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Abstract

To better understand snow chemistry in different environments across the Antarctic ice sheet, we

investigated snow ions on a traverse from coast to Dome A. Results show that the non-sea-salt (nss)

fractions of K*, Mg”", and Ca*" are mainly from terrestrial particle mass, and nssCl” is associated with

HCI. Spatially, the proportions of non-sea-salt fractions of ions to the totals are higher in the interior

areas than on the coast, and seasonally, the proportions are higher in summer than in winter. Negative

2- . . . . . . P .
nssSO,~ on the coast indicates sea salts from the sea ice, and marine biogenic emissions dominate

snow SO,* in interior areas throughout the ©our Thereisadarge variability-in-cnvironmental-conditions
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1 Introduction

Snow chemistry has been broadly investigated along traverses during the International
Trans-Antarctic Scientific Expedition (ITASE), e.g., DDU to Dome C, coast-interior traverse in Terre
Adelie, Syowa to Dome F, Terra Nova Bay to Dome C, 1990 ITASE, and US ITASE in West Antarctica
(Legrand and Delmas, 1985; Qin et al., 1992; Mulvaney and Wolff, 1994; Proposito et al., 2002;
Suzuki et al., 2002; Dixon et al., 2013), and Bertler et al. (2005) has comprehensively summarized the
glaciochemical data across the ice sheet, most of which are for surface snow. Among the major ions,

sea salt related ions (e.g., Na"and CI'), in general, are the most abundant species, and typically exhibit

a clear spatial trend, with concentrations falling off sharply with distance from the coast.-Aetdietons

Temporally, Wwith varied sources and lifetimes, ions in snow often exhibit different seasonal
variations, e.g., sea salt related ions show high concentrations in winter, while elevated concentrations
of SO, and NO5 are frequently observed in summer (Neubauer and Heumann, 1988; Gragnani et al.,
1998; Traversi et al., 2004; Shi et al., 2015). Indeed;-these-ions-are-frequently-takenas-seasonal-markers
forsnow-pitandiee—core-dating—On annual to decadal time scales, ion concentrations in snow and ice

tend to be associated with changes in transport from year to year (Severi et al., 2009; Weller et al.,

2011), and thus large scale atmospheric and oceanic circulation in the Southern Hemisphere;-sueh-as

outhern-AnnularMode AM outhern—Oscillation(SO)-and-Southern Indian-Ocean Dipole

S10By; could potentially influence variations in—tens——ieesnow and ice chemistry (Russell and
McGregor, 2010; Weller et al., 2011; Mayewski et al., 2017).ta-addition,—sea—iee—coveragearound

)
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Although investigations of snow chemistry have been carried out along several overland traverses,

the investigation of snow chemistry under different environmental conditions and over time is needed,
given that the Antarctic ice sheet itself, and precipitation and deposition patterns and trends are
changing. The China inland Antarctic traverse from coastal Zhongshan Station to the ice sheet summit
(Dome A) covers a range of environments (~1250 km), e.g., high snow accumulation rate is present on

the coast and in some interior areas, and low accumulation rate is observed on the Dome A plateau;-ané

different-envirenments—. Several investigations have been carried out to determine the concentrations
and-spatial-patterns of a few ionic species and trace elements on the traverse (e.g., Li et al., 2016; Du et

al., 2019), but limited snow chemistry data were previously available. Additionally—the—interannual

Therefore, we used surface snow and snow pit samples collected during five China inland Antarctic

scientific expedition campaigns, to determine the spatial and temporal variations in a comprehensive

2 Methods
2.1 Sample collection

Snow samples were collected along the traverse from the coast to the ice sheet summit during five
Chinese National Antarctic Research Expedition (CHINARE) campaigns (Fig. S1). InJanuary1999;

2 not-extend-toDemeA-theny—In January-and--February
in the years 1999, 2011, 2013, 2015, and 2016, 107, 120, 125, 117, and 125 surface snow samples were

collected on the traverse, respectively. In total, 594 snow samples were collected during the five

ettt hineseinland averse-coverase-did

seasons._For the snow sampling protocols refer to Shi et al. (2018). It is noted that the surface ~3 cm

snow represents different lengths of time at different locations, considering the wide range of snow
accumulation rates on the traverse (Fig. 21(a)). At locations with high snow accumulation rate on the

coast, the upper 3 cm of snow may represent deposition from a few weeks_or a single snowfall, while

the surface 3 cm of snow could represent deposition over a few months on Dome A plateau. Adseitis

