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Abstract. Field measurements have shown that cold-season methane (CH4) and carbon dioxide (CO2) emissions contribute a 

substantial portion to the annual net carbon emissions in permafrost regions. However, most earth system land models do not 

accurately reproduce cold-season CH4 and CO2 emissions, especially over the shoulder (i.e., thawing and freezing) seasons. 

Here we use the Energy Exascale Earth System Model (E3SM) land model version 1 (ELMv1-ECA) to tackle this challenge 10 

and fill the knowledge gap of how cold-season CH4 and CO2 emissions contribute to the annual totals at Alaska Arctic tundra 

sites. Specifically, we improved the ELMv1-ECA soil water phase-change scheme, environmental controls on microbial 

activity, and cold-season methane transport module. Results demonstrate that both soil temperature and the duration of zero-

curtain periods (i.e., the fall period when soil temperatures linger around 0°C) simulated by the updated ELMv1-ECA were 

greatly improved, e.g., the Mean Absolute Error (MAE) in zero-curtain durations at 12 cm depth was reduced by 62% on 15 

average. Furthermore, the MAE of simulated cold-season carbon emissions at three tundra sites were improved by 72% and 

70% on average for CH4 and CO2, respectively. Overall, CH4 emitted during the early cold season (Sep. and Oct.), which often 

includes most of the zero-curtain period in Arctic tundra, accounted for more than 50% of the total emissions throughout the 

entire cold season (Sep. to May) in the model, compared with around 49.4% (43-58%) in observations. From 1950 to 2017, 

both CO2 emissions during the zero-curtain period and during the entire cold season showed increasing trends, for example, 20 

of 0.17 gC m-2 year-1 and 0.36 gC m-2 year-1 at Atqasuk. This study highlights the importance of zero-curtain periods in 

facilitating CH4 and CO2 emissions from tundra ecosystems. 
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1 Introduction 

Cold-season carbon emissions from the Arctic tundra could potentially offset warm-season net carbon uptake under 21st 25 

century warming climate (Commane et al., 2017; Oechel et al., 2014; Oechel et al., 2000; Koven et al., 2011; Piao et al., 2008; 

Natali et al., 2019; Belshe et al., 2013; Fahnestock et al., 1998; Jones et al., 1999). Field measurements have indicated large 

cold-season CO2 losses over Arctic tundra ecosystems (Oechel et al., 2014; Natali et al., 2019). Also, CH4 emitted from 

September to May were found to contribute more than 50% of the annual total CH4 emissions from Alaska upland tundra sites 

(Zona et al., 2016; Taylor et al., 2018). Despite the importance of cold-season carbon emissions and their sensitivity to 30 

changing climate, prevailing earth system land models do not accurately reproduce cold-season CH4 and CO2 emissions and 

their contributions to the annual budgets, largely because of the poorly understood mechanisms of cold-season soil 

heterotrophic respiration and therefore uncertain numerical representations (Natali et al., 2019; Zona et al., 2016; Wang et al., 

2019; Commane et al., 2017). Thus, it remains challenging to assess the response of permafrost carbon dynamics to Arctic 

warming and to predict future annual carbon budgets with current Earth System Models (ESMs). 35 

 

In ESM land models, soil environment influences soil microbial heterotrophic respiration (HR) and decomposition of soil 

organic carbon (SOC) mainly through applying prescribed temperature and moisture functions to modify base decomposition 

rates. These functions, however, rely heavily on empirical or semi-empirical relationships which are highly uncertain (Sierra 

et al., 2017; Sierra et al., 2015; Yan et al., 2018; Moyano et al., 2013; Tang and Riley, 2019; Rafique et al., 2016; Bhanja and 40 

Wang, 2020; Kim et al., 2019). Specifically, the temperature sensitivities of soil carbon decomposition is often represented 

with a 𝑄10 value (i.e., the increase in respiration rate from a 10°C increase in temperature) that is fixed at 1.5 or 2.0 (Meyer et 

al., 2018). However, the values of Q10 are controversial (Davidson and Janssens, 2006). Some studies found a uniform Q10 

across biomes and climate zones, e.g., as 1.4 (Mahecha et al., 2010). Other studies demonstrated that Q10 varies with 

environmental conditions, ecosystem types, and soil texture (Meyer et al., 2018; Graf et al., 2011; Kim et al., 2019), showing 45 

a large spatial heterogeneity with generally higher values in the high-latitudinal regions (Zhou et al., 2009). In addition, 

Wilkman et al. (2018) reported a temporal heterogeneity in Q10 over the Alaskan Arctic Tundra and suggested a higher value 

(e.g., 2.45) for early summer (e.g., June) but lower value (e.g., 1.58 to 1.67) for the peak growing season (e.g., July). Dynamic 

decomposition temperature sensitivities are also consistent with theory of microbial dynamics (Tang and Riley, 2015). Also, 

the response of HR to changes in soil moisture is commonly expressed by empirical relationships in ESMs, which vary 50 

substantially (Sierra et al., 2015; Yan et al., 2018; Moyano et al., 2013). Although in-situ measurements reveal that microbial 

respiration occurs under very cold conditions (e.g., even when soil temperature is lower than -15 °C) (Natali et al., 2019; Zona 

et al., 2016), most process-based models completely shut down microbial activity due to limited liquid water in freezing and 

subfreezing soils, and few modelling studies have closely investigated the HR-moisture relationships in frozen conditions.  

 55 
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The strong dependency of CO2 and CH4 emission on soil temperature and moisture in ESM land models (Riley et al., 2011; 

Koven et al., 2017; Lawrence et al., 2015) requires accurate estimates of these two closely related soil variables, especially in 

cold regions where both increases and decreases in soil temperature could lead to soil “drying” due to drainage or freezing 

processes. However, current land models tend to significantly underestimate soil temperature during the cold season over 

permafrost regions (Dankers et al., 2011; Tao et al., 2017; Nicolsky et al., 2007; Yang et al., 2018b). One possible reason is 60 

that while many land models account for latent heat released during soil water freezing, they do not treat and distribute this 

heat appropriately or/and do not simulate soil moisture correctly (Yang et al., 2018a; Nicolsky et al., 2007). Latent heat released 

during freezing might be sufficient to offset heat conduction towards the surface, thus maintaining the subsurface soil 

temperature around the freezing point (i.e., 0°C) for weeks or even months during the fall (i.e., the so-called Zero-Curtain 

Period; ZCP) (Outcalt et al., 1990). The ZCP conditions allow for continued soil heterotrophic respiration at notable rates, and 65 

thus CO2 and CH4 production and emissions from subsurface soils (Kittler et al., 2017; Arndt et al., 2019; Commane et al., 

2017). For instance, Zona et al. (2016) reported that a substantial portion of cold season CH4 emissions occurred during the 

ZCP from Alaskan upland tundra sites. Nevertheless, many land models cannot accurately capture the ZCP length due to 

inaccurately simulated soil moisture and/or inadequate representation of latent heat, thus underestimating soil temperature and 

cold-season emissions of CO2 (Commane et al., 2017) and CH4 (Zona et al., 2016). We note that snow representation can also 70 

play a major role in correctly simulating winter soil temperatures (Slater et al., 2017; Lawrence and Slater, 2010), although we 

do not focus on this process here. 

 

We hypothesize that the underestimation of modelled cold-season CO2 and CH4 emissions in ESMs land models primarily 

results from underestimated soil temperatures during the cold season, the poor representations of environmental controls on 75 

heterotrophic respiration in subfreezing soils, and the lack of appropriate representation of cold-season methane transport 

processes. Here we apply the Energy Exascale Earth System Model (E3SM) land model version 1, the Equilibrium Chemistry 

Approximation configuration (ELMv1-ECA) (Golaz et al., 2019; Zhu et al., 2019; Burrows et al., 2020) to explore these 

hypotheses. We apply ELMv1-ECA to (i) improve simulations of subsurface soil temperatures, ZCPs, and CO2 and CH4 

emissions over the permafrost tundra ecosystem; (ii) investigate the underlying processes that influence cold-season carbon 80 

emissions from freezing and subfreezing soils, including source characterization and transport pathways; and (iii) estimate 

historical trends (from 1950 to present) of cold-season CO2 and CH4 emissions at multiple Alaskan tundra sites. 

 

The paper is organized as follows: (1) We describe the study sites and the data used in the study. (2) We present the theoretical 

background of essential modules of ELMv1-ECA relevant to this study and our modifications to the model’s representations 85 

of phase-change, SOC decomposition, and methane dynamics. (3) We then describe the model configuration and experimental 

design. (4) We assess the modified phase-change scheme by comparing simulated soil temperatures and ZCPs against 

observations. (5) With the revised phase-change scheme, we analyze how the parameterization of decomposition schemes and 
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methane module impact simulated CO2 and CH4 emissions at the site scale. (6) Finally, we summarize the main findings and 

discuss needed observations and model development to further improve predictability. 90 

2 Study Sites and Data  

We assembled daily observations of CO2 and CH4 fluxes from 2013 to 2017 at five eddy-covariance flux tower sites in Alaska's 

North Slope tundra (Figure 1) from the Arctic-Boreal Vulnerability Experiment (ABoVE) project (2015 - 2017) (Oechel and 

Kalhori, 2018) and CH4 fluxes from the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) flight campaign 

(2013 - 2014)  (Zona et al., 2016). The CARVE CO2 measurements were not available at the data archive we used here; 95 

therefore, monthly winter-time CO2 flux data from 2013 to 2014 at the same towers assembled by Natali et al. (2019) are 

included to complete CO2 observations. The five sites include three eddy covariance (EC) towers at Barrow (i.e., the Barrow 

Environmental Observatory (BEO) tower, the Biocomplexity Experiment South (BES) tower, and the Climate Monitoring and 

Diagnostics Laboratory (CMDL) tower), one tower at Atqasuk (ATQ) and another at Ivotuk (IVO) which is located at the 

foothills of the Brooks Range.  BES and CMDL are collocated with each other with sensors installed at different heights (i.e., 100 

2 m for BES and 5 m for CMDL). Vegetation at Barrow is mainly moist acidic tundra. Instrument height at ATQ and IVO is 

2 m and 4 m, respectively. ATQ is a well-drained upland site, and the vegetation consists of moist-wet coastal sedge tundra 

and moist-tussock tundra surfaces. Vegetation at IVO is polar tundra. Table S1 provides basic information including 

geolocations, vegetation mosaic, and climatologic air temperature at the sites. (Tables numbered with a prefix “S” are include 

in the supplementary file, which will not be repeated in the following context throughout the manuscript.) 105 

 

ABoVE and CARVE provide soil temperature and moisture measurements at various depths from 5 cm to 40 cm. The 

Permafrost Laboratory, Geophysical Institute of University of Alaska Fairbanks (GIPL-UAF), provides daily subsurface soil 

temperature observations down to various depths at permafrost sites across Alaska(http://permafrost.gi.alaska.edu/sites_map) 

(Romanovsky et al., 2009). We used the GIPL-UAF permafrost sites that are collocated with the ABoVE sites to complement 110 

the ABoVE observations at deeper depths, including BR2 (down to 15 m) and IV4 (down to 1 m). We first filled missing gaps 

vertically by fitting a polynomial to the soil temperature profile (Kurylyk and Hayashi, 2016) on a daily scale, then screened 

out outliers by examining the daily time series. Further, we aggregated both the ABoVE and the GIPL-UAF soil temperature 

measurements to ELMv1-ECA soil layer node depths using the inverse distance weighting method (Tao et al., 2017), and then 

averaged the two sets of aggregated observations. We used the assembled subsurface temperature observation datasets to 115 

evaluate the ELMv1-ECA simulated soil temperature profiles and the zero-curtain periods. 

 

The observed soil moisture is only available at two or three depths that are quite different from model layer node-depths, and 

also show discontinuities in time. Thus, evaluation of ELMv1-ECA simulated liquid water content was limited. We matched 

soil-moisture observations to the vertically closest model layer, and then evaluated the simulated volumetric fraction of soil 120 
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liquid water content at layers for time periods during which observations were available. In addition, we used ABoVE observed 

maximum soil moisture to infer site-scale soil porosity and then organic carbon content at IVO (see Section 3.2), which is used 

to prescribe thermal and hydraulic soil properties. Note that carbon substrate for respiration is simulated dynamically in the 

model (see Appendix B). 

 125 

3 Methodology 

3.1 Modifications to E3SM Land Model (ELM) 

The E3SM land model version 1 (ELMv1-ECA) couples essential biogeophysical and biogeochemical processes that solve 

terrestrial ecosystem energy, water, carbon, and nutrient dynamics (Golaz et al., 2019; Zhu et al., 2019). In the appendix, we 

describe in detail its subsurface soil thermodynamics, the carbon decomposition module, and the methane module that are of 130 

particular relevance to our study. Here we identify the potential problems of ELMv1-ECA that are responsible for the 

underestimation of cold-season CH4 and CO2 emissions and summarize the modifications made to ELMv1-ECA, emphasizing 

the model enhancements. 

