Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 4.713
IF4.713
IF 5-year value: 4.927
IF 5-year
4.927
CiteScore value: 8.0
CiteScore
8.0
SNIP value: 1.425
SNIP1.425
IPP value: 4.65
IPP4.65
SJR value: 2.353
SJR2.353
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 53
h5-index53
Preprints
https://doi.org/10.5194/tc-2020-238
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-2020-238
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

  02 Sep 2020

02 Sep 2020

Review status
This preprint is currently under review for the journal TC.

Enhancement of snow albedo reduction and radiative forcing due to coated black carbon in snow

Wei Pu1, Tenglong Shi1, Jiecan Cui1, Yang Chen1, Yue Zhou1, and Xin Wang1,2 Wei Pu et al.
  • 1Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
  • 2Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China

Abstract. When black carbon (BC) is internally mixed with other atmospheric particles, BC light absorption is effectively enhanced. This study is the first to explicitly resolve the optical properties of coated BC in snow, based on core/shell Mie theory and a snow, ice, and aerosol radiative model (SNICAR). Our results indicate that a "BC coating effect" enhances the reduction of snow albedo by a factor of 1.1–1.8 for a non-absorbing shell and 1.1–1.3 for an absorbing shell, depending on BC concentration, snow grain radius, and core/shell ratio. We develop parameterizations of the BC coating effect for application to climate models, which provides a convenient way to accurately estimate the climate impact of BC in snow. Finally, based on a comprehensive set of in situ measurements across the Northern Hemisphere, we find that the contribution of the BC coating effect to snow light absorption has exceeded that of dust over northern China. Notably, the high enhancements of snow albedo reductions by BC coating effect were found in the Arctic and Tibetan Plateau, suggesting a greater contribution of BC to the retreat of Arctic sea ice and Tibetan glaciers.

Wei Pu et al.

Interactive discussion

Status: open (until 28 Oct 2020)
Status: open (until 28 Oct 2020)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement

Wei Pu et al.

Viewed

Total article views: 177 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
135 40 2 177 14 0 0
  • HTML: 135
  • PDF: 40
  • XML: 2
  • Total: 177
  • Supplement: 14
  • BibTeX: 0
  • EndNote: 0
Views and downloads (calculated since 02 Sep 2020)
Cumulative views and downloads (calculated since 02 Sep 2020)

Viewed (geographical distribution)

Total article views: 141 (including HTML, PDF, and XML) Thereof 139 with geography defined and 2 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved

No saved metrics found.

Discussed

No discussed metrics found.
Latest update: 23 Sep 2020
Publications Copernicus
Download
Short summary
We have explicitly resolved optical properties of coated BC in snow for explaining complex enhancement of snow albedo reduction due to coating effect in real environments. The parameterizations are developed for climate models to improve the understanding of BC in snow on global climate. We demonstrated that the contribution of BC coating effect to snow light absorption has exceeded dust over North China and will significantly contribute to the retreat of Arctic sea ice and Tibetan glacier.
We have explicitly resolved optical properties of coated BC in snow for explaining complex...
Citation