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Abstract. This work addresses the time-dependent response of 3m x 6m floating edge-cracked rectangular plates of columnar

freshwater S2 ice, by conducting load control (LC) mode I fracture tests in the Ice Tank of Aalto University. The thickness of

the ice plates was about 0.4m and the temperature at the top surface about -0.3 C. The loading was applied in the direction

normal to the columnar grains and consisted of creep/cyclic-recovery sequences followed by a monotonic ramp to fracture. The

LC test results were compared with previous monotonically loaded displacement control (DC) experiments of the same ice, and5

the effect of creep and cyclic sequences on the fracture properties were discussed. To characterize the nonlinear displacement-

load relation, Schapery’s constitutive model of nonlinear thermodynamics was applied to analyze the experimental data. A

numerical optimization procedure using Nelder-Mead’s (N-M) method was implemented to evaluate the model functions by

matching the displacement record generated by the model and measured by the experiment. The accuracy of the constitutive

model is checked and validated against the experimental response at the crack mouth. Under the testing conditions, the creep10

phases were dominated by a steady phase, and the ice response was overall elastic-viscoplastic; no significant viscoelasticity

or major recovery were detected. In addition, there was no clear effect of the creep loading on the fracture properties at crack

growth initiation: the failure load and crack opening displacements.

1 Introduction

Understanding the deformation and fracture processes of columnar freshwater ice is important in many engineering problems.15

For example, freshwater ice sheets fracture when in contact with ships, river ice fractures during interaction with bridge piers,

and thermal cracks form in lakes and reservoirs. Deformation and fracture processes of freshwater ice are highly dependent

on temperature, strain rate, sample size, grain type and grain size. Qualitatively, high temperature and low strain rate lead

to viscous behaviour and ductile fracture; low temperature and high strain rate lead to elastic behaviour and brittle fracture

(Gharamti et al., 2021). However, quantitatively these relations are not well known.20

As the response of freshwater ice is time-dependent, a general constitutive model should incorporate elastic (immediate

and recoverable), viscoelastic (or delayed elastic, time-dependent and recoverable) and viscoplastic (time-dependent and un-

recoverable) components (Jellinek and Brill, 1956; Sinha, 1978). The importance of each component depends on the problem

studied. For example, thermal deformations of ice in dams can have a time scale of a few days and creep behaviour domi-

nates. In ice-structure interaction problems, the time scale of interest is often seconds and hours, so all three components of25

deformation need to be modeled.

1



This paper reports results from laboratory experiments which were conducted to study the time-dependent response and

fracture of columnar freshwater ice. The work is directly relevant to a number of practical problems (Ashton, 1986), but has

also general relevance in ice research by studying the coupled creep and fracture in a quasi-brittle material. Unless just short

time scales are involved, where only elastic response is relevant, the creep deformations must be modeled to obtain the true30

fracture behavior. In materials with time-dependent properties, the fracture and creep responses are coexistent.

The time-dependent behavior of freshwater ice has been addressed with great attention, and several constitutive models

were developed (Michel, 1978; Sinha, 1978; Le Gac and Duval, 1980; Ashby and Duval, 1985; Sunder and Wu, 1989; Mellor

and Cole, 1983; Cole, 1990; Duval et al., 1991; Sunder and Wu, 1990; Abdel-Tawab and Rodin, 1997; Santaoja, 1990).

Constitutive laws can be phenomenological or micromechanical. Micromechanical modeling in ice faces challenges because35

the characterization of the microscopic mechanisms of ice deformation is still inadequate (Abdel-Tawab and Rodin, 1997).

Phenomenological laws are classified into two groups. The first group are empirical-based relations (Sinha, 1978; Schapery,

1969). Their equations relate macroscopic variables: stress/load, strain/displacement, and time. They do not contain state

variables that describe the internal state of the material and are valid only for constant stress/load. The functions in these models

can be easily calibrated to simulate the experiments. The second group of phenomenological models starts from physically-40

based models involving internal state variables (dislocation density, internal stresses reflecting hardening, etc ...); they develop

differential equations for the evolution of these variables with time and quantify the dependence of these variables on stress,

temperature and strain (Le Gac and Duval, 1980; Sunder and Wu, 1989, 1990; Abdel-Tawab and Rodin, 1997). These models

provide insights into the microscopic mechanisms taking place, and the state variables describe the deformation resistance

offered by changes in the microstructure of the material. However, they require a proper identification of the deformation45

mechanisms.

The effect of time-dependent loading on the strength of freshwater ice has been examined in the literature. Subjecting

freshwater ice to cyclic loading apparently leads to a significant increase in the tensile, compressive, flexural strength, and

fracture toughness of that ice (Murdza et al., 2020; Iliescu et al., 2017; Iliescu and Schulson, 2002; Jorgen and Picu, 1998; Rist

et al., 1996; Cole, 1990). On the other hand, no detailed investigation of the effect of creep and cyclic loading on the fracture50

properties of freshwater ice has been conducted in the past.

Laboratory experiments were conducted to measure the time-dependent response and fracture behavior of 3m x 6m floating

edge-cracked rectangular plates of columnar freshwater S2 ice, loaded in the direction normal to the columnar grains. The

ice studied was warm, the temperature at the top surface of the samples was about -0.3 C. Compared to earlier studies with

freshwater ice, the samples were large (3m x 6m) and very warm. A program of five load control (LC) mode I fracture tests was55

completed in the test basin (40 m square and 2.8 m deep) at Aalto University. Creep/cyclic-recovery sequences were applied

below the failure loads, followed by monotonic ramps leading to complete fracture of the specimen. The LC results were

compared with the fracture results of monotonically loaded displacement control (DC) tests of the same ice (Gharamti et al.,

2021), and the effect of the creep and cyclic sequences on the fracture properties were analyzed.