3.1.1 Phase Change Scheme 

We first improved ELMv1-ECA’s numerical representation of coupled water and heat transport with freeze-thaw processes 135 

via improving the phase-change scheme. The freeze-thaw processes of soil water within ELMv1-ECA is simulated in a 

decoupled way, i.e., it solves soil temperatures ignoring the latent heat associated with phase change, determines the mass 

change of soil water required to adjust the initially solved soil temperature to the freezing point (i.e., 0°C; 𝑇𝑓), adjusts the soil 

liquid and ice content by mass and energy conservation, and then readjusts temperatures after accounting for the heat deduction 

or compensation resulted from melting or freezing (see the detailed description in the Appendix A). The underlying assumption 140 

here is, taking the freezing process as an example, the available liquid water at the initially solved temperature (𝑇𝑖
𝑛+1) will be 

completely frozen, releasing latent heat (𝐻𝑖) to bring up 𝑇𝑖
𝑛+1 back to 𝑇𝑓. Then, the estimated phase-change rate will be tuned 

down and the current temperature (i.e., 𝑇𝑓) will be readjusted if the to-be-increased ice mass is larger than the required mass 

change (−𝐻𝑚) (see (Eq. A4) in the Appendix A), which, however, only occasionally occurs. When the liquid water available 

to be frozen becomes small enough, the released latent heat is not sufficient to compensate for the required energy deficit (𝑇𝑓 −145 

𝑇𝑖
𝑛+1), and then the freezing process stops. Consequently, the model freezes soil water quickly, resulting in an underestimated 

duration of the soil water phase-change processes and the zero-curtain periods, and also cold-biased winter temperatures 

(Nicolsky et al., 2007; Yang et al., 2018a).  
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Here, we employed a phase-change efficiency and the temperature of the freezing-point depression to effectively solve the 150 

problem of overestimating phase-change rates within the current ELMv1-ECA modelling structure. These modification factors 

are explained below. The phase-change efficiency, introduced by Le Moigne et al. (2012) and adopted by Masson et al. (2013) 

and Yang et al. (2018a), introduces the dependency of available liquid water on the phase-change rate (Le Moigne et al., 2012). 

The phase-change efficiency for freezing, 𝜀𝑙𝑖𝑞,𝑖
𝑛  (see (Eq. A9)), is identical to the degree of moisture saturation, or the 

volumetirc fraction of soil liquid water content (i.e., 𝑆𝑓𝑙𝑖𝑞,𝑖
𝑛 = 𝜃𝑙𝑖𝑞,𝑖

𝑛 𝜃𝑠𝑎𝑡,𝑖⁄  where 𝜃𝑙𝑖𝑞,𝑖
𝑛  is soil liquid water content and 𝜃𝑠𝑎𝑡,𝑖 is 155 

porosity).  We applied the phase-change efficiency to the initially estimated energy and mass change involved, i.e., 𝐻𝑖  and 𝐻𝑚 

(see (Eq. A4) in the Appendix) when freezing or thawing process occur. 

 

As in Nicolsky et al. (2007) and Yang et al. (2018a), the occurrence of a phase-change process is then determined by the 

temperature of the freezing point depression (i.e., an virtual temperature, see (Eq. A10)) instead of 𝑇𝑓 . The virtual freezing 160 

point depression temperature is reversely derived from the freezing point temperature-depression equation (Fuchs et al., 1978; 

Cary and Mayland, 1972). With an upper limit as 𝑇𝑓, the virtual temperature describes the lowest temperature that can hold 

current liquid water content in the freezing soils. That is, the soil temperature has to be lower than the current virtual 

temperature to allow the freezing process to occur further. 

 165 

We describe in detail the revised phase-change scheme in the Appendix A. In short, we improved the phase-change scheme of 

ELMv1-ECA by incorporating two modifications: 1) applying a phase-change efficiency to implicitly account for the heat 

compensation/deduction to the system from latent heat released/absorbed by soil water freezing/melting,  and 2) replacing the 

constant freezing point with the temperature of the freezing point depression, as a virtual temperature, to determine the 

occurrence of phase change in subfreezing soils. 170 

3.1.2 Environmental Modifiers to the Decomposition Rate 

We revisited ELMv1-ECA’s representation for soil heterotrophic respiration dynamics in subfreezing soils and then scrutinized 

the environmental scalars of soil temperature and moisture. Within ELMv1-ECA’s decomposition cascade model, the 

environmental factors that impact the decomposition rates of soil organic matter include soil temperature (𝑓𝑇), soil moisture 

(𝑓𝑊), oxygen stress (𝑓𝑂) and a depth scalar (𝑓𝐷) (See Appendix B). Within freezing and subfreezing soils, the soil water 175 

potential is related to temperature through the freezing point depression equation (Niu and Yang, 2006). The current moisture 

factor 𝑓𝑊, therefore, predicts zero respiration rates for subfreezing soils given a specific lower limit of soil water potential 

𝜓𝑚𝑖𝑛 (-10 MPa; (Eq. B13)) (Oleson et al., 2013), as shown by Figure S1a in the supplementary file. We thus decreased the 

𝜓𝑚𝑖𝑛 further to prevent zero respiration within the active layer when soil becomes subfreezing during cold-season months 

(Figure S1b) as long as the soil water potential 𝜓𝑖  exceeds the prescribed 𝜓𝑚𝑖𝑛 . 180 
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For wet soils, the factor that primarily limits the decomposition rates is oxygen availability (Sierra et al., 2017; Yan et al., 

2018), since increases in soil moisture result in decreased dissolved oxygen. ELMv1-ECA approximates oxygen stress (𝑓𝑂) as 

a ratio of available oxygen to the demand by decomposers, which, however, is highly uncertain and unstable (Oleson et al., 

2013). Some existing moisture scalars incorporate the oxygen stress together to account for the inhibition of decomposition in 185 

wet anoxic conditions, e.g., a moisture function proposed by Yan et al. (2018) and several functions tested in Sierra et al. 

(2015), including Standcarb (Harmon and Domingo, 2001), Daycent (Kelly et al., 2000), Skopp (Skopp et al., 1990), and 

Moyano (Moyano et al., 2013). We thus also tested these existing moisture functions by replacing the original moisture scalar 

with them in the ELMv1-ECA. Particularly for the moisture function of Yan et al. (2018), we implemented it for each soil 

layer using the soil properties (i.e., porosity and clay content) of each layer, and also tested it with different shape parameters 190 

and optimal wetness thresholds. When using the moisture scalars with built-in oxygen stress within ELMv1-ECA, the total 

environmental impacts on decomposition, i.e., 𝑓𝑡𝑜𝑡𝑎𝑙 = 𝑓𝑇𝑓𝑊𝑓𝑂𝑓𝐷 will be modified accordingly as 𝑓𝑡𝑜𝑡𝑎𝑙 = 𝑓𝑇𝑓𝑊𝑓𝐷 to avoid 

double-counting of the oxygen stress.  

 

ELMv1-ECA uses a Q10-based standard exponential function to account for the temperature effect on SOC decomposition (Eq. 195 

B12), with 𝑄10 as 1.5 and 𝑇𝑟𝑒𝑓 as 25°C. Here, rather than striving for a single value of Q10 or a spatial map of Q10 as discussed 

in the introduction, or a particular individual temperature function, we seek a group of environmental modifiers (𝑓𝑡𝑜𝑡𝑎𝑙) that 

can correctly represent moisture and temperature sensitivity on heterotrophic respiration. Specifically, we assembled and tested 

814 cases of 𝑓𝑡𝑜𝑡𝑎𝑙  using the newly modified moisture scalars and a variety of other empirical moisture and temperature 

functions, as documented by Sierra et al. (2015) and Yan et al. (2018). A full list of the specific moisture and temperature 200 

scalars tested is provided in Table S2. 

 

3.1.3 Cold-season Methane Process 

The ELMv1-ECA methane model solves the reaction and diffusion equation for CH4 and O2 fluxes with the Crank-Nicholson 

method. It includes the representations of CH4 production, oxidation, and three pathways of transport, including aerenchyma 205 

tissues, ebullition, aqueous and gaseous diffusion (Riley et al. (2011)). A short description of the ELMV1-ECA methane 

module is provided in Appendix C. The ELMv1-ECA methane model has been found to underestimate cold-season methane 

emissions over northern wetlands (Xu et al., 2016). The modifications to the phase-change scheme impact simulations of soil 

water and heat transfer (3.1.1); the changes in environmental scaler affect substrate availability (3.1.2). Both (3.1.1) and (3.1.2) 

influence soil heterotrophic respiration, and could potentially lead to improvements in simulated CO2 and CH4 production, but 210 

not necessarily CH4 emissions which are also controlled by oxidation and transport mechanisms.  

 

Here, we first modified the ELMV1-ECA CH4 transport mechanism in cold seasons by mimicking possible pathways for CH4 

emissions from freezing and subfreezing soils. Specifically, we mimicked the emissions from ice cracks by plant aerenchyma 
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transport (Zona et al., 2016), approximating the gas diffusion through ice cracks to the similar mechanism of diffusion through 215 

the aerenchyma tissues. Although in-situ experiments demonstrated that during winter, produced CH4 in frozen soils is 

predominately emitted to the atmosphere through vascular plants aerenchyma tissues (e.g., Kim et al., 2007), here we integrate 

the possible transport pathways including ice cracks and remnants of aerenchyma tissues together through equation (Eq. C16). 

Also, during the cold season over the tundra ecosystem, snow on the land surface provides strong resistance to CH4 transport 

to the atmosphere in ELMv1-ECA. But in reality, studies have shown methane can diffuse through snowpack at varying rates 220 

(Kim et al., 2007). We thus decreased snow resistance at the upper boundary by introducing a new scale factor when snow is 

present (Appendix C).  

 

Table 1 summarized all the specific modifications made to ELMv1-ECA. These modifications involve new parameters that 

are all tuneable and can be systematically optimized via calibration. Here, we seek to reproduce the first-order cold-season 225 

process relevant to this study with these default formation and values listed in Table 1. We also conducted sensitivity tests on 

three variables three key parameters related to CH4 oxidation and transport processes and tested seven parameterizations (Table 

S3). The three CH4 process-related parameters include two key variables in the original CH4 model that have been reported 

having large uncertainty (Riley et al., 2011), i.e., 𝑓𝐶𝐻4 (a fraction of anaerobically mineralized carbon atoms becoming CH4; 

Eq. C14) and 𝑅o,max  (the maximum oxidation rate constant; Eq. C17), and the newly introduced variable 𝜀𝑎𝑒𝑟𝑒 (a factor 230 

representing remnants of aerenchyma tissues during cold seasons and possible pathways via ice cracks; Eq. C16).  The 

sensitivity tests on CH4 process-related parameters were applied to model with identified carbon decomposition schemes that 

predicted good simulations of CO2 flux (see section 3.3). 

 

3.2 Climate Forcing, Model Configuration, and Experiment Design 235 

We conducted transient simulations at 30-minute temporal resolution driven by climate forcing from 0.5°×0.5° CRU JRA 

(Harris, 2019) from 1901 to 2017 at the four Alaska tundra site locations. Before the transient simulation, we conducted a 200-

year Accelerated Decomposition (AD) spin-up period followed by a 200-year regular spin-up period (Koven et al., 2013b; Zhu 

et al., 2019) to initialize land carbon pools. Spin-up simulations start from a wet and cold condition. Specifically, sub-surface 

temperatures were initialized as 274 K for the 1st to 5th soil layers, 273 K for the 6th to 10th layer, and 272 K for the 11th to the 240 

15th layer, and volumetric soil water content was initialized fully saturated for all layers. In this manner, consistent vertical soil 

water content profiles were built in over the permafrost regions. 

 

Baseline simulations were conducted with ELMv1-ECA default physics, parameters, and surface datasets, i.e., 

OriPC_OriDecom_OriCH4 using original phase-change scheme, original decomposition scheme and methane module (Table 245 

2). To improve the model representation of the site-level soil environment, we first examined the global soil organic matter 

data at the ABoVE sites by evaluating ELMv1-ECA simulated subsurface soil temperature with the topsoil temperature 
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prescribed to observations (as did in Tao et al., 2017). Using the top soil layer as the upper boundary, the modelling system 

excluded potential errors induced by inaccurate meteorological forcing and vegetation cover that impact the simulation of heat 

transfer from the atmosphere to the shallow soil (Tao et al., 2017). Then, the accuracy of simulated soil subsurface temperature 250 

is directly determined by the factors impacting heat transfer along the “shallow-to-deep soil” gradient (Koven et al., 2013a), 

e.g., soil thermal properties which are mostly determined by SOC content (Tao et al., 2017; Lawrence and Slater, 2008). 

Results well reproduced the subsurface soil temperatures except at IVO, where summer soil temperatures were notably 

overestimated (see Figure S2a). This result indicates that the SOC content at IVO was too small, leading to a large thermal 

conductivity, small soil porosity, and small heat capacity, altogether resulting in fast penetration of heat into the subsurface 255 

soil during summer (Tao et al., 2017; Lawrence and Slater, 2008). Thus, we derived the organic matter density at IVO based 

on ABoVE soil moisture data through a linear relationship between SOC content and soil porosity (i.e., Equation 3 in Lawrence 

and Slater (2008)), assuming the observed maximum volumetric water content was porosity (see Figure S3 for details). With 

the newly derived profile of soil organic matter density at IVO, the simulation showed large improvements in summer soil 

temperatures compared to that using the original global carbon dataset (see Figure S2b). The derived SOC content is also 260 

consistent with the organic layer thickness reported in Davidson and Zona (2018). Hereafter, the simulations at IVO presented 

in this paper use the newly derived organic carbon data without repeated clarification. 

 

The representative spatial scale of the eddy flux tower is small compared to the grid cell of global surface datasets and the 

climate forcing data used by ELMv1-ECA, although the forcing dataset was interpolated to the site scale with a bilinear or 265 

nearest-neighbor method. The site-scale vegetation cover also shows a large diversity of vegetation types according to the 

detailed vegetation survey at ABoVE flux tower footprints obtained in 2014 (Davidson and Zona, 2018). The ELMv1-ECA’s 

default plant type function (PFT) dataset was derived from satellite-based data by Lawrence et al. (2007). We analyzed the 

vegetation composition from the closet survey plot to the flux tower and examined the rationality of ELMv1-ECA’s percentage 

of PFT for the site-scale simulation through testing different PFT datasets derived from this vegetation survey (Davidson and 270 

Zona, 2018). We found that these PFT datasets generally are not superior to the original PFT dataset, which generally 

reproduced satellite-based GPP (Figure S4). We thus confirmed that ELMv1-ECA’s PFT dataset was a good compromise 

between representing the site-scale ecosystem and other global parameters and surface datasets within the model. The surface 

CH4 emission is a weighted average of simulated saturated and unsaturated components using predicted inundation and non-

inundation fractions. To compare simulated CH4 emissions with ABoVE measurements at the site scale, we use the estimated 275 

inundation fractions at the footprint of ABoVE eddy-covariance flux towers  (see details in (Xu et al., 2016)). 

