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Brief communication: Spatial and temporal variations in surface 1 

snow chemistry along a traverse from coastal East Antarctica to the 2 

ice sheet summit (Dome A) 3 
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Abstract 15 

To better understand snow chemistry in different environments across the Antarctic ice sheet, we 16 

investigated snow ions on a traverse from coast to Dome A. Results show that the non-sea-salt (nss) 17 

fractions of K
+
, Mg

2+
, and Ca

2+
 are mainly from terrestrial particle mass, and nssCl

-
 is associated with 18 

HCl. Spatially, the proportions of non-sea-salt fractions of ions to the totals are higher in the interior 19 

areas than on the coast, and seasonally, the proportions are higher in summer than in winter. Negative 20 

nssSO4
2-

 on the coast indicates sea salts from the sea ice, and marine biogenic emissions dominate 21 

snow SO4
2-

 in interior areas throughout the year. 22 

  23 
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1 Introduction 24 

Snow chemistry has been broadly investigated along traverses during the International 25 

Trans-Antarctic Scientific Expedition (ITASE), e.g., DDU to Dome C, coast-interior traverse in Terre 26 

Adelie, Syowa to Dome F, Terra Nova Bay to Dome C, 1990 ITASE, and US ITASE in West Antarctica 27 

(Legrand and Delmas, 1985; Qin et al., 1992; Mulvaney and Wolff, 1994; Proposito et al., 2002; 28 

Suzuki et al., 2002; Dixon et al., 2013), and Bertler et al. (2005) has comprehensively summarized the 29 

glaciochemical data across the ice sheet, most of which are for surface snow. Among the major ions, 30 

sea salt related ions (e.g., Na
+ 

and Cl
-
), in general, are the most abundant species, and typically exhibit 31 

a clear spatial trend, with concentrations falling off sharply with distance from the coast. 32 

Temporally, with varied sources and lifetimes, ions in snow often exhibit different seasonal 33 

variations, e.g., sea salt related ions show high concentrations in winter, while elevated concentrations 34 

of SO4
2-

 and NO3
-
 are frequently observed in summer (Neubauer and Heumann, 1988; Gragnani et al., 35 

1998; Traversi et al., 2004; Shi et al., 2015). On annual to decadal time scales, ion concentrations in 36 

snow and ice tend to be associated with changes in transport from year to year (Severi et al., 2009; 37 

Weller et al., 2011), and thus large scale atmospheric and oceanic circulation in the Southern 38 

Hemisphere could potentially influence variations snow and ice chemistry (Russell and McGregor, 39 

2010; Weller et al., 2011; Mayewski et al., 2017).  40 

Although investigations of snow chemistry have been carried out along several overland traverses, 41 

the investigation of snow chemistry under different environmental conditions and over time is needed, 42 

given that the Antarctic ice sheet itself, and precipitation and deposition patterns and trends are 43 

changing. The China inland Antarctic traverse from coastal Zhongshan Station to the ice sheet summit 44 

(Dome A) covers a range of environments (~1250 km), e.g., high snow accumulation rate is present on 45 

the coast and in some interior areas, and low accumulation rate is observed on the Dome A plateau. 46 

Several investigations have been carried out to determine the concentrations of a few ionic species and 47 

trace elements on the traverse (e.g., Li et al., 2016; Du et al., 2019), but limited snow chemistry data 48 

were previously available. Therefore, we used surface snow and snow pit samples collected during five 49 

China inland Antarctic scientific expedition campaigns, to determine the spatial and temporal variations 50 

in a comprehensive set of ions (Na
+
, NH4

+
, K

+
, Mg

2+
, Ca

2+
, Cl

-
, NO3

-
, and SO4

2-
) and their controlling 51 

factors. 52 

 53 

2 Methods 54 

2.1 Sample collection 55 

Snow samples were collected along the traverse from the coast to the ice sheet summit during five 56 

Chinese National Antarctic Research Expedition (CHINARE) campaigns (Fig. S1). In 57 

