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Abstract. Ground surface elevation changes, soil moisture, and snow depth are all essential variables for studying the
dynamics of the active layer and permafrost. GPS interferometric reflectometry (GPS-IR) has been used to measure surface
elevation changes and snow depth in permafrost areas. However, its applicability to estimating soil moisture in permafrost
regions has not been assessed. Moreover, these variables were usually measured separately at different sites. Integrating their
estimates at one site facilitates the comprehensive utilization of GPS-IR in permafrost studies. In this study, we run
simulations to elucidate that the commonly-used GPS-IR algorithm for estimating soil moisture content cannot be directly
used in permafrost areas, because it does not consider the bias introduced by the seasonal surface elevation changes due to
active layer thawing. We propose a solution to improve this default method by introducing modeled surface elevation
changes. We validate this modified method using the GPS data and in situ observations at a permafrost site in the
northeastern Qinghai-Tibet Plateau (QTP). The root-mean-square error and correlation coefficient between the GPS-IR
estimates of soil moisture content and the in situ ones improve from 1.85% to 1.51% and 0.71 to 0.82, respectively. We also
propose a framework to integrate the GPS-IR estimates of these three variables at one site and illustrate it using the same site
in the QTP as an example. This study highlights the improvement to the default algorithm, which makes the GPS-IR valid in
estimating soil moisture content in permafrost areas. The three-in-one framework is able to fully utilize the GPS-IR in
permafrost areas and can be extended to other sites such as those in the Arctic. This study is also the first to use GPS-IR to
estimate environmental variables in the QTP, which fills a spatial gap and provides complementary measurements to ground

temperature and active layer thickness.
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1 Introduction

Permafrost refers to the ground where the temperature remains at or below 0 °C for at least two consecutive years. On top of
the permafrost is the active layer which undergoes seasonal freezing/thawing cycles (Dobinski, 2011). In the Qinghai-Tibet
Plateau (QTP), permafrost occupies around 40% of its area (Zou et al., 2017) and has been warming and degrading over the
last several decades (Zhao et al., 2010 and 2019). The ground temperature at 15 m depth increased at a rate varying from
0.02 °C per decade in Hoh Xil to 0.26 °C per decade in the Kunlun Mountains and Liangdaohe during 2001-2017 (Zhao et
al., 2019). Thickening of the active layer was also observed. Based on the records at 10 sites, the average thickening rate was
19.5 cm per decade from 1981 to 2018 (Zhao et al., 2019). The dynamics of the active layer and permafrost (collectively
called as frozen ground alternatively) has a crucial impact on geomorphological, hydrological, ecological processes and

infrastructures (Wu et al., 2002; Cheng and Wu, 2007; Yang et al., 2010; Gao et al., 2017).

Ground surface elevation changes, soil moisture, and snow depth are all essential variables for studying frozen ground
dynamics, as they are all related to the thermal and hydrological changes in the frozen ground. The ground surface in
permafrost areas is subject to uplift/subsidence, mainly due to the phase changes between ice and water in the active layer
freezing/thawing cycles. Surface deformation can indicate the variation in the active layer and permafrost. Numerous studies
have been conducted to use surface elevation changes (e.g., Interferometric Synthetic Aperture Radar (InSAR)
measurements) to infer the variation of active layer thickness and permafrost degradation in the QTP (Chen et al., 2018;
Wang et al., 2018; Reinosch et al., 2020; Daout et al., 2020). Soil moisture affects soil thermal properties then the ground
thermal regime, for instance, in well-drained areas with peat layers, decreasing soil moisture content lowers the soil thermal
conductivity, as a large amount of pore space is filled with air. Such a layer functions as an insulator, retarding the heat
transfer between the atmosphere and the lower ground and thereby impeding the downward movement of the thawing front
(Shiklomanov et al., 2010; Gockede et al., 2019). Surface soil moisture also regulates the exchange of water and energy
between the atmosphere and frozen ground by evapotranspiration (Seneviratne et al., 2010). Zhang et al. (2016) investigated
the influence of soil moisture on the thermal and hydrological properties of the active layer in Tanggula in the central QTP.