—Still, the information

contained in the surface snow generally indicates summertime conditions, as the sampling took place
during late January and February in each season.—Fhis-aHews—for-an—investigation-of summer-snow
chemistry-patterns-on-the-traverse-

In addition to surface snow, snow pits were sampled in three representative areas on the traverseP+
P2 -and P3:Fig—-: P1, located on the coast (76.49 °E, 69.79 °S; 46 km from the coast), was sampled
in December 2015; P2, located in the interior area (77.03 °E, 76.42 °S; 800 km from the coast), was

| sampled in January 2016; and P3, located on the Dome A plateau (77.11 °E, 80.42 °S; 1256 km from

4
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the coast), was sampled in January 2010. Sites P1 and P2 are characterized with high snow
accumulation rate (>100 kg m™ a'), while snow accumulation rate at P3 is ~25 kg m? a™'. The depths
of P1, P2, and P3 are 180, 100, and 150 cm, respectively, with the respective sampling resolution of 5,
3, and 1 cm. Details on the snow pit sampling are described in Shi et al. (2015). Snewpitsamples-were

°Q).

2.2 Sample analysis

chemieal-measurements—In the class 100 room, about 5 ml of the melted sample was transferred to the
pre-cleaned 8-ml ion chromatography (IC) autosampler vials, and then the lid was tightly screwed on to
the vials. The samples were analyzed by an ICS-3000 IC system (Dionex, USAME for the
concentrations of ions (Na*, NH,", K", Mg*", Ca®*, CI', NOy’, and SO,*)—(Nete-that the IC was-installed
in a class 1000 clean room)-.Fhe-samples—eoHeeted—in1999vere-analyzed-byusingthe DX-500-1C

MSA)-and-petassiamhydrexide (KOH)respeetively—More details on this-methedion dete;

are described in Shi et al. (2012). During sample analysis, replicate determinations (n = 5) were

rmination

>

performed, and one relative standard deviation (1c) for all eight ions was generally <5 %.Jn-addition;

3 d-(r+—=65)and-yielded-0-0 0-0 0- 0- ~* for
CFNO, 80, 5 Na T NH, K Me™ e

In Antarctic snow, previous observations suggested that concentrations of H™ can be reasonably
deduced from the ion-balance disequilibrium;—if—the—direct—measurements—of H' —are—unavailable
(Legrand and Delmas, 1985; Legrand, 1987):—Here; H concentration-is-ealeulated-as-follows:
[H']=[SO,”] +[NO3] +[CI] - [Na'] - [NH,] - [K'] - [Mg*] - [Ca®"] Eq. (1),
where ion concentrations are in peq L. In addition, the non-sea-salt fractions of ions (nssX), including
nssCI', nssSO42', nssK”, nssMgH, and nssCaH, can be calculated from the following expression,

[n55X] = [X]snow - (IXV[NaD)seavater [NaTonow EQ. (2),
where [X] is the concentration of ion X, and [X]/[Na'] ratios in seawater are 1.17 (CI), 0.12 (SO4),
0.022 (K", 0.23 (Mg®) and 0.044 (Ca®") (in peq L').—TFhe—values—ofnssX—are—identicalto—the
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3 Results
3.1 Chemiealilon variations in snow pits

Clear seasonal cycles of Na™ and nssSO4” are present in P1 and P2, and thus the two pits can be well

dated, spanmng ~3 years (F+gs%—€a—)—fm€l—€b) ig. S2). B&sed—eﬂ—th%saew—mt—d-atmg—}t—ls—est}m&ted—that

patterns—In addltlon to SO,> and Na*, the other species also show scasonal variations, especially i
pitin P1, where elevated levels of NO; and NH," are generally present in summer-saew:, and the valses
concentrations of CI', K", Mg2+, and Ca®" are high in winter.His-neted-that-evenin-the same season;