January-February in the years 1999, 2011, 2013, 2015, and 2016, 107, 120, 125, 117, and 125 surface 58 

snow samples were collected on the traverse, respectively. In total, 594 snow samples were collected 59 

during the five seasons. For the snow sampling protocols refer to Shi et al. (2018). It is noted that the 60 

surface ~3 cm snow represents different lengths of time at different locations, considering the wide 61 

range of snow accumulation rates on the traverse (Fig. 1(a)). At locations with high snow accumulation 62 

rate on the coast, the upper 3 cm of snow may represent deposition from a few weeks or a single 63 

snowfall, while the surface 3 cm of snow could represent deposition over a few months on Dome A 64 

plateau. Still, the information contained in the surface snow generally indicates summertime conditions, 65 

as the sampling took place during late January and February in each season. 66 

In addition to surface snow, snow pits were sampled in three representative areas on the traverse: P1, 67 
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located on the coast (76.49 
o
E, 69.79 

o
S; 46 km from the coast), was sampled in December 2015; P2, 68 

located in the interior area (77.03 
o
E, 76.42 

o
S; 800 km from the coast), was sampled in January 2016; 69 

and P3, located on the Dome A plateau (77.11 
o
E, 80.42 

o
S; 1256 km from the coast), was sampled in 70 

January 2010. Sites P1 and P2 are characterized with high snow accumulation rate (>100 kg m
-2

 a
-1

), 71 

while snow accumulation rate at P3 is ~25 kg m
-2

 a
-1

. The depths of P1, P2, and P3 are 180, 100, and 72 

150 cm, respectively, with the respective sampling resolution of 5, 3, and 1 cm. Details on the snow pit 73 

sampling are described in Shi et al. (2015). All snow samples were transported and stored under 74 

freezing conditions (~-20 
o
C). 75 

 76 

2.2 Sample analysis 77 

In the class 100 room, about 5 ml of the melted sample was transferred to the pre-cleaned 8-ml ion 78 

chromatography (IC) autosampler vials, and then the lid was tightly screwed on to the vials. The 79 

samples were analyzed by an ICS-3000 IC system (Dionex, USA) for the concentrations of ions (Na
+
, 80 

NH4
+
, K

+
, Mg

2+
, Ca

2+
, Cl

-
, NO3

-
,
 
and SO4

2-
) in a class 1000 clean room. More details on ion 81 

determination are described in Shi et al. (2012). During sample analysis, replicate determinations (n = 5) 82 

were performed, and one relative standard deviation (1σ) for all eight ions was generally <5 %. 83 

In Antarctic snow, previous observations suggested that concentrations of H
+
 can be reasonably 84 

deduced from the ion-balance disequilibrium (Legrand and Delmas, 1985; Legrand, 1987): 85 

[H
+
] = [SO4

2-
] + [NO3

-
] + [Cl

-
] - [Na

+
] - [NH4

+
] - [K

+
] - [Mg

2+
] - [Ca

2+
] Eq. (1), 86 

where ion concentrations are in µeq L
-1

. In addition, the non-sea-salt fractions of ions (nssX), including 87 

nssCl
-
, nssSO4

2-
, nssK

+
, nssMg

2+
, and nssCa

2+
, can be calculated from the following expression, 88 

[nssX] = [X]snow - ([X]/[Na
+
])seawater× [Na

+
]snow Eq. (2), 89 

where [X] is the concentration of ion X, and [X]/[Na
+
] ratios in seawater are 1.17 (Cl

-
), 0.12 (SO4

2-
), 90 

0.022 (K
+
), 0.23 (Mg

2+
) and 0.044 (Ca

2+
) (in µeq L

-1
). 91 

 92 

3 Results 93 

3.1 Ion variations in snow pits 94 

Clear seasonal cycles of Na
+
 and nssSO4

2-
 are present in P1 and P2, and thus the two pits can be well 95 

dated, spanning ~3 years (Fig. S2). In addition to SO4
2-

 and Na
+
, the other species also show seasonal 96 

variations, especially in P1, where elevated levels of NO3
-
 and NH4

+
 are generally present in summer, 97 

and the concentrations of Cl
-
, K

+
, Mg

2+
, and Ca

2+
 are high in winter. As for nssSO4

2-
 at P3, the very 98 

large signal at the depth of ~120 cm is most likely the fallout from the massive eruption of Pinatubo in 99 

1991 (Fig. S2), based upon previous observations at Dome A (e.g., Hou et al., 2007). It is noted that 100 

only elevated SO4
2-

 concentrations are present during this period, possibly suggesting that Pinatubo 101 

volcanic emissions contribute less to the ion budgets other than SO4
2-

 at Dome A. 102 

In terms of the non-sea-salt fractions, nssCl
-
 is lower at P1 (0.25±0.28 µeq L

-1
) than at the inland 103 

sites P2 and P3 (0.42±0.18 and 0.58±0.34 µeq L
-1

, respectively), while the concentrations of nssK
+
, 104 

nssMg
2+

, and nssCa
2+

 generally show a similar spatial pattern. In general, nssCl
-
, nssK

+
, nssMg

2+
, and 105 

nssCa
2+

 in snow pits do not show clear seasonal cycles. 106 

 107 

3.2 Ion concentrations in surface snow 108 

Concentrations of ions in surface snow are shown in Fig. 1, and the values generally fall within the 109 

reported ranges of the ITASE program sampling (Bertler et al., 2005). Spatially, Cl
-
, Na

