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Dear Dr. Essery, 
 
Thank you for your constructive comments. Based on the feedback, we have made several 
changes and improvements to the manuscript. Below we have provided a response to each of 
the comments provided. The reviewer’s original comments are in black and our responses are in 
red.  
 
Richard L.H. Essery (Referee1)’s comments: 
 
Kim et al. quantify uncertainty in estimates of snow storage by a set of operational models and 
forcing datasets. This is a topic of considerable interest, given the importance of snow storage 
for water resources and the difficulty of estimating it by remote sensing. The paper is 
interesting and generally well written; my comments focus on clarifying the methodology.  
 
119 
Why was the three-layer snow scheme in JULES, described by Best et al. (2011) and operational 
at the Met Office, not used?  
 
The reviewer is correct that currently the Met Office uses a three-layer snow scheme which was 
deployed in 2018, post the modeling setups were devised for this study.   
 
We have revised the text to clarify in lines 124-125 on page 4,  
“Note that the UKMO currently uses a three-layer scheme in JULES, which wasn’t available in 
NASA LIS at the time this study was devised.”  
 

122 
“not tuned in this study to assess current configurations” is ambiguous. I assume that “to assess 
current configurations, parameters were not tuned” is what is intended.  
 
We have revised this sentence in lines 125-126 on page 4 as:  
“In order to assess current configurations, initial model conditions and model parameters used 
in the operational set-up were not tuned in this study.”  
 
130 
State the original spatial and temporal resolutions of the forcing datasets.  
 
We have added following sentences in main manuscript and S2. 
 

1. Main manuscript (in lines 133-134 on page 5): “Original spatial and temporal resolutions 
for these datasets are described in Section S2”.  

2. Section S2.1 (in lines 107-108 on page 4 in supporting information): “MERRA2 has a 
native spatial resolution of 0.5° latitude by 0.625° longitude (roughly 50 km) and hourly 
temporal resolution.” 
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3. Section S2.2 (in lines 113-115 on page 4 in supporting information): “The GDAS model 
grids have been upgraded from roughly 80 km (since 2000), ~60 km (Oct. 2002), ~38 km 
(Jun. 2005), 27 km (Jul. 2010), to ~13 km (January 2015). The temporal resolution is 3-
hour.”  

4. Section S2.3 (in lines 119-122, on page 4 in supporting information): “In this study, the 
operational real-time data from the ECMWF-Integrated Forecast System (IFS) are used; 
the meteorological fields are provided on a 0.25-degree grid (roughly 25 km) at a 3-hour 
interval, and generated by assimilating available atmospheric observations every 12 
hours into a forecast model with surface meteorological fields (e.g., precipitation and 
radiation), which are diagnosed from the model output (Dee et al., 2011; Flemming et 
al., 2015).”  
 

132 
Doesn’t SRTM extend only to 60N? How is the downscaling achieved up to 71.875N?  
 
The reviewer is correct that SRTM extends only to 60N. We use the GTOPO30 dataset for 
regions north of 60N. We have modified the text in lines 136-139 on pages 5 as follows:  
 
“Meteorological inputs of near surface air temperature, relative humidity, surface pressure, and 
downward longwave radiation are downscaled by applying a lapse-rate and hypsometric 
adjustments using the 5 km Shuttle Radar Topography Mission (SRTM; between 60N and 60S) 
and the USGS Global 30 arc second elevation (GTOPO30; north of 60N) elevation datasets.” 
 
134 
How are relative humidity, wind and longwave radiation downscaled? I don’t think that this is 
described in Cosgrove et al. (2003).  
 
The wind fields are not adjusted for topographic differences. This was erroneously stated in the 
manuscript and we have removed it. The lapse-rate correction of near surface air temperature, 
relative humidity, surface pressure, and downward longwave radiation is described in Cosgrove 
et al. (2003). The manuscript also had the incorrect “Cosgrove et al.” reference. It has been 
corrected in line 140 on page 5 to the following: Cosgrove, B. A., et al. (2003), Real‐time and 
retrospective forcing in the North American Land Data Assimilation System (NLDAS) project, J. 
Geophys. Res., 108, 8842, doi:10.1029/2002JD003118, D22. 
 