The constitutive modeling used in this paper was presented by Schapery (1969) and applied to polymers. Schapery’s model60

belongs to the first phenomenological group and originates from the theory of nonlinear thermodynamics. This study presents
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the first attempt to use Schapery’s model for freshwater ice. The choice of this model for freshwater ice is motivated by the

fact that the model was successfully applied to saline ice (Schapery, 1997; Adamson and Dempsey, 1998; LeClair et al., 1999,

1996) with encouraging results. The model accurately described the deformation response during load/unload applications over

varying load profiles.65

The experiments in this study aim to assess the time-dependent nature of warm columnar freshwater S2 ice. Especially,

the study aims to examine: 1) the extent to which the elastic, viscoelastic and viscoplastic components contribute to the ice

deformation as defined through the crack mouth opening displacement, 2) the effects of the testing conditions on the creep

stages (primary/transient and steady-state/secondary) present in the ice, 3) the effects that creep and cyclic sequences have on

the fracture properties; i.e. failure load and crack growth initiation displacements, and 4) the ability of Schapery’s nonlinear70

constitutive model to predict the experimental response.

The rest of the paper is structured as follows. In Section 2, a description of the experimental setup, testing conditions, and the

applied loading profile is presented. Section 3 introduces Schapery’s model that is used to analyze the experiments. In section

4, the experimental and model results are summarized and analyzed. Section 5 concludes the paper.

2 Creep-recovery fracture experiments75

2.1 Experimental details

The ice specimens tested were 3m x 6m rectangular plates, cut from a 40m x 40m parent sheet, with a thickness of 340 - 410

mm, and instrumented as shown in Fig. 1. The experiments were conducted at an ambient temperature of -2 C. The ice was

columnar freshwater S2 ice having a mean grain size of 6.5 mm (Fig. 2b). The temperature at the top surface was about -0.3 C,

as shown in Fig. 2a. An edge crack of length A0 (A0 ≈ 0.7 L) was cut and tip-sharpened in each ice specimen. The response80

of the ice was monitored by using a number of surface-mounted linear variable differential transducers (LVDTs). LVDTs

were placed at five different locations along the crack to measure directly the crack opening displacements. Fig. 1 labels these

positions as CMOD, COD, NCOD1, NCOD2, and NCOD3 for the crack mouth, intermediate crack, 10 cm behind the initially

sharpened tip, 10 cm ahead of the tip, and 20 cm ahead of it, respectively. A hydraulically operated device was inserted in the

mouth of the pre-crack to load the specimen horizontally, in the direction normal to the columnar grains, with a contact loading85

length of 150 mm, denoted by D in Fig. 1. The tests were load controlled by a computer-operated closed-loop system that also

recorded the displacement measurements. Creep/cyclic-recovery sequences were applied below the failure loads, followed by

monotonic ramps leading to complete fracture of the specimen. The loading rate used is similar than used in earlier sea ice

studies (LeClair et al., 1999; Adamson and Dempsey, 1998) and thus allows comparison of these two materials. 2a. The global

behavior of the crack propagation was straight through the gauges. Detailed description of the experimental setup, ice growth,90

microstructure, and fractographic analysis is provided in (Gharamti et al., 2021).
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2.2 Creep-recovery and monotonic loading profile

In two tests, ice specimens were subjected to creep-recovery loading followed by a monotonic fracture ramp. The creep-

recovery sequences consisted of four constant load applications, separated by zero load recovery periods. Each sequence was

composed of alternating load/hold and release/recovery periods. Creep phases were applied at load levels of 0.4 kN, 0.8 kN,95

1.2 kN, and 0.4 kN, as given by the loading signal in Fig. 3a. The loads were chosen low enough to avoid crack propagation and

failure of the specimen. Each load-hold-unload was applied in the form of a trapezoidal wave function to avoid instantaneous

load jump and drop; the load up was applied in approximately 10 seconds and released in approximately 10 seconds. The

slopes of the wave on load up and load release were 0.04kN/s, 0.08 kN/s, and 0.12 kN/s for the 0.4kN, 0.8 kN, and 1.2 kN load

levels, respectively.100

Once at the desired hold level, the load was kept constant for a predetermined time interval. The load intervals were multiples

of the hold interval for the 0.4 kN load level, ∆t1 = 126 seconds. For the 0.8 kN and 1.2 kN load levels, the time interval was

doubled and quadrupled: 2∆t1 = 252 seconds and 4∆t1 = 504 seconds, respectively. The four zero load recovery periods,

separating the creep load periods, were also function of ∆t1. Three recovery periods were held at zero load level for 5∆t1 =

630 seconds, but the last recovery period was maintained for a longer interval of 10∆t1 = 1260 seconds.105

Immediately following the creep and recovery loading sequences, the specimen was loaded monotonically to failure on a

load-controlled linear ramp. The ramp up to the peak load and unloading were each applied over an interval of ∆t1.

2.3 Cyclic-recovery and monotonic loading profile

In three tests, ice specimens were loaded with cyclic-recovery sequences followed by a fracture ramp, as shown in Fig. 3b. The

cyclic-recovery loading consisted of 3 sequences, each being composed of four fluctuating loads, at the levels of 0.4 kN, 0.8kN,110

and 1.2 kN. Each cyclic sequence continued for a constant time interval ∆t2 = 480 seconds. The slopes of the wave on the load

up and load release were 1/150 kN/s, 1/75 kN/s, and 1/50 kN/s for the 0.4kN, 0.8kN, and 1.2 kN load levels, respectively. The

0.4kN, 0.8kN, and 1.2 kN cyclic load periods were followed by zero load recovery periods of 1.25∆t2 = 600 seconds, 1.25∆t2

= 600 seconds, and 2.5∆t2 = 1200 seconds, respectively.

At the completion of the cyclic-recovery loading sequences, the specimen was loaded to failure by a monotonic linear ramp.115

The ramp up to the peak load and unloading were each applied over an interval of 0.25∆t2 = 120 seconds.