+
, K

+
, and Mg

2+
 110 

show very high concentrations within the narrow coastal region, and decrease sharply further inland, 111 
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with minimum values on the Dome A plateau (>~1000 km from the coast). It is noted that some 112 

samples on the coast also show elevated Ca
2+

 concentrations. The high ion concentrations near the 113 

coast may be associated with the strong marine air mass intrusions (Hara et al., 2014). NO3
-
 shows an 114 

opposite spatial trend, with increasing values towards inland. As for SO4
2-

 (and nssSO4
2-

), NH4
+
, and 115 

Ca
2+

, no clear spatial trend was found. 116 

Among the chemical ions in surface snow, the most abundant species is H
+
, accounting for 30-40 % 117 

of the total ions, followed by NO3
-
, SO4

2-
, and Cl

-
. In general, NH4

+
, K

+
, Mg

2+
, and Ca

2+ 
are the smallest 118 

component of the ionic composition, with the four cation summing to (6.0±3.4) % of the total (Fig. S3). 119 

 120 

4 Discussions 121 

4.1 Non-sea-salt fractions of ions in surface snow 122 

Correlation plots of ions versus Na
+
 in surface snow are shown in Fig. 2. On the coast, most of the 123 

Cl
-
/Na

+
 data are distributed close to the seawater dilution line (Fig. 2(a)), while most of the plots in the 124 

interior areas are above the seawater line, suggesting an enrichment of Cl
-
. nssCl

-
 accounted for 125 

(39±24) % of Cl
- 
on the traverse, with higher values in the interior areas. The elevated fractions of 126 

nssCl
-
 are likely associated with the ‘secondary’ HCl which is produced by the reactions between sea 127 

salts and acids (e.g., HNO3 and H2SO4) (Finlayson-Pitts, 2003). 128 

Mg
2+

 is irreversibly deposited into the snow, and the fraction of nssMg
2+

, on average, represents 129 

(44±19) % of Mg
2+

 in snow, with lower (higher) values on the coast (plateau) (Fig. 2(d)). The 130 

enrichment of Mg
2+

 has not been observed in sea salt particles produced by bubble bursting (Keene et 131 

al., 2007), and thus enriched Mg
2+

 in the snow is unlikely associated with sea salt spray. In the 132 

atmosphere, sea salt aerosols can be modified at low temperatures via the formation of mirabilite, thus 133 

leading to an elevated ratio of Mg
2+

/Na
+
 if mirabilite precipitates from the aerosols. However, the 134 

solid-liquid separation of mirabilite in the aerosol droplet was not observed in the experiments 135 

(Wagenbach et al., 1998). Thus, the enrichment of Mg
2+

 in surface snow is unlikely associated with sea 136 

salt fractionation. Although it is proposed that Mg
2+

 separation in sea salts can occur in surface snow 137 

due to the re-freezing process on surface snow (i.e., the quasi-liquid layers on the crystal surface can 138 

act like seawater freezing; Hara et al., 2014), our measurement of Mg
2+

 in bulk snow is unlikely to 139 

support this process responsible for Mg
2+

 enrichment. A previous observation conducted near this 140 

traverse showed a moderate correlation of Mg
2+ 

with element Al in the surface snowpack (r=0.53, 141 

p<0.05), indicating a contribution of continental dust (Khodzher et al., 2014). Thus, the most plausible 142 

interpretation of nssMg
2+

 is the contribution of terrestrial aerosols. Similar to Mg
2+

, most of K
+
/Na

+
 143 

data points are close to the seawater dilution line on the coast, suggesting a primary contribution of sea 144 

salt spray (Fig. 2(c)). Enriched K
+
 is ubiquitous in interior areas, possibly associated with mineral 145 

transport, and combustion emissions in the Southern Hemisphere (Virkkula et al., 2006; Hara et al., 146 

2013). Note that all sampling sites are at least several tens of kilometers away from the coast, the 147 

contribution of biological activity to snow K
+
 would be rather minor (Rankin and Wolff, 2000). A lack 148 

of correlation between K
+
 (or nssK

+
) and refractory black carbon (rBC, unpublished data; Fig. S4), 149 

which mainly represent the biomass burning emissions in the Southern Hemisphere (Sigl et al., 2016), 150 

suggests that K
+
 in surface snow is unlikely dominated by biomass burning emissions. 151 