Snow cover also has a significant influence on the ground thermal regime due to its high albedo, low thermal conductivity,
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and the large amount of latent heat absorbed when melting (Zhang, 2005). The timing and duration of snow cover, snow
depth, and snow density and texture affect frozen ground dynamics. The variations of snow cover and their impact on the
thermal and hydrological conditions of the frozen ground in the QTP have been studied extensively (Flanner and Zender,

2005; Che et al., 2008; Gao et al., 2012; Xu et al., 2017; Deng et al., 2017, Qi et al., 2019).

GPS interferometric reflectometry (GPS-IR) is a method which exploits the interference between direct and reflected GPS
signals to estimate ground surface elevation changes, surface soil moisture, and snow depth (Larson, 2019). Such
interference can be reflected by signal-to-noise ratio (SNR) data at low satellite elevation angles recorded by GPS receivers.
SNR observations (alternatively called as SNR interferograms) oscillate quasi-sinusoidally when the reflecting surface is
relatively smooth and horizontal. The frequency of such oscillation (hereafter referred simply to “frequency”) can be used to
measure the vertical distance between the antenna and reflecting surface, which is then converted into snow depth when the
reflector is snow surface while ground surface elevation changes (Larson et al., 2009 and 2016; Liu and Larson, 2018). The
phase of the oscillation (hereafter referred simply to “phase™) can be used to estimate surface soil moisture content within the
layer of 0-5 cm (Larson et al., 2008; Chew et al., 2014 and 2016). GPS-IR can provide daily and continuous measurements
at continuously operating sites. Their spatial coverages are antenna-height dependent, e.g., ~1000 m? for a 2m-high antenna.
Such an order of magnitude makes the GPS-IR measurements bridge the point observations and regional-scale remote

sensing ones.

The applicability of GPS-IR for estimating soil moisture content in permafrost areas has not been assessed. We run
simulations to elucidate that it could not be applied directly to permafrost areas as it does not consider the bias introduced by
the seasonal surface elevation changes due to active layer thawing. Moreover, measuring ground surface elevation changes,
soil moisture content, and snow depth at a single site can fully utilize GPS-IR in permafrost areas and boost the permafrost
studies, which however has not been conducted to date. Driven by these motivations, our objectives in this study are (1) to
improve the default GPS-IR algorithm for estimating soil moisture content to make it valid in permafrost areas; (2) to

implement a three-in-one framework, i.e., integrating the GPS-IR measurements of surface elevation changes, soil moisture,
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and snow depth at one site, and illustrate it by using a permafrost site within the northeastern QTP site as an example and (3)

to provide GPS-IR measurements at the QTP site.

The significance of this study relies on the improvement made to the default algorithm, which can correct the bias introduced
by the seasonal surface deformation. In summer, as the thawing front advances downwards, surface subsidence accumulates
and leads to bias with larger magnitude. The bias would likely mislead the interpretation of soil moisture variation by
superimposing a seasonal trend. Moreover, this study is the first to use GPS-IR for estimating environmental variables in the
QTP. Although numerous GPS stations (e.g., the stations of the Crustal Movement Observation Network of China,

http://www.neiscn.org/chinzdinfo/jsp/main.jsp) are continuously operating in the QTP, none of them have been previously

used for GPS-IR studies. Furthermore, permafrost is extensive in the QTP, but the monitoring sites (e.g., boreholes) are few
and unevenly distributed (Zou et al., 2017). Our study site can fill a spatial gap in the QTP, although it was initially designed
to study hydrological processes. In addition, our GPS-IR measurements are complementary to the existing observations, such
as ground temperature, to provide fresh insights into frozen ground dynamics. The three-in-one framework is the first of its
kind to fully utilize GPS-IR in permafrost studies. The Plate Boundary Observatory (PBO) H2O is a similar but much-larger-
scale project, which estimates snow depth, soil moisture content, and vegetation water content at the GPS sites of the PBO
network (Larson, 2016). However, the PBO H>O project was not explicitly designed for studying permafrost and already

ended in fall 2017. Our three-in-one framework is the first one dedicated to a comprehensive use of GPS-IR for permafrost.