3 Nonlinear time-dependent modeling of S2 columnar freshwater ice

The model applied in this section to characterize the nonlinear viscoelastic/viscoplastic response of S2 columnar freshwater

ice was presented by Schapery; it was used to model the time-dependent mechanical response of polymers in the nonlinear

range under uniaxial stress-strain histories (Schapery, 1969). Schapery’s stress-strain constitutive equations are derived from120

nonlinear thermodynamic principles, and are very similar to the Boltzmann superposition integral form of linear theory (Flügge,

1975). Schapery’s model represents the material as a system of an arbitrarily large number of nonlinear springs and dashpots.
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The equations in this section are presented in terms of load and displacement instead of the original stress-strain relations.

The notations of the original equations in (Schapery, 1969) are modified to bring out similarity between all the equations in the

paper.125

When the applied loads are low enough, the material response is linear. For an arbitrary load input, P = P (t) applied at

t= 0, Boltzmann’s law approximates the load by a sum of a series of constant load inputs and describes the linear viscoelastic

displacement response of the material using the hereditary integral in a single integral constitutive equation. The Boltzmann

superposition principle states that the sum of the displacement outputs resulting from each load step is the same as the dis-

placement output resulting from the whole load input. If the number of steps tends to infinity, the total displacement is given130

as:

δ(t) = C0P +

t∫
0

∆C(t− τ)
dP

dτ
dτ, (1)

where C0 is the initial, time-independent compliance component and ∆C(t) is the transient, time-dependent component of

compliance.

Turning now to nonlinear viscoelastic response, Schapery developed a simple single-integral constitutive equation from135

nonlinear thermodynamic theory, with either stresses or strains entering as independent variables (Schapery, 1969). Using load

as the independent variable, the displacement response under isothermal and uniaxial loading takes the following form:

δ(t) = g0C0P + g1

t∫
0

∆C(ψ−ψ′)d(g2P )

dτ
dτ, (2)

where C0 and ∆C are the previously defined components of Boltzmann principle, ψ and ψ′ are the so-called reduced times

defined by:140

ψ =

t∫
0

dt′

aP [P (t′)]
and ψ′ = ψ(τ) =

τ∫
0

dt′

aP [P (t′)]
(3)

and g0, g1, g2, and aP are nonlinear functions of the load. Each of these functions represents a different nonlinear influence on

the compliance: g0 models the elastic response, g1 the transient response. g2 the loading rate, and aP is a time scale shift factor.

These load-dependent properties have a thermodynamic origin. Changes in g0,g1,and,g2 reflect third and higher order stress-

dependence of the Gibbs free energy, and changes in aP are due to similar dependence of both entropy production and the free145

energy. These functions can also be interpreted as modulus and viscosity factors in a mechanical model representation. In the

linear viscoelastic case, g0 = g1 = g2 = aP = 1, and Schapery’s constitutive equation (2) reduces to Boltzmann’s equation (1).

Equation (2) contains one time-dependent compliance property, from linear viscoelasticity theory, ∆C and four nonlinear

load-dependent functions g0,g1,g2,and aP , which reflect the deviation from the linear viscoelastic response, that need to be
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evaluated. Schapery’s model uses experimental data to evaluate the material property functions in (2). Lou and Schapery out-150

lined a combined graphical and numerical procedure to evaluate these functions (Lou and Schapery, 1971). In their work, a

data-reduction method was applied to evaluate the properties from the creep and recovery data. Papanicolaou et al proposed a

method capable of analytically evaluating the material functions using only limiting values of the creep-recovery test (Papan-

icolaou et al., 1999). Numerical methods are also employed and are the most commonly used techniques; they are based on

fitting the experimental data to the constitutive equation (LeClair et al., 1999). In the current study, a numerical-experimental155

procedure is adopted. An optimization procedure is applied using the Nelder-Mead (N-M) method (Nelder and Mead, 1965) to

back-calculate the values that achieve the best fit between the model and the experimental data. To avoid multiple fitting treat-

ments of data and account for the mutual dependence of the functions, the properties were determined from the full data. This

avoided errors that may result from separating the data into parts and estimating the functions independently from different

parts.160

Schapery later updated his formulation (Schapery, 1997). He added a viscoplastic term to account for the viscoplastic

response of the material and stated that the total compliance can be represented as the summation of elastic, viscoelastic, and

viscoplastic components. Adamson and Dempsey applied Schapery’s updated constitutive equation to model the crack mouth

opening displacement of saline ice in an experimental setup similar to the current study (Adamson and Dempsey, 1998). The

theory represents the displacement at the crack mouth (δCMOD) as the sum of elastic, viscoelastic, and viscoplastic components:165

δCMOD = δeCMOD + δveCMOD + δvpCMOD (4)

where

δeCMOD = g0CeP (5)

170

δveCMOD = g1

t∫
0

Cve(ψ−ψ′)
d
(
g2P

)
dτ

dτ (6)

δvpCMOD = Cvp

t∫
0

g3Pdτ (7)

In the above equations, ψ and ψ′ are defined in (3). g0,g1,g2,g3,and aP are nonlinear load functions to be determined. The

coefficients Ce,Cve,and Cvp are the elastic, viscoelastic, and viscoplastic compliances, respectively. Schapery’s equation has175

been developed for uniaxial loading. The response of the test specimen is dominated by the normal stresses at the direction

normal to the X-axis, ahead of the crack (Fig. 1). This stress state can be approximated as uniaxial in the same way as in beam

bending; the stress is uniaxial tension at the crack tip and then changes linearly. Thus, Schapery’s equations are used to analyze

the experimental data. Few assumptions are applied at this point and are based on the choices made in (Adamson and Dempsey,

6



1998). For ice, the elastic displacement is linear with load; this immediately leads to g0 = 1. Schapery stated that g1 = aP = 1180

if the instantaneous jump and drop in the displacement are equal (Schapery, 1969). Examination of the current data shows that

this condition is not valid, and the functions need to be evaluated. Accordingly, the following approximations are employed:

g1 ∝ P a; g2 ∝ P b−1; g3 ∝ P c−1; aP ∝ P d (8)