 

137 
It is worth noting that Kumar et al. (2013) concluded that topographic adjustments to radiation 
should be included in models with resolutions finer than 16 km, but the adjustments are likely 
to be small at 5 km resolution.  
 
Thanks for pointing this out. We have added this sentence in lines 143-146 on page 5 as 
follows: 
 

https://doi.org/10.1029/2002JD003118
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“Kumar et al. (2013) demonstrated that these adjustments are particularly important for 
improving snow simulations over midlatitude domains in regions of complex topography and 
concluded that these adjustments should be included in models with resolutions finer than 16 
km, but the adjustments are likely to be small at 5 km resolution.” 
 
154 
Should this be “If the observation is more than 10% higher than the highest ensemble member, 
then the rank is set to 13”?  
 

Thanks for this correction. We’ve changed this sentence in lines 160-161 on page 5, 
“If the observation is more than 10% higher than the highest ensemble member, then the rank 
is set to 13.” 
 

161  
Conventionally, an integral would not have the “X=” in its limits. “P0 represents the 
observations occurrence” is not clear – it is a step function at the observed value.  
 

We have replaced the equation 1 and its description as follows (in lines 168-170 on page 6): 
 

“𝐶𝑅𝑃𝑆 = ∫ (𝑃𝑚 − 𝑃𝑜)2𝑑𝑥 
+∞

−∞
 , 

    
where 𝑃m represents the cumulative distribution function (CDF) of the model and 𝑃o represents 
the Heaviside step function at the observed value.”    
 

184  
To be clear, CMC includes an estimate of SWE, but only snow depth observations are used in 
the CMC analysis.  
 
We have replaced this sentence in lines 191-192 on page 6 as follows: 
 
“Despite providing an estimate of SWE, in this analysis we evaluate the CMC modeled snow 
depth fields since the CMC only uses snow depth observations in its analysis.” 
 
222  
Give some context for what can be regarded as a “low” value of CRPS.  
 
As noted in the text, CRPS can be considered analogous to mean absolute error, but for 
ensembles. It is hard to define a single value to define a “low” value of CRPS. We have modified 
the text in lines 227-228 on page 8 as follows to quantify what we mean by “low”: 
 

“Over most of the domain, including the northeast/Midwest U.S. and high plains, the CRPS 
values are low (0-100 mm), where a low (good) score indicates a small ensemble spread that 
agrees with SNODAS and UA data.”  
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243  
Some information should be given (earlier, or refer to S1) on how rain/snow partitioning 
schemes differ between the LSMs. Three of the four are identical.  
 

We have added this information in lines 248-251 on page 8 as follows: 
 
“These highly complex terrains have relatively high snowfall precipitation, and the large spread 
is partially due to different rain/snow partitioning schemes in each LSM. While Noah2.7.1, 
JULES and CLSMF-2.5 use a simple temperature threshold of 0oC to distinguish rainfall and 
snowfall precipitation, Noah-MP3.6 includes a transition temperature range described in Jordan 
(1991) (see Table S1).” 
 
We’ve also added Jordan’s (1991) scheme for the Noah-MP3.6’s precipitation partitioning 
method in the Table S1. 
 
“Snow for Tair<0. 5℃, rain for Tair>2. 5℃, 
Snowfall fraction=0.6: 2.0℃< Tair≤2.5℃, 
Linear rain/snow transition: 0.5℃< Tair≤2.0℃” 
 

284  
Raleigh et al. (2016) and Guenther et al. (2019) added uncertainty to single forcing datasets, 
rather than using multiple forcing datasets as here.  
 

We have revised this sentence in lines 297-299 on page 10 as follows: 
 
“For example, Raleigh et al. (2016) and Günther et al. (2019) showed the forcing data to be the 
primary driver of SWE uncertainty in their study, which used a single forcing dataset with added 
uncertainty and focused on a limited number of relatively small sites mostly in mountainous 
terrains.”  
 