In section 2, we briefly describe the study site and instrumentation. In section 3, we first summarize the GPS-IR principles
for retrieving surface elevation changes, soil moisture, and snow depth. We then illustrate the default algorithm’s limitations
for estimating soil moisture in permafrost areas by simulations and introduce our solution for improvement. We then propose
a three-in-one framework. We finally present the datasets used in this study. In section 4, we show the results, i.c., the
improvement of our method and the GPS-IR estimates of these three variables at the site in the QTP. In section 5, we discuss
the merits and possible error sources of the improved algorithm and the benefits of the three-in-one framework to permafrost

studies. We conclude this study in section 6.
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2 Description of the study site

The study site, Binggou (38.01° N, 100.24° E, 4120 m a.s.l.) is located in the northeastern region of the QTP (Fig. 1(a)). The
mean annual ground surface temperature is around -3.5°C. Permafrost is present at this site with a thickness of 25-30 m (Ran
et al., 2018). The active layer thickness is ~1.6 m, based on ground temperature observations. The biome at this site is alpine
steppe. As for soil texture profile, in the upper 0.2 m, the soil is dominantly sandy silt. At depths between 0.2 m and 0.5 m, it
is a mixture of sand, silt, and gravel. The soil becomes mainly gravel below the depth of 0.5 m. This general soil texture
description was kept when installing the GPS monument. The soil moisture content is ~40% in the upper 0.4 m, decreases to

20% at the depth of 0.8 m, and remains relatively stable to the depth of 1.6 m (Che et al., 2019).

A GPS station, called QLBG, has been operating in Binggou since November 2016. Figure 1(b) shows a ground photo of
QLBG. Its antenna height is ~2 m above the ground surface and the monument foundation is ~1.5 m deep. The foundation
depth is slightly shallower than the active layer base. It implies that the monument might settle in late summer when the soil
around the foundation starts to thaw (or heave up at the beginning of freezing season when the foundation freezes).
However, the magnitude of such movement is expected to be negligible, as the layer between the foundation depth and the
active layer base is as thin as ~10 cm. Given that the soil moisture content is ~20%, the thawing of this layer causes a
subsidence of only ~0.2 cm. Such a magnitude is at least one order less than that of the standard deviation of the GPS-IR
measurement (more in section 3.1). The monument can be regarded as stable in the thawing season considered in this study
(see the detailed discussion in section S1 in the supplementary). The antenna of QLBG is mounted onto a galvanized steel
pipe anchored to a concrete foundation. The GPS receiver type is CHC N72 and the antenna is CHCC220GR with a CHCD
radome. An integrated weather station exists close to QLBG, which records various environmental variables, including soil
moisture and ground temperature (Che et al., 2019). They are both measured up to a depth of 1.6 m. Due to the open and

relatively horizontal and smooth surface and abundant weather records, QLBG is usable for GPS-IR studies.
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Figure 1: (a) Location of the study site, Binggou, in the northeastern Qinghai-Tibet Plateau. (b) Ground photo of the GPS station
QLBG. (c) Orthophoto of the Binggou site showing the surface condition, QLBG (red triangle), and the integrated weather station.

Red elliptic curves indicate the footprints of the reflected L1 GPS signals at the satellite elevation angle of 5°.