 

Table 2 lists the experiments conducted in this study. We modified each model component (i.e., the heat transfer model, carbon 

decomposition model, and methane model) serially. All the experiments ran through 1901 to 2017 with spin up as described 

earlier, although the evaluation and optimization were conducted only using results from 2013 to 2017. We first ran simulations 280 

with the 814 environmental modifiers together with the modified methane model with default parametrization (Table S3). 
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Then, we selected the environmental modifiers that provided satisfactory performance in simulating CO2 flux, and repeated 

simulations with the seven CH4 parameterizations (Table S3). Among all the simulations results, we identified an optimal 

simulation for each site (see details in section 3.3).  

 285 

3.3 Evaluation Metrics, Optimization Method, and Trend Analysis 

We define the early cold season as September and October, the cold-season period as September to May which includes the 

two shoulder seasons (both thawing and freezing) as consistent with Zona et al. (2016), and the warm season from June to 

August. We define the zero-curtain period (ZCP) as the set of successive days when the soil temperature is within the range of 

[-0.75°C, 0.75°C] starting in fall (i.e., the freezing season) based on Zona et al. (2016). We computed the ZCP duration for 290 

each soil layer every year from 1950 to 2017 and estimated the historical trend as the regression slope between ZCP duration 

and time. Similarly, we estimated the trends of cold-season CH4 and CO2 emissions through linear regression analysis. A p-

value of 0.05 is used to determine if the computed trend is statistically significant. Results for ZCP duration and trend vary 

with soil depths; thus, we choose a common modelling depth at which the ZCPs show significant trends for all the sites, to 

give an example. 295 

 

To evaluate ELMv1-ECA simulated soil temperature and moisture, we calculated the RMSE for each soil layer, 

i.e.,√∑ (�̂�𝑡 − 𝑂𝑖)
2𝑁

𝑡=1 𝑁⁄  where the �̂�𝑡 and 𝑂𝑡 is simulated and observed soil temperature or moisture, respectively, and t is a 

daily time step. We used the Mean Absolute Error (MAE, 𝑖. 𝑒. ,
1

𝑁
∑ |�̂�𝑡 − 𝑂𝑖|
𝑁
𝑡=1  to assess the simulated duration of ZCP of 

each soil layer. Note that, depending on the amount of soil liquid water content, the whole course of the freezing process may 300 

or may not entirely fall into the ZCP, i.e., the ending time of ZCP does not necessarily align with the end of the freezing 

process. The onset of freezing, though, is always later than the starting day of the ZCP, and the main course of the freezing 

process is still within the ZCP. 

 

Here the modelled active layer thickness (ALT), i.e., maximum thaw depth during an annual cycle, is computed as the bottom 305 

depth of the deepest thawed soil layer (i.e., with a maximum annual temperature above 0°C) further extended down to the 

possible non-frozen fraction of the layer below, as in Tao et al. (2019; 2017). We only derived the length of ZCP for soil layers 

with a maximum annual temperature above 0°C since limited phase-change processes occur in deeper layers. Then, the soil 

layers containing or below the permafrost table have a zero-day ZCP. We computed the MAE of ALT simulated with both 

original (OriPC) and the new phase-change (NewPC) scheme. Also, we computed the relative improvement in simulated soil 310 

temperature (Ts) and ZCP compared to the baseline results. Specifically, we calculated 100% × (RMSE_Ts_OriPC – 

RMSE_Ts_NewPC) / RMSE_Ts_OriPC and 100% × (MAE_ZCP_OriPC – MAE_ZCP_NewPC) / MAE_ZCP_OriPC to 

quantify the enhancement by employing the new phase-change scheme. 
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We used Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 1970) to examine the performance of the ELMv1-ECA 315 

simulated time series of CH4 and CO2 net fluxes in comparison with assembled observations (Section 2) at the monthly time 

scale. The NSE ranges from negative infinity to one, calculated as Eq. (1): 

𝑁𝑆𝐸 = 1 − (
1

𝑁
∑ (�̂�𝑡 − 𝑂𝑡)

2𝑁
𝑡=1 ) 𝜎𝑜

2⁄ , (1) 

where t means monthly time step, N is the total number of time steps, �̂�𝑡 and 𝑂𝑡 is simulated and observed flux at time step t, 

respectively; and 𝜎𝑜 is the standard deviation of observations. Note we only used observed monthly averages when the number 

of daily observations was more than 20 days. The model performance is generally considered satisfactory with an NSE > 0.50 320 

(Moriasi et al., 2007), and perfect with an NSE as one. To simultaneously evaluate CH4 and CO2 fluxes, we combined both 

𝑁𝑆𝐸𝐶𝐻4  and 𝑁𝑆𝐸𝐶𝑂2  in the form of 𝑑𝑖𝑠𝑡 =  √(1 − 𝑁𝑆𝐸𝐶𝐻4)
2 + (1 − 𝑁𝑆𝐸𝐶𝑂2)

2 , representing the distance from (𝑁𝑆𝐸𝐶𝐻4 , 

𝑁𝑆𝐸𝐶𝑂2) to (1, 1) in a coordinate plane with x-axis as 𝑁𝑆𝐸𝐶𝐻4 and y-axis as 𝑁𝑆𝐸𝐶𝑂2. Then, the optimal simulation thereby is 

the one having the shortest distance to the ideal scenario (1, 1). We also define a satisfactory model performance in terms of 

simulating CH4 and CO2 fluxes as the case with both 𝑁𝑆𝐸𝐶𝐻4 and 𝑁𝑆𝐸𝐶𝑂2 larger than 0.5.  325 

 

We optimized the model simulations through two steps. Specifically, we first evaluated the simulations using (814) 

environmental modifiers to the base decomposition rate that assembled commonly used empirical soil temperature- and 

moisture-dependency functions (Table S2). These simulations used the newly modified methane model with the default 

parameters (Table S3). We selected the common decomposition schemes that provided satisfactory results of CO2 flux for all 330 

the sites (i.e., 𝑁𝑆𝐸𝐶𝑂2> 0.5). Then, we iteratively repeated simulations with the common carbon decomposition schemes along 

with the seven CH4 parameterizations (Table S3). Among all these simulations (“NewPC_NewDecomNewCH4”; Table 2), 

we identified an optimal simulation for each site that has the smallest distance from (𝑁𝑆𝐸𝐶𝐻4, 𝑁𝑆𝐸𝐶𝑂2) to (1, 1) (i.e., 𝑑𝑖𝑠𝑡); 

the environmental modifier to the base decomposition rate and the methane parameterization used in the optimal simulation is 

the optimized parameterization for this site.  335 

 

Further, among the common parameterizations of environmental modifiers and CH4 parameterizations that show satisfactory 

performance both in CH4 and CO2 fluxes for all the sites, we identified a generic scheme as the one providing the minimum 

Euclidean distance in a site-performance space, calculated as √∑ 𝑑𝑖𝑠𝑡𝑖
2𝑛

𝑖=1  where n is number of sites. The generic scheme 

then is the common satisfactory scheme that provides the best overall performance for all the sites and can be applied for the 340 

regional simulation over Alaskan North Slope tundra. 
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In general, we use NSE to evaluate the model’s performance in capturing seasonality (i.e., time series) of CH4 and CO2 net 

fluxes and optimize CH4 and CO2 simulations. We use RMSE and MAE to assess the model’s capability in simulating the 

magnitudes of soil temperature, moisture saturation, ZCP durations, and cumulative CH4 and CO2 emissions. 345 

4 Results and Discussion  

4.1 Evaluation of Soil Temperature and Zero-curtain Period  

We first evaluated the simulated daily soil temperature profiles against the observations from ABoVE and GIPL-UAF at the 

four site locations. Then, we examined improvements in simulations of soil temperature, soil moisture, and the durations of 

ZCPs by employing the newly revised phase-change scheme (i.e., “NewPC_OriDecomOriCH4”; Table 2). 350 

 

Results for the BES/CMDL and IVO site are shown in Figure 2; results for other sites are shown in supplementary Figure S4. 

At BES/CMDL, the baseline (i.e., “OriPC_OriDecomOriCH4”; Table 2) simulated soil temperatures (Ts) with the default 

phase-change scheme (Ts_OriPC; blue lines; Figure 2a) decrease rapidly in fall due to the overestimated freezing rate (i.e., the 

slope of decreasing liquid water fraction), notably underestimating the duration of the ZCP (bluish shaded area). Consequently, 355 

liquid water saturation (Sf_OriPC, green lines; Figure 2a) quickly drops to a lower bound (i.e., the supercooled liquid water 

content divided by porosity), and the freezing process generally completes within a short period (days for top layers to one 

month at the most for deeper layers). The baseline model soil temperature drops (Ts_OriPC) sharply after the freezing process 

ends (i.e., Sf_OriPC decreases to the lower bound). In contrast, the new phase-change scheme effectively slows freezing rates, 

showing relatively smaller slopes of decreasing liquid water saturation (Sf_NewPC; magenta lines; Figure 2a) within the ZCPs 360 

than the baseline simulation (Sf_OriPC; green lines) especially in the 4th and 5th layer. Hence, the gradually released latent heat 

maintains soil temperatures around the freezing point for a longer period (Ts_NewPC; red lines; Figure 2a), effectively 

extending the ZCPs (reddish shaded area) which agree better with observations (grey shaded area) than the baseline results. 

The ZCP duration increases with depth and can extend into December for deep soil layers. Similarly, improved performance 

was found at the BEO and ATQ sites (supplementary Figure S4). At IVO, however, while the new phase-change scheme 365 

greatly improved simulated results relative to the baseline simulation (Figure 2b), the model still slightly underestimated ZCP 

durations and also underestimated winter (December to April) soil temperature (red vs. black). This result at IVO is consistent 

with the underestimation of late-season soil liquid water available to be frozen, and thereby to release sufficient latent heat 

(Figure S5). In general, the improvements in ZCP are larger in deeper layers than topsoils, with the top layer showing only 

marginal improvement. 370 

 

Simulated ZCP durations with the revised phase-change scheme (NewPC) demonstrated notable improvements over the 

baseline (original) phase-change scheme (OriPC) (solid circles vs. open diamonds)  (Figure 3), showing greatly reduced mean 

absolute errors (MAEs) (Table 3). For example, at 12 cm depth (4th layer), the relative improvements in MAE of the ZCP 
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durations were 65%, 65%, 66%, and 50% for the four site locations (Table 3). The largest improvement in MAE was as large 375 

as 65 days for the 6th layer at BES/CMDL, with a relative improvement of 84% (Table 3). This large improvement stems from 

the better-estimated ALT at this site; the OriPC simulated 6th layer temperature remained below freezing, leading to a zero-

day ZCP (diamonds on the x-axis in Figure 3). The new phase-change scheme not only improved simulation of the ZCP and 

cold-season soil temperatures, but also affected the warm season dynamics and thus ALT estimates. As Figure 3 indicates, the 

NewPC improved simulated ALTs at all four site locations with reduced bias in multi-year averaged ALT, resulting in more 380 

reasonable ZCP durations for the 6th layer (and also the 7th layer for IVO), while the baseline results were zero days. 

 

The deeper active layer simulated by NewPC implies more soil water storage capacity, resulting in lower soil moisture in 

shallow soil layers and higher soil water in deep layers (Sf_NewPC; magenta lines; Figure 2) compared to baseline results. 

The changes in soil liquid water content, in turn, impact phase-change and soil temperature simulations. Comparison with the 385 

observed soil liquid water content reveals a better agreement with observations (Table S5). For example, at ATQ (Figure S7), 

the RMSEs of the liquid water content were reduced by 5.4%, 35.3%, 42.6%, and 25.4% for the 3 rd through 6th layers, 

respectively (Table S5). 

 

The changes to model representations of phase change led to large reductions in soil temperature bias. The relative 390 

improvements in RMSE of simulated soil temperatures during Sep. and Oct. (i.e., the two months that the ZCPs usually cover), 

generally increased with depth for surface layers (within about 20 cm of the surface, i.e., 1st to 4th layer), and were above 80% 

for the intermediate layers (5th to 8th) at all the sites (Figure 4). At the two Barrow sites where observed soil temperatures were 

available, the relative improvements for the deepest (13th) layer were 72.6% and 71.1%, on average, for the early winter and 

annual cycle, respectively. Therefore, incorporating the new phase-change scheme also resulted in improved bottom 395 

temperature boundary conditions, which is critical for accurately simulating permafrost dynamics (Sapriza-Azuri et al., 2018). 

Improvements between Septemper and December and the whole annual cycle also increased with soil depth, showing site-

averaged reductions in RMSEs ranging from 47% to 63% and from 36% to 46% for the two periods, respectively. The whole 

cold-season period (Sep. to May) showed, on average, 44% to 53% reduction in RMSEs from the 1st to 6th layer at relatively 

warmer sites (i.e., ATQ and IVO), and from 19% to 69% for the top 13 layers for the two Barrow sites. Also, after the freezing 400 

process ends, simulated deeper soil layer temperatures were underestimated (e.g., December through April). This bias might 

be caused by underestimated snow depth (Figure S9) possibly resulting from inaccurate forcing (particularly snowfall), land 

cover, microtopography, and/or wind-blown snow redistribution. 

 

Simulations with the new phase change scheme also show improved agreements between simulated and observed soil 405 

temperatures during the spring thawing season compared to the baseline results (red vs. blue in Figure 2). Compared to 

observations, the newly simulated soil temperatures were still slightly underestimated during the thawing season (i.e., May) at 

all four sites, showing later onset of thawing indicated by the timing when warming soil temperatures cross 0°C and soil 
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moisture starts to rise (Figure 2). One possible reason for this bias is the lack of representation of advective heat transport. 