381  
Is SWS averaged over the entire time period meaningful for comparing different snow classes, 
when it conflates the amount and duration of snow cover? How about looking at average 
annual maximum SWS?  
 

Thanks for this comment. We agree that looking at the average annual maximum SWS is 
another interesting way. However, using annual maximum SWS in this study is not ideal 
because we’re evaluating over a large spatial extent. Choosing the date of the annual maximum 
SWS is also challenging. The date of the annual maximum SWS would be different between 
snow classes and these are also different from the date of domain maximum SWS.      
 

456  
For “current operational capabilities”, note that several countries now have operational limited 
area numerical weather prediction models with spatial resolutions on the order of 1 km.  
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We have revised this sentence in lines 469-471 on page 15 as follows: 
 
“A primary goal of this study is to establish a baseline assessment of current global- or 
continental-scale operational capabilities and identify potential opportunities where 
improvements or SWE observations could inform both science and application needs.”  
 

 

Figure 2 caption 
 
Average CRPS.  
Move the information “13 is more snow than all ensembles and 0 is less snow than all 
ensembles” from the figure to the caption  
 

We have corrected this caption. 
 

Figure 6 
Does “without outliers” mean that outliers are omitted from the diagram (in which case, how is 
an outlier defined?) or that the ends of the whiskers are the SWE range?  
 
The outlier is defined as a value that is more than 1.5 times the interquartile range away from 
the top or bottom of the box.  
 
”without outliers” has been corrected in Figures 6 and 7 to “with outliers (defined as more than 
1.5 times the interquartile range (between 25% and 75%)) omitted”.   
 
There is room to put the LSM and forcing dataset labels on the figure axis, removing the need 
for the reader to relate the figure legend to the boxes and removing the need for colour.  
 
The plot has been modified. 
 
If I understand correctly, five statistics (minimum, 25th percentile, median, 75th percentile and 
maximum mean annual average of SWE) have been calculated from just three data points for 
each LSM (mean annual average SWE for three different forcing datasets). Why not just show 
the points?  
 
These statistics were calculated using the annual average of SWE for each year (i.e., interannual 
variability).  For the LSM group, we used 8 annual averages of SWE (from 2009 to 2017) for 
three different forcing datasets (8*3). For the forcing dataset group analysis, 8 annual averages 
of SWE for four different (8*4) LSMs were used.  
 
We have added these details in Figure 6 caption as follows: 
“Distribution of North America mean annual average of SWE (i.e., interannual variability), 
grouped by the LSMs and forcing datasets (e.g., the box of Noah-MP3.6 represents the 
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distribution of mean SWE, averaged from Noah-MP3.6 runs with all forcing datasets; the box of 
MERRA2 represents the distribution of mean SWE, averaged from all LSM runs with MERRA2 
forcing data). For the LSM group, we used 8 annual averages of SWE (from 2009 to 2017) for 
three different forcing datasets (total of 8*3). For the forcing dataset group, 8 annual averages 
of SWE for four different LSMs (total of 8*4) were used. The red line indicates SWE median; top 
and bottom of box are the 75th and 25th percentiles, and top and bottom of whiskers represent 
the maximum and minimum SWE with outliers (defined as more than 1.5 times the 
interquartile range (between 25% and 75%)) omitted.” 
 
Figures 1, 3, 4 and 11  
Rainbow colour scales are widely deprecated.  
If latitudes and longitudes are not going to be marked, remove the redundant grid lines.  
For the figures that use a divergent colour scale centered on white, the coastline would be a 
nice addition.  
 
Thank you for the suggestion. Figures 1,3,4 and 11 have been revised. 
 
Figures 7, 9 and 10 
All of the colours in these figures are redundant.  
 
Figures 7,9 and 10 have been revised. 
 
 
Dear Dr. López-Moreno, 
 
Thank you for your constructive feedback.  Below we have provided a response to each of the 
comments provided by the referee. For each comment, we have summarized any changes we 
made in red type.  
 