From Eq. (3):

ψ−ψ′ =
t∫
τ

dt′

aP [P (t′)]
(9)185

The viscoelastic compliance is assumed to follow a power law in time with a fractional exponent n. This gives:

Cve(β)≈ κβn (10)

Incorporating each of these conditions, the total displacement is expressed as

δCMOD = CeP +κP a
t∫

0

 t∫
τ

dt′

[P (t′)]d

n

d[P (τ)]b

dτ
dτ +Cvp

t∫
0

P cdτ (11)

where δCMOD, P and t are in m, N, and seconds, respectively. It follows from (11) that two unknown parameters (Ce,and Cvp),190

one unknown constant (κ), and five unknown exponents (a,b,c,d,and n) need to be determined. As previously mentioned, the

problem is optimized through the N-M technique, by minimizing the objective function F given by the difference between the

model and data, as shown in (12). The components of the total displacement were computed and optimized using MATLAB.

A positive constraint was applied to the model variables. Initial guesses of the exponents on the load and time functions were

assumed based on previous work on saline ice. The optimized values were then obtained by comparing the model response and195

the experimentally measured response over the full length of the test up to crack growth initiation.

F = argmin
Ce,Cvp,a,b,...

N∑
i=1

∥∥∥Mi(Ce,Cvp,κ,a,b,c,d,n)−Di

∥∥∥
2

(12)

where Mi and Di refer to the CMOD values given by the model (11) and the experimental data, respectively. ‖.‖2 is the

Euclidean norm of a vector. N is the number of data points (≈ 2e6 points). This problem is typically called a least-squares

problem when using the Euclidean norm. It is a convex problem because F is a convex function and the feasible set is convex.200

Thus, the optimization algorithm will converge to the global optimal solution.

As mentioned earlier, Schapery’s model originated from the thermodynamic theory. The model is not physically-based, and

its parameters are not linked to the microstructural properties of the ice (dislocation density, grain size, ...). In addition, the

analysis does not account for the formation of fracture process zone in the vicinity of the crack tip. Schapery’s formulation

models the experimental response until crack growth initiation and does not account for crack propagation.205
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4 Experimental and modelling results

This section presents the results measured and computed for the LC tests. The current results are compared with the fracture

results of monotonically loaded DC tests of the same ice and same specimen size (3m x 6m) (Gharamti et al., 2021). The main

aim is to elucidate the effect of creep and cyclic sequences on the fracture properties.

210

4.1 Effect of the creep and cyclic sequences on the fracture properties

Table 1 shows the measured and computed parameters for the LC experiments. Pmax is the measured peak load which is

also the failure load. tf represents the time to failure, computed from the fracture ramp. CMOD is measured at crack growth

initiation. ˙CMOD indicates the displacement rate at the crack mouth and is obtained by dividing CMOD by the failure time.

Similarly, NCOD1 (see Fig. 1) represents the displacement at crack growth initiation near the initially sharpened crack tip.215

˙NCOD1 indicates the displacement rate in the vicinity of the tip and is obtained by dividing NCOD1 by the failure time.

Fig. 4 gives the results of the peak load Pmax, crack mouth opening displacement CMOD, and near crack-tip opening

displacement NCOD1 as a function of the loading time for the DC tests (Gharamti et al., 2021) and the current LC tests. In

these subplots, first-order power-law fits were applied to the data of the DC tests. The LC values lie above, below, and along

the DC fit. No clear effect of creep and cyclic loading on the fracture properties was detected.220

Figs. 5a and 5b show the experimental load versus the crack opening displacement at the crack mouth for the DC and the

LC tests, respectively. Fig. 5c displays a zoomed view of the fracture ramp of the LC tests. Comparing the failure loads of

the DC and LC tests indicates that the failure loads, of tests with comparable loading rates, were similar. Therefore, in these

experiments, the creep and cyclic sequences had no influence on the failure load.

Table 1 presents several elastic moduli for each test. The elastic moduli were calculated from the load-CMOD record fol-225

lowing Section 4 of (Gharamti et al., 2021). For the creep tests (RP15 and RP16), this procedure is repeated for the four creep

cycles, resulting in E1, E2, E3, E4, and for the fracture ramp, resulting in Ef . Similarly for the cyclic tests (RP17, RP18,

and RP19), the moduli calculation was done for the last cycle of each cyclic sequence, giving steady state moduli E1, E2, E3,

and for the fracture ramp, resulting in Ef . Some of the values are missing, caused by the fact that the initial portion of the

associated load-CMOD curve was very noisy. The values of the elastic moduli calculation for the creep/cyclic sequences and230

fracture ramps were similarly linear upon load application, as shown by the loading slope in Figs. 5c, 6a, and 6b. This linearity

justifies the choice of g0 = 1 in the elastic CMOD component in Eq. (5).

Table 1 in (Gharamti et al., 2021) presents the elastic modulus (ECMOD) calculated at the crack mouth for the DC tests;

ECMOD is similar to Ef in Table 1 here; both values lie within the same range. Therefore, the creep and cyclic sequences

preceding the fracture ramp did not affect the load-CMOD prepeak behavior. However, the sequences affected the post-peak235

response as can be distinguished from Fig. 5b which displays a longer decay behavior than Fig. 5a. The gradual decay of the

load portrays the time dependency in the behavior of freshwater ice.
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4.2 Ice response under the testing conditions

Fig. 7 shows the experimental results for RP16: the applied load and the crack opening displacements at the crack mouth

(CMOD), halfway of the crack (COD), and 10 cm behind the tip (NCOD1) (see Fig. 1). Similarly, Fig. 8 shows the experimental240

response for RP17. The time-dependent nature of of the ice response is evident. A complete load-CMOD curve was obtained

during loading and unloading for each test of Table 1, indicating stable crack growth.