That is, the model does not represent the heat of spring rain that is advectively transported into soils (Neumann et al., 2019; 410 

Mekonnen et al., 2020); nor does it account for advective heat transport associated with water fluxes in subsurface soils after 

the spring-rainwater mix with existing cold liquid water in soils.  

 

The improved simulations of soil temperature, liquid water content, and ZCP duration greatly impacted soil HR and methane 

production but did not necessarily guarantee improvements in CO2 and CH4 emissions. In the next section, we closely evaluate 415 

simulated CH4 and CO2 fluxes with different parameterizations of environmental modifiers and the modified CH4 

parameterizations as described in Section 3.1. 

 

4.2 Evaluation of CO2 and CH4 Fluxes  

Here we evaluate the simulated monthly CO2 and CH4 fluxes at the site scale against EC tower observations.  Figure 5 displays 420 

the NSEs of ELMv1-ECA simulations using different carbon decomposition schemes and CH4 process-related parameters, 

i.e., “NewPC_NewDecomNewCH4” (grey dots) (see configurations in Table 2). (Time series of all the simulations are 

provided in Figure S7). The failure of simulated CH4 emissions to capture the methane seasonality at IVO (as indicated by 

Figures S8 and S10) might occur because of the lack of 1) a reasonable wetland module that can adequately account for 

inundated hydro-ecological dynamics, 2) advective heat transport at the air-ground interface through rainfall infiltration and 425 

within subsurface soils through water transfer, 3) a representation of microbial dynamics, and 4) the geological micro-seepage 

emission of CH4, as reported in previous studies (Anthony et al., 2012; Etiope and Klusman, 2010; Russell et al., 2020). For 

instance, Lyman et al. (2020) showed large temporal variability of CH4 at natural gas well pad soils, similar to the observations 

at IVO (Anthony et al., 2012). The advective heat transport not only impacts soil temperature, but also affects soil moisture 

redistribution, substrate availability, and microbial activity. Also,  methanogen seasonal dynamics would cause hysteretic 430 

effects on CH4 emission response to soil temperatures (Chang et al., 2020; 2021; Chadburn et al., 2020). In the future, we will 

incorporate a representation of methanogen seasonal dynamics and simulate microbial population and activity levels  to address 

the hysteresis of CH4 emissions with temperature. We will also explore more on the contribution of geological micro-seepage 

emission. The four mechanisms discussed above (i.e., wetland dynamics, advective heat transport, microbial dynamics, and 

geological micro-seepage CH4 emission) currently missing in our model are likely necessary to simulate CH4 emissions at this 435 

site, and we therefore do not include CH4 analysis at IVO in the following sections.  

 

The improved phase-change scheme, and thus improved simulations of ZCP durations and soil temperature and moisture, 

resulted in greatly improved performance for CO2 emissions at BES/CMDL and BEO, and slightly better performance for CH4 

emissions at ATQ, compared to the baseline (blue for “NewPC_OriDecomOriCH4” vs. green for baseline; Figure 5), even 440 

though the carbon decomposition and methane model remained the same as the baseline. Incorporating the revised CH4 model 
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with the default parameter (discussed in section 3.1.3) improved simulated CH4 emissions at BES/CMDL, BEO, and ATQ 

(magenta for “NewPC_OriDecomNewCH4” vs. blue for “NewPC_OriDecomOriCH4”), especially during the cold season 

(Figure S8). The improved NSEs for CH4 emissions mainly resulted from increased emissions over early winter (Sep. and 

Oct.) and slight but persistent enhancements throughout the rest of the cold season (magenta in Figure S8), which were related 445 

to our modifications to CH4 transport mechanisms. Further, with the identified optimal parameterization of environmental 

modifiers to the base decomposition rate and methane parameters, results demonstrate substantial improvements to the 

simulation of CO2 net flux and CH4 emissions compared to baseline results (red vs. others; i.e., shortest distance from (𝑁𝑆𝐸𝐶𝐻4, 

𝑁𝑆𝐸𝐶𝑂2) to (1, 1)). Among the 121 common schemes providing good performance for both CO2 and CH4 emissions (i.e., both 

𝑁𝑆𝐸𝐶𝐻4 and 𝑁𝑆𝐸𝐶𝑂2 larger than 0.5, indicated by the grey dots within the boxes in Figure 5), we identified a generic scheme 450 

by selecting the common parameterization that provided the best overall performance for all the sites (except IVO) (cyan; 

Figure 5). The specific environmental modifier functions and methane parameters for the optimal and generic scheme are 

provided in Table S6. 

 

Figure S8 illustrates the uncertainty associated with the model representations of environmental influences on heterotrophic 455 

respiration and methane parameters. The optimal simulations at the study sites either used the modified ELMv1-ECA moisture 

scalar or Yanetal (see Table S6), i.e., two groups of moisture-dependency functions implemented for each soil layer. For the 

Sierra et al. (2015) empirical moisture functions, the influence of liquid moisture content on heterotrophic respiration is 

uniformly applied to all active soil layers, even though the soil properties (e.g., porosity and saturated soil water potential) are 

quite different vertically. ELMv1-ECA’s moisture scalars (including the original scheme) that use soil water potential, in 460 

contrast, reasonably explained the varying influence along with the vertical soil profile (i.e., relationships between soil liquid 

water content and soil temperature varies with soil clay fraction as demonstrated by Fig.1 in Niu and Yang, 2006). The Yanetal 

moisture functions also used soil layer-dependent porosity and clay content to calculate relevant parameters (Yan et al., 2018). 

The simulations with moisture functions documented in Sierra et al. (2015) generally overestimated CO2 and CH4 emissions, 

especially during the warm season when the thaw depth is deep and soil wetness is high, thus permitting large moisture modifier 465 

scalar applied to the base decomposition rates for all the soil layers regardless of soil properties. 

 

Reducing  the minimum soil water potential 𝜓𝑚𝑖𝑛 for moisture scalar effectively prevents the possibility of zero respiration in 

subfreezing soils during wintertime (Figure 6). This change exerts more impact on cold sites, such as the two Barrow sites, 

due to the smaller supercooled liquid water under the colder temperature. Thus, the improved NSEs for CO2 and CH4 emissions 470 

at BES/CMDL and BEO were larger than those at ATQ (Figure 5). Since the temperature at ATQ was not cold enough to 

make the supercooled liquid water content small enough to give a zero moisture scalar, the microbial respiration was not 

completely shut down with the original decomposition modifier at this site. Indeed, at ATQ, where cold-season temperatures 

are relatively warmer than at BES/CMDL and BEO, simulations with the original ELMv1-ECA environmental modifier (i.e., 

“NewPC_OriDecomNewCH4” in Figure S8; discussed in Section 3.1.2), already released much more CO2 and CH4 throughout 475 
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the cold season than in the baseline simulations, owning to the improved simulations of soil temperature and moisture, and the 

modifications for CH4 transport. At IVO, although generally showing low NSEs for CH4, some new simulations have greatly 

improved 𝑁𝑆𝐸𝐶𝑂2 that are larger than 0.5 (Figure 5), compared with -0.3 for baseline. Indeed, the best result at IVO (with a 

𝑁𝑆𝐸𝐶𝑂2=0.78) significantly improved the simulation of summer CO2 sink compared to baseline result (Figure 6). 

 480 

The optimal simulations used Daycent2 temperature-dependency function at ATQ and Q10-based temperature functions at 

BES/CMDL and BEO with high Q10 values (e.g., 2.0 and 2.5, respectively) (Table S6), mutually mediating the response of 

microbial respiration with moisture functions discussed above. At all three sites, the optimized parameterizations used a higher 

𝜀𝑎𝑒𝑟𝑒 (i.e., 0.05; Table S6), representing possible cold-season CH4 emissions through ice cracks and remnants of aerenchyma 

tissues. This newly introduced variable is highly uncertain, though; it can be calibrated at any other sites against cold-season 485 

measurements. At BES/CMDL, the optimized parameterization used a decreased maximum CH4 oxidation rate constant which 

has been reported highly uncertain, especially over high latitudes (Riley et al., 2011). The generic scheme (i.e., carbon 

decomposition + CH4 parameters) overlaps with the optimized parameterization at BES/CMDL, which provided the best 

overall performance at all three sites (Table S6). Despite the small site number and the limited spatial representativeness of 

each site, the identified generic scheme might be applied to the Alaska North Slope tundra. Nevertheless, the generic scheme 490 

might induce uncertainty in simulations and might not be the optimal regional scheme over other ecosystems or given different 

climate forcing and soil conditions. Still, we conclude that the generic scheme can serve as a reasonable initial scheme for 

estimating CO2 and CH4 emissions over other high-latitude areas (e.g., Figure S11). In the future, we will explore more sites 

from newly published CO2 and CH4 datasets from pan-Arctic ecosystems, e.g., BAWLD-CH4 (Kuhn et al., 2021) and 

FLUXNET-CH4 (Delwiche et al., 2021; Knox et al., 2019). 495 

 

The extended ZCPs, the revised environmental modifier to decomposition, and the modified CH4 transport mechanism and 

oxidation parameter together resulted in large improvements for both CO2 and CH4 emissions, especially over the cold season. 

Nevertheless, the optimal simulations still overestimated the contribution of the early cold season (Sep. and Oct.) CO2 

emissions at BEO and ATQ (top panel; Figure 7), and underestimated CH4 emissions during post-ZCP months (e.g., Oct. to 500 

Dec.) (bottom panel; Figure 7). Many reasons are responsible for the early cold-season CO2 overestimations, including model 

deficiencies, prescribed land parameters, and possibly inaccurate forcing. As for the underestimations of post-ZCP carbon 

emissions, one critical reason is the lack of sudden bursts of CO2 and CH4 within the model, i.e., the gases are pushed out of 

freezing soils during the freeze-up period (Mastepanov et al., 2008; Pirk et al., 2017). Currently, the ELMv1-ECA mimics this 

sudden burst mechanism by preventing CO2 and CH4 from dissolving in the soil ice fraction (Riley et al., 2011), which could 505 

capture some burst emissions (e.g., CH4 emissions in Oct. and Sep. of 2013 at ATQ; Figure 6); but it still shows an overall 

underestimation for sudden-burst emissions especially at colder sites (e.g., BES/CMDL and BEO; Figures 6 and 7). We will 

improve this mechanism in the future by explicitly simulating ice encroaching soil pores and pushing out gases and liquid 



17 

 

water out of the soil matrix. In the next section, we quantify the cold season contribution of CO2 and CH4 emissions and then 

estimate the historical trends of seasonal CO2 and CH4 emissions from 1950 to 2017. 510 

 

4.3 Cold-season Contribution of CH4 and CO2 emissions and Historical Trends   

Throughout this section, we only retain and discuss the identified optimal simulation results (i.e., ELM_NewPC_Optimized) 

for each site. To better verify the cold-season contribution of CH4 and CO2 emissions to the annual budget, a multi-year average 

approach was taken because of discontinuity in the observed time series.  515 

 

The new simulation results with the optimal parameterization showed greatly enhanced performance in terms of capturing the 

averaged seasonal cycle (red; Figure 7), especially for the cold-season months (Sep. to May; Figure 7), reducing site-averaged 

MAEs in cold-season total CH4 and CO2 emissions by 72% and 70% (Figure 8, Table 4), respectively. Specifically, compared 

to baseline results which significantly underestimated the cold-season carbon emissions, the optimized simulation results 520 

showed 0.79 gC m-2  and 44.0 gC m-2 increases in site-averaged cold-season CH4 and CO2 emissions, respectively. The 

optimized simulations reduced biases in early cold-season (cold-season) CH4 emissions by 80% (74%), 86% (76%), and 77% 

(61%) for BES/CMDL, BEO, and ATQ (Table 4), respectively. The observed cold-season CH4 emissions contributed at least 

~40% to the annual total at three of the study sites, of which about half occurred in early cold-season months (Sep. and Oct.) 