The fraction of nssCa
2+

, on average, accounts for (73±26) % of total Ca
2+

 in surface snow, with 152 

high percentages in the interior areas. In Antarctica, snow nssCa
2+

 was thought to be mainly associated 153 

with terrestrial inputs, possibly from both South America and Australia (Bertler et al., 2005; Wolff et al., 154 

2010; Du et al., 2018). nssSO4
2-

 represents (94±5) % of total SO4
2-

 in surface snow, with lower (higher) 155 
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proportions on the coast (plateau) (Fig. 2(b)), suggesting a dominant role of marine bioactivities. 156 

Different from the coarse sea salt aerosols, nssSO4
2-

 originating from marine biogenic production of 157 

DMS can form fine aerosol particles in the atmosphere (Legrand et al., 2017a), resulting in long 158 

atmospheric residence time (>10 days to weeks) and consequently efficient transport (Bondietti and 159 

Papastefanou, 1993; Hara et al., 2014). This can help explain the elevated deposition flux of nssSO4
2-

 160 

frequently found at inland Antarctic sites, e.g., site P2 (discussed below). 161 

 162 

4.2 Non-sea-salt fractions and fluxes of ions in snow pits 163 

At P1, the slope values of the linear regression between Na
+
 and the four ions are close to those of 164 

seawater (Fig. 3), suggesting a dominant source of sea salt aerosols. The proportions of the non-sea-salt 165 

fractions of K
+
, Mg

2+
, and Ca

2+ 
to the ions in snow are much lower in winter than in summer, as a result 166 

of the high sea salt inputs in winter. Negative nssCl
-
 is present in summer snow, indicating the 167 

modification to sea salts (i.e., formation of mirabilite in the atmosphere) in summer when the acid 168 

levels (e.g., HNO3) are relatively high (Savarino et al., 2007). Some winter snow samples featured 169 

negative nssSO4
2-

, i.e., SO4
2-

/Na
+
 ratio below the value of seawater (Fig. S2), suggesting sea salt 170 

aerosols originating from the sea ice (Marion et al., 1999). In the winter snow, if all SO4
2-

 is from sea 171 

salt aerosols, nssSO4
2-

 is expected to be lower than or close to zero. However, 13 out of the 17 samples 172 

classified as winter snow at P1 were characterized with positive nssSO4
2-

, suggesting a significant 173 

contribution from marine biogenic emissions. It is interesting that nssSO4
2- 

has a strong negative 174 

correlation with Na
+
 in winter (r=0.82, p<0.001), raising two potential cases: 1) stronger winds 175 

transport more sea salt aerosols to P1 featured with depleted SO4
2- 

from sea ice, thereby resulting in 176 

low concentrations of nssSO4
2-

 and assuming a stable SO4
2- 

input flux from marine biogenic emissions; 177 

and/or 2) with a larger extent of sea ice and strong transport, a large sea salt flux would still result but 178 

carry less nssSO4
2-

 from marine biogenic emissions due to the longer transport distance (Wolff et al., 179 

2006 and references therein). If case 2) dominated nssSO4
2-

 variations in the winter snow, lower 180 

nssSO4
2-

 would be expected in the end than at the beginning of winter when a sea ice coverage 181 

minimum is present. The observation at P1, however, does not support this expected seasonal trend 182 

(Fig. S2). It is most likely, then, that sea salt aerosol inputs dominate nssSO4
2- 

variations in the winter 183 

snow instead of the marine biogenic emissions. 184 

The patterns of relationships between ions and Na
+ 

at P2 are similar to those of P1 except for Ca
2+ 

185 

(Fig. 3). Non-sea-salt fractions of Ca
2+ 

account for (79±9) % of the total, suggesting a dominant role of 186 

the terrestrial source. It is noted that Ca
2+

 remains relatively constant with increasing Na
+ 

(Fig. 3), 187 

possibly suggesting insignificant seasonal variations in terrestrial dust inputs. The fractions of nssSO4
2-

 188 

to SO4
2-

 in summer and winter snow are (94±4) and (88±4) %, respectively, suggesting a dominant role 189 

of marine biogenic emissions, different from that at P1. Previous investigations proposed that sea salt 190 

aerosols emitted from sea ice are an important contribution to the sea salt budget in central Antarctica 191 

in winter (Legrand et al., 2016; Legrand et al., 2017b). Here, the high nssSO4
2- 

concentrations indicate 192 

that marine emissions could also be an important source of ions in winter. 193 

At P3, Cl
-
, K

+
,
 
and Mg

2+
 are also correlated well with Na

+ 
(Fig. 3). The non-sea-salt fractions of Cl

-
 194 

make up (38±24) % of the total, similar to that at P2, indicating the importance of HCl deposition, and 195 

consequently results in Cl
-
 not being a quantitative indicator of sea salts in the interior areas. nssSO4