3 Methodology

3.1 GPS-IR

The input of GPS-IR is SNR data, which can reflect the interference pattern between the direct and reflected signals at low
satellite elevation angles. When a GPS station is located above a horizontal and smooth surface (e.g., Fig. 2), the SNR

interferogram, corresponding to a rising/setting satellite track, can be simply expressed as (Larson, 2019):
SNR = A(e) sin(2rf sine + ¢(e)) , @)

f=2, @)
where, A(e) is the oscillation amplitude varying with satellite elevation angle e; f is the oscillation frequency of the SNR
interferogram; H is the vertical distance between the antenna and the reflecting surface, conventionally called as reflector

height; A is the carrier wavelength of GPS signals; ¢p(e) is the phase varying with satellite elevation angle as well. The



frequencies of SNR interferograms are used to obtain reflector heights by equation (2) then surface elevation changes in the
140 snow-free season otherwise snow depth (Larson et al., 2009; Liu and Larson, 2018). In addition, the phases are used to

estimate soil moisture content (Larson et al., 2008).
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Reflected signal
H+d

e e

Surface (S)
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Figure 2: Diagrams showing the geometries of GPS-IR in the thawing/freezing active layer conditions. We use the symbols V, S,
145 and P to denote the vertical positions of the GPS antenna, reflecting surface, and the monument anchor point, , respectively, with
respect to an arbitrary reference in the deep permafrost marked by a dashed line; H denotes reflector height; d represents surface

deformation due to active layer freezing/thawing.

In the geometry of GPS-IR (Fig. 2), the reflector height A depends on the vertical positions of the GPS antenna (¥) and the

150 reflecting surface (S) with respect to the deep permafrost as a reference, which is in the form of

H=V-5. A3)

Given the monument with a length of L, the position of the monument anchor point is

P=V-—L. “4)

Incorporating (4) into (3), we can derive the surface position as

155 S=L+P—H. (5)



160

165

170

175

180

If the monument is stable with respect to the deep permafrost, the variation of P relative to the reference is zero and the

equation (5) will be reduced to

S=1L-H. (6)

Assuming a constant L, surface elevation changes are negative to the reflector height variations.

In practice, to obtain reflector height, for any given SNR interferogram at low elevation angles (i.e., 5-15° in this study), we
first remove its 2nd-order polynomial fit and use the residuals, which are mainly contributed by the interference between
direct and reflected signals. We then conduct Lomb-Scargle Periodogram on the residuals to obtain the frequency spectrum.
We use the peak value of this spectrum to represent f and convert it to H by equation (2). On any given day, we retrieve H
from all available SNR interferograms. Then, we average them to obtain the daily reflector height H and calculate the
standard deviation of the mean value. In the snow-free season, based on equation (6), we remove the mean from the negative
daily reflector heights and use the residuals to represent ground surface elevation changes. When the ground is covered by
snow acting as the reflector, we can derive the snow depth as the difference between the reflector height of snow surface and

the one of ground surface.

Here, we describe the default algorithm of estimating phases and then retrieving soil moisture content by GPS-IR.
Practically, A(e) and ¢(e) of an SNR interferogram are assumed to be constant, as their variations with elevation angle are
small (Zavorotny et al., 2010; Chew et al., 2014). Fixing H to an a priori reflector height (H,), we can determine the phase
by Least Squares Estimation (LSE). In previous studies such as Larson et al. (2010) and Chew et al. (2014), H,, is the mean
value of the daily reflector heights over the data time span of interest. On any given day within the time span, the same H,, is
used to estimate phases of SNR interferograms. After retrieving the phases, we offset the phase time series of different
satellite tracks by subtracting the mean value of the lowest 15%. Then, we use the mean values of the offset phases to
represent the daily ones and compute their standard deviations. Then, we convert the phases into soil moisture content based
on their empirical linear relationship (Chew et al., 2016; Small et al., 2016). For cases with no significant vegetation

influence, the slope of soil moisture content versus phase is 1.48 cm® cm™ deg™ (Chew et al., 2014). The intercept (or called
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as residual soil moisture content in literature) can be determined by in situ measurements or public datasets (e.g., US

Geological Survey’s STATSGO (Schwarz and Alexander, 1995)).