(Figure 8; Table 4), i.e., the two months hosting the major part of ZCPs for the top to intermediate soil layers. The simulated 525 

contributions of early cold-season (Sep. and Oct.) CH4 emissions to the cold-season total were 51%, 65%, and 55% for the 

three sites, in comparison with the observed 47%, 58%, and 43%, showing slight overestimations. Compared to the baseline-

simulated percentage of cold-season contributions to the annual total CH4 emissions (i.e., only 5%, 6%, and 15%), the 

optimized simulation showed greatly improved agreements with observed contributions, i.e., 35%, 35%, 33% vs. 45%, 42%, 

45% for BES/CMDL, BEO, and ATQ, respectively.  530 

 

The optimized simulations showed larger improvements in cold-season CO2 emissions (Figure 8; Table 4) for cold sites (i.e., 

BES/CMDL and BEO) than for the warmer site (i.e., ATQ and IVO). Specifically, compared to baseline results, the updated 

ELMv1-ECA reduced the biases in simulated cold-season CO2 emissions from -56.1 gC m-2 (64% of the observation) to -12.1 

gC m-2 (14% of the observation) for BES/CMDL and from -65.0 gC m-2 (68% of the observation) to -12.4 gC m-2 (13% of the 535 

observation) for BEO. In contrast, the optimized simulation showed slight overestimations for cold-season CO2 emissions at 

ATQ and IVO (Table 4). Nevertheless, the optimized ELMv1-ECA provided greatly improved warm-season CO2 net flux for 

all the four sites, reducing biases by 110%, 78%, 37%, and 102% compared to baseline results at BES/CMDL, BEO, ATQ, 

and IVO, respectively. Indeed, the updated model switched warm-season net CO2 flux from baseline-simulated net emissions 

(positive CO2 net flux) to net uptake (negative CO2 net flux) at BES/CMDL, BEO, and IVO, correctly matching with observed 540 

warm-season CO2 net flux (Figure 8). 
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The observed multi-year averaged annual CO2 net flux was 19.9 gC m-2 (source), 31.8 gC m-2 (source), -3.8 gC m-2 (sink), and 

-16.7 gC m-2 (sink) at BES/CMDL, BEO, ATQ, and IVO, respectively. However, due to the large discontinuity in CO2 

observations (Figure 6), the calculated annual CO2 budget is uncertain. Still, we can characterize the CO2 budget with simulated 545 

results using the updated ELMv1-ECA. We find that the simulated cold-season CO2 emissions were larger than the warm-

season CO2 net uptake during the analysing period (2013-2017) at all four sites (Figure 8), showing annual CO2 net flux as 1.1 

gC m-2 (source), 36.6 gC m-2 (source), 36.5 gC m-2 (source), and 18.2 gC m-2 (source) at BES/CMDL, BEO, ATQ, and IVO, 

respectively. The simulated CO2 emissions over the early cold season (Sep. and Oct.) accounted for 50%, 56%, 66%, and 35% 

of the total emissions throughout the cold season for BES/CMDL, BEO, ATQ, and IVO, respectively. 550 

 

Through trend analysis between 1950 and 2017, we found that the ZCP durations showed increasing trends at all three sites, 

with ZCP trends increasing with depth (Table 5). At ATQ, a warmer site than BES/CMDL and BEO, the trends of ZCP 

durations increase from 0.12 to 0.49 days yr-1 along with the vertical soil profile. At BES/CMDL and BEO, only soil layers at 

3 cm and 6 cm show statistically significant increasing trends, ranging from  0.10 to 0.13 days yr-1. The CO2 emissions during 555 

the 6 cm ZCP and during cold-season months (September to May) both showed increasing trends at all three sites (Table 6), 

ranging from 0.12 to 0.17 gC m-2 yr-1 for the 6 cm ZCP, and from 0.30 to 0.40 gC m-2 yr-1 for the entire cold season period. 

Annual CH4 emissions showed a nonsignificant increasing trend at ATQ with a rate of 0.52 mgC m-2 yr-1; but neither annual 

nor cold-season CH4 emissions show increasing trends at other sites.  In the future, we will examine the generic model 

parameterization at more sites over the pan-Arctic; we will also optimize regional simulations against spatial datasets of CO2 560 

and CH4 upscaled from in-situ measurements over pan-Arctic permafrost domain (Natali et al., 2019; Virkkala et al., 2021; 

Zeng et al., 2020; Peltola et al., 2019), and discuss the uncertainty of estimated trends of the spatially averaged CO2 and CH4 

emissions associated with snow impact and model parameterizations. 

5 Summary and Discussion  

In this study, we improved ELMv1-ECA simulated subsurface soil temperature, zero-curtain period durations, and cold-season 565 

CH4 and CO2 net emissions at Alaskan North Slope tundra sites. We first improved the numerical representation of coupled 

water and heat transport with freeze-thaw processes via modifying ELMv1-ECA’s phase-change scheme. Then, we revised 

the dependency of soil decomposition rates on soil temperature and moisture. We further refined the cold-season methane 

processes by mimicking emission pathways through ice cracks and remnants of aerenchyma tissues, reducing the maximum 

oxidation rate constant,  and reducing upper boundary (snow) resistance that allows CH4 to be emitted from frozen soils through 570 

snow to the atmosphere. We also used the updated ELMV1-ECA to estimate historical trends of cold-season CH4 and CO2 net 

emissions at the Alaskan tundra sites from 1950 to 2017. This study is among the first efforts toward improving simulations 

of zero-curtain periods and cold-season carbon emissions over the Arctic tundra by ESMs. The strategy of improving ELMv1-
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ECA phase-change scheme, environmental controls on microbial activity, and methane parameterizations can be easily applied 

to other global land models. 575 

 

With the revised phase-change scheme, the updated ELMv1-ECA greatly improved site-scale simulations of soil temperature, 

soil moisture, and zero-curtain period. Specifically, the RMSE of daily subsurface soil temperature was substantially reduced 

compared to the baseline simulation, showing site-averaged improvements ranging from 58% to 87% over the early cold 

season (Sep. to Oct.) and from 36% to 46% over the annual cycle for soil layers within the active layer. The evaluation of 580 

simulated liquid water content with the new phase-change scheme, although limited by the availability of observations, showed 

a relative reduction in RMSE as high as 43% for the 5th layer at ATQ, and site-averaged improvements of 15% and 21% for 

the 4th and 5th layer, respectively. Simulated ZCP durations were also greatly improved, with, e.g., relative reductions in MAEs 

of 65%, 65%, 66%, and 50% for the 4th layer (about 12 cm) at BES/CMDL, BEO, ATQ, and IVO, respectively. 

 585 

Based upon the improved simulations of soil temperature and moisture with the new phase-change scheme, the optimized 

parameterization for SOC decomposition scheme and the revised methane module, the site-averaged mean annual errors of 

cold-season  emissions were reduced by 72% and 70% for CH4 and CO2, respectively. We also found that CH4 and CO2 

emissions over the early cold season, i.e., September and October, which usually account for most of the zero-curtain period, 

contributed more than 50% of the total emissions throughout the cold season (September to May). Zero-curtain period 590 

durations showed increasing trends from 1950 to 2017, with larger trends in deeper soil layers. Also, both CO2 emissions 

during the 6 cm depth zero-curtain period and the entire cold-season period (Sep. to May) showed increasing trends. Note that 

the optimized parameterizations would be biased if there is a bias in simulated soil carbon, and therefore should not be taken 

directly to other models without further analysis. Instead, the optimization procedure described in this study provides a 

roadmap that can be directly adopted to calibrate other models at different sites. 595 

 

Although showing improvements compared to baseline results, the new simulations generally overestimated the contribution 

of the early cold season (Sep. and Oct.) CO2 emissions at BEO and ATQ. Many reasons could contribute to the overestimations, 

including poor representation of coupled biogeochemical and hydrological processes in the localized permafrost soil 

environment, the lack of accurate representation of inundated hydro-ecological dynamics, underestimation of snow 600 

accumulation due to micro-topographic effects, and thus the snow insulation to the ground (e.g., Bisht et al., 2018), among 

others. Strong microtopographic impacts on CO2 and CH4 emissions across seven landscape types in Barrow, Alaska, were 

recently reported (Wang et al. (2019); Grant et al., 2017a; Grant et al., 2017b). Sensitivity analysis demonstrates large impacts 

of snow depth on simulated winter soil temperature, summer soil moisture, heterotrophic respiration, and CO2 fluxes (Figure 

S9); therefore, the simulation of snow should be the subject of future investigations  605 
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The underestimated emissions during post-ZCP months (Oct. to Nov.) may be caused by the lack of sudden bursts of CO2 and 

CH4 during the freeze-up period. In addition, the single static multiplicative function used to parameterize the impact of 

environmental conditions on respiration might not be appropriate because the environmental impact also depends on maximum 

respiration rate, soil texture, soil carbon content and quality, and microbial biomass (Tang and Riley, 2019). Moreover, due to 610 

lacking representations of wetland hydro-ecological dynamics, the model uses simulated upland heterotrophic respiration to 

estimate CH4 production (Riley et al., 2011), which might cause underestimations of CH4 emissions, especially under wet 

conditions. Also, inappropriately prescribed land cover at the site scale or inaccurate climate forcing (particularly air 

temperature and precipitation; Chang et al. (2019)) could all impact snow accumulation processes (Tao et al., 2017), which 

can significantly impact CO2 and CH4 emission simulations. Customizing the complex local ecosystem vegetation community 615 

might be feasible at the site scale, however, it is less possible for regional or global land model simulations. This issue calls 

for the importance of upscaling methods to model (e.g., Pau et al., 2016; Liu et al., 2016) and measure (e.g., Natali et al., 2019; 

Virkkala et al., 2019) carbon and water cycle dynamics at the regional and global scales.  

 

Given the persistent warming and the continued more severe warming in the cold season (Box et al., 2019), we envision 620 

continuing increases in cold-season CO2 and CH4 emissions from the permafrost tundra ecosystem. The increasing rate of 

cold-season heterotrophic respiration (releasing CO2) may become larger than the trend of warm-season vegetation CO2 uptake 

under future climate. To accurately characterize cold-season emissions and warm-season net uptake, models have to correctly 

simulate both components, which, however, few models can do. The updated ELMv1-ECA, with the enhanced capacity to 

reproduce cold-season CO2 and CH4 emissions proven by this study, can serve as a starting point to better predict permafrost 625 

carbon responses to future climate. Finally, the complex water-carbon interactions require modeling systems with fully coupled 

hydrological-thermal-biogeochemical processes to better predict the carbon budget in permafrost regions under future climate. 
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Appendices: Description of Relevant Modules within ELMv1-ECA 645 

Here we describe the heat transfer in subsurface soils, the carbon decomposition, and the methane module within the ELMv1-

ECA that are of particular relevance to our study. 

Appendix A Subsurface Heat Transfer 

ELMv1-ECA approximates the subsurface heat transfer process with a one-dimensional heat diffusion equation: 

𝑐
𝜕𝑇

𝜕𝑡
=

𝜕

𝜕𝑧
(𝜆

𝜕𝑇

𝜕𝑧
), (Eq. A1) 

where 𝑇 is the soil temperature (K), 𝑐 is the volumetric soil heat capacity (J m-3 K-1), 𝜆 is soil thermal conductivity (W m-1 K-650 

1), and 𝑧 is the soil depth (m) of the ELMv1-ECA soil layers. The ELMv1-ECA soil column consists of 15 layers, with soil 

thickness increasing exponentially with depth. The bottom of soil column is down to 42 m, and the top 10 layers are 

hydrologically active with layer node depth as 0.0071 m, 0.0279 m, 0.0623 m, 0.1189 m, 0.2122 m, 0.3661 m, 0.6198 m, 

1.0380 m, 1.7276 m, 2.8646 m, respectively. The soil heat capacity and thermal conductivity is updated at each time step based 

on the fractions of soil matrix components, i.e., liquid water content, ice content, and soil solids. The impact of organic carbon 655 

on soil thermal and hydraulic properties was incorporated as a linear combination of the counterparts properties of mineral soil 

and organic matter (Lawrence and Slater, 2008). To solve the (Eq. A1), ELMv1-ECA employs the Crank-Nicholson method, 

resulting in a tridiagonal system equation (Oleson et al., 2013). We assume a zero-flux bottom boundary condition. The top 

boundary condition is estimated by solving the energy balance equation at the air and ground interface, with additionally an 

overlying five-layer snow model and a one-layer surface water model in between. When snow and surface water present, 660 

ELMv1-ECA incorporates the snow layers and surface water layer into the tridiagonal system to solve the heat transfer along 

the entire column. 

 

ELMv1-ECA incorporates freeze-thaw processes of soil water in a decoupled way. Specifically, the model determines the 

onset of melting or freezing by soil temperature initially solved at time step 𝑛 + 1 without consideration of the phase change 665 

process, denoted as 𝑇𝑖
𝑛+1, i.e.,  

𝑇𝑖
𝑛+1 >  𝑇𝑓  𝑎𝑛𝑑 𝑤𝑖𝑐𝑒,𝑖

𝑛 > 0                  melting  

𝑇𝑖
𝑛+1 <  𝑇𝑓  𝑎𝑛𝑑 𝑤𝑙𝑖𝑞,𝑖

𝑛 > 𝑤𝑙𝑖𝑞,𝑚𝑎𝑥,𝑖
𝑛+1       thawing  

, (Eq. A2) 

where 𝑇𝑓  is the freezing temperature of water (0°C in Kelvin, i.e., 273.15 K), 𝑤𝑖𝑐𝑒,𝑖
𝑛  and 𝑤𝑙𝑖𝑞,𝑖

𝑛  is the mass of ice and liquid 

water (kg m-2) of layer 𝑖 , and  𝑤𝑙𝑖𝑞,𝑚𝑎𝑥,𝑖
𝑛+1  (kg m-2) is the supercooled liquid water that is allowed to coexist with ice given the 

subfreezing soil temperature 𝑇𝑖
𝑛+1. This 𝑤𝑙𝑖𝑞,𝑚𝑎𝑥,𝑖

𝑛+1  varies with soil texture and temperature and is calculated by the freezing 

point depression equation (Niu and Yang, 2006), 670 
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𝑤𝑙𝑖𝑞,𝑚𝑎𝑥,𝑖
𝑛+1 = ∆𝑧𝑖𝜃𝑠𝑎𝑡,𝑖 [

103𝐿𝑓(𝑇𝑓 − 𝑇𝑖
𝑛+1)

𝑔𝑇𝑖
𝑛+1𝜓𝑠𝑎𝑡,𝑖

]

−1/𝐵𝑖

 , (Eq. A3) 

where ∆𝑧𝑖 is the soil thickness of the 𝑖th layer (in mm),  𝜃𝑠𝑎𝑡,𝑖  represents the soil porosity (i.e., the saturated volumetric water 

content), 𝐿𝑓 is the latent heat of fusion (J kg-1), 𝐵𝑖  is the Clapp and Hornberger exponent (Clapp and Hornberger, 1978), g is 

the gravitational acceleration (m s-2), and 𝜓𝑠𝑎𝑡,𝑖 is the soil texture-dependent saturated matric potential (mm). 