2-
 196 

at P3 accounts for (95±2) % of SO4
2-

. Together with the observations at P2, it can be inferred that SO4
2-

 197 

in the interior areas is dominated by marine biogenic emissions throughout the year, generally in line 198 

with the observation at Dome C (Udisti et al., 2012). 199 
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Ion fluxes in the 3 snow pits can be determined by multiplying the concentrations by snow 200 

accumulation rate, and the highest fluxes of ions except for NO3
-
 were generally present at P1, followed 201 

by P2 and P3 (Fig. S5). It is noted that nssSO4
2-

 fluxes at P1 (99.4±46.7 µeq m
-2

 a
-1

) and P2 202 

(109.2±21.6 µeq m
-2

 a
-1

) are comparable, although P1 is located on the coast and P2 located further 203 

inland (~800 km from the coast). In addition, the ratio of nssSO4
2-

 flux
 
at P1 over that at P3 is 2.2, the 204 

lowest among the ratios for the observed ions (17.2, 7.5, 26.7, 8.5, 17.4, 17.0, and 10.0 for Cl
-
, NO3

-
, 205 

Na
+
, NH4

+
, K

+
, Mg

2+
, and Ca

2+
, respectively), suggesting more efficient transport of nssSO4

2-
. In other 206 

words, atmospheric nssSO4
2-

 from the open ocean can be efficiently transported to at least as far inland 207 

as ~800 km from the coast (~2800 m above sea level; site P2). 208 

 209 

5 Conclusions 210 

Snow chemistry on a traverse from coastal Zhongshan Station to Dome A was investigated. It is 211 

shown that the non-sea-salt fractions of K
+
, Mg

2+
, and Ca

2+
 are mainly associated with terrestrial 212 

particle mass, while nssCl
-
 is linked to the deposition of HCl. Spatially, the proportions of non-sea-salt 213 

fractions of ions to the totals are higher in the interior areas than on the coast, and seasonally, the 214 

proportions are generally higher in summer than in winter, due to the high sea salt inputs during 215 

wintertime. Negative nssSO4
2- 

observed on the coast indicates sea salts mainly originating from the sea 216 

ice in winter, while positive nssSO4
2- 

is present throughout the year in the interior areas, suggesting the 217 

dominated role of marine biogenic emissions. The nssSO4
2-

 can be transported efficiently to at least as 218 

far inland as the ~2800 m contour line. 219 

 220 

Data availability. This dataset, chemical data on ion concentrations in snow on the traverse from coast 221 

(Zhongshan Station) to Dome A, is in the process of being hosted on a public server by the Chinese 222 

National Arctic and Antarctic Data Center (https://www.chinare.org.cn/). 223 
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Figure 1. Annual snow accumulation rate, elevation (a) and ion concentrations in surface snow 368 

collected during five seasons (b-i). Annual snow accumulation rate is obtained from field bamboo stick 369 

measurements, updated to 2016 from Ding et al. (2011). The closed diamond, open circle, closed 370 

triangle, cross and closed circle denote ion concentrations in the years 1999, 2011, 2013, 2015, and 371 

2016, respectively. Note that a base-10 log scale is used for the y-axis of Cl
-
 (b), Na

+
 (e), and Mg

2+
 (h). 372 

 373 

Figure 2. Correlation plots of Cl
-
, SO4

2-
, K

+
, Mg

2+
, Ca

2+
, and NO3

-
 versus Na

+
 in surface snow. The 374 

black solid line represents the seawater dilution line, with slopes of typical ions versus Na
+
 ratios in 375 

seawater (in µeq L
-1

). The concentration of NO3
-
 in seawater is too variable among the seas, and a 376 

representative ratio of NO3
-
/Na

+
 cannot be presented. Note that a base-10 log scale is used for ion 377 

concentrations. 378 

  379 
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 380 

 381 

Figure 3. Relationships between Na
+
 and Cl

-
, K

+
, Mg

2+
, Ca

2+
 in the three snow pits (P1, P2, and P3). 382 

Also shown are the linear regressions between them (dashed line), with all of the linear correlation 383 

significant at p<0.001 except Ca
2+

/Na
+
 at P3. The black solid line represents seawater dilution line. 384 

Note that the data of the bottom ~30 cm layer of P3 was excluded in the plots, since it represents a 385 

snow layer clearly impacted by volcanic (Pinatubo) eruption emissions. 386 
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