3.2 Modifying the default method for estimating soil moisture in permafrost areas

3.2.1 Limitation of the default method

Using a constant H,, to estimate phases in permafrost areas might not be valid, as the ground surface is subject to moves
vertically due to active layer thawing/freezing. To illustrate this limitation and its impact on the phase estimation, we run
simulations by using the multipath simulator (Nievinski and Larson, 2014). We initially set the reflector height H as 2 m,
which is the typical monument height of most GPS stations. Then, we introduce a surface deformation d. Positive (negative)
means surface subsidence (uplift). In the simulations, d varies from -5 to 5 cm at a step of 1 cm. Not knowing the antenna
gain pattern of CHCC220GR CHCD used in this study, we alternatively use the one of TRM29659.00 with the radome of

SCIT. Other key parameters used in the simulations are listed in Table 1.

In Fig 3(a), we show an example of the simulated SNR with d of 2 cm whose 3-order polynomial fit has been removed. We
use LSE to estimate the phase and amplitude by using H and H + d, respectively. From the inset plot of Fig. 3(a), we can
observe that using H introduces a phase bias of around -14°. Figure 3(b) shows the simulated bias corresponding to various

d. The bias is approximately proportional to the surface deformation.

In summer, surface subsidence accumulates with the downward movement of the thawing front, which leads to bias with
larger magnitude. The bias may mislead the interpretation of soil moisture variation, with a seasonal trend superimposed on
the soil moisture estimates. Thus, such bias needs to be corrected when using GPS-IR to estimate soil moisture content in

permafrost areas. To solve this problem, we propose a solution in the following subsection 3.2.2.

Table 1: Key parameters for SNR simulations

Parameter Value




GPS signal L1 C/A

Antenna TRM29659.00 with radome SCIT
Reflector height 1.95-2.05 m with 1 cm intervals
Elevation angle 5-20°
Azimuth angle 0-360°
Soil type Sandy loam
30, : ; = ] 40
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Figure 3: (a) Simulated SNR with H + d and their fits based on H + d and H, respectively. In this simulation, H and d are fixed as

2 m and 2 cm, respectively. The inset plot shows that the phases of these two fits are different. (b) The simulated phase bias when

using various d.

3.2.2 Solution: introducing modeled ground surface elevation changes

210 To address the problem illustrated above, we propose a solution of introducing modeled ground surface elevation changes.
We add the modeled values to the constant H,, to derive the time-varying reflector height H,', which approximates the true
daily changes of reflector height. For any given day, we use its corresponding reflector height to estimate phases. We need to
note that the daily reflector heights derived by the Lomb-Scargle Periodogram cannot be used directly. Except for abrupt
changes due to thermokarst processes, wildfires or human disturbance, the ground surface in cold regions typically

215

undergoes progressive subsidence. As the reflector heights exhibit relatively large daily oscillations, they cannot reveal the

evolution of surface elevation changes at daily intervals.

10




220

225

230

235

240

We simulate the ground surface elevation changes based on the Stefan-equation-based model of Liu et al. (2012). It can
estimate surface deformation on any given day from the onset of thawing season by using the GPS-IR-measured ground

surface vertical deformation and thermal indices. The model is expressed as

d(t) = dsI7(t) + d, , (7
Ip(t) = VA7 (D), (®)
Ar(6) = X T(t) when T(t) > 0°C, 9)

where d(t) is the surface deformation on the day of t; d, denotes the seasonal subsidence; I (t) represents the normalized
thermal index I (t) by its maximum value; I-(t) is the square root of degree days of thawing, A;(t), from the onset of

thawing season, calculated based on the ground surface temperature 7.

We use the GPS-IR-measured ground surface elevation changes and normalized thermal indices to inverse the parameters of
dg and d,. They are then used together with the normalized thermal indices to simulate the ground surface elevation changes
then obtain H,', which are used in turn to estimate phases. As in situ soil moisture observations are available, we directly
compare them to the phases to obtain the mapping function, which is then used to convert the phases to soil moisture
content.