 

The rate of phase change is initially assessed from the heat excess (or deficit) needed to change the estimated temperature to 675 

the freezing point. Specifically, the model first computes the energy (𝐻𝑖) needed for adjusting current soil temperature (𝑇𝑖
𝑛+1) 

to 𝑇𝑓: 

𝐻𝑖 = −𝑐𝑖
∆𝑧𝑖

∆𝑡
𝑇𝑖𝑛𝑐 + (1 − 𝑓𝑠𝑛𝑜 − 𝑓ℎ2𝑜𝑠𝑓𝑐)

𝜕ℎ

𝜕𝑇
𝑇𝑖𝑛𝑐       𝑖 = 1 

𝐻𝑖 = −𝑐𝑖
∆𝑧𝑖

∆𝑡
𝑇𝑖𝑛𝑐                                                        𝑖 > 1 

, (Eq. A4) 

where 𝑇𝑖𝑛𝑐 = 𝑇𝑓 − 𝑇𝑖
𝑛+1,  ℎ is ground heat flux, 𝑓𝑠𝑛𝑜 and 𝑓ℎ2𝑜𝑠𝑓𝑐 is the snow and surface water fraction within the grid cell, 

respectively. The mass change involved then is computed as 𝐻𝑚 =
𝐻𝑖∆𝑡

𝐿𝑓
 (i.e., −𝑐𝑖

∆𝑧𝑖

𝐿𝑓
𝑇𝑖𝑛𝑐  for soils below the top interface 

layer). That is, the mass of ice increased/decreased by freezing/melting is −𝐻𝑚 , releasing/absorbing energy 𝐻𝑖  to bring 680 

up/down the current soil temperature to 𝑇𝑓. Accordingly, the ice and liquid mass are adjusted as: 

𝑤𝑖𝑐𝑒,𝑖
𝑛+1 = {

𝑚𝑖𝑛(𝑤𝑖𝑐𝑒,𝑖
𝑛 + 𝑤𝑙𝑖𝑞,𝑖

𝑛 −𝑤𝑙𝑖𝑞,𝑚𝑎𝑥,𝑖
𝑛+1∗ ,   𝑤𝑖𝑐𝑒,𝑖

𝑛 − 𝐻𝑚)            𝑤𝑙𝑖𝑞,𝑖
𝑛 + 𝑤𝑖𝑐𝑒,𝑖

𝑛 ≥ 𝑤𝑙𝑖𝑞,𝑚𝑎𝑥,𝑖
𝑛+1∗

0                                                                                              𝑤𝑙𝑖𝑞,𝑖
𝑛 + 𝑤𝑖𝑐𝑒,𝑖

𝑛 < 𝑤𝑙𝑖𝑞,𝑚𝑎𝑥,𝑖
𝑛+1∗  

. (Eq. A5) 

 𝑤𝑙𝑖𝑞,𝑖
𝑛+1 = max (𝑤𝑙𝑖𝑞,𝑖

𝑛 + 𝑤𝑖𝑐𝑒,𝑖
𝑛 − 𝑤𝑖𝑐𝑒,𝑖

𝑛+1, 0) 

The 𝐻𝑖  then is adjusted to 𝐻𝑖∗, calculated as 𝐻𝑖∗ = 𝐻𝑖 −
𝐿𝑓(𝑤𝑖𝑐𝑒,𝑖

𝑛 −𝑤𝑖𝑐𝑒,𝑖
𝑛+1)

∆𝑡
. The 𝐻𝑖∗ then is the ultimately determined latent heat 

and is used to further readjust soil temperature as in equation (Eq. A6), 

𝑇𝑖
𝑛+1∗=𝑇𝑓 +

∆𝑡

𝑐𝑖∆𝑧𝑖
𝐻𝑖∗=𝑇𝑓 −

𝐿𝑓(𝑤𝑖𝑐𝑒,𝑖
𝑛 −𝑤𝑖𝑐𝑒,𝑖

𝑛+1)

𝑐𝑖∆𝑧𝑖
, (Eq. A6) 

in which the temperature adjusted to 𝑇𝑓 is further increased by −
𝐿𝑓(𝑤𝑖𝑐𝑒,𝑖

𝑛 −𝑤𝑖𝑐𝑒,𝑖
𝑛+1)

𝑐𝑖∆𝑧𝑖
 due to soil freezing since 𝑤𝑖𝑐𝑒,𝑖

𝑛+1  ≥  𝑤𝑖𝑐𝑒,𝑖
𝑛 , or 

decreased due to melting when 𝑤𝑖𝑐𝑒,𝑖
𝑛+1 < 𝑤𝑖𝑐𝑒,𝑖

𝑛 .  685 

 

To improve this scheme, we can incorporate soil-water freezing phase change into equation (Eq. A1) and rewrite the heat  

transfer equation as (Eq. A7) or (Eq. A8), 
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𝑐
𝜕𝑇

𝜕𝑡
=

𝜕

𝜕𝑧
(𝜆

𝜕𝑇

𝜕𝑧
) − 𝐿𝑓𝜌𝑙𝑖𝑞

𝜕𝜃𝑙𝑖𝑞

𝜕𝑡
, (Eq. A7) 

(𝑐 + 𝐿𝑓𝜌𝑙𝑖𝑞
𝜕𝜃𝑙𝑖𝑞

𝜕𝑇
)
𝜕𝑇

𝜕𝑡
=

𝜕

𝜕𝑧
(𝜆

𝜕𝑇

𝜕𝑧
), (Eq. A8) 

where 𝐿𝑓 is the latent heat of fusion (J kg-1), 𝜃𝑙𝑖𝑞  is soil liquid water content (m3 m-3), and 𝜌𝑙𝑖𝑞  is the density of liquid water 

(kg m-3). To solve (Eq. A8), we need to compute the derivative of the soil freezing characteristic curve (𝜃𝑙𝑖𝑞(𝑇)) with respect 690 

to temperature (
𝜕𝜃𝑙𝑖𝑞

𝜕𝑇
). As discussed above, we approximate the 𝜃𝑙𝑖𝑞(𝑇) curve by combining the freezing point temperature-

depression equation (Fuchs et al., 1978) and the soil water retention curve (Clapp and Hornberger, 1978). This leads to the 

supercooled water formulation (Eq. A3) (Niu and Yang, 2006). Computing 
𝜕𝜃𝑙𝑖𝑞

𝜕𝑇
 requests the soil freezing curves 𝜃𝑙𝑖𝑞(𝑇) to be 

continuous and differentiable for a range of temperatures during the freezing process (Kurylyk and Watanabe, 2013; Hansson 

et al., 2004). Here, we follow the existing ELM framework discussed above to solve (Eq. A8). The original numerical 695 

representation for readjusting soil temperature (Eq. A6) obtained by the uncoupled two-step implementation (Eq. A2 to A5) 

significantly overestimates soil water freezing rates.  Two reasons are responsible for the overestimation. First, the freezing 

point (𝑇𝑓  = 0°C) is used to determine the occurrence of soil water phase change under all conditions. To further freeze 

supercooled soil liquid water, however, the soil temperature has to be colder than a virtual soil temperature (as we described 

below). Second, due to the steep slope of 
𝜕𝜃𝑙𝑖𝑞

𝜕𝑇
  (especially close to 𝑇𝑓  = 0°C), the estimated ice mass increase (i.e., 𝑤𝑖𝑐𝑒

𝑛+1 −700 

𝑤𝑖𝑐𝑒
𝑛  or 𝑤𝑙𝑖𝑞

𝑛 − 𝑤𝑙𝑖𝑞,𝑚𝑎𝑥
𝑛+1 ; see (Eq. A5)) most often exceeds the required mass change, i.e., 𝐻𝑚  = −𝑐𝑖

∆𝑧𝑖

𝐿𝑓
(𝑇𝑓 − 𝑇𝑖

𝑛+1), and thus 

soil liquid water freezes quickly in a large chunk. Soon, the liquid water available to be frozen becomes too small to release 

sufficient latent heat to compensate for the required energy deficit (𝑇𝑓 − 𝑇𝑖
𝑛+1). 

 

Thus, we revised the phase-change scheme mainly through incorporating a phase-change efficiency (𝜀) and replacing the 705 

constant freezing point 𝑇𝑓 with the temperature of the freezing point depression in (Eq. A2). The phase-change efficiency, 

introduced by Le Moigne et al. (2012) and adopted by Masson et al. (2013) and Yang et al. (2018a), is calculated as, 

𝜀 = {
𝜀𝑙𝑖𝑞,𝑖
𝑛 =

𝜃𝑙𝑖𝑞,𝑖
𝑛

𝜃𝑠𝑎𝑡,𝑖
                      𝑓𝑜𝑟 𝑓𝑟𝑒𝑒𝑧𝑖𝑛𝑔

𝜀𝑖𝑐𝑒,𝑖
𝑛 =

𝜃𝑖𝑐𝑒,𝑖
𝑛

𝜃𝑠𝑎𝑡,𝑖
                      𝑓𝑜𝑟 𝑚𝑒𝑙𝑡𝑖𝑛𝑔

, (Eq. A9) 

where 𝜃𝑙𝑖𝑞,𝑖
𝑛  and 𝜃𝑖𝑐𝑒,𝑖

𝑛  is the soil liquid and ice volumetric water content of layer 𝑖 at previous time step 𝑛, respectively, and 

𝜃𝑠𝑎𝑡,𝑖  represents the soil porosity (i.e., the saturated volumetric water content). The temperature of the freezing point 

depression, as a virtual temperature (𝑇𝑣) reversely derived from the freezing point temperature-depression equation, i.e., 710 

𝜓(𝑇) =  
103𝐿𝑓(𝑇𝑓−𝑇𝑖)

𝑔𝑇𝑖
    (Fuchs et al., 1978; Cary and Mayland, 1972),  is calculated as, 
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𝑇𝑣𝑖
𝑛+1 =

103𝐿𝑓𝑇𝑓

103𝐿𝑓 + 𝑔𝜓𝑖
𝑛  , (Eq. A10) 

where 𝐿𝑓 is the latent heat of fusion (J kg-1) and g is the gravitational acceleration (m s-2). 𝜓𝑖
𝑛 is the soil water potential (mm), 

calculated as the soil water retention curve of Clapp and Hornberger (1978), i.e., 𝜓𝑖
𝑛 = 𝜓𝑠𝑎𝑡,𝑖 (

𝜃𝑙𝑖𝑞,𝑖
𝑛

𝜃𝑠𝑎𝑡,𝑖
)
−𝐵𝑖

, where 

𝜃𝑙𝑖𝑞,𝑖
𝑛 =𝑤𝑙𝑖𝑞,𝑖

𝑛 ∆𝑧𝑖⁄  as in (Eq. A3), 𝐵𝑖  is the Clapp and Hornberger exponent, and 𝜓𝑠𝑎𝑡,𝑖 is the soil texture-dependent saturated 

matric potential (mm). 715 

 

Then, through multiplying the initially estimated mass change (𝐻𝑚) by the phase change efficiency (𝜀), we replace the freezing 

point with an efficiency-weighted average of the initially solved soil temperature (𝑇𝑖
𝑛+1) and the freezing point,  

𝑇𝑖
𝑛+1∗  = 𝑇𝑓 +

∆𝑡

𝑐𝑖∆𝑧𝑖
(−𝑐𝑖

∆𝑧𝑖
∆𝑡
𝑇𝑖𝑛𝑐𝜀𝑖 +

𝐿𝑓(𝑤𝑖𝑐𝑒,𝑖
𝑛+1 − 𝑤𝑖𝑐𝑒,𝑖

𝑛 )

∆𝑡
) 

= 𝑇𝑓 − (𝑇𝑓 − 𝑇𝑖
𝑛+1)𝜀𝑖 +

𝐿𝑓(𝑤𝑖𝑐𝑒,𝑖
𝑛+1−𝑤𝑖𝑐𝑒,𝑖

𝑛 )

𝑐𝑖∆𝑧𝑖
  

= (1 − 𝜀𝑖)𝑇𝑓 + 𝜀𝑖𝑇𝑖
𝑛+1 +

𝐿𝑓(𝑤𝑖𝑐𝑒,𝑖
𝑛+1−𝑤𝑖𝑐𝑒,𝑖

𝑛 )

𝑐𝑖∆𝑧𝑖
  

. (Eq. A11) 

Here, 𝑤𝑖𝑐𝑒,𝑖
𝑛+1 is calculated by (Eq. A5) as well, but with updated 𝐻𝑚 (i.e., −𝜀𝑖𝑐𝑖

∆𝑧𝑖

𝐿𝑓
( 𝑇𝑣𝑖

𝑛+1 − 𝑇𝑖
𝑛+1) ). The two changes can 

effectively improve the soil water freezing process simulations and prevent soil becoming irreversibly too cold quickly as 720 

simulated by the baseline phase change scheme.  

 

 

Appendix B Decomposition Cascade Model 

ELMv1-ECA explicitly simulates carbon cycle dynamics (both plant and soil) and accounts for the limitation of nutrient (i.e., 725 

nitrogen and phosphorus) availability for plant growth and the nutrient competition between plants and microbes (Burrows et 

al., 2020; Zhu et al., 2019; Golaz et al., 2019; Zhu et al., 2020). The ELMv1-ECA uses a Century-like soil carbon 

decomposition cascade model with vertically resolved soil biogeochemistry (Koven et al., 2013b), and explicitly accounts for 

the influence of substrate and nutrient availability on soil respiration (both root and microbes) (Zhu et al., 2019). 