As for nssSO4” at P3, the very large signal at the depth of ~120 cm is most likely the fallout from the
massive eruption of Pinatubo in 1991 (Fig. S2Eis—3{e}), based upon previous observations at Dome A
(e.g., Hou et al., 2007). Based-onnssSO,” signals-and-the-method-propesed-by-Cole-Dai-et-al—(1997),

Qé—yeafs—ever—DemeﬂA—Ln%efesﬁngl-y—It is noted that only elevated SO4 concentrations are present

during this period;-an

eeﬁe}a-&eﬂ—was—feuﬁd—be%eﬂ—nsssg4 a-nd—e%her—spee}es—dufmg—the—ilé—ye&fs poss1b1y suggesting that
Pinatubo volcanic emissions contribute less to the ion budgets other than SO,* at Dome A Previous
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In terms of the non-sea-salt fractions-in-snew—pits, nssCl” is lower at P1 (0.25+0.28 peq L") than at
the inland sites P2 and P3 (0.42+0.18 and 0.58+0.34 peq L™, respectively), while the concentrations of
nssK*, nssMg®*, and nssCa®" generally show a similar spatial patterns;—pessibly-due—to-thelow—snow
accumulation—rate—in—interior—areas. Differentfrom-the sea—saltjons—and-nssSO, In general, nssCl’,
nssK’, nssMg®*, and nssCa”" in—pits— P}-andP2snow pits; do not show significant—clear seasonal

patternscycles.In—the—eeastal pitPl—the nen-sea-saltfractions—aceounttor tess{<30%)-of thetotal

3.2 Ion concentrations in surface snow

Concentrations of ions in surface snow-colected-duringthefiveseasens are shown in Fig. 21, and
the ranges—mean)yof CF - NO; -SO, 5+ Na - NHy *,—K*,—Mga*,—aaérea#af%—%@ekz%,—m—r}é

I 6 AWALS 4 I
o

O—O%Oé@—é@%)—pteq—l:’*—respeeﬂvely—?hese—values generally fall within the reported ranges of the
ITASE program sampling (Bertler et al. 2005) {eﬂ—eeﬂeen&raﬁeﬂs—ar%be&h—spaﬁan-}#aﬂd—temperaﬂ-y
va g 0 S

IIAI I lll 004 l .l
o -

Mg*" show very high concentrations within the narrow coastal region, and decrease sharply further

inland, with minimum values on the Dome A plateau (>~1000 km from the coast). It is noted that some

samples on the coast also show elevated Ca®>" concentrations. The high ion concentrations near the

coast may be associated with the strong marine air mass intrusions (Hara et al., 2014). NO;” shows an

opposite spatial trend, with increasing values towards inland. As for SO,” (and nssSO,”), NH,", and

Ca”*’, no clear spatial trend was found.

Among the chemical ions in surface snow, the most abundant species is H', accounting for 30-40 %
of the total ions, followed by NO;", SO.>, and CI'. In general, NH,", K", Mg”>", and Ca*" are the smallest

component of the ionic composition, with the four cation summing to (6.0£3.4) % of the total (Fig. S3).
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4 Discussions

4.1 Non-sea-salt fractions of ions_—in surface snow

SO, K Me® and-Ca® are
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Correlation plots of ions versus Na' in surface snow are shown in Fig. 52—andtheplots—abeve

of the Cl/Na" data are dlstrlbuted close to the seawater dilution line (Fig. 22(a))—md~}ea&mg—a
quantitativesea—salttracerof snow—Cl, while most of the plots in the interior areas are above the
seawater line, suggesting an enrichment of-snew Cl'. On-this-traverse-nssCl™ accounted for an-average
of38-(39+24) % of-tetal Cl on the traverse, with lewer—thigher)-pereentages values en—the—eoast
{plateanin the interior arcas)—generallyintine-with-previeus—reports{e-g—Suzuki-et-al52002). The
elevated fractions of nssCl are likely associated with the ‘secondary’ HCI which is produced by the
reactions between sea salts and acids (e.g.. HNO; and H,SO,)Fhe-medifications—in-Cl-with-respeet-to
bullcseawater-ean-oecurvia-the-heterogeneousreactions;-as-follows (Finlayson-Pitts, 2003).
Nact+H,80 =HEHNa.SO, (RB

Different-from-Cl-Mg?" is irreversibly deposited into the snow—Mest-of the Mg™/Na"-datapoints
are-above-orcloseto—theseawaterdilution linesimilarto—that of C1'/Na" —éFJrg—Zéd))—Qﬂ—&he—eeast—

Mal A

s : 5 . and theThe fraction of nssMg on average,
represents (44:19) % of Mg®" in snow, with lower (hlgher) values on the coast (plateau) (Fig. 2(d)).

