the ELMv1-ECA soil layers. The ELMv1-ECA soil column consists of 15 layers, with soil 600 

thickness increasing exponentially with depth. The bottom of soil column is down to 42 m, and the top 10 layers are 

hydrologically active with layer node depth as 0.0071 m, 0.0279 m, 0.0623 m, 0.1189 m, 0.2122 m, 0.3661 m, 0.6198 m, 

1.0380 m, 1.7276 m, 2.8646 m, respectively. The soil heat capacity and thermal conductivity is updated at each time step 

based on the fractions of soil matrix components, i.e., liquid water content, ice content, and soil solids. The impact of organic 

carbon on soil thermal and hydraulic properties was incorporated as a linear combination of the counterparts properties of 605 

mineral soil and organic matter (Lawrence and Slater, 2008). To solve the (Eq. A1), ELMv1-ECA employs the Crank-

Nicholson method, resulting in a tridiagonal system equation. We assume a zero-flux bottom boundary condition. The top 

boundary condition is estimated by solving the energy balance equation at the air and ground interface, with additionally an 

overlying five-layer snow model and a one-layer surface water model in between. When snow and surface water present, 

ELMv1-ECA incorporates the snow layers and surface water layer into the tridiagonal system to solve the heat transfer along 610 

the entire column. 

 

ELMv1-ECA incorporates freeze-thaw processes of soil water in a decoupled way. Specifically, the model determines the 

onset of melting or freezing by soil temperature initially solved at time step 𝑛 ൅ 1 without consideration of the phase change 

process, denoted as 𝑇௜
௡ାଵ, i.e.,  615 

𝑇௜
௡ାଵ ൐   𝑇௙ 𝑎𝑛𝑑 𝑤௜௖௘,௜

௡ ൐ 0                  melting  

𝑇௜
௡ାଵ ൏   𝑇௙ 𝑎𝑛𝑑 𝑤௟௜௤,௜

௡ ൐ 𝑤௟௜௤,௠௔௫,௜
௡ାଵ       freezing  

, (Eq. A2) 

where 𝑇௙ is the freezing temperature of water (0°C in Kelvin, i.e., 273.15 K), 𝑤௜௖௘,௜
௡  and 𝑤௟௜௤,௜

௡  is the mass of ice and liquid 

water (kg m-2) of layer 𝑖 , and  𝑤௟௜௤,௠௔௫,௜
௡ାଵ  (kg m-2) is the supercooled liquid water that is allowed to coexist with ice given the 

subfreezing soil temperature 𝑇௜
௡ାଵ. This 𝑤௟௜௤,௠௔௫,௜

௡ାଵ  varies with soil texture and temperature and is calculated by the freezing 

point depression equation (Niu and Yang, 2006), 

𝑤௟௜௤,௠௔௫,௜
௡ାଵ ൌ ∆𝑧௜𝜃௦௔௧,௜ ቈ

10ଷ𝐿௙൫𝑇௙ െ 𝑇௜
௡ାଵ∗൯

g𝑇௜
௡ାଵ∗𝜓௦௔௧,௜

቉
ିଵ/஻೔

 , (Eq. A3) 

where ∆𝑧௜ is the soil thickness of the 𝑖th layer (in mm),  𝜃௦௔௧,௜ represents the soil porosity (i.e., the saturated volumetric water 620 

content), 𝐿௙ is the latent heat of fusion (J kg-1), 𝐵௜ is the Clapp and Hornberger exponent (Clapp and Hornberger, 1978), g is 

the gravitational acceleration (m s-2), and 𝜓௦௔௧,௜ is the soil texture-dependent saturated matric potential (mm). 
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The rate of phase change is initially assessed from the heat excess (or deficit) needed to change the estimated temperature to 

the freezing point. Specifically, the model first computes the energy (𝐻௜) needed for adjusting current soil temperature 625 

(𝑇௜
௡ାଵ) to 𝑇௙: 

𝐻௜ ൌ െ𝑐௜
∆௭೔

∆௧
𝑇௜௡௖ ൅ ൫1 െ 𝑓௦௡௢ െ 𝑓௛ଶ௢௦௙௖൯

డ௛

డ்
𝑇௜௡௖      𝑖 ൌ 1

𝐻௜ ൌ െ𝑐௜
∆௭೔

∆௧
𝑇௜௡௖                                                       𝑖 ൐ 1

, (Eq. A4) 

where 𝑇௜௡௖ = 𝑇௙ െ 𝑇௜
௡ାଵ,  ℎ is ground heat flux, 𝑓௦௡௢ and 𝑓௛ଶ௢௦௙௖ is the snow and surface water fraction within the grid cell, 

respectively. The mass change involved then is computed as 𝐻௠ ൌ
ு೔∆௧

௅೑
 (i.e., െ𝑐௜

∆௭೔

௅೑
𝑇௜௡௖ for soils below the top interface 

layer). That is, the mass of ice increased/decreased by freezing/melting is െ𝐻௠ , releasing/absorbing energy 𝐻௜  to bring 

up/down the current soil temperature to 𝑇௙. Accordingly, the ice and liquid mass are adjusted as: 630 