 730 

Within the ELMv1-ECA Century decomposition cascade model, the respiration fractions are parameterized as the fraction of 

the decomposition carbon flux out of each carbon pool, including litter and soil organic matter.  The base decomposition rate 

is modified by a function representing environmental controls on soil decomposition which accounts for the impacts of 
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individual factors including temperature (𝑓𝑇 ) and moisture (𝑓𝑊 ), an oxygen scalar (𝑓𝑂 ), and a depth scalar (𝑓𝐷 ), in a 

multiplicative way, i.e., 𝑓𝑡𝑜𝑡𝑎𝑙 = 𝑓𝑇𝑓𝑊𝑓𝑂𝑓𝐷. 735 

 

We use a Q10-based standard exponential function to account for the temperature effect on decomposition, 

𝑓𝑇 = 𝑄10
(
𝑇−𝑇𝑟𝑒𝑓

10
)
,  (Eq. B12) 

where Q10 = 1.5 by default, which is consistent with ecosystem-level observations (Mahecha et al., 2010), and 𝑇𝑟𝑒𝑓  is the 

reference temperature (25°C). During cold seasons when soil temperature becomes subfreezing, respiration continues but with 

more controls from liquid water stress. The original moisture scalar (𝑓𝑊) within ELMV1-ECA is given in the formulation, 740 

calculated as,  

𝑓𝑊 =

{
 

 
0                       𝐹𝑜𝑟 𝜓𝑖 < 𝜓𝑚𝑖𝑛

𝑙𝑜𝑔(𝜓𝑚𝑖𝑛/𝜓𝑖)

𝑙𝑜𝑔(𝜓𝑚𝑖𝑛/𝜓𝑚𝑎𝑥)
        𝐹𝑜𝑟 𝜓𝑚𝑖𝑛 ≤ 𝜓𝑖 ≤ 𝜓𝑚𝑎𝑥

1                       𝐹𝑜𝑟 𝜓𝑖 > 𝜓𝑚𝑎𝑥

      , (Eq. B13) 

where 𝜓𝑖 =  𝜓𝑚𝑎𝑥 (
𝜃𝑙𝑖𝑞,𝑖

𝜃𝑠𝑎𝑡,𝑖
) −𝐵𝑖  is the soil water potential, where 𝐵𝑖  is the Clapp and Hornberger exponent (Clapp and 

Hornberger, 1978). In frozen soil, the soil water potential is related to soil temperature through the freezing point depression 

equation, i.e., 𝜓𝑖 =  
𝐿𝑓(𝑇𝑓−𝑇𝑖)

103𝑇
 (Fuchs et al., 1978; Cary and Mayland, 1972) in the supercooled water formulation (Niu and 

Yang, 2006).  Thus, the liquid water stress on decomposition is translated into dependency on temperature when soil 745 

temperature is below the freezing point. By default, 𝜓𝑚𝑖𝑛 is -10MPa, which predicts zero 𝑓𝑊 under frozen conditions since 𝜓𝑖  

under a subfreezing soil temperature easily gets smaller than -10MPa (Figure S1a). We thus reduced the 𝜓𝑚𝑖𝑛 to -103 MPa 

and  -106 MPa to alleviate the zero respiration problem in the frozen soils (see Figure S1a). ELMv1-ECA approximates oxygen 

stress (𝑓𝑂) as the ratio of available oxygen to that demanded by decomposers, and has a minimum value of 0.2 (Oleson et al., 

2013).   750 

 

The depth scalar (𝑓𝐷 = 𝑒𝑥𝑝 (−
𝑧𝑖

𝑍𝜏
)) represents unresolved other depth-dependent processes (e.g., soil microbial dynamics, 

priming effects, etc.) (Koven et al., 2013b; Lawrence et al., 2015; Koven et al., 2015). Applying the depth scalar to 

decomposition rates would exponentially decrease the respiration fluxes along with the vertical soil layers. The 𝑍𝜏is the e-

folding depth for decomposition, and by default 𝑍𝜏 is 0.5 m (Oleson et al., 2013). 755 
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Appendix C Methane Model 

The ELMv1-ECA methane model includes the representations of CH4 production, oxidation, and three pathways of transport 

(i.e., aerenchyma tissues, ebullition, aqueous and gaseous diffusion), and solves the transient reaction diffusion equation for 

CH4. ELMv1-ECA estimates CH4 production (𝑃; mol m−3 s−1) in the anaerobic portion of the soil column based on the upland 760 

heterotrophic respiration (HR; mol C m−2 s−1) from soil and litter, further adjusted by factors representing influence from soil 

temperature (𝑓𝑇), pH (𝑓𝑝𝐻), redox potential (𝑓𝑝𝐸), and seasonal inundation condition (𝑆) (Riley et al., 2011), expressed as, 

𝑃 = 𝐻𝑅 × 𝑓𝐶𝐻4 × 𝑓𝑇 × 𝑓𝑝𝐻 × 𝑓𝑝𝐸 × 𝑆. (Eq. C14) 

The 𝑓𝐶𝐻4 is a fraction of anaerobically mineralized carbon atoms becoming CH4 and is 0.2 by default. Detailed explanation on 

these factors can be found in Riley et al. (2011). The methane production 𝑃 is directly related to the estimated HR and impacted 

by soil temperature, and thus the changes in the carbon decomposition model (Appendix B) and water and heat transfer model 765 

(Appendix A) directly influence methane production simulations. Besides, ELMv1-ECA considers the availability of carbon 

substrate as an important driver of methanogenesis activity and methane production (Riley et al., 2011; Xu et al., 2016).  

 

The ultimately estimated CH4 emissions are controlled by oxidation, transport mechanisms (i.e., aerenchyma transport, 

ebullition, and diffusion), and the upper boundary resistance. Detailed descriptions on CH4 oxidation and transport mechanisms 770 

are provided in (Riley et al., 2011).  Here we modified CH4 transport mechanisms for facilitating reasonable cold-season CH4 

emissions. 

 

Vascular plant aerenchyma tissues serve as diffusive pathways to transport CH4 from soil to the atmosphere. The CH4 transport 

via aerenchyma from soil layer 𝑧 (𝐴(𝑧), mol m−2 s−1) is calculated as: 775 

𝐴(𝑧) = (𝐶(𝑧) − 𝐶𝑎) (
𝑟𝐿𝑧

𝐷𝑝𝑇𝑎𝑒𝑟𝑒𝜌𝑟(𝑧)
+ 𝑟𝑎)⁄  , (Eq. C15) 

where 𝐶(𝑧) and 𝐶𝑎 is the gaseous CH4 concentration (mol m−3) in soil depth 𝑧 and in the atmosphere, respectively; 𝑟𝑎 is the 

aerodynamic resistance (s m−1); 𝐷 is the gas diffusion coefficient (m2 s−1); 𝑝 is aerenchyma porosity (-); 𝑟𝐿 is the ratio of root 

length to vertical depth (i.e., root obliquity); and 𝜌𝑟(𝑧) is the root fraction in soil depth 𝑧 (-). 𝑇𝑎𝑒𝑟𝑒  is the specific aerenchyma 

area (m2 m-2), and is expressed as, 

 𝑇𝑎𝑒𝑟𝑒 =
𝑓𝑁𝑁𝑎𝐿𝐴𝐼

0.22
𝜋𝑅2, (Eq. C16) 

where 𝑅  represents the aerenchyma radius (=2.9×10−3 m); 𝑁𝑎  is the annual net primary production (NPP), and 𝑓𝑁  is the 780 

belowground fraction of current NPP; and the factor 0.22 represents average observed tiller biomass (gC per tiller) (Wania et 

al., 2010; Schimel, 1995). Here, tillers mean segmented stems of plants in the Order of Poales, including grasses (Poaceae) 

and sedges (Cyperaceae) (Wania et al., 2010). 
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In ELMv1-ECA, methane emissions through aerenchyma were turned off when the soil temperature is below 0°C. We first 785 

removed this temperature limitation; then, we integrated the emissions from ice cracks and remnants of aerenchyma tissues 

with (Eq. C16) by applying a small 𝜀𝑎𝑒𝑟𝑒 during winter time. That is, 𝑇𝑎𝑒𝑟𝑒 =
𝑓𝑁𝑁𝑎𝜀𝑎𝑒𝑟𝑒

0.22
𝜋𝑅2 when soil temperature is below 

the freezing point, where 𝜀𝑎𝑒𝑟𝑒 represents possible ice crack fractions and remnants of aerenchyma tissues, and is 0.01 by 

default. We also tested a larger value for this parameter together with 𝑓𝐶𝐻4 and the maximum CH4 oxidation rate constant 

𝑅o,max (Table S3).  790 

 

The  𝑅o,max is a key variable controlling CH4 oxidation rate (𝑅𝑜𝑥𝑖𝑐), calculated as, 

𝑅𝑜𝑥𝑖𝑐 = 𝑅𝑜,𝑚𝑎𝑥[
𝐶𝐶𝐻4

𝐾𝐶𝐻4+𝐶𝐶𝐻4
][

𝐶𝑂2

𝐾𝑂2+𝐶𝑂2
]𝑄10𝐹𝑣 , (Eq. C17) 

where 𝐶𝐶𝐻4 and 𝐶𝑂2 are CH4 and O2 concentrations, respectively; 𝐾𝐶𝐻4 and 𝐾𝑂2 are the half saturation coefficients (mol m-3) 

for 𝐶𝐶𝐻4 and 𝐶𝑂2, respectively. Details about the CH4 oxidation is provided in Riley et al. (2011). The maximum oxidation 

rate 𝑅o,max (mol m-3 s-1) by default is 1.25E-05  and 1.25E-06 for saturated and unsaturated conditions, respectively. We tested 795 

the 𝑅o,max with the smaller value (1.25E-06) for saturated condition as well (Table S3). 

 

Another key variable that is highly uncertain is snow resistance to gas emissions. When snow is present, the upper boundary 

layer resistance to gas emissions is added by a snow resistance accounting for diffusion through the snow based on the 

Millington-Quirk expression (Riley et al. (2011). Specifically, the gaseous and aqueous diffusivity in snow is calculated by 800 

(Eq. C18),  

𝐷𝑠𝑛𝑜𝑤 = {
𝜀𝑑𝑖𝑓𝑓𝐷𝑔𝑎𝑠

(𝜃𝑎𝑖𝑟 (𝜃𝑎𝑖𝑟+𝜃𝑤𝑎𝑡𝑒𝑟)⁄ )10 3⁄

(𝜃𝑎𝑖𝑟+𝜃𝑤𝑎𝑡𝑒𝑟)
2                       𝑓𝑜𝑟 𝑔𝑎𝑠𝑒𝑜𝑢𝑠

𝜀𝑑𝑖𝑓𝑓𝐷𝑙𝑖𝑞(𝜃𝑤𝑎𝑡𝑒𝑟)
2                                              𝑓𝑜𝑟 𝑎𝑞𝑢𝑒𝑜𝑢𝑠

, (Eq. C18) 

where 𝐷𝑔𝑎𝑠 and 𝐷𝑙𝑖𝑞  are gaseous and aqueous diffusion coefficients (m2 s−1) for CH4, respectively (see Table 2 in Riley et al. 

(2011)), 𝜀diff is a scale factor (-) for the diffusion coefficients, 𝜃𝑤𝑎𝑡𝑒𝑟  is water-filled fraction of snow volume (-), and 𝜃𝑎𝑖𝑟  is 

air fraction in snow (-). The 𝐷𝑠𝑛𝑜𝑤 is calculated for each snow layer; then, the total snow resistance is estimated as 𝑅𝑠𝑛𝑜𝑤 =

∑
𝑑𝑧(𝑖)

𝐷𝑠𝑛𝑜𝑤(𝑖)

𝑛
𝑖=1   where 𝑑𝑧(𝑖) is the thickness of 𝑖𝑡ℎ snow layer. The top boundary layer conductance for CH4 then is calculated 805 

as 
1

𝑅𝑠𝑛𝑜𝑤+𝑅𝑝𝑜𝑛𝑑+1 𝐶𝑔⁄
, where 𝑅𝑝𝑜𝑛𝑑 is ponding resistance and 𝐶𝑔is ground conductance (details can be found in Oleson et al., 

2013). We found the computed snow resistance generally was too large. We thus decreased snow resistance by introducing 

new scale factor, i.e., 𝜀𝑠𝑛𝑜𝑤𝑑𝑖𝑓𝑓 (102 by default) in replace with 𝜀𝑑𝑖𝑓𝑓 in (Eq. C18) to increase the conductance at the upper 

boundary when snow is present. 

 810 
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Table 1: Specific modifications made to ELMv1-ECA.  1080 

 Part 1 – Phase-change  

scheme within the heat 

transfer module 

Part 2 – Environmental 

modifier to the base 

decomposition rate  

Part 3 – Methane module 

Relevant 

processes 

influenced 

Water and heat transfer, plant 

and soil respiration, plant 

productivity, CO2 fluxes and 

CH4 emissions. 

Plant and soil respiration, 

plant productivity, CO2 

fluxes and CH4 

emissions. 

CH4 emissions 

Original New Original New Original New 

Variables or 

equations 

influenced 

Eq. A2-6 

Imposing Eq. A7 

and Eq. A8 to 

Eq. A2-A6 

Eq. B9-

B10 

Eq. B11 and 

changes in 

Table S2 

Eq. C13-

C18 

1. Introducing a new factor 𝜀𝑎𝑒𝑟𝑒, 

representing possible pathways via ice 

crack fractions and remnants of 

aerenchyma tissues in frozen soils, and 

thus permitting transport even when 

temperature is below 0°C.  

2. Introducing new scale factors for 

snow resistance 𝜀𝑠𝑛𝑜𝑤𝑑𝑖𝑓𝑓. 

3. Seven parameterizations 

combining tested values for three highly 

uncertain variables, i.e., 𝑓𝐶𝐻4, 𝜀𝑎𝑒𝑟𝑒, and 

𝑅o,max (Table S3). 
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Table 2: List of Designed Experiments.  1085 

Experiment Name 

Part 1 - Phase Change 

Scheme within Heat 

Transfer Model 

Part 2 – Environmental 

Modifier within Carbon 

Decomposition Model  

Part 3 – Methane 

Model 

Original New Original New Original New 

OriPC_OriDecomOriCH4 (Baseline) √  √  √  

NewPC_OriDecomOriCH4  √ √  √  

NewPC_OriDecomNewCH4&  √ √   √ 

NewPC_NewDecomNewCH4* 

(NewPC_Optimized)# 

(NewPC_Generic)$ 

 √  √  √ 

& “NewCH4” uses the newly modified methane module with default parameterization (see Table S3 in the supplementary file).  