The enrichment of Mg has not been observed in sea salt particles produced by bubble bursting (Keene

et al., 2007), and thus enriched Mg®" in the snow is unlikely associated with sea salt spray. In the
atmosphere, sea salt aerosols weuld-can alse-be modified at low temperatures via the formation of
mirabilite, thus leading to an elevated ratio of Mg**/Na* if mirabilite precipitates from the aerosols.
However, the solid-liquid separation of mirabilite in the aerosol droplet was not observed in the
experiments (Wagenbach et al., 1998). Thus, the enrichment of Mg2+ in surface snow is unlikely
associated with sea salt fractionation. Although it is proposed that Mg®* separation in sea salts can
occur in surface snow due to the re-freezing process on surface snow (i.e., the quasi-liquid layers on the
crystal surface can act like seawater freezing; Hara et al., 2014), our measurement of Mg®* in bulk
snow is unlikely to support this process responsible for Mg”" enrichment. A previous observation
conducted near this traverse showed a moderate correlation of Mg®* with element Al in the surface
snowpack (7=0.53, p<0.05), indicating a contribution of continental dust (Khodzher et al., 2014). Thus,
the most plausible interpretation of enriched-nssMg” -in-surface-snow is the contribution of terrestrial

aerosols.

Similar to Mg®*, most of K’/Na" data points are close to the seawater dilution line on the coast,* ~ ~ -

9

{g%ﬁm:%ﬁ:aﬁﬁﬁ:
F

=

2 7




356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399

suggesting a primary contribution of sea salt spray (Fig. 52(c)). SkghtlyeEnriched K* sas—presentis
ubiquitous in inland-—snewinterior areas, possibly indieating—otherseurees—sueh—asassociated with

biological—aetivity—on—the—eeast; mineral transport, and combustion emissions in the Southern
Hemisphere (Virkkula et al., 2006; Hara et al., 2013). Note that the-all sampling sites are at least

several tens of kilometers away from the coast, the contribution of biological activity to snow K* would
be rather minor (Rankin and Wolff, 2000). A lack of correlation between K (or nssK") and refractory
black carbon (rBC, unpublished data; Fi

. S4), which mainly represent the biomass burning emissions

in the Southern Hemisphere (Sigl et al.. 2016), suggests that K in surface snow is unlikely dominated

by biomass burning emissions.A-previeusinvestigation-of the-atmespherie-partieles—
Peﬁﬂ*eﬂss@aa*—m—gemmﬂy—pfeseﬂ&mﬁhe—maveﬁermﬂme%eﬁmeéa#% —ehtbpottbtborethe

seawater—dilution—line—espeeially—at—inland—sites—(Fig—5(e})—The fraction of nssCa’", on average,

accounts for (73£26) % of total Ca® in surface snow, with high percentages in the interior areas;

indicating—otherdominantsources. In Antarctica, snow nssCa’" has—beenwas thought to be mainly
associated with terrestrial inputs, possibly from both South America and Australia (Bertleretal;2005:

Wolfet-al5204+0)—(Bertler et al., 2005; Wolff et al., 2010; Du et al., 2018). Previeus-modeling-studies

e-nssSO,” represents
(94+5) % of total SO,* in surface snow, with lower (higher) proportions on the coast (plateau)—) (Fig.