𝑤௜௖௘,௜
௡ାଵ ൌ  ቊ

min൫𝑤௜௖௘,௜
௡ ൅ 𝑤௟௜௤,௜

௡ െ 𝑤௟௜௤,௠௔௫,௜
௡ାଵ∗ ,   𝑤௜௖௘,௜

௡ െ 𝐻௠൯ 𝑤௟௜௤,௜
௡ ൅ 𝑤௜௖௘,௜

௡ ൒ 𝑤௟௜௤,௠௔௫,௜
௡ାଵ∗

0                                                                  𝑤௟௜௤,௜
௡ ൅ 𝑤௜௖௘,௜

௡ ൏ 𝑤௟௜௤,௠௔௫,௜
௡ାଵ∗  

. (Eq. A5) 

 𝑤௟௜௤,௜
௡ାଵ ൌ max ሺ𝑤௟௜௤,௜

௡ ൅ 𝑤௜௖௘,௜
௡ െ 𝑤௜௖௘,௜

௡ାଵ, 0) 

 

The 𝐻௜ then is adjusted to 𝐻௜∗, calculated as 𝐻௜∗ ൌ 𝐻௜ െ
௅೑൫௪೔೎೐,೔

೙ ି௪೔೎೐,೔
೙శభ൯

∆௧
. The 𝐻௜∗ then is the ultimately determined latent heat 

and is used to further readjust soil temperature as in equation (Eq. A6), 

𝑇௜
௡ାଵ∗=𝑇௙ ൅

∆௧

௖೔∆௭೔
𝐻௜∗=𝑇௙ െ

௅೑൫௪೔೎೐,೔
೙ ି௪೔೎೐,೔

೙శభ൯

௖೔∆௭೔
, (Eq. A6) 

in which the temperature adjusted to 𝑇௙ is further increased by െ
௅೑൫௪೔೎೐,೔

೙ ି௪೔೎೐,೔
೙శభ൯

௖೔∆௭೔
 due to soil freezing since 𝑤௜௖௘,௜

௡ାଵ  ൒  𝑤௜௖௘,௜
௡ , or 

decreased due to melting when 𝑤௜௖௘,௜
௡ାଵ ൏  𝑤௜௖௘,௜

௡ . 635 

We revised the phase-change scheme mainly through incorporating a phase-change efficiency (𝜀) and replacing the constant 

freezing point 𝑇௙ with the temperature of the freezing point depression in (Eq. A2). The phase-change efficiency, introduced 

by Le Moigne et al. (2012) and adopted by Masson et al. (2013) and Yang et al. (2018a), is calculated as, 

൞
𝜀௟௜௤,௜

௡ ൌ
ఏ೗೔೜,೔

೙

ఏೞೌ೟,೔
                      𝑓𝑜𝑟 𝑓𝑟𝑒𝑒𝑧𝑖𝑛𝑔

𝜀௜௖௘,௜
௡ ൌ

ఏ೔೎೐,೔
೙

ఏೞೌ೟,೔
                      𝑓𝑜𝑟 𝑚𝑒𝑙𝑡𝑖𝑛𝑔

, (Eq. A7) 

where 𝜃௟௜௤,௜
௡  and 𝜃௜௖௘,௜

௡  is the soil liquid and ice volumetric water content of layer 𝑖 at previous time step 𝑛, respectively, and 

𝜃௦௔௧,௜ represents the soil porosity (i.e., the saturated volumetric water content). 640 
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The temperature of the freezing point depression, as a virtual temperature (𝑇𝑣) reversely derived from the freezing point 

temperature-depression equation, i.e., 𝜓ሺ𝑇ሻ ൌ  
௅೑൫்೑ି்೔൯

ଵ଴య்
 (Fuchs et al., 1978; Cary and Mayland, 1972),  is calculated as, 

𝑇𝑣௜
௡ାଵ∗ ൌ

10ଷ𝐿௙𝑇௙

10ଷ𝐿௙ ൅ 𝑔𝜓௜
௡  , (Eq. A8) 

where 𝐿௙ is the latent heat of fusion (J kg-1) and g is the gravitational acceleration (m s-2). 𝜓௜
௡ is the soil water potential 

(mm), calculated as the soil water retention curve of Clapp and Hornberger (1978), i.e., 𝜓௜
௡ ൌ  𝜓௦௔௧,௜ ൬

ఏ೗೔೜,೔
೙

ఏೞೌ೟,೔
൰

ି஻೔

, where 645 

𝜃௟௜௤,௜
௡ =𝑤௟௜௤,௜

௡ ∆𝑧௜⁄  as in (Eq. A3), 𝐵௜ is the Clapp and Hornberger exponent, and 𝜓௦௔௧,௜ is the soil texture-dependent saturated 

matric potential (mm). 