J. Ignacio López-Moreno (Referee2)’s comments: 

The paper analyses the uncertainty of snow simulations by different combinations of global 
Land Surface models (LSMs) and forcing datasets (FDs) over North America. The paper is 
interesting and provides useful insights about the applicability of climate models to have 
reasonable estimates of snow storage for large areas. The paper is well written and structured, 
and may be of interest for a wide variety of readers. Despite is not its main objective of the 
paper I miss a bit more of discussion about the causes of the detected uncertainties, and to 
present some comparison of the individual members of the ensemble with the snow datasets 
used as references. Such information could offer clues about the origin of some uncertainties 
(i.e. if uncertainties are more related to the parametrization of the snow processes, or to 
difficulties of the models to reproduce the driving variables of their snow energy balance 
(precipitation, temperature. . .); or even an individual analysis of uncertainty may open the 
possibility to consider reducing the number of members of the ensemble if some of them 
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shows a clear systematic bias with the reference datasets. At some point is mentioned that 
“combining a variety of model estimates and allowing the individual model errors to cancel 
each other out (Xia et al., 2012)”. I think this may be true when errors are random or the causes 
behind the errors are not well identified. However, if some member fails systematically because 
the snow parametrization is too simplistic or is using more limited observations than others, it 
is possible preferably to leave out such members from the final ensemble. In addition if some of 
the forcing data uses observations that are not available, or their density is more reduced, out 
of the domain of this study (North America) and they provide better results than others, it 
could be discussed in the manuscript as it has implications when used in other regions of the 
world.  
 
Thank you for bringing out these issues in the interactive discussion. First, we want to 
emphasize that main objective of this paper is to establish an important baseline over the 
continental scales to characterize current capabilities and inform global snow observational 
requirements by using a range of forcing products and commonly-used operational models. 
Given this set-up, we are defining uncertainty as the ensemble spread between these, knowing 
that the entire set might miss the truth, but assuming that times/places with a higher spread do 
validly represent greater uncertainties at times/places to focus more measurements or efforts-
to-improve understanding. In addition, we acknowledge that some of these models are not 
state of the art (e.g., we know there are publications saying that CLSM-F2.5 isn’t really 
representative of state-of-the-art in snow modeling) and some of these are not independent 
samples (e.g. the models have similar underlying parameterizations), but these are 
representative of data that are currently available and that people might use for their own 
research, given that these models and configurations are featured in operational systems.  
 
To acknowledge your comment, we added the following text on lines 108-112 on page 4 as 
follows: 
“Note that some of these models do not necessarily represent the state-of-the-art approaches 
for snow modeling and their underlying parameterizations may share a similar legacy in terms 
of code development. Despite these limitations, however, these models and their versions are 
representative of systems that provide publicly available snow estimates over continental and 
global scales.”  
 
We are also explicitly looking at two sources of spread – the met data and the model structure 
(again, from an operational suite), because the literature diverges about which is a greater 
source of uncertainty. Thus, the SEUP effort also attempts to differentiate from the earlier 
snow model intercomparison experiments (Essery et al. 2009; Rutter et al. 2009), which 
assessed errors associated with model structure and parameterizations. In this paper, we are 
neglecting other sources of uncertainty such as the choice of parameters or resolution of the 
topography. While understanding the causes of the detected uncertainties and assessment of 
uncertainty of the individual members of the ensemble is important, we consider it to be 
outside the scope of this study and leave it for future follow-on efforts.  
 
We have added the following clarification in lines 506-507 on page 16 as follows: 
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“We acknowledge that other sources of uncertainty such as the choice of model parameters 
and spatial resolution of topographic features are not examined in this study.” 
 
For forcing data concerns in other regions, we briefly discussed this in lines 299-301 on page 10 
referred to Yoon et al. (2019)’s study:  
“Similarly, Yoon et al. (2019) recently showed that the forcing data drove the uncertainty of 
model simulated estimates (i.e., precipitation, evaporation, and runoff) over High Mountain 
Asia due to significant differences in the quality of reliable reference measurements over the 
domain.”   
 