It is clear from Figs. 7b and 8b that the CMOD, COD, and NCOD1 displacements were composed mainly of elastic and

viscoplastic components. No significant viscoelasticity was detected in the displacement-time records for all the tests. The

primary (transient) creep stage was almost absent or instantaneous. The load sequences were characterized by a non-decreasing245

displacement rate at all levels. The displacement-time slope was linear and constant, indicating that the secondary/steady-

state creep regime dominated during each load application. Although the recovery time was longer than the loading time,

≥ 1.25∆t1 (Creep test, Fig. 3a and Section 2.2) and ≥ 1.25∆t2 (Cyclic test, Fig. 3b and Section 2.3), the recovery (unload)

phases consisted mainly of an elastic recovery (instantaneous drop) and unrecovered viscoplastic displacement. The behavior

as observed resembles the response of a Maxwell model composed of a series combination of a nonlinear spring and nonlinear250

dashpot (Fig. 7d). There is no delayed elastic recovery, but there is the elastic response and a permanent deformation.

Figs. 6a and 6b support the same analysis. Unlike the viscoelastic response (Fig. 6c) which displays no residual displacement

in the loading and unloading hysteresis diagram, the current load-CMOD plots showed large permanent displacement after each

loading cycle. This concludes that the response of columnar freshwater S2 ice in these tests was overall elastic-viscoplastic.

4.3 Nonlinear modelling analysis255

The nonlinear theory, outlined in Section 3, was used to analyze the experiments. Modelling the visoelastic term (second term

of Eq. 11) proved to be very challenging. Instead, a simplified version was modelled by setting ap = g2 = 1. The results of

the initial optimization trials confirmed the previous analysis; the viscoelastic component δveCMOD had no effect on the final fit

between the data and the model. The optimization algorithm fine-tuned κ (Eq. 11) to a very small number (10−18), indicating

that the best model-data fit is attained when the viscoelastic term goes to zero.260

The final optimization runs were carried out by considering the elastic and viscoplastic components (first and last terms of

Eq. (11)) only. This resulted in 2 parameters, Ce and Cvp, and one exponent c, that need to be optimized. The optimization

converged results are given in Table 2: Ce,Cvp and c. For all the tests, the %reduction of the objective function exceeded

95% and about 110 iterations were needed to reach convergence. A value of c= 1 for the viscoplastic load function provided

the best fit between the model and the experiment at all load levels over the total experimental time up to the peak load.265

The final compliance values of the elastic and viscoplastic components were in the ranges 1.8-3.8 x10−8mN−1 and 0.2-1

x10−10mN−1s−1. respectively.

Figs. 9 and 10 give the model results, obtained using Eqs. (4-10), and the experimental results for experiments RP16 and

RP17, respectively. Figs. 9a and 9b show the measured load and the load applied to the model and the measured CMOD-time

record compared to the response of the model, respectively for RP16. Figure 10 shows similar plots for experiment RP17. Test270
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RP17 showed an excellent model-experiment fit for the three cyclic-recovery sequences over the load and unload periods. The

model succeeded to follow the increasing and decreasing load levels and the corresponding recovery phases. The experimental

response for the creep-recovery test RP16 appeared to generally conform to the model results, but the model overestimated the

recovery displacement in the first two cycles. It is unclear to the authors why the model did a better job in fitting the cyclic-

recovery than the creep-recovery sequences. This probably hints at some mechanisms that took place in the creep-recovery275

tests and are not accounted for by Schapery’s model. Schapery’s model has been tested for creep-recovery sequences of saline

ice with an increasing load profile (Schapery, 1997; Adamson and Dempsey, 1998; LeClair et al., 1999, 1996). This is the first

application of the model with a load profile of increasing and decreasing load levels (Fig. 3a).

Considering the fracture ramp, Schapery’s nonlinear equation succeeded to model the monotonic displacement response

up to crack growth initiation perfectly well for all the tests. As previously mentioned, the model does not account for crack280

propagation, so modeling was applied until the peak load. The model was also successful in predicting the critical crack opening

displacement values at the failure load. Thus, the model gives a very close prediction of the experimental data over the whole

loading profile up to the failure load. The other tests displayed the same experiment-model agreement.

In this study, Schapery’s constitutive model is tested for the first time for freshwater ice. The match between the model and

the measured data, especially for the cyclic-recovery tests, provides a firm support of the ability of Schapery’s constitutive285

model to describe the time-dependent response of columnar freshwater S2 ice up to crack growth initiation. Figs. 11a and 11b

show the contribution of each individual model component, elastic and viscoplastic, to the total CMOD displacement, for RP16

and RP17, respectively. As mentioned earlier, the elastic and viscoplastic components account for the total deformation. For

RP16, the viscoplastic component dominated over the elastic component. For RP17, the elastic and viscoplastic components

contributed equally to the total displacement.290

The applicability of the proposed model and the fitted parameters are limited to the studied ice type, geometry, specimen size,

ice temperature, and the current testing conditions. Variation in the operating conditions will change the dominant deformation

mechanisms and the ice behavior; and accordingly, new model parameters are needed to adapt to the new response.

5 Discussion

Interestingly, the ice behavior in the current study differs from previous experimental creep and cyclic work on freshwater ice.295

Large delayed elastic or recoverable component has been previously observed. Several researchers performed creep experi-

ments on granular freshwater ice at lower temperatures (Mellor and Cole, 1981, 1982, 1983; Cole, 1990; Duval et al., 1991)

and reported considerable recovery. Duval conducted torsion creep tests on glacier ice at a similar testing temperature of -1.5 C

(Duval, 1978). When unloaded, the ice exhibited creep recovery. According to his analysis: during loading, the internal stresses

opposing the dislocation motion increases; upon unloading, the movement of dislocations produced the reversible deformation300

and is caused by the relaxation of internal stresses. Sinha (1978, 1979) studied columnar-grained freshwater ice and concluded

that the high-temperature creep is associated with grain boundary sliding. Cole developed a physically-based constitutive model

in terms of dislocation mechanics (Cole, 1995) and quantified two mechanisms of anelasticity: dislocation and grain boundary
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relaxations. He demonstrated that the increased temperature sensitivity of the creep properties of ice within a few degrees of

the melting point is due to a thermally induced increase in the dislocation density (Cole, 2020). The question then arises as to305

why warm columnar freshwater ice tested here showed no significant delayed elastic effect, and the microstructural changes

were mainly irreversible upon unloading?