 

Appendix B Decomposition Cascade Model 

Within the ELMv1-ECA Century decomposition cascade model, the respiration fractions are parameterized as the fraction of 650 

the decomposition carbon flux out of each carbon pool, including litter and soil organic matter.  The base decomposition rate 

is modified by a function representing environmental controls on soil decomposition which accounts for the impacts of 

individual factors including temperature (𝑓 ) and moisture (𝑓ௐ ), an oxygen scalar (𝑓ை ), and a depth scalar (𝑓஽ ), in a 

multiplicative way, i.e., 𝑓௧௢௧௔௟ ൌ 𝑓 𝑓ௐ𝑓ை𝑓஽. 

 655 

We use a Q10-based standard exponential function to account for the temperature effect on decomposition, 

𝑓 ൌ 𝑄ଵ଴
൬

೅ష೅ೝ೐೑
భబ ൰

,  (Eq. B9) 

where Q10 = 1.5 on default, which is consistent with ecosystem-level observations (Mahecha et al., 2010), and 𝑇௥௘௙ is the 

reference temperature (25°C). During cold seasons when soil temperature becomes subfreezing, respiration continues but 

with more controls from liquid water stress. The original moisture scalar (𝑓ௐ ) within ELMV1-ECA is given in the 

formulation, calculated as,  660 

𝑓ௐ ൌ

⎩
⎨

⎧
0                       𝐹𝑜𝑟 𝜓௜ ൏ 𝜓௠௜௡

𝑙𝑜𝑔ሺ𝜓௠௜௡/𝜓௜ሻ

𝑙𝑜𝑔ሺ𝜓௠௜௡/𝜓௠௔௫ሻ
        𝐹𝑜𝑟 𝜓௠௜௡ ൑ 𝜓௜ ൑ 𝜓௠௔௫

1                       𝐹𝑜𝑟 𝜓௜ ൐ 𝜓௠௔௫

     , (Eq. B10) 

where 𝜓௜ ൌ  𝜓௠௔௫ ൬
ఏ೗೔೜,೔

ఏೞೌ೟,೔
൰ ି஻೔  is the soil water potential, where 𝐵௜  is the Clapp and Hornberger exponent (Clapp and 

Hornberger, 1978). In frozen soil, the soil water potential is related to soil temperature through the freezing point depression 
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equation, i.e., 𝜓௜ ൌ  
௅೑൫்೑ି்೔൯

ଵ଴య்
 (Fuchs et al., 1978; Cary and Mayland, 1972) in the supercooled water formulation (Niu and 

Yang, 2006).  Thus, the liquid water stress on decomposition is translated into dependency on temperature when soil 

temperature is below the freezing point. 665 

 
ELMv1-ECA approximates oxygen stress (𝑓ை) as the ratio of available oxygen to that demanded by decomposers, and has a 

minimum value of 0.2 (Oleson et al., 2013). As described by section 3.1.2, we now incorporate the oxygen stress into the 

moisture scalar. The revised moisture scalar 𝑓ௐ
∗ is calculated as below, 

𝑓ௐ
∗ ൌ

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

𝑚𝑎𝑥 ൦
௟௢௚൭

ഗ೘೔೙
ഗ೘ೌೣೄ೑೗೔೜

షಳ೔
൱

௟௢௚൬
ഗ೘೔೙
ഗ೘ೌೣ

൰
, 𝑓ௐ_௠௜௡൪                               𝐹𝑜𝑟 𝑆𝑓௟௜௤ ൏ 𝑆𝑓௢௣

 

𝑚𝑎𝑥 ൦
௟௢௚൭

ഗ೘೔೙
ഗ೘ೌೣೄ೑೗೔೜

షಳ೔
൱

௟௢௚൬
ഗ೘೔೙
ഗ೘ೌೣ

൰
ൈ ൬

ଵିௌ௙೗೔೜

ଵିௌ௙೚೛
൰

௕

, 𝑓ௐ_௠௜௡ ൪      𝐹𝑜𝑟 𝑆𝑓௟௜௤ ൒ 𝑆𝑓௢௣

     , (Eq. B11) 

where 𝑆𝑓௟௜௤ is the degree of saturation, calculated as the ratio of soil volumetric liquid water content to porosity ൬𝑖. 𝑒. ,
ఏ೗೔೜,೔

ఏೞೌ೟,೔
൰,  670 

𝑆𝑓௢௣ is an optimal threshold beyond which the decomposition will be suppressed by oxygen stress, and b is a parameter 

controlling the shape of the decreasing limb, and 𝑓ௐ_௠௜௡ is a minimum threshold for 𝑓ௐ
∗. 