Specific comments –  
It is a bit surprising to me finding in the areas with deeper snowpack the largest uncertainties, 
since simulating shallow snowpacks is often more challenging than deeper ones.  
 
We agree that simulating shallow snowpacks is often more challenging due to their sensitivity 
to changes in air temperature, influence of substrate conditions and wind redistribution 
processes that are typically not included in LSMs. From our results, there is a greater spread in 
absolute SWE in the deeper snowpacks (in the mountains) where the average SWE and 
standard deviation between ensemble members are largest. However, we see large uncertainty 
in terms of normalized SWE across a large portion of the domain (Figure 3b), and there is a 
greater spread in the total water storage (SWS) in the shallow snow areas that accounts for 
differences in the aggregated snow estimations over the large areal extent. 
 
I would like to hear the hypothesis of the authors about this result. 
Are the climate (i.e. precipitation) in these areas more difficult to be simulated? 
 
Yes. The coarser resolution atmospheric models generally do not simulate enough snowfall in 
the mountains due to their inability to resolve the steepness of the topography.  
 
We’ve discussed this in lines 378-379 on page 12 as follows: 
“The coarser resolution atmospheric models generally do not simulate enough snowfall in the 
mountains due to their inability to resolve the complexity of the topography (Lundquist et al., 
2019).”  
  
Is it more/less affected to uncertainties in snow-rain separation?  
 
A static environmental lapse rate of 6.5 K/km from NLDAS1 and NLDAS2 projects is used to 
apply an elevation adjustment to the coarse meteorological fields. We acknowledge this is not 
perfect and doesn’t work everywhere, but it is a standard approach used in other products. This 
constant factor could be a source of uncertainty in the rain-snow transition, particularly over 
mountainous areas. The partitioning schemes used by the models (simple temperature 
threshold versus transition temperature range) also play a role. 
 
These issues are described in lines 248-253 on page 8 as follows: 
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“These highly complex terrains have relatively high snowfall precipitation, and the large spread 
is partially due to different rain/snow partitioning schemes in each LSM. While Noah2.7.1, 
JULES and CLSMF-2.5 use a simple temperature threshold of 0oC to distinguish rainfall and 
snowfall precipitation, Noah-MP3.6 includes a transition temperature range described in Jordan 
(1991) (see Table S1). While our lapse-rate correction method is based on approaches used in 
other products (see Section 2.3), the lack of considerations of spatial variability in the snow-rain 
partition is a limitation, particularly over mountainous areas.”   
 
Same for different uncertainty between flat areas and mountains (Forcing datasets have less 
observations in mountains?  
 
According to NOAA National Weather Service’s National Operational Hydrologic Remote 
Sensing Center (NOHRSC) National Snow Analyses, 61% of snow observations (e.g., SWE and 
snow depth) are located in mountainous areas (defined as a landform that rises at least 1,000 
feet) in the U.S. On the other hand, 91% of met stations (e.g., snowfall stations) are located in 
flat areas. Over Canada, there are fewer available ground and radar measurements than in the 
continental U.S., which could lead to larger differences in terms of input meteorology.   
 
The uncertainty in mountains is associated to the downscaling technique, or again the 
reproducibility of the climate there? 
 
Both have implications and these are areas we are hoping to focus future efforts on. 
 
We have briefly discussed this in lines 361-363 on page 12 as follows:  
“Previous studies also highlighted the limitations of coarse-resolution models, particularly in 
capturing snow accumulation in mountain areas, and suggested using a resolution of <10 𝑘𝑚 
(Ikeda et al., 2010; Kapnick & Delworth, 2013; Pavelsky et al., 2011; Wrzesien et al., 2017).” 
 
and in lines 378-379 on page 12 as follows: 
“The coarser resolution atmospheric models generally do not simulate enough snowfall in the 
mountains due to their inability to resolve the complexity of the topography (Lundquist et al., 
2019).”  
 