The measured ice response is a novel result for any type of ice. It is important to emphasize that in comparison with earlier

freshwater ice studies, the tested samples are very warm and large. Viscoelasticity normally happens due to the elastically-

accommodated grain boundary sliding. Upon loading, internal stresses build up at local stress concentrations in the grain310

boundary geometry (triple points and grain boundary ledges). Assuming there is no microcracking, the growing stress impedes

further grain boundary sliding and causes sliding in the reverse direction, giving rise to the recoverable component after unload-

ing. However, in the present case, the measurements showed that the grain boundary sliding produced permanent deformation.

Several reasons can be discussed, related to the ice temperature, microstructure, and nonlinear mechanisms in the process zone.

Concerning the effect of temperature: the warmer the temperature, the more liquid on the grain boundary. The high homol-315

ogous test temperature (top ice surface ≈ -0.3 C) causes liquidity on the gain boundaries (Dash et al., 2006). The intergranular

melt phase on the grain boundary renders the ice as two-phase polycrystal and significantly influences the creep and recovery

response. In fact, the grain boundary sliding then consists theoretically of two processes: 1) the sliding of grains over one

another and 2) the squeezing-in/out of the liquid between adjacent grains (Muto and Sakai, 1998). The shear behavior of the

liquid film is function of its properties (thickness and amount). The presence of this liquid at the triple points and the boundary320

acted as a resisting obstacle for the grains to shear and deform back to their original form, causing the viscoplastic deformation.

The microstructure (grain size, crystalline texture) could be another contributing factor. Sinha (1979) developed a nonlinear

viscoelastic model, incorporating the grain size effect, to describe the high-temperature creep of polycrystalline materials.

He concluded that delayed elastic strain exhibits an inverse proportionality with grain size. This suggests that the grain size

(3-10 mm, Fig. 2b) of the ice samples is coarse enough not to produce any measurable viscoelastic deformation under the325

testing conditions. It is also probable that for this grain size, there was not enough local concentration points to arrest the grain

boundary sliding and drive the recoverable and reverse sliding. In addition, Gasdaska (1994) discussed that regularly ordered

and packed microstructures limit the amount of sliding and rearrangement and lead to less anelastic strain. The ice growth in

the Aalto Ice tank was very controlled and resulted in homogeneous ice sheet.

Knauss presented a thorough review of the time-dependent fracture models available to date (Knauss, 2015). The essence330

of the models is based on modelling the behavior in a finite cohesive/process zone which is attached to the traction-free crack

tip. The one-parameter fracture mechanics encompassed by the apparent fracture toughness is not applicable (Dempsey et al.,

2018). It is believed that the mechanisms taking place in the process zone play an influencing role in the current tests. The

nonlinearity in the fracture zone relieved the internal stresses that would ordinarily accommodate the grain boundary sliding

and generate some viscoelastic deformation upon unloading. Thus, any microstructural damage that occurred during loading335

manifested as permanent deformation at the end of the test.

It is noteworthy that the earlier studies used test sizes which are smaller than the plate size used here. It was shown in the

DC fracture tests (Gharamti et al., 2021) that scale had an effect at the tested loading rates. It is probable that the specimen
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size influenced the time-dependent deformation of freshwater ice. The current tests suggest that for the large sample size and

the kind of ice studied (very warm freshwater ice) under the loading applied, viscoelasticity is not an important deformation340

component. The experimental results support this prediction, but more tests are needed to make more general conclusions.

All the above-mentioned factors might have contributed to the measured elastic-viscoplastic response. However, the question

as to which factor influenced mostly the behavior is an important research question that requires more testing programs. Testing

the effect of each factor separately requires a set of experiments that considers this factor while keeping all the other conditions

fixed.345

6 Conclusions

In the present work, five 3m x 6m warm freshwater S2 ice specimens were tested under creep/cyclic-recovery sequences

followed by a monotonic ramp. The temperature at the top surface was about -0.3 C. The tests were load controlled and led to

complete fracture of the specimen. The purpose of this study was to examine the time-dependent behavior of freshwater ice

using a joint experimental-modeling approach.350

In the experimental part, the tests aimed to (1) measure and examine the time-dependent response of columnar freshwater

S2 ice through the applied creep/cyclic-recovery sequences and (2) investigate the effect of creep and cyclic sequences on

the fracture parameters/behavior through the fracture monotonic ramp. The current tests were compared with other monoton-

ically loaded tests of the same ice. The results showed that the creep and cyclic sequences had no clear effect on the failure

load and the crack opening displacements at crack growth initiation. The ice response at the testing conditions was over-355

all elastic-viscoplastic. The loading phases displayed an instantaneous transformation from the primary (transient) stage to

the steady-state regime, which resulted in permanent (unrecoverable) displacement. The conducted experiments provided a

novel observation for the time-dependent behavior of freshwater ice. Though the delayed elastic component has been reported

as a major creep component in freshwater ice, no significant viscoelasticity was detected in this study. Several factors were

discussed as possibly contributing to the observed behavior: the very warm columnar freshwater ice, liquidity on the grain360

boundary, large sample size, coarse grain size, and nonlinear mechanisms in the fracture zone. Testing the effect of each factor

on the ice response requires a different set of experiments that varies this factor only while keeping the other conditions fixed.

In the modeling part, Schapery’s nonlinear constitutive model was applied for the displacement response at the crack mouth.

The elastic-viscoplastic formulation succeeded to predict the experimental response of columnar freshwater S2 ice over the

applied loading profile up to crack growth initiation. The model parameters were obtained via an optimization procedure using365

the N-M method by comparing the model and experimental CMOD values.