 

The depth scalar (𝑓஽ ൌ 𝑒𝑥𝑝 ቀെ
௭೔

௓ഓ
ቁ) represents unresolved other depth-dependent processes (e.g., soil microbial dynamics, 

priming effects, etc.) (Koven et al., 2013b; Lawrence et al., 2015; Koven et al., 2015). Applying the depth scalar to 675 

decomposition rates would exponentially decrease the respiration fluxes along with the vertical soil layers. The 𝑍ఛis the e-

folding depth for decomposition, and by default 𝑍ఛ is 0.5 m (Oleson et al., 2013). 

 

Appendix C Methane Model 

The ELMv1-ECA methane model includes the representations of CH4 production, oxidation, and three pathways of transport 680 

(i.e., aerenchyma tissues, ebullition, aqueous and gaseous diffusion), and solves the transient reaction diffusion equation for 

CH4. ELMv1-ECA estimates CH4 production (𝑃; mol m−3 s−1) in the anaerobic portion of the soil column based on the 

upland heterotrophic respiration (HR; mol C m−2 s−1) from soil and litter, further adjusted by factors representing influence 

from soil temperature (𝑓 ), pH (𝑓௣ு), redox potential (𝑓௣ா), and seasonal inundation condition (𝑆) (Riley et al., 2011), 

expressed as, 685 

𝑃 ൌ 𝐻𝑅 ൈ 𝑓஼ுర ൈ 𝑓 ൈ 𝑓௣ு ൈ 𝑓௣ா ൈ 𝑆. (Eq. C12) 
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The 𝑓஼ுర is a fraction of anaerobically mineralized carbon atoms becoming CH4. Detailed explanation on other factors can be 

found in (Riley et al., 2011). The methane production 𝑃 will be directly impacted by the changes to water and heat transfer 

(Appendix A) and HR (Appendix B). The ultimately estimated CH4 emissions are also controlled by oxidation, transport 

mechanisms (i.e., aerenchyma transport, ebullition, and diffusion), and the upper boundary resistance. Detailed descriptions 

on CH4 oxidation and transport mechanisms are provided in (Riley et al., 2011).  Here we modified CH4 transport 690 

mechanisms for facilitating reasonable cold-season CH4 emissions. 

 
Vascular plants aerenchyma tissues serve as diffusive pathways for CH4 to transport from soil layer 𝑧 (𝐴ሺ𝑧ሻ, mol m−2 s−1) to 

the atmosphere, calculated as: 

𝐴ሺ𝑧ሻ ൌ ሺ𝐶ሺ𝑧ሻ െ 𝐶௔ሻ ൬
𝑟௅𝑧

𝐷𝑝𝑇௔௘௥௘𝜌௥ሺ𝑧ሻ
൅ 𝑟௔൰ൗ  , (Eq. C13) 

where 𝐶ሺ𝑧ሻ and 𝐶௔ is the gaseous CH4 concentration (mol m−3) in soil depth 𝑧 and in the atmosphere, respectively; 𝑟௔ is the 695 

aerodynamic resistance (s m−1); 𝐷 is the gas diffusion coefficient (m2 s−1); 𝑝 is aerenchyma porosity (-); 𝑟௅  is the ratio of root 

length to vertical depth (i.e., root obliquity); and 𝜌௥ሺ𝑧ሻ is the root fraction in soil depth 𝑧 (-). 𝑇௔௘௥௘ is the specific aerenchyma 

area (m2 m-2), and is expressed as, 

 𝑇௔௘௥௘ ൌ
௙ಿேೌ௅஺ூ

଴.ଶଶ
𝜋𝑅ଶ, (Eq. C14) 

where 𝑅 represents the aerenchyma radius (=2.9×10−3 m); 𝑁௔  is the annual net primary production (NPP), and 𝑓ே  is the 

belowground fraction of current NPP; and the factor 0.22 is the amount of  carbon per tiller. We integrate the emissions from 700 

ice cracks and remnants of aerenchyma tissues with (Eq. C14) by removing temperature limitation and applying a small 

𝑇௔௘௥௘  during winter time, where 𝑇௔௘௥௘  now represents areas adding up ice crack fractions and remnants of aerenchyma 

tissues. 