If the individual members are compared to the reference snow datasets, the complexity of the 
snow-vegetation parametrization could be used to explain results when forested and non-
forested areas are compared? 
 
Thanks for this suggestion. Different snow-vegetation parameterization was used in each LSM 
(see Table S1 in supporting information). For example, Noah-MP3.6 uses a dynamic vegetation 
model and semi-tile vegetation sub-grid scheme, but Noah2.7.1 doesn’t have both. We are 
planning to make an evaluation of this parameterization a focus of future efforts, but choose to 
exclude the details of that discussion in order to maintain a reasonable manuscript size. 
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The use of 1 or several layers for snowpack could be also identified as potential source of 
uncertainty shown in the study.  
 
We agree with your comment. If we compare individual members, the snow layering scheme 
could be a source of uncertainty. Again, we are trying to differentiate this work from previous 
SnowMIP studies and considering the assessment of uncertainty of the individual members of 
the ensemble as a new and novel manuscript advancement.  
   
- Line 73: 5 km instead of 5km  
 
We have corrected this.  
 
- Line 207: “Section 3.1 compares the ensemble with observations derived from data 
assimilation techniques” I would not call them observations, perhaps is better using comparison 
with the reference snow datasets  
 
We have corrected this sentence (in lines 214-215 on page 7). 
 
Section 3.2.2. Not sure if seasonal variability is the most accurate tittle for the subsection, what 
about: “Timing of annual peak SWE. . .”  
 
We have revised the title to “Timing of annual peak SWE” 
 
- Figure 5 and 6: Is it possible to add boxplots with the values for the snow datasets used as 
references? It can give a good indication about some specific LSM or forcing dataset clearly 
biased from “reality”.  
 
Thanks for suggesting this. However, it’s difficult to add those for the snow datasets due to 
their limited spatial coverage. For example, UA and SNODAS only cover the CONUS. CMC only 
has snow depth information. 
 
-It would be also good to show a figure as 5 (probably as supplementary) but specifically for 
areas where the annual behavior of snow patterns is known to be well contrasted (often with 
opposite anomalies; i.e. Cascades and Rockies US) because the average over the entire domain 
smooths the differences and lead to very little interannual variability.  
 
Thanks for this suggestion. We’ve added Figure S1 in supporting information and following text 
in lines 283-287 on page 9. 
 
“Figure S1 shows two time series of domain-averaged daily mean SWE of the Rockies 
Mountains and the Cascades in the United States (See Fig. 1b and Section 3.3.1) where the 
annual snow behavior is known to be well contrasted (Marshall et al., 2019). In the U.S. Rockies, 
the spread across the ensemble is smaller and the annual maximum SWE is relatively 
unchanged as compared to those of higher elevations in the Cascades.” 
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- The subsection Section 3.2.5 directly links higher uncertainty with lack of observations. I am 
not sure if this statement is sound because the reasons of the uncertainties are not well 
identified along the manuscript.  
 
We agree that the causes of uncertainty warrant greater inspection, and we hope to focus 
future efforts on these questions.  We still feel that this analysis provides insight as to when and 
where spaceborne observations may help improve SWE and SWS estimation, regardless of the 
cause. We have added the following sentence in lines 306-308 on page 10 to acknowledge the 
limitations of the existing study:  
 
“While additional analysis is needed to understand and improve the model parameterizations 
that are driving the ensemble spread, remote sensing observations have the potential to reduce 
uncertainty in global SWE and SWS estimation.” 
 
Further, lines 506-509 on page 16 adds:  
“We acknowledge that the influence of the sources of uncertainty such as the choice of model 
parameters and spatial resolution of topographic features are not examined in this study. 
Additional work is needed to understand the specific drivers of uncertainty within model 
physics, better characterize the snow storage over mountain and non-mountainous regions, 
and quantify the regional influence of SWE uncertainty on water availability.” 
 
-Line 368: referring to GRACE: “total terrestrial water storage (TWS) anomaly observations 
showed reasonable results (not shown).” I do not understand what authors really mean.  
 