* “NewDecom” means replacing the original temperature- and moisture-dependency functions on decomposition rates with (814) new 

functions of environmental modifiers as listed in Table S2 in the supplementary file. “NewCH4” here means the newly modified methane 

module with seven parameterizations (Table S3). The seven CH4 parametrizations were iteratively applied to the model together with 160 

common carbon decomposition schemes that provide good performance for CO2 flux (i.e., NSE_CO2 > 0.5) at all the sites.  This resulted 1090 

in 1934 “NewPC_NewDecomNewCH4” simulations in total (i.e., 814+160×7 = 1934). 

# “NewPC_Optimized” is the optimal simulation among the 1934 “NewPC_NewDecomNewCH4” cases at each site. 

$ “NewPC_Generic” means the simulation with the identified generic parameterization that can be applied to regional simulation. The 

generic scheme is the common satisfactory scheme that provides the best overall performance for all the sites. 

 1095 
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Table 3: Mean absolute error (MAE) of simulated ZCP (days) with the original phase-change scheme (Ori_PC)  and newly resized 

phase-change scheme (NewPC), and the relative improvement  (%) of using  the new phase-change scheme compared to the baseline 

results, calculated as 100% × (MAE_ZCP_OriPC – MAE_ZCP_NewPC) / MAE_ZCP_OriPC. 

 BES&CMDL BEO ATQ IVO 

  

MAE_

ZCP_

OriPC 

(days) 

MAE_

ZCP_N

ewPC 

(days) 

Impr

ove

ment 

(%) 

MAE_

ZCP_O

riPC 

(days) 

MAE_Z

CP_Ne

wPC 

(days) 

Impr

ovem

ent 

(%) 

MAE_Z

CP_OriP

C (days) 

MAE_Z

CP_Ne

wPC 

(days) 

Impro

veme

nt (%) 

MAE_Z

CP_OriP

C (days) 

MAE_

ZCP_N

ewPC 

(days) 

Impro

veme

nt (%) 

Layer 

1 
38.80 31.40 

19.0

7 
37.60 33.20 11.70 26.33 13.33 49.37 54.00 51.50 4.63 

Layer 

2 
29.20 14.20 

51.3

7 
27.40 12.60 54.01 24.33 5.67 76.71 50.50 37.50 25.74 

Layer 

3 
35.20 18.40 

47.7

3 
33.60 16.80 50.00 28.00 9.33 66.67 55.75 30.25 45.74 

Layer 

4 
29.60 10.40 

64.8

6 
30.60 10.60 65.36 28.67 9.67 66.28 61.50 30.50 50.41 

Layer 

5 
18.00 11.40 

36.6

7 
17.60 10.80 38.64 27.67 17.33 37.35 54.50 22.00 59.63 

Layer 

6 
77.40 12.20 

84.2

4 
77.40 13.00 83.20 61.67 36.67 40.54 68.00 14.75 78.31 

Layer 

7 
NaN NaN NaN NaN NaN NaN NaN NaN NaN 151.33 46.67 69.16 
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Table 4: Total CH4 emissions and CO2 net flux over three seasonal periods, including the early cold season, cold season, and the 

warm season. The “ELM_Optimized” here means ELM_NewPC_Optimized (Table 2). The percentage of each seasonal total CH4 

emissions to the annual total is included in the brackets. 1105 

Total CH4 Emissions  

(gC m-2) 

BES/CMDL BEO ATQ 

Early Cold 

Season (Sep. 

and Oct.) 

Cold 

Season 

(Sep. to 

May) 

Warm 

Season 

(Jun. to 

Aug.) 

Early 

Cold 

Season 

(Sep. 

and 

Oct.) 

Cold 

Season 

(Sep. to 

May) 

Warm 

Season 

(Jun. to 

Aug.) 

Early 

Cold 

Season 

(Sep. 

and 

Oct.) 

Cold 

Season 

(Sep. to 

May) 

Warm 

Season 

(Jun. to 

Aug.) 

ELM_Baseline 
0.08 

(4.7%) 

0.08 

(5.1%) 

1.53 

(94.9%) 

0.09 

(5.5%) 

0.10 

(6.2%) 

1.54 

(93.8%) 

0.16 

(15.1%) 

0.16 

(15.3%) 

0.89 

(84.7%) 

ELM_Optimized 
0.51 (17.8%)  

1.00 

(34.8%)  

1.88 

(65.2%)  

0.73 

(22.8%)  

1.11 

(35.0%)  

2.07 

(65.0%)  

0.18 

(18.2%)  

0.58 

(33.4%)  

1.16 

(66.6%)  

Observation 
0.63 

(21.0%) 

1.32 

(44.5%) 

1.65 

(55.5%) 

0.83 

(24.4%) 

1.43 

(41.9%) 

1.97 

(58.1%) 

0.36 

(19.2%) 

0.85 

(44.7%) 

1.04 

(55.3%) 

Bias of ELM_Baseline  0.55 1.24 0.13 0.74 1.32 0.43 0.20 0.69 0.16 

Bias of ELM_Optimized 0.11 0.32 -0.23 0.10 0.31 -0.09 0.05 0.27 -0.11 

Bias Reduction 79.7% 74.2% - 86.1% 76.5% - 77.4% 61.3% - 

Total CO2 Net Flux (gC 

m-2) 

BES/CMDL BEO ATQ 

Early Cold 

Season (Sep. 

and Oct.) 

Cold 

Season 

(Sep. to 

May) 

Warm 

Season 

(Jun. to 

Aug.) 

Early 

Cold 

Season 

(Sep. 

and 

Oct.) 

Cold 

Season 

(Sep. to 

May) 

Warm 

Season 

(Jun. to 

Aug.) 

Early 

Cold 

Season 

(Sep. 

and 

Oct.) 

Cold 

Season 

(Sep. to 

May) 

Warm 

Season 

(Jun. to 

Aug.) 

ELM_Baseline 31.27 31.38 2.03 30.99 31.14 13.91 40.46 40.86 -26.05 

ELM_Optimized 37.97 75.36 -74.27 47.14 83.71 -47.15 50.51 76.18 -39.64 

Observation 43.60 87.50 -67.61 28.20 96.14 -64.33 24.29 58.64 -62.41 

Bias of ELM_Baseline  12.33 56.12 -69.64 -2.79 64.99 -78.24 -16.16 17.78 -36.36 

Bias of ELM_Optimized 5.63 12.14 6.66 -18.94 12.42 -17.19 -26.21 -17.54 -22.76 

Bias Reduction 54.4% 78.4% 109.6% - 80.9% 78.0% - - 37.39% 
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Table 5: Historical trend of ZCP durations (days year-1) for each soil layer from 1950 to 2017. (Trends with p > 0.05 are not 

statistically significant.)  

BES/CMDL BEO ATQ 

Trend (days yr-1) p Value Trend (days yr-1) p Value Trend (days yr-1) p Value 

ZCP Duration 

of Layer 1 

0.02 0.74 -0.02 0.68 0.07 0.39 

ZCP Duration 

of Layer 2 

0.10 0.02 0.10 0.03 0.12 0.09 

ZCP Duration 

of Layer 3 

0.13 0.01 0.10 0.04 0.15 0.04 

ZCP Duration 

of Layer 4 

0.09 0.14 0.10 0.07 0.21 0.01 

ZCP Duration 

of Layer 5 

0.07 0.28 0.10 0.10 0.22 0.03 

ZCP Duration 

of Layer 6 

0.98 0.39 0.35 0.56 0.49 0.00 
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Table 6: Historical trend (1950 - 2017) in site-scale heterotrophic respiration, CH4 emission, and CO2 flux during the ZCP duration 

at 6 cm (3rd layer), cold-season months (Sep. - May), and the whole annual cycle (Sep. – Aug.). (Trends with p > 0.05 are not 

statistically significant.) 1115 

  

BES/CMDL BEO ATQ 

Trend of Heterotrophic Respiration 

Trend p 

Value 

Trend p 

Value 

Trend p 

Value (g C m-2 yr-1) (g C m-2 yr-1) (g C m-2 yr-1) 

ZCP duration at 6 

cm 

0.14 0.00 0.09 0.04 0.15 0.02 

Cold Season 

(Sep.-May) 

0.42 0.00 0.31 0.00 0.41 0.00 

Annual (Sep.-

Aug.) 

0.81 0.00 0.80 0.00 1.06 0.00 

  

Trend of CH4 Emission 

Trend p 

Value 

Trend p 

Value 

Trend p 

Value (mg C m-2 yr-1) (mg C m-2 yr-1) (mg C m-2 yr-1) 

ZCP duration at 6 

cm 

-0.20 0.37 -0.71 0.13 -1.69 0.04 

Cold Season 

(Sep.-May) 

-0.63 0.16 -2.01 0.00 -1.68 0.22 

Annual (Sep.-

Aug.) 

-1.37 0.10 -4.71 0.01 0.52 0.82 

  
Trend of CO2 Net Flux 

Trend p 

Value 

Trend p 

Value 

Trend p 

Value (g C m-2 yr-1) (g C m-2 yr-1) (g C m-2 yr-1) 

ZCP duration at 6 

cm 

0.15 0.00 0.12 0.00 0.17 0.00 

Cold Season 

(Sep.-May) 

0.40 0.00 0.30 0.00 0.36 0.00 

Annual (Sep.-

Aug.) 

0.15 0.43 0.21 0.30 0.29 0.19 
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Figure 1: Red dots indicate the five ABoVE flux tower sites used in this study.  Cyan circles are GIPL-UAF permafrost sites. 
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Figure 2: Comparison of multi-year (2013 - 2017) averaged daily soil temperatures observed (Ts_Obs, black) and simulated with 

the original (Ts_OriPC, blue) and improved (Ts_NewPC, red) phase-change schemes at BES/CMDL (a) and IVO (b). Simulated 

moisture saturation with the original (Sf_OriPC; green) and improved (Sf_NewPC; magenta) schemes are shown on the right hand 

axes. Here, the moisture saturation means soil unfrozen (liquid) water content. The horizontal axes indicates days from July to June, 1125 
with ticks represent the first day of each month. Hatched areas represent durations of zero-curtain periods observed (ZCP_Obs, 

gray) and simulated (ZCP_OriPC, blue; ZCP_NewPC, red). No baseline ZCP is shown in the 6th layer for BES/CMDL and the 7th 

layer for IVO because the maximum annual temperature is below 0°C. 
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Figure 3: Comparison between observed and ELMv1-ECA simulated durations of ZCP for the original (OriPC; open diamonds) 

and improved (NewPC; solid circles) phase-change schemes over four annual cycles (July to June) from 2013 to 2017. “ly” means 

model layer. Simulated ZCP durations with NewPC demonstrate significant improvements compared to OriPC (solid dots vs. open 

diamonds), especially for the 4th to the deepest layer above permafrost. Note, a zero days ZCP means that the maximum daily 1135 
temperature during an annual cycle is below 0°C. The pairs of zero vs. non-zero days ZCP (e.g., OriPC_ly 7 at IVO and OriPC_ly 

6 at other sites) indicate that baseline results underestimated ALT. The bias (simulation - observation) of multi-year averaged ALT 

simulated by the two experiments is provided in each panel. 
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 1140 

Figure 4: Relative improvement in the RMSE of simulated soil temperature with the new phase-change scheme (RMSE_Ts_NewPC) 

compared to that with the original scheme (RMSE_Ts_OriPC), calculated as 100% × (RMSE_Ts_OriPC – RMSE_Ts_NewPC) / 

RMSE_Ts_OriPC. 
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Figure 5: Scatter plot between the Nash–Sutcliffe Efficiency (NSE) of simulated monthly CH4 and CO2 emissions. An ideal simulation 

has both NSEs of CH4 and CO2 as one (i.e., the upper right corner). The boxes encompass simulations with satisfactory performance 

(NSE > 0.5). Optimized (red) – the best simulation for each site; Generic (cyan) – the simulation with a common parameterization 

of carbon decomposition scheme and CH4 parameter scheme that provides best overall performance for all the sites. See Table 2 for 1150 
the configuration for each experiment. The grey dots represent all the tested (1934) simulations indicated in the annotation of Table 

2. Symbols outside the plotting ranges indicate poor performance, e.g., (-34.9, -0.3) for baseline at IVO, thus are not shown in the 

figure. 
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 1155 

Figure 6: Observed and simulated monthly CO2 (left) and CH4 (right) net flux with the baseline model (ELM_Baseline) and the 

experiments with updated models (See Table 2 for the configuration for each experiment). Shaded grey areas indicate the minimum-

to-maximum bound of simulations within the good performance zone (as shown in Figure 5). Black open circles are observed 

monthly averages with the number of daily observations less than 10 days, which are not used for the computation in Figure 5. 

“ELM_NewPC_Optimized” means the best simulation for each site (red diamonds in Figure 5). Intermediate results including 1160 
“ELM_NewPC_OriDecomNewCH4” are included in supplementary Figure S8. 
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Figure 7: Comparison of multi-year (2013-2017) averaged monthly mean CO2 net flux (top) and CH4 emissions (bottom) from 

simulations and measurements at the study sites. The error bars represent standard deviation of monthly mean. 1165 
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Figure 8: Multi-year (2013-2017) averaged total CH4 emissions (bottom) and CO2 net flux (top) during the early cold season (Sep. 

and Oct.), cold-season period (Sep. to May), warm-season period (Jun. to Aug.), and the annual cycle (Sep. to Aug.) at our study 

sites. Due to the large discontinuity in CO2 observations, especially over the warm season (shown in Figure 6), the observed annual 1170 
CO2 budget is highly uncertain. Still, the cold-season contributions of both CH4 and CO2 emissions are greatly improved by the 

optimized ELMv1-ECA (i.e., ELM_NewPC_Optimized). 

 

 