 
ELMv1-ECA estimates aqueous diffusion below water table as, 705 

𝐷௘ ൌ ቊ
𝐷଴𝜃௦௔௧

ଶ                  𝐹𝑜𝑟 T ൒  0°C
𝐷଴𝜃௦௔௧

ଶ𝑓௙௥௭௦௢௜௟      𝐹𝑜𝑟 T ൏  0°C
 , (Eq. C15) 

where 𝐷଴ is the diffusion coefficient (m2 s-1), 𝜃௦௔௧is the soil porosity, 𝑓௙௥௭௦௢௜௟ is a scaling factor for frozen soils, defined as 

𝑓௙௥௭௦௢௜௟ ൌ
௏೗೔೜

௏೗೔೜ା௏೔೎೐
 where 𝑉௟௜௤ and 𝑉௜௖௘ is the volume (m3 m-3) of liquid water and ice, respectively. In subfreezing soils when 

T < 0°, 𝐷௘ is largely limited by liquid water content. Upon sensitivity experiments, we alleviated this limitation by assuming 

a half deduction for the diffusion coefficient in saturated, frozen soils, i.e., 𝑓௙௥௭௦௢௜௟ = 0.5. We also decreased snow resistance 

by introducing new scale factors (Table 2) which intend to increase the conductance at the upper boundary when snow 710 

presents. 
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Table 1: Specific modifications made to ELMv1-ECA. Process interactions are illustrated in Figure 2. 

 Part 1 – Phase-change  

scheme within the heat 

transfer module 

Part 2 – Environmental 

modifier to the base 

decomposition rate  

Part 3 – Methane module 

Relevant 

processes 

influenced 

Water and heat transfer, plant 

and soil respiration, plant 

productivity, CO2 fluxes and 

CH4 emissions. 

Plant and soil respiration, 

plant productivity, CO2 

fluxes and CH4 emissions. 

CH4 emissions 

Original New Original New Original New 

Variables or 

equations 

influenced 

Eq. A2-6 

Imposing Eq. A7 

and Eq. A8 to Eq. 

A2-A6 

Eq. B9-

B10 

Eq. B11 and 

changes in 

Table S2 

Eq. 

C13-

C15 

1. Applying a minimum LAI to (Eq. 
C14) to mimic ice cracks and remnants of 
aerenchyma tissues in frozen soils, and 
permitting transport even when temperature is 
below 0°C.  
2. Introducing new scale factors for 
snow resistance:  
scale_factor_gasdiff_snow = 

scale_factor_gasdiff*100 

scale_factor_liqdiff_snow = 

scale_factor_liqdiff*100 

3. Introducing a new scale factor for 
diffusivity in frozen soil: 
𝑓௙௥௭௦௢௜௟= 0.5 in (Eq. C15) 
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Table 2: List of Designed Site-Scale Experiments. Process interactions among the three parts are illustrated in Figure 2. 

Experiment Name 

Part 1 - Phase Change 

Scheme within Heat 

Transfer Model 

Part 2 – Environmental 

Modifier within Carbon 

Decomposition Model  

Part 3 – Methane 

Model 

Original New Original New Original New 

OriPC_OriDecom_OriCH4 (Baseline) √  √  √  

NewPC_OriDecom_OriCH4  √ √  √  

NewPC_OriDecom_NewCH4  √ √   √ 

NewPC_NewDecom_NewCH4* 

(NewPC_OptimalDecom_NewCH4)# 

(NewPC_GenericDecom_NewCH4)$ 

 √  √  √ 

*Replacing the original temperature- and moisture-dependency functions on decomposition rates with 200 new functions of environmental 930 

modifiers as listed in Table S2 in the supplementary file.  

# “NewPC_OptimalDecom_NewCH4” is the optimal simulation among the 200 “NewPC_NewDecom_NewCH4” cases at each site. 

$“NewPC_GenericDecom_NewCH4” means the simulation with the identified generic scheme that can be applied to regional simulation. 

The generic scheme is the common satisfactory scheme that provides the best overall performance for all the sites. 
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Table 3: Mean absolute error (MAE) of simulated ZCP (days) with the original phase-change scheme (Ori_PC)  and newly resized 
phase-change scheme (NewPC), and the relative improvement  (%) of using  the new phase-change scheme compared to the 
baseline results, calculated as 100% × (MAE_ZCP_OriPC – MAE_ZCP_NewPC) / MAE_ZCP_OriPC. 

 BES&CMDL BEO ATQ IVO 

  

MAE_
ZCP_
OriPC 
(days) 

MAE_
ZCP_N
ewPC 
(days) 

Impr
ovem
ent 
(%) 

MAE_Z
CP_Ori

PC 
(days) 

MAE_Z
CP_New

PC 
(days)

Impro
veme
nt 
(%)

MAE_Z
CP_OriP
C (days) 

MAE_Z
CP_Ne
wPC 

(days)

Impro
veme
nt (%) 

MAE_Z
CP_OriP
C (days) 

MAE_Z
CP_Ne
wPC 

(days)

Impro
veme
nt (%) 

Layer 1 38.80 31.40 19.07 37.60 33.20 11.70 26.33 13.33 49.37 54.00 51.50 4.63 

Layer 2 29.20 14.20 51.37 27.40 12.60 54.01 24.33 5.67 76.71 50.50 37.50 25.74 

Layer 3 35.20 18.40 47.73 33.60 16.80 50.00 28.00 9.33 66.67 55.75 30.25 45.74 

Layer 4 29.60 10.40 64.86 30.60 10.60 65.36 28.67 9.67 66.28 61.50 30.50 50.41 

Layer 5 18.00 11.40 36.67 17.60 10.80 38.64 27.67 17.33 37.35 54.50 22.00 59.63 

Layer 6 77.40 12.20 84.24 77.40 13.00 83.20 61.67 36.67 40.54 68.00 14.75 78.31 

Layer 7 NaN NaN NaN NaN NaN NaN NaN NaN NaN 151.33 46.67 69.16 

 940 

 

  

https://doi.org/10.5194/tc-2020-262
Preprint. Discussion started: 22 October 2020
c© Author(s) 2020. CC BY 4.0 License.