We agree it’s confusing and have removed this from text.  
 
- Caption of Figure 8 says “Rockies Canaidan”  
 
The caption has been corrected. 
 
- Section 3.4 is interesting and indeed the topic could be a new manuscript itself. However, as it 
is presented I have the feeling that many of the conclusions derived from this section are not 
fully supported needing deeper analyses. Authors may consider remove this section that could 
compensate to develop more other sections (i.e., assessment of uncertainty of the individual 
members of the ensemble).  

Thanks for this suggestion. We agree that this section is describing a preliminary analysis that 
requires further exploration. We think this section helps to set up the discussion on required 
future work and the need for improved snow data to improve streamflow estimation. We’ve 
tried to explain explicitly this in lines 461-464 on page 15. 

“While this is a preliminary analysis that requires further exploration, it helps to provide insight 
into the need for improved snow data to improve streamflow estimation. A more detailed 
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examination of the influence of SWE-runoff uncertainties, an investigation into the utility of 
SWE observations to reduce SWE uncertainty, and thereby runoff uncertainty, are left for 
future work.” 
 
 
Dear Referee, 
 

Thank you for your valuable comments.  Below we have provided a response to each of the 
comments provided by the referee. For each comment, we have summarized any changes we 
made in red type.  
 

Anonymous Referee 3’s comments: 

The authors present a highly interesting and relevant study assessing snow modelling 
uncertainties across the North American region with (among others) the goal of providing 
information about global snow observation needs. The study comprises four different land 
surface models and three forcing data sets, resulting in an ensemble of twelve members. The 
results show that the uncertainty represented by the ensemble spread varies across the study 
domain, with for instance high uncertainty in the simulation results for mountainous and 
forested regions. The authors conclude that for these regions high-resolution observations are 
needed to capture the high spatial variability in snow water equivalent. Overall, the article is 
very well written, easy to follow and from the technical perspective ready for publication in my 
opinion. Nonetheless, the current manuscript only provide rather shallow information about 
what snow observations are required in order to reduce the uncertainty seen in the simulation 
results. What variables should be measured and on which spatial and temporal resolution? For 
example, the need for high-resolution observations in mountains to capture the high spatial 
snow water equivalent variability has been recognized a long time ago. However, for very large 
domains, we still lack observations with sufficient quality as well as high enough spatial and 
temporal resolution, and this may not change soon either. Providing some more details, 
foremost more quantitative, about the observational needs to constrain the model 
uncertainties would make the paper even more interesting to read.  

We agree with these excellent points that more detailed requirements of snow observations 
would be a nice outcome of this study. In fact, the SEUP efforts are designed with this 
quantification in mind, and this paper represents the initial phase that establishes a baseline of 
the snow modeling uncertainty over the continental scales. In this paper, we focus on providing 
guidance on when and where the snow modeling uncertainties are highest. Following-up on 
this effort, our group has been working on SEUP Phase II, to conduct observation system 
simulation experiments (OSSEs) that systematically quantifies the worth of the existing data 
and data yet be collected, and recently, these techniques have been applied to snow modeling 
studies. The snow OSSE derives the utility from a multitude of observations by exploring the 
interaction between different observation types and observation sampling methods (e.g., using 
different spatial and temporal resolutions). The results from this effort will be evaluated across 
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a suite of metrics that capture the information of the observations and uncertainty and are 
expected to help in the choice and refinement of sensors for the accurate characterization of 
global, terrestrial snow mass. 

We have added the following sentence in lines 509-513 on pages 16-17 to acknowledge the 
focus of future efforts: 

“More detailed requirements of snow observations (e.g., choice of observation types and 
sampling methods) will be focused in future efforts by conducting observation system 
simulation experiments (OSSEs) that systematically quantify the worth of the existing data and 
data yet to be collected. The results from this future effort are expected to help in the choice 
and refinement of sensors for the accurate characterization of global, terrestrial snow mass.” 
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