Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 4.713
IF4.713
IF 5-year value: 4.927
IF 5-year
4.927
CiteScore value: 8.0
CiteScore
8.0
SNIP value: 1.425
SNIP1.425
IPP value: 4.65
IPP4.65
SJR value: 2.353
SJR2.353
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 53
h5-index53
Preprints
https://doi.org/10.5194/tc-2020-262
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-2020-262
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

  22 Oct 2020

22 Oct 2020

Review status
This preprint is currently under review for the journal TC.

Improved ELMv1-ECA Simulations of Zero-Curtain Periods and Cold-season CH4 and CO2 Emissions at Alaskan Arctic Tundra Sites

Jing Tao1,2, Qing Zhu1, William J. Riley1, and Rebecca B. Neumann2 Jing Tao et al.
  • 1Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
  • 2Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, 98195, USA

Abstract. Field measurements have shown that cold-season methane (CH4) and carbon dioxide (CO2) emissions contribute a substantial portion to the annual net carbon emissions in permafrost regions. However, most earth system land models do not accurately reproduce cold-season CH4 and CO2 emissions, especially over the shoulder (i.e., thawing and freezing) seasons. Here we use the Energy Exascale Earth System Model (E3SM) land model version 1 (ELMv1-ECA) to tackle this challenge and fill the knowledge gap of how cold-season CH4 and CO2 emissions contribute to the annual totals at Alaska Arctic tundra sites. Specifically, we improved the ELMv1-ECA soil water phase-change scheme, environmental controls on microbial activity, and cold-season methane transport module. Results demonstrate that both soil temperature and the duration of zero-curtain periods (i.e., the fall period when soil temperatures linger around 0 °C) simulated by the updated ELMv1-ECA were greatly improved, e.g., the Mean Absolute Error in zero-curtain durations at 12 cm depth was reduced by 62 % on average. Furthermore, the simulated cold-season emissions at three tundra sites were improved by 84 % and 81 % on average for CH4 and CO2, respectively. Overall, CH4 and CO2 emitted during the early cold season (Sep. and Oct.), which often includes most of the zero-curtain period in Arctic tundra, accounted for more than 50 % of the total emissions throughout the entire cold season (Sep. to May). From 1950 to 2017, both CO2 emissions during the 12 cm depth zero-curtain period and during the entire cold season showed increasing trends, for example, of 0.26 g C m−2 year−1 and 0.38 g C m−2 year−1 at Atqasuk. This study highlights the importance of zero-curtain periods in facilitating CH4 and CO2 emissions from tundra ecosystems.

Jing Tao et al.

Interactive discussion

Status: open (until 20 Dec 2020)
Status: open (until 20 Dec 2020)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement

Jing Tao et al.

Viewed

Total article views: 205 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
145 59 1 205 17 5 8
  • HTML: 145
  • PDF: 59
  • XML: 1
  • Total: 205
  • Supplement: 17
  • BibTeX: 5
  • EndNote: 8
Views and downloads (calculated since 22 Oct 2020)
Cumulative views and downloads (calculated since 22 Oct 2020)

Viewed (geographical distribution)

Total article views: 164 (including HTML, PDF, and XML) Thereof 162 with geography defined and 2 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved

No saved metrics found.

Discussed

No discussed metrics found.
Latest update: 27 Nov 2020
Publications Copernicus
Download
Short summary
We improved global land model (ELMv1-ECA) simulations of soil temperature, zero-curtain durations, cold-season CH4 and CO2 net emissions at several Alaskan Arctic tundra sites. We demonstrated that CH4 and CO2 emitted during the zero-curtain period accounted for more than 50 % of the total emissions throughout the entire cold season (Sep. to May). We found that CO2 emissions during soil zero-curtain periods and during the entire cold season both showed increasing trends from 1950 to 2017.
We improved global land model (ELMv1-ECA) simulations of soil temperature, zero-curtain...
Citation