35 
 

Table 4: RMSE (°C) of simulated soil temperatures with the original phase-change (PC) scheme and newly resized PC scheme. 
NaN represents the cases when observations are not available. 

Model Layer 
(Node Depth) 

BES&CMDL  BEO  ATQ  IVO 

Ori_PC  New_PC  Ori_PC  New_PC  Ori_PC  New_PC  Ori_PC  New_PC 

Layer 1 
(0.01 m) 

5.66  3.82 5.45 3.85 6.47 3.77 9.12  5.42

Layer 2 
(0.03 m) 

5.36  3.35 5.16 3.45 6.42 3.66 9.08  5.22

Layer 3 
(0.06 m) 

5.32  3.16 5.16 3.28 6.38 3.54 8.87  4.91

Layer 4 
(0.12 m) 

5.25  2.92 5.22 3.00 6.33 3.40 8.87  4.81

Layer 5 
(0.21 m) 

5.15  2.72 4.90 2.82 6.24 3.32 8.76  4.60

Layer 6 
(0.37 m) 

4.70  2.56 4.70 2.56 6.15 3.50 8.67  4.42

Layer 7 
(0.62 m) 

4.41  2.33 4.41 2.34 NaN NaN 8.38  4.08

Layer 8 
(1.04 m) 

4.23  2.13 4.22 2.14 NaN NaN 7.75  3.46

Layer 9 
(1.73 m) 

4.33  2.04 4.32 2.07 NaN NaN NaN  NaN

Layer 10 
(2.86 m) 

4.28  2.19 4.27 2.22 NaN NaN NaN  NaN

Layer 11 
(4.74 m) 

3.96  2.11 3.96 2.13 NaN NaN NaN  NaN

Layer 12 
(7.83 m) 

2.92  1.51 2.92 1.52 NaN NaN NaN  NaN

Layer 13 
(12.93 m) 

2.77  0.74 2.78 0.78 NaN NaN NaN  NaN

Layer 14 
(21.33 m) 

NaN  NaN NaN NaN NaN NaN NaN  NaN

Layer 15 
(35.18 m) 

NaN  NaN NaN NaN NaN NaN NaN  NaN
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Table 5: Total CH4 emissions and CO2 net flux over three seasonal periods, including the early cold season, cold season, and the 
warm season. The “ELM_New” here means NewPC_OptimalDecom_NewCH4 (Table 2). The percentage of each seasonal total 
CH4 emissions to the annual total is included in the brackets. 

Total CH4 
Emissions (gC 

m-2) 

BES/CMDL BEO ATQ
Early Cold 

Season 
(Sep. and 

Oct.) 

Cold 
Season 
(Sep. to 
May) 

Warm 
Season 
(Jun. to 
Aug.)

Early Cold 
Season 

(Sep. and 
Oct.)

Cold 
Season 
(Sep. to 
May)

Warm 
Season 
(Jun. to 
Aug.)

Early Cold 
Season 

(Sep. and 
Oct.) 

Cold 
Season 
(Sep. to 
May)

Warm 
Season 
(Jun. to 
Aug.)

ELM_Baseline 
0.08 

(4.7%) 
0.08 

(5.1%) 
1.53 

(94.9%)
0.09 

(5.5%)
0.10 

(6.2%)
1.54 

(93.8%)
0.16 

(15.1%) 
0.16 

(15.3%)
0.89 

(84.7%)

ELM_New 
0.73 

(23.3%) 
1.19 

(37.9%) 
1.95 

(62.1%)
0.77 

(21.7%)
1.46 

(41.4%)
2.07 

(58.6%)
0.31 

(17.6%) 
0.51 

(28.3%)
1.23 

(70.7%)

Observation 
0.63 

(21.0%) 
1.32 

(44.5%) 
1.65 

(55.5%)
0.83 

(24.4%)
1.43 

(41.9%)
1.97 

(58.1%)
0.36 

(19.2%) 
0.85 

(44.7%)
1.04 

(55.3%)

Total CO2 Net 
Flux (gC m-2) 

BES/CMDL BEO ATQ 
Early Cold 

Season 
(Sep. and 

Oct.) 