3.3 Framework of integrating GPS-IR measurements of ground surface elevation changes, soil moisture, and snow
depth

We propose a 3-in-1 framework, i.e., integrating the GPS-IR measurements of ground surface elevation changes, soil
moisture, and snow depth at one single GPS site in permafrost regions. We show a conceptual diagram of this framework in
Fig. 4. We first process the SNR interferograms during the data time span to obtain daily reflector heights, based on the steps
described in section 3.1. We then separate them into two groups, one in the snow season and the other in the snow-free
season. Reflector heights in the snow season are converted into snow depth. The ones in snow-free days are used to obtain

ground surface elevation changes and the constant Hy,. We then use the surface elevation changes and thermal indices to

11



model the surface deformation and calculate the time-varying H,,". Lastly, we use H," and SNR data to estimate the phases,

which are converted to soil moisture content.

SNR Daily
interferograms reflector height H

No
Snow-free > Snow depth

Yes

Ground surface
elevation changes

Mean value of H
(Hy)

Time-varying H,'

Modeled ground surface
elevation changes

Thermalindex Ay Daily phase Soggr]l?;sr;[fre

245  Figure 4: Diagram of the 3-in-1 framework for integrating the GPS-IR measurements of ground surface elevation changes, soil

moisture, and snow depth at one site.

3.4 Data

Manual snow depth was measured during DOY 112-156 in 2017. It was measured daily at ten points, randomly distributed

southeast of QLBG and close to the ultrasonic snow depth sensor, which are generally within the azimuth range of 90—135°.
250 We average them to obtain the daily measurements and calculate their standard deviations. We use the manual observations

to validate our GPS-IR measurements. We do not use the ultrasonic measurements as they are not calibrated.

In situ soil moisture and ground surface temperature in 2017 and 2018 are used as well. We use the ground temperatures to
determine the onset and duration of thaw seasons. We also use them to calculate the thermal index A;. We use the soil

255 moisture observations to convert phases to soil moisture content and validate our modified GPS-IR algorithm.

12
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SNR data of the GPS L1 C/A signals recorded by QLBG are available from November 2016 to April 2019 (Fig. 5). They
have frequent large gaps, such as DOY 57-111 and DOY 191-215 in 2017 and DOY 77-180 in 2018, due to instrumentation
problems. Considering the continuity of SNR data and availability of in situ measurements, we use the SNR data within the
azimuth range of 90—135° during DOY 167-173 in 2017 (as the beginning of thaw season) to obtain the reflector height of
ground surface to be the reference and the ones during DOY 112—156 in 2017 to estimate snow depth. The SNR data within
the azimuth range of 0-360° during DOY 182-243 in 2018 is used to measure ground surface elevation changes and soil
moisture content. We show an example of SNR interferogram in Fig. 5(b), which exhibits a clear quasi-sinusoidal pattern.

The sampling rate of SNR data is 15 s. SNR data are recorded as integers. L2C signals are not recorded.

a
2019 (@)
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zZ
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Day of year Elevation angle (deg)

Figure S: (a) Availability of the SNR data of the GPS L1 C/A signals recorded by QLBG during 2016-2019. (b) SNR observations

with elevation angles of 5-15 degrees of the GPS-02 satellite on DOY 220 in 2018. The second-order polynomial has been removed.

4 Results

4.1 Ground surface elevation changes

We obtain the daily reflector height measurements during DOY 182-243 in 2018. We then remove the mean value from the
minus reflector heights and use the residuals to represent the ground surface elevation changes, which are shown in Fig. 6(a).
Their standard deviations are on the order of 1-2 centimeters. Surface elevation changes show a progressive subsidence
trend, which is mainly caused by ground ice melting within the thawing active layer.

13
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We compare the surface elevation changes to the normalized thermal indices and build their best linear fit to obtain the
model parameters based on section 3.2.2 (Fig. 6(b)). The parameters dg and d, are -1.7 £ 0.8 cm and 1.2 + 0.6 cm,
respectively. We then use these parameters and the normalized thermal indices to simulate the ground surface elevation
changes, which are presented in Fig. 6(a) as a curve superimposed on the GPS-IR measurements. The simulated surface
deformation is used to compute the time-varying H,', to estimate the phases and then soil moisture content, which will be

presented in section 4.2.
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Figure 6: (a) Time series of GPS-IR measurements of ground surface elevation changes and the simulated ones based on the model
parameters d and d in (b) during DOY 182-243 in 2018. (b) Scatter plot between the ground surface elevation changes and the

normalized thermal indices and their best linear fit (dashed line). dg and d, are the slope and intercept of this fit line.