The proposed model parameters are valid only for the studied ice type, geometry, specimen size, ice temperature, and the

range of applied load experienced in the experiments. Schapery’s model was selected in this study, as it is able to capture

the sort of time dependent behavior known to occur in ice and produces a simple and expedient way to help understand the

observed behavior. More thorough analysis with a physically-based approach is left to the future.370

12



Code and data availability. The code used for material modeling is written in MATLAB. Scripts used for analysis and more detailed infor-

mation of the experimental results are available from the authors upon request.

Author contributions. All authors designed the study and performed the experiments. I.E.G. generated the results and drafted the paper. All

authors commented on the text.

Competing interests. The authors declare that they have no conflict of interest.375

Acknowledgements. This work was funded though the Finland Distinguished Professor programme "Scaling of Ice Strength: Measurements

and Modeling", and through the ARAJÄÄ research project, both funded by Business Finland and the industrial partners Aker Arctic Tech-

nology, Arctech Helsinki Shipyard, Arctia Shipping, ABB Marine, Finnish Transport Agency, Suomen Hyötytuuli Oy, and Ponvia Oy. This

financial support is gratefully acknowledged. The authors would like to thank Dr. David Cole for taking the time and effort to review the

manuscript. The first author (I.E.G.) is thankful to Dr. Kari Santaoja for useful and enlightening discussions. The first author also thanks Dr.380

Murtaza Hazara for his helpful numerical advice. The second author (J.P.D.) thanks Business Finland for support by the FiDiPro Professor-

ship from Aalto University, and the sabbatical support from Aalto University, which collectively supported an annual visit 2015-2016, and

summer visits 2017-2019.

13



References

Abdel-Tawab, K. and Rodin, G. J.: Analysis of primary creep of S2 fresh-water and saline ice, Cold Regions Science and Technology, 26,385

83–96, 1997.

Adamson, R. M. and Dempsey, J. P.: Field-scale in-situ compliance of arctic first-year sea ice, Journal of Cold Regions Engineering, 12,

52–63, 1998.

Ashby, M. F. and Duval, P.: The creep of polycrystalline ice, Cold Regions Science and Technology, 11, 285–300, 1985.

Ashton, G. D.: River and lake ice engineering, Water Resources Publication, Littletown, Colorado, 1986.390

Cole, D.: On the physical basis for the creep of ice: the high temperature regime, Journal of Glaciology, 66, 401–414, 2020.

Cole, D. M.: Reversed direct-stress testing of ice: Initial experimental results and analysis, Cold Regions Science and Technology, 18,

303–321, 1990.

Cole, D. M.: A model for the anelastic straining of saline ice subjected to cyclic loading, Philosophical Magazine A, 72, 231–248, 1995.

Dash, J., Rempel, A., and Wettlaufer, J.: The physics of premelted ice and its geophysical consequences, Reviews of modern physics, 78,395

695, 2006.

Dempsey, J. P., Cole, D. M., and Wang, S.: Tensile fracture of a single crack in first-year sea ice, Philosophical Transactions of the Royal

Society A, 376, 20170 346, 2018.

Duval, P.: Anelastic behaviour of polycrystalline ice, Journal of Glaciology, 21, 621–628, 1978.

Duval, P., Kalifa, P., and Meyssonnier, J.: Creep constitutive equations for polycrystalline ice and effect of microcracking, in: International400

Union on Theoretical and Applied Mechanics (IUTAM), pp. 55–67, 1991.

Flügge, W.: Viscoelasticity. Springer-Verlag, Berlin, 1975.

Gasdaska, C. J.: Tensile creep in an in situ reinforced silicon nitride, Journal of the American Ceramic Society, 77, 2408–2418, 1994.

Gharamti, I. E., Dempsey, J. P., Polojärvi, A., and Tuhkuri, J.: Fracture of S2 columnar freshwater ice: size and rate effects, Acta Materialia,

202, 22–34, 2021.405

Iliescu, D. and Schulson, E.: Brittle compressive failure of ice: monotonic versus cyclic loading, Acta materialia, 50, 2163–2172, 2002.

Iliescu, D., Murdza, A., Schulson, E. M., and Renshaw, C. E.: Strengthening ice through cyclic loading, Journal of Glaciology, 63, 663–669,

2017.

Jellinek, H. and Brill, R.: Viscoelastic properties of ice, Journal of Applied Physics, 27, 1198–1209, 1956.

Jorgen, V. G. and Picu, B. C.: Effect of step-loading history and related grain-boundary fatigue in freshwater columnar ice in the brittle410

deformation regime, Philosophical magazine letters, 77, 241–247, 1998.

Knauss, W. G.: A review of fracture in viscoelastic materials, International Journal of Fracture, 196, 99–146, 2015.

Le Gac, H. and Duval, P.: Constitutive relations for the non elastic deformation of polycrystalline ice, in: Physics and Mechanics of Ice, pp.

51–59, 1980.

LeClair, E. S., Schapery, R. A., and Dempsey, J. P.: Tensile creep of saline ice, in: Symposium on Inelasticity and Damage in Solids Subject415

to Microstructural Change, pp. 143–153, St. John’s, Newfoundland, Canada, 1996.

LeClair, E. S., Schapery, R. A., and Dempsey, J. P.: A broad-spectrum constitutive modeling technique applied to saline ice, International

Journal of Fracture, 97, 209–226, 1999.

Lou, Y. C. and Schapery, R. A.: Viscoelastic characterization of a nonlinear fiber-reinforced plastic, Journal of Composite Materials, 5,

208–234, 1971.420

14



Mellor, M. and Cole, D.: Cyclic loading and fatigue in ice, Cold regions science and technology, 4, 41–53, 1981.

Mellor, M. and Cole, D. M.: Deformation and failure of ice under constant stress or constant strain-rate, Cold Regions Science and Technol-

ogy, 5, 201–219, 1982.