Cold 
Season 
(Sep. to 
May) 

Warm 
Season 
(Jun. to 
Aug.)

Early Cold 
Season 

(Sep. and 
Oct.)

Cold 
Season 
(Sep. to 
May)

Warm 
Season 
(Jun. to 
Aug.)

Early Cold 
Season 

(Sep. and 
Oct.) 

Cold 
Season 
(Sep. to 
May)

Warm 
Season 
(Jun. to 
Aug.)

ELM_Baseline 31.27 31.38 2.03 30.99 31.14 13.91 40.46 40.86 -26.05 

ELM_New 48.50 89.94 -61.87 49.10 97.65 -55.47 59.14 82.55 -46.64 

Observation 43.60 87.50 -67.61 28.20 96.14 -64.33 24.29 58.64 -62.41 
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Table 6: Historical trend of ZCP durations (days year-1) for each soil layer from 1950 to 2017. (Trends with p > 0.05 are not 
statistically significant.)  

BES/CMDL BEO ATQ 

Trend (days yr-1) p Value Trend (days yr-1) p Value Trend (days yr-1) p Value 

ZCP Duration 
of Layer 1 

-0.02 0.73 -0.02 0.73 0.07 0.40 

ZCP Duration 
of Layer 2 

0.09 0.03 0.09 0.04 0.14 0.05 

ZCP Duration 
of Layer 3 

0.10 0.03 0.12 0.01 0.15 0.05 

ZCP Duration 
of Layer 4 

0.10 0.07 0.10 0.09 0.21 0.01 

ZCP Duration 
of Layer 5 

0.11 0.10 0.11 0.09 0.23 0.02 

ZCP Duration 
of Layer 6 

0.37 0.51 0.35 0.56 0.49 0.00 
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Table 7: Historical trend (1950 - 2017) in site-scale heterotrophic respiration, CH4 emission, and CO2 flux during the ZCP 
duration at 12 cm (4th layer), cold-season months (Sep. - May), and the whole annual cycle (Sep. – Aug.). (Trends with p > 0.05 are 
not statistically significant.) 

  

BES/CMDL BEO ATQ 

Trend of Heterotrophic Respiration 

Trend p 
Value 

Trend p 
Value 

Trend p 
Value (g C m-2 yr-1) (g C m-2 yr-1) (g C m-2 yr-1) 

ZCP duration at 
12 cm 

0.02 0.17 0.02 0.24 0.07 0.00 

Cold Season 
(Sep.-May) 

0.09 0.00 0.09 0.00 0.13 0.00 

Annual (Sep.-
Aug.) 

0.21 0.00 0.18 0.00 0.30 0.00 

  
Trend of CH4 Emission 

Trend p 
Value 

Trend p 
Value 

Trend p 
Value (mg C m-2 yr-1) (mg C m-2 yr-1) (mg C m-2 yr-1) 

ZCP duration at 
12 cm 

-7.61 0.01 -7.89 0.00 -0.66 0.73 

Cold Season 
(Sep.-May) 

-2.54 0.22 -3.19 0.13 2.50 0.13 

Annual (Sep.-
Aug.) 

-4.98 0.20 -5.63 0.15 10.56 0.00 

  
Trend of CO2 Net Emissions 

Trend p 
Value 

Trend p 
Value 

Trend p 
Value (g C m-2 yr-1) (g C m-2 yr-1) (g C m-2 yr-1) 

ZCP duration at 
12 cm 

0.20 0.00 0.19 0.00 0.26 0.00 

Cold Season 
(Sep.-May) 

0.36 0.00 0.33 0.00 0.38 0.00 

Annual (Sep.-
Aug.) 

0.08 0.68 0.10 0.64 0.18 0.47 
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Figure 1: Red dots indicate the five ABoVE flux tower sites used in this study.  Cyan circles are GIPL-UAF permafrost sites. 
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 965 

Figure 2: Schematic diagram illustrating the interactions between the water and heat transfer module, vegetation and carbon 
decomposition module, and the methane module within the ELMv1-ECA over the tundra ecosystem during the cold season. Some 
other important processes but not discussed this study, including nutrient dynamics, oxygen reaction and diffusion, etc., are not 
illustrated here. Grey colours indicate processes that are not actively involved during the cold season over the tundra ecosystem. 
Orange arrows represent process interactions. Black arrows represent fluxes. Ellipses with thicker red boundaries indicate the 970 
modules we modified. Specifically, we revised the new soil water phase-change scheme within the water and heat transfer module, 
modified carbon decomposition environmental scalar scheme, and incorporated the modified CH4 transport mechanism for the 
cold-season regime. 
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 975 