4.2 Validation of the improved method and soil moisture content
We use the time-varying H,' as obtained in section 4.1 to estimate the daily phases during DOY 182-243 in 2018 (Fig. 7(a)).
For comparison, we also obtain the phases by the default method (Fig. 7(c)). We compare the phases to in situ soil moisture

measurements to obtain the best linear fits as mapping functions. The fit line for the modified method has a slope of 1.73% =+

0.07% deg™! and an intercept of 22.2% =+ 0.6% (Fig. 7(b)). The one for the default method has a slope of 0.84% =+ 0.04% deg

14
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!and intercept of 30% = 0.39% (Fig. 7(d)). We use these parameters to convert the phases to soil moisture content shown in

Fig. 8.
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Figure 7: (a) Time series of the phases derived by our method during DOY 182-243 in 2018. Error bars denote their uncertainties
represented by the standard deviations of the mean values. (b) Scatter plot between phases in (a) and in situ soil moisture and their
best linear fit shown as a dashed line. The slope and intercept of the fit line are presented. We also show the goodness of fit as R.
(c¢) and (d) are similar to (a) and (b) correspondingly but for the results of the default method. The data gap during DOY 203-206

is due to the absence of SNR data.
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From the in situ measurements in Fig. 8, we observe that surface soil underwent several drying/wetting cycles during DOY
182243 in 2018, especially the one during DOY 201-218 with a magnitude of ~10%. The soil moisture estimated by our
method agrees well with the in situ ones (Fig. 8(a)). They capture the prominent drying/wetting feature and other cycles as
305 well. The in situ measurements and the estimates by our method have a correlation coefficient of 0.82 and a root-mean-
squared error (RMSE) of 1.51%. In contrast, for the soil moisture derived by the default algorithm, we barely recognize the
significant drying-wetting phenomenon during DOY 201-218. Furthermore, they exhibit an obvious descending trend.
Based on the simulations in section 3.2.1, the phase bias is nearly proportional to surface deformation and surface subsidence
introduces a negative bias. In summer, when the thawing front advances deeper, the surface subsidence accumulates, then
310 the bias decreases (with increasing absolute value). Accumulating surface subsidence gives rise to a decreasing trend of soil
moisture estimates. The soil moisture estimates by the default method and in situ measurements have a correlation
coefficient of 0.71 and RMSE of 1.85%. In summary, by comparing the GPS-IR estimates and in situ observations, our
method outperforms the default one. Furthermore, soil moisture was estimated by GPS-IR at 11 sites with various vegetation
conditions by Small et al. (2016). The RMSEs of their estimated soil moisture at these 11 sites range from 1.5% to 5.1%.

315 Our results obtained by the improved algorithm in this study achieve comparable accuracy.
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Figure 8: Time series of in situ soil moisture content and those measured by (a) our method and (b) the default method. The

shaded areas denote the uncertainties of GPS-IR estimates. Root-mean-square error (RMSE) and correlation coefficient (R) are

320 presented.
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4.3 Snow depth

We obtain the GPS-IR-measured snow depth during DOY 112-156 in 2017 (Fig. 9). Their standard deviations are on the
order of several centimeters as well. We compare them to the manual observations. From the manual measurements, we can
observe that snow cover underwent several cycles of accumulation/ablation, e.g., the one during DOY 140-147.
Consistently, GPS-IR measurements capture these processes. Fig. 9(b) shows the scatter plot between the GPS-IR and
manual observations and their best linear fit. The correlation coefficient is 0.73. The GPS-IR measurements have an RMSE
of 4.11 cm and a bias of 2.49 cm. The agreement level of the GPS-IR-estimated snow depth to the manual observation

ranges from 4 cm to 6 cm in the validation experiments of Larson (2019). Our measurements have comparable accuracy.