2(b)). Guggeetmg a dominant role of marine bioactivities. l-n—A&t—a-re&ea—nssSQ‘t —esseﬂt—}a-l-ly—eﬂ-g—m&tes

sepeantenrehrent—e b0 —suggests—a—elemmam—re}e—e#eeeaﬂ—bie&em%&es—leferent from the

coarse sea salt aerosols, nssSO4 originating from marine biogenic production of DMS can form fine

aerosol particles in the atmosphere (Legrand et al., 2017a), resulting in long atmospheric residence time

(>10 days to weeks) and consequently efficient transport (Bondietti and Papastefanou, 1993; Hara et al.,

2014). This can help explain the elevated deposition flux of nssSO4* frequently found at inland
Antarctic sites, e.g., site P2 (discussed below).—On—this—transeet—anegativerelationship—was—found
betweensnow—accumulationrate-and-SO,  —(ornssSO, )(Figs—6(e)-and—(d))suegestingthat-snow
acertulaton rate can-induenee snow SO coneentraion sossihly vinctlidon ol butoverall

10
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Fig—9)with-the slope values of the linear regression between Na* and the four ions are close to those

of seawater_(Fig. 3), suggesting a dominant source of sea salt aerosols. The proportions of the

. + 2+ 2+ . . . . .
non-sea-salt fractions of K', Mg“", and Ca” to the ions in snow are much lower in winter than in

summer, as a result of the high sea salt inputs in winter. Negative nssCJ is present in summer snow,

indicating the modification to sea salts (i.e., formation of mirabilite in the atmosphere) in summer when
the acid levels (e.g.. HNO;) are relatively high (Savarino et al., 2007). In-addition,—the—nen-sea-salt
8 £ CF K Mg —and-Ca*" 0.2540.27.0.0240.01,-0.04-0.07and—0-09+0.06peqL
respeetively—contributing less—to—the—total fonbudsets—Asfor SO, —inthe-snow,—theproportion—of
158S0,7-t0-SO, —is-much higher in-summer{(~86-%)-thanin-winter—AH nssSO,>—in summer snow-is
positive—while-sSome winter snow samples featured negative nssSO,”, i.e., SO4*/Na" ratio below the
value of seawater (Fig. 3S2¢a)), suggesting sea salt aerosols—in—winter originating from the sea ice
(Marion et al., 1999). In the winter snow, if all-efthe SO,” is from sea salt aerosols, nssSO4> is

expected to be lower than or close to zero. However, 13 out of the 17 samples classified as winter snow
at P1 were characterized with positive nssSO4”, suggesting a significant contribution from marine
biogenic emissions. It is interesting that nssSO4*~has a strong negative correlation with Na” in winter
sneow (r=0.82, p<0.001), raising two potential cases: 1) stronger winds transport more sea salt aerosols
to P1 featured with depleted SO,* from sea ice, thereby resulting in low concentrations of nssSO,* and
assuming a stable SO, input flux from marine biogenic emissions; and/or 2) with a larger extent of sea

ice and strong transport, a large sea salt flux would still result but carry less nssSO,” from marine

12
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biogenic emissions due to the longer transport distance (Wolff et al., 2006 and references therein). If
case 2) dominated nssSO,> variations in the winter snow, lower nssSO,> would be expected in the end
than at the beginning of winter when a sea ice coverage minimum is present. The observation at P1,
however, does not support this expected seasonal trend (Fig. 3aS2). It is most likely, then, that sea salt

aerosol inputs dominate nssSO,> variations in the winter snow instead of the marine biogenic

emissions. —Iﬁ—aéeh&eﬂ—NH4 eeﬂeeﬂ&a&eﬂ—a{—lll—@—}éﬂ—%—pteq—k )ﬂs—s-hghi—ly—higher—t—haﬂ—t-he—p%em&s

The patterns of relationships between ions and Na”at P2 are similar to those of P1 except for Ca>"
(Fig. 93)._—Thenon-sea-saltfractions—of CI' K —and Me™ —at P2 are 0-42+0-18.0-005+0-008 —and
0-06:0-02 peq L —respectively-accounting for Jess-of the-total ion-concentrations—nssCa™ -0-13+0.0+
peq—E"Non-sea-salt fractions of Ca’ accounts for (79+9) % of the total-Ca* —in—snew—pit—P2,
suggesting a dominant role of the terrestrial source. Differentfromtheotherspeetes;It is noted that
Ca”"— remains relatively constant with increasing Na~ (Fig. 93), possibly suggesting insignificant
seasonal variations in terrestrial dust inputs. As—fer—SQf_,—it—is—sigﬂ'}ﬁeaﬂﬂ-}#eﬂPiehed,—aﬂd—tIhe fractions
of nssSO4” to SO, in summer and winter snow are (94:4) and (88+4) %, respectively—Fhe-very-high
SO, -toNa'ratio-in-winter(—1-6—versus—0-12-of bulk seawater), suggestings that-a dominant role of
marine biogenic emissions-deminate-SO,” -otherthan-the-sea-salt-aerosels, different from that at P1. ¥