Figure 3: Comparison of multi-year (2013 - 2017) averaged daily soil temperatures observed (Ts_Obs, red) and simulated with the 
original (Ts_OriPC, cyan) and improved (Ts_NewPC, blue) phase-change schemes at BES/CMDL (a) and IVO (b). Simulated 
moisture saturation with the original (Sf_OriPC; green) and improved (Sf_NewPC; magenta) schemes are shown on the right 
hand axes. The horizontal axes indicates days from July to June, with ticks represent the first day of each month. Hatched areas 
represent durations of zero-curtain periods observed (ZCP_Obs, orange) and simulated (ZCP_OriPC, green; ZCP_NewPC, blue). 980 
No baseline ZCP is shown in the 6th layer for BES/CMDL and the 7th layer for IVO because the maximum annual temperature is 
below 0°C. 
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 985 

Figure 4: Comparison between observed and ELMv1-ECA simulated durations of ZCP for the original (OriPC; open diamonds) 
and improved (NewPC; solid circles) phase-change schemes over four annual cycles (July to June) from 2013 to 2017. “ly” means 
model layer. Simulated ZCP durations with NewPC demonstrate significant improvements compared to OriPC (solid dots vs. open 
diamonds), especially for the 4th to the deepest layer above permafrost. Note, a zero days ZCP means that the maximum daily 
temperature during an annual cycle is below 0°C. The pairs of zero vs. non-zero days ZCP (e.g., OriPC_ly 7 at IVO and OriPC_ly 990 
6 at other sites) indicate that baseline results underestimated ALT. The bias (simulation - observation) of multi-year averaged 
ALT simulated by the two experiments is provided in each panel. 
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Figure 5: Relative improvement in the RMSE of simulated soil temperature with the new phase-change scheme 995 
(RMSE_Ts_NewPC) compared to that with the original scheme (RMSE_Ts_OriPC), calculated as 100% × (RMSE_Ts_OriPC – 
RMSE_Ts_NewPC) / RMSE_Ts_OriPC. 
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Figure 6: (a1) Observed temporal evolution of vertical profiles of soil temperature at ATQ over the cold season from Sep. 1, 2015 1000 
to May 31, 2016, and the biases of soil temperatures from three simulations (a2, a3, a4)). ELMv1-ECA simulated baseline 
evolution of soil temperature (b1), soil liquid water content (b2), heterotrophic respiration, and CH4 production. (c) Same as (b) 
with the new phase-change scheme (i.e., NewPC_OriDecom_OriCH4). (d) Same as (c), but using the revised ELMV1-ECA soil 
moisture-dependency function scheme-2 with built-in oxygen stress (see Figure S1), i.e., NewPC_NewDecom_OriCH4. Soil 
temperatures within the range of [-0.75°, 0.75°] are coloured by grey, indicating a two-dimensional “zero-curtain zone”. 1005 
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Figure 7: Scatter plot between the Nash–Sutcliffe Efficiency (NSE) of simulated monthly CH4 and CO2 emissions. An ideal 
simulation has both NSEs of CH4 and CO2 as one (i.e., the upper right corner). The boxes encompass simulations with satisfactory 1010 
performance (NSE > 0.5). Optimal (yellow) – the best simulation for each site; Generic (magenta) – the simulation with a common 
decomposition scheme that provides best overall performance for all the sites. See Table 2 for the configuration for each 
experiment. Symbols outside the plotting ranges indicate poor performance, e.g., (-34.9, -0.3) for baseline at IVO, thus are be 
shown in the figure. 
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Figure 8: Observed and simulated monthly CH4 (left) and CO2 (right) net flux with the baseline model (ELM_Baseline) and the 
experiments with updated models (See Table 2 for the configuration for each experiment). Gray line represents the ensemble mean 
of simulations within the good performance zone (as shown in Figure 7) with error bars as the standard deviation and the shaded 
area indicating the minimum-to-maximum bound. Red open circles are observed monthly averages with the number of daily 1020 
observations less than 10 days, which are not used for the computation in Figure 7. Optimal – the best simulation for each site; 
Generic – the simulation with a common decomposition scheme that provides best overall performance for all the sites and will be 
applied to regional simulation. 
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 1025 

Figure 9: Comparison of multi-year (2013-2017) averaged monthly mean CH4 (top) and CO4 (bottom) net flux from simulations 
and measurements at BES&CMDL, BEO, and ATQ. The error bars represent standard deviation of monthly mean. 
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Figure 10: Multi-year (2013-2017) averaged total CH4 emissions (upper) and CO2 net fluxes (bottom) during the early cold season 1030 
(Sep. and Oct.), cold-season period (Sep. to May), warm-season period (Jun. to Aug.), and the annual cycle (Sep. to Aug.) at three 
of our study sites. Due to the large discontinuity in CO2 observations, especially over the warm season (shown in Figure 8), the 
observed annual CO2 budget is highly uncertain. Still, the cold-season contributions of both CH4 and CO2 emissions are greatly 
improved by the updated ELMV1-ECA (i.e., ELM_NewPC_OptimalDecom_NewCH4). 
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