
S1 Drifting collar identification  

Collars deployed since 2011 were equipped with ‘activity sensors’ that are triggered following an extended period of 

inactivity. These collars were considered passively drifting if the activity sensor turned on and stayed until the end of 

transmissions. For collars deployed before 2011 had to be identified manually in two stages. 

First, GPS location data were annotated with sea ice motion vectors from NSIDC’s Polar Pathfinder Daily 25 km 

EASE-Grid Sea Ice Motion Vectors, Version 3 (http://nsidc.org/data/nsidc-0116). Daily drift estimates were 

spatiotemporally interpolated to match the location and time of GPS fixes - it was assumed that the ice motion data 

reflected average drift at noon of each day. For all 4 h GPS fixes, voluntary bear movement was estimated by 

subtracting the component of ice drift from the GPS displacement. This estimate of voluntary movement was plotted 

against time for each collar. Collars were suspected to be drifting if there was a sudden and sustained drop in movement 

speed (e.g., Figure S1 versus Figure S2). To confirm that the collars are indeed drifting, the displacement of these 

suspect collars had to be confirmed to reflect the actual sea ice drift.  

 

Figure S1. Example of estimated voluntary movement (step length in m s-1) over time of a collar that is on a living bear. 

http://nsidc.org/data/nsidc-0116


 

Figure S2. Example of estimated voluntary movement (step length in m s-1) over time of a suspect passive collar. 

Actual sea ice drift was derived from NASA’s Earth Observing System Data and Information System (EOSDIS) 

satellite imagery (https://earthdata.nasa.gov/about). First, the projection and scale of EOSDIS and collar locations had 

to be matched. EOSDIS Worldview web interface (https://worldview.earthdata.nasa.gov/) projection was set to 

“Arctic” (WGS 84 / NSIDC Sea Ice Polar Stereographic North projection; EPSG: 3413), rotated -69°, and was 

maximally zoomed in. Collar locations were plotted in QGIS Version 2.16.3, the projection was matched to EOSDIS 

(EPSG: 3413) and scaled in QGIS to 1:480,000 (though the realized scale was ~ 1:1,330,000 on the 13.3 inch computer 

at a 2560 × 1600 resolution).  

Next, sea ice drift was estimated at a subset of locations for each suspected drifting collar using the following 

procedure. First, the view in QGIS was centred on GPS locations of a probably drifting collar where ice drift would 

be approximated and the view in EOSDIS Worldview was matched. Second, we identified periods where the satellite 

imagery was relatively unobscured by clouds for at least two days and visually tracking ice floes would be possible. 

Third, a collar location representing the first location of a displacement vector (hereafter, first-day collar location) was 

marked using the screen annotation software AnnotatePro (http://www.annotatepro.com/). Fourth, we identified 

unique sea ice features that could be tracked over both days. Unique ice features were mainly distinctive edges and 

corners of ice floes and fractures. Fifth, using AnnotatePro, we marked where an ice floe was on the day of the collar 

location (hereafter, first-day ice location) and another point was marked where that same ice floe was on the following 

day (hereafter, second-day ice location). Sixth, both marks were selected using selection tool in AnnotatePro and 

moved such that the first-day ice location overlapped the first-day collar location. The second-day ice location 

represented where the collar would be located on the following day had the bear not moved. If the collar location was 

on an identified ice floe, only that floe was tracked. If the collar location was not on an identified floe, up to five 

https://worldview.earthdata.nasa.gov/
http://www.annotatepro.com/


additional floes around the collar location were identified and marked to attain an approximation of drift at the collar 

location. Seventh, the distance between second-day ice location and the second-day collar location was calculated 

using the ‘measure line’ tool in QGIS. If several ice floes were marked and tracked, then the distance was measured 

from the second-day collar location to the approximate centre of all the second-day ice floe locations. At the operating 

scale being used, sea ice drift was relatively uniform and there was very high consistency in drift among ice floes.  

Collars were assumed to be passively drifting collars if the mean of at least four consecutive distance estimates 

(hereafter, distance estimate) was < 2 km (hereafter, distance threshold). At the maximum resolution permitted in 

EOSDIS, the 2 km distance threshold corresponded to ~ 1.5 mm on screen. If the distance estimate was greater than 

the distance threshold, the collar was assumed to be on a live bear and not a drifting collar. 

The EOSDIS imagery used was taken during daylight hours, so sea ice drift was estimated (as much as possible) for 

collar locations at 17:00 and 21:00 UTC, generally corresponding to midday in Hudson Bay. For each suspect drifting 

collar, sea ice drift was first estimated for the last days of collar locations; if the distance estimate was greater than the 

distance threshold (i.e. indicating a live bear), all prior locations must also have been on a live bear. If the distance 

estimates were less than the distance threshold the collar was assumed to be drifting, then drift was estimated 

iteratively ~ 30 d into the past until the distance estimate indicated a live bear. Next, from the last date assumed to be 

drifting, sea ice drift was estimated iteratively ~ 7 d into the past until the mean distance estimate indicated a live bear. 

Finally, from the last drifting collar date, I examined prior days sequentially until the distance estimate indicated a 

live bear. The following day was determined to be the date when the collar either dropped off the bear or the bear 

died.  