The GPS-IR measurements overestimate the snow depth, indicated by the positive bias. The main reason is possibly due to
the difference of surface reflectivity between snow and wet soil. According to the in situ measurements, the volumetrical
moisture content at 1 cm depth during DOY 167-173 in 2017 was around 38%. Given the significant contrast of moisture
content in snow and wet soil, their different surface reflectivity might affect the GPS-IR measurements. We use the
multipath simulator of Nievinski and Larson (2014) to conduct simulations to quantify the influence. The details can be
found in section S2 in the supplementary. Our simulations show that a bias of 4 cm is introduced and can lead to an
overestimation of the GPS-IR measurements, which help to explain the positive bias to some extent. Moreover, the possible
penetration into soil when manually measuring snow depth may also affect the GPS-IR measurements (McCreight et al.,

2014). The penetration could compensate a part of the overestimation of GPS-IR observations.
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Figure 9: (a) Bar plot of manual and GPS-IR-estimated snow depth. Error bars are not shown for clarity. (b) Scatter plot of the
manual snow depth and the GPS-IR ones and their best linear fit as a dashed line. The correlation coefficient (R), RMSE, and bias

are shown as well.

5 Discussion

5.1 Merits and error sources of the modified algorithm

The advantage of the modified algorithm for estimating soil moisture content is that it can correct the bias introduced by the
seasonal surface elevation changes in permafrost areas. Moreover, the required input of this method is easy to access. The
surface elevation changes can be obtained directly by GPS-IR. The ground/air temperatures can be provided by in situ

measurements or reanalysis datasets (e.g., European Centre for Medium-Range Weather Forecasts, https://www.ecmwf.int).

In addition, this modified method can also provide daily and continuous measurements with intermediate spatial coverages.

The error sources of the modified method are related to antenna gain pattern, surface conditions (i.e., vegetation and soil
moisture), and the GPS-IR geometry. The receiver antenna is designed to favor the reception of direct signals and suppress
those with low satellite elevation angles and reflected signals. It has an asymmetric gain pattern along the elevation angle.
For any given SNR series, the antenna gain’s impact varies at each data point. But for any SNR series with the same
elevation angles, they suffer from the same impact. Therefore, the influence of antenna gain pattern on the SNR metrics (i.e.,
frequency, amplitude, phase) can be regarded as a systematic bias. As we focus on the temporal variations, the impact of
antenna gain pattern is negligible. The surface reflectivity also varies with the elevation angle. Given antenna gain pattern
and surface reflectivity, the phases of each point of a given SNR interferogram are slightly different (i.e., the phase term
¢(e) in equation (1) is a variable). Assuming the phase as a constant in data processing might introduce errors. Zavorotny et
al. (2010) simulated SNR in bare soil conditions with a smooth reflecting surface. The phase variations with respect to the
elevation angles are nearly the same, given a change of soil moisture content. It indicates that assuming the phase as a
constant has little impact on the GPS-IR estimates of soil moisture, as we focus on the temporal changes of the phase. The

ground surface at our site is relatively smooth and horizontal (Fig. 1). The vegetation is sufficiently short (i.e., less than the
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wavelength of the L-band GPS signals) to be transparent for the GPS signals. The impact of the surface conditions is

expected to be limited as well.

Regarding the error sources related to the GPS-IR geometry, they affect the soil moisture estimates through the GPS-IR-
measured surface elevation changes, which are used to calculate the time-varying H,'. The error sources are mainly
monument stability, tropospheric delays of the GPS signals, monument thermal contraction/expansion. Though the
foundation base is slightly shallower than the active layer thickness, the monument does not have any significant
displacement pattern (see the details in section S1 in the supplementary). The monument can be regarded as stable with
respect to the permafrost and barely has any impact on the GPS-IR-measured surface elevation