Antaretiea—than-onthe-eeast—Previous investigations proposed that sea salt aerosols emitted from sea
ice are an important contribution to the sea salt budget in central Antarctica in winter (Legrand et al.,
2016; Legrand et al., 2017b). Here, eur—datathe high nssSOf" concentrations indicate that— marine
emissions could also be an important source of ions in winter.

At P3, CI', K*, and Mg®" are also correlated well with Na* (Fig. 93);and-the-non-sea-salt-fractions-of
3 0-5820340.02+0.01and-012+0.04 eq;“;espee{wel—y—mgher—t-haﬂ—t-hese—ef—%‘ i The

suggesting—thatCl —at DomeA—is—mainly fromthe seasalt-aeresols; but— the_importance of HCI

deposition, and consequently results in Cl” not being a quantitative indicator of sea salts in the interior

In—terms—ofnssSO,” 5~ at P3the—non-sea—salt—fraetion accounts for —(95+2) % of—tetal— SO4Z‘,—;.
comparable-to-that-ef Together with the observations at P2-At+P2-andP3;, it can be inferred that SO4 :

in-beth—summer—and—wintersnaowin the interior areas —is dominated by marine biogenic emissions

throughout the year—(-es : —ebserved), generally in line with the observation at
Dome C (Udisti et al., 2012).

Ion fluxes in the 3 snow pits can be determined by multiplying the concentrations by snow

accumulation rate, and the highest fluxes of ions except for NO5” were generally present at P1, followed
by P2 and P3 (Fig. S5). It is noted that nssSOf' fluxes at P1 (99.4+46.7 ueq m™> a) and P2
(109.2421.6 peq m™ a’') are comparable, although P1 is located on the coast and P2 located further
inland (~800 km from the coast). In addition, the ratio of nssSO4> flux at P1 over that at P3 is 2.2, the
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lowest among the ratios for the observed ions (17.2, 7.5, 26.7, 8.5, 17.4, 17.0, and 10.0 for CI', NOy,
Na* NH," K, Mg*", and Ca*", respectively), suggesting more efficient transport of nssSOf. In other

words, atmospheric nssSOf' from the open ocean can be efficiently transported to at least as far inland

as ~800 km from the coast (~2800 m above sea level; site P2).

5 Conclusions

Snow chemistrySurface-snow-and-snow-pit-samples-eollected on a traverse from coastal Zhongshan
Station to the—iee—sheet—summitDome A;—East—Antaretiea;,—during—{ive—campaigns—were—tised—to
ecomprehensively was investigated-spatial-and-temporal-variations—insnow—chemistry. It is shown that

the non-sea-salt fractions of K, Mg*", and Ca*" are mainly associated with terrestrial particle mass,

while nssCl  is linked to the deposition of HCI. Spatially, the proportions of non-sea-salt fractions of

ions to the totals are higher in the interior areas than on the coast, and seasonally, the proportions are

generally higher in summer than in winter, due to the high sea salt inputs during wintertime. Negative

nssSOf observed on the coast indicates sea salts mainly originating from the sea ice in winter, while

positive nssSOf is present throughout the year in the interior areas, suggesting the dominated role of

marine biogenic emissions. The nssSO,> can be transported efficiently to at least as far inland as the

~2800 m contour line.