Mellor, M. and Cole, D. M.: Stress/strain/time relations for ice under uniaxial compression, Cold Regions Science and Technology, 6, 207–

230, 1983.425

Michel, B.: A mechanical model of creep of polycrystalline ice, Canadian Geotechnical Journal, 15, 155–170, 1978.

Murdza, A., Schulson, E. M., and Renshaw, C. E.: Strengthening of columnar-grained freshwater ice through cyclic flexural loading, Journal

of Glaciology, pp. 1–11, 2020.

Muto, H. and Sakai, M.: Grain-Boundary Sliding and Grain Interlocking in the Creep Deformation of Two-Phase Ceramics, Journal of the

American Ceramic Society, 81, 1611–1621, 1998.430

Nelder, J. A. and Mead, R.: A simplex method for function minimization, The Computer Journal, 7, 308–313, 1965.

Papanicolaou, G., Zaoutsos, S., and Cardon, A.: Further development of a data reduction method for the nonlinear viscoelastic characteriza-

tion of FRPs, Composites Part A: Applied Science and Manufacturing, 30, 839–848, 1999.

Rist, M., Sammonds, P., Murrell, S., Meredith, P., Oerter, H., and Doake, C.: Experimental fracture and mechanical properties of Antarctic

ice: preliminary results, Annals of glaciology, 23, 284–292, 1996.435

Santaoja, K.: Ph.D. Thesis: Mathematical modelling of deformation mechanisms in ice, Technical Research Center of Finland, Espoo, 1990.

Schapery, R.: Thermoviscoelastic constitutive equations for polycrystalline ice, Journal of Cold Regions Engineering, 11, 146–157, 1997.

Schapery, R. A.: On the characterization of nonlinear viscoelastic materials, Polymer Engineering & Science, 9, 295–310, 1969.

Sinha, N. K.: Rheology of columnar-grained ice, Experimental Mechanics, 18, 464–470, 1978.

Sinha, N. K.: Grain boundary sliding in polycrystalline materials, Philosophical Magazine A, 40, 825–842, 1979.440

Sunder, S. S. and Wu, M. S.: A differential flow model for polycrystalline ice, Cold Regions Science and Technology, 16, 45–62, 1989.

Sunder, S. S. and Wu, M. S.: On the constitutive modeling of transient creep in polycrystalline ice, Cold Regions Science and Technology,

18, 267–294, 1990.

15



P

80

Dimensions in mm

100

0.5A 0

100

P

X

100

L=3000

NCOD3
NCOD2

H = 2L=6000

NCOD1

A 0 = 0.7LCOD

CMOD D = 150
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Figure 2. (a) Temperature profile. Each data point represents the average of measurements taken at the same depth of different ice cores

throughout the one month duration of the test program. (b) Grain size distribution. Each data point is measured from one thin section.
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Figure 3. Loading consisting of (a) creep-recovery and (b) cyclic sequences followed by a monotonic fracture ramp. The number above each

segment indicates the duration in s.
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Figure 4. Experimental results for the (a) peak load Pmax, (b) crack mouth opening displacement CMOD and (c) near crack tip opening

displacement NCOD1 at crack growth initiation, as a function of time to failure tf for the monotonically-loaded DC tests (Gharamti et al.,

2021) and the creep/cyclic and monotonically-loaded LC tests.
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Figure 5. Measured load versus CMOD for the (a) DC tests Gharamti et al. (2021), (b) LC tests, and (c) LC tests up to the peak load.
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Figure 6. Load versus CMOD over the (a) creep-recovery cycles for RP15 and the (b) cyclic-recovery sequences for RP17. (c) Schematic

illustration of the hysteresis load-displacement diagram. The whole of the hysteresis loop area is the energy loss per cycle. The dashed area

is the part of that total that is due to the viscoelastic mechanism and the rest is due to viscous processes.
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Figure 7. Experimental results for RP16. (a) Load at the crack mouth, see Fig. 1. (b) Displacement - time records. (c) Load - displacement

record. (d) Typical response of a Maxwell model, consisting of a nonlinear spring and nonlinear dashpot, to a constant load step.
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Figure 8. Experimental results for RP17. (a) Load at the crack mouth, see Fig. 1. (b) Displacement - time records. (c) Load - displacement

record.
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Figure 9. Experimental and model results for RP16. (a) Load at the crack mouth, see Fig. 1. (b) CMOD - time records.
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Figure 10. Experimental and model results for RP17. (a) Load at the crack mouth, see Fig. 1. (b) CMOD - time records.
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Figure 11. Contribution of each individual model component to the total CMOD displacement for (a) RP16 and (b) RP17.
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Table 1. Measured experimental data and computed results for the LC tests.

Test Type L H A0 h E1 E2 E3 E4 Ef Pmax tf CMOD ˙CMOD NCOD1 ˙NCOD1

(m) (m) (m) (mm) (GPa) (GPa) (GPa) (GPa) (GPa) (kN) (s) (µm) (µms−1) (µm) (µms−1)

RP15 creep 3 6 2.1 364 6.6 6.7 7.3 7.4 6.9 5.8 68.2 320.1 4.7 53.6 0.8

RP16 creep 3 6 2.1 385 5.6 5.8 7.6 - 6.0 3.8 42.8 228.2 5.3 49.1 1.1

RP17 cyclic 3 6 2.1 407 6.5 - 7.6 - 6.6 4.5 49.3 173.7 3.5 30.0 0.6

RP18 cyclic 3 6 2.1 408 - - - - 5.3 3.9 40.1 143.7 3.6 28.5 0.7

RP19 cyclic 3 6 2.1 412 - 7.0 6.6 - 6.3 6.3 52.5 221.4 4.2 44.0 0.8
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Table 2. Optimization results computed using Schapery’s model.

Test tf Ce x 108 Cvp x 1010 c

(s) (mN−1) (mN−1s−1)

RP15 68.2 3.330 1.061 1

RP16 42.8 3.845 0.974 1

RP17 49.3 2.637 0.512 1

RP18 40.1 1.861 0.209 1

RP19 52.5 2.775 0.938 1
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