For certain days, ice drift estimation was either very poor or not possible. Confounding factors included: heavy cloud 

cover, blurry satellite imagery, small floes that were indistinguishable and not trackable (particularly common during 

freeze-up and break-up), consolidated ice with no trackable features, or days with extreme fracturing of ice floes 

beyond recognition. For these periods, certain modifications to the described protocols were permitted. For example, 

if cloud-free days were separated by up to two clouded days and sea ice drift could be estimated across that period, 

this was permitted. If many of the drift estimates were poor, researcher discrepancy was permitted to increase the 

drifting collar threshold from 2 km. During periods with extensively poor ice drift estimation, if four sequential drift 

estimates spanned beyond a week, it was permitted to average fewer than four estimates.  

S2 Drifting collar validation 

To lend additional support that manually identified collars were indeed not on active bears, we compared metrics of 

speed, direction, and u/v component accuracy calculated for manually identified collars, activity sensor identified 

collars, and active collars. First, we subset the active collars to a 24 h resolution by filtering only fixes obtained at 

13:00 UTC. Second, calculated the displacement vectors (speed, direction, and u/v components; calculated in the 

EASE-Grid North projection, EPSG: 3408) between successive days, then we filtered any vectors representing 

displacement over > 24 h. Third, we subset the active collar vector data to the same number of locations as the drifting 

collars (n = 1677) and only in the years (2005, 2008-2010, and 2013-2015) and months (December-June). These data 

were then compared to drifting collars identified manually and using the activity sensor.  



The metrics of comparison were speed accuracy (𝑆𝑝𝑒𝑒𝑑𝑁𝑆𝐼𝐷𝐶 − 𝑆𝑝𝑒𝑒𝑑𝑐𝑜𝑙𝑙𝑎𝑟; Figure S3 (a)), direction accuracy 

(𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑁𝑆𝐼𝐷𝐶 − 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑐𝑜𝑙𝑙𝑎𝑟 ; Figure S3 (b)). We also tested the correlation in speed, direction, u component, 

and v component between NSIDC drift estimates and collar displacement vectors (Figure S3 C and Figure S4). For 

speed, we calculated the Pearson’s correlation coefficient (Figure S3 (c)). For direction, we calculated the circular 

Pearson’s correlation coefficient (± 95% CI) using the ‘cor.circular’ function in the ‘circular’ package in R. We used 

bootstrapping with 1000 replicates to calculate 95% CI for this circular correlation (Figure S3 (c)). As an additional 

metric of directional accuracy, we estimated the concentration parameter (kappa ± 95% CI) on the difference between 

NSIDC drift and collar displacement vectors (Figure S3 (c)). Last, we fit a GLMMPQL (family: Gaussian) with the 

NSIDC drift u and v components as functions of u and v components of active, manually identified, and activity sensor 

identified collars (Figure S4).  

There were no significant differences between manually identified drifting collars (n = 13) and collars identified using 

activity sensor (n = 7) in accuracy metrics of speed, directional, or u and v components. However, both manually and 

activity sensor identified collars were consistently significantly different from collars on active bears with regard to 

the same accuracy metrics (Figure S3 and Figure S4). All results exhibit a significantly weaker relationship between 

NSIDC drift and displacement of active collars compared to either passively drifting collars.  

The motion for six manually identified collars is depicted in the supplement video (http://doi.org/10.5446/45186). 

This video depicts the large degree of concurrence of drift vectors across large spatial extent, and further lends 

evidence that the manually identified collars are in fact passively drifting. 

http://doi.org/10.5446/45186


 

Figure S3. Comparison of speed and direction metrics of collars believed to be on active bears (red), manually identified 

drifting collars (dark blue), and ‘activitysensor’ identified drifting collars (light blue). Metrics presented are density plot of 

the difference in speed, (𝑺𝒑𝒆𝒆𝒅𝑵𝑺𝑰𝑫𝑪 − 𝑺𝒑𝒆𝒆𝒅𝒄𝒐𝒍𝒍𝒂𝒓; A), density plot of difference in direction (𝑫𝒊𝒓𝒆𝒄𝒕𝒊𝒐𝒏𝑵𝑺𝑰𝑫𝑪 −
𝑫𝒊𝒓𝒆𝒄𝒕𝒊𝒐𝒏𝒄𝒐𝒍𝒍𝒂𝒓; B), Pearson’s correlation coefficients of speed (𝑺𝒑𝒆𝒆𝒅𝑵𝑺𝑰𝑫𝑪 ~ 𝑺𝒑𝒆𝒆𝒅𝒄𝒐𝒍𝒍𝒂𝒓; C, left) and direction 

(𝑫𝒊𝒓𝒆𝒄𝒕𝒊𝒐𝒏𝑵𝑺𝑰𝑫𝑪 ~ 𝑫𝒊𝒓𝒆𝒄𝒕𝒊𝒐𝒏𝒄𝒐𝒍𝒍𝒂𝒓; C, middle), and estimated of angular concentration (kappa) in the difference in 

direction (C, right). Error bars in C represent 95% CI of the mean. 



 

Figure S4. GLMMPQL regression of the u (A) and v (B) components of NSIDC drift vector versus collar drift among collars 

believed to be on active bears (red), manually identified drifting collars (dark blue), and ‘activity sensor’ identified drifting 

collars (light blue). Black lines represent a 1:1 relationship between NSIDC and collar drift components; Shaded areas 

representing 95% CI of the mean. 