Data availability. This dataset, chemical data on ion concentrations in snow on the traverse from coast
(Zhongshan Station) to Dome A, is in the process of being hosted on a public server by the Chinese

National Arctic and Antarctic Data Center (https://www.chinare.org.cn/).
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Figure-2_1. Annual snow accumulation rate, elevation (a) and ion concentrations in surface snow

collected during five seasons (b-i). Annual snow accumulation rate is obtained from field bamboo stick

measurements, updated to 2016 from Ding et al. (2011). The closed diamond, open circle, closed

triangle, cross and closed circle denote ion concentrations in the years 1999, 2011, 2013, 2015, and
2016, respectively. Note that a base-10 log scale is used for the y-axis of CI" (b), Na* (¢), and Mg** (h).
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Figure 52. Correlation plots of CI, SO, K*, Mg?*, Ca*, and NO5™ versus Na® in surface snow. The
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seawater (in peq L™). The concentration of NOs in seawater is too variable among the seas, and a

representative ratio of NO;/Na” cannot be presented. Note that a base-10 log scale is used for ion

concentrations.

27



765

766
767

768
769
770

2.00

a e
L] L]

150 ° ° y=-0.0015x +0.5257
o : o © $ R=-0213,P<0.001
g
=
B
=]

g
£
o]

2

g

-0.50 ; : : :

0 50 100 150 200
Snow accumulation rate/kg m? a™!
600 1 ¢
500 o o y=-0.0025x + 1.4751
. . R =-0.183, P<0.001

»
=3
S

2 3 -1
nssSO,> in snow/peq L
oW
=3 =3
S 3

=3
S

0.00

140
120 o °®°
b ° 0.0145x +4.1961
o o y=-0.0145x +4.
10.0 - ° R = -0.342, P<0.001

1 0.0 T T T |
250 0 50 100 150 200 250
Snow accumulation rate/kg m? a’!
6.00 d
o ©
500 { o
7 ° . y=-0.0023x + 1.5269
g 400 R =-0.164, P<0.001
F
2 3.00
8
& 2.00
7]
1.00
. 0.00 T T T T !
250 0 50 100 150 200 250

Snow accumulation rate/kg m? a™!

28



771

772
773
774
775
776

0.00

Distance from coast/km 10

L
260

385
510
. 635
760
885
1010
. 1135
1260
Sea water
0.2
/e 7N
1.00 WA / \Sea/water \ 0.0
0.0 0.2 0.4 , 0.6 0.8 1.0
Na

29



1

-& W bari/suor yo xn|

777

778
779
780
781

30



782

0k Y1 357 p3
y=146x+0.19 34 y=064x+1.09
- 15 y=117x+023 -3 R 005 -
= 0.99 = o Q25
g 10 ) P d gZ g 2 4
= = =
SR S, 5151
l 4
0 .0 ‘ . 05 . ‘ :
0 5 10 15 0 1 2 3 0 1 2 3
Na* /ueq L' Na* /pueq L Na* /peq L!
4 ! 11 p3
Pl P2
y=022x+0.06 - 08 y=0.20 x +0.09 - 081 y=020x+0.15
3 2=0.98 o - R>=0.86

0.6 -
ES

Mg?" /peq L
NS

—_

0 T T T T ,
0 5 10 1 2 3
Na* /ueq L' Na* /peq L!
0.5
04 Pl y=0.02x+0.02
5 y=002x+0.04 O R=027
203 o
<02 o
M DA
@]
0 5 10 1 2 3
Na* /peq L 0.4 Na't /ueq L! B Nat /ueq L!
1 P1 . P2 0.5 7 p3 -
0.8 04 y=-0.01 x+0.18
T y=0.02x+0.17 7,03 y*g?i’ggoo'm o @ R=000
g g ‘ g 031 0
2 202 e a8’
& 4, 4 02 4 @. -0 Oy
S So. S S
01 { ¥4
.0 ‘ ‘ ‘ 0 ~ . S
0 5 10 15 0 1 2 3 0 1 2 3
Na* /pueq L' Na*/peq L Na* /peq L!

783

784 Figure 93. Relationships between Na” and CI', K*, Mg“, Ca®" in the three snow pits (P1, P2, and P3).
785 Also shown are the linear regressions between them (dashed line), with all of the linear correlation
786 significant at p<0.001 except Ca”"/Na* at P3. The black solid line represents seawater dilution line.
787 Note that the data of the bottom ~30 cm layer of P3 was excluded in the plots, since it represents a

788 snow layer clearly impacted by volcanic (Pinatubo) eruption emissions.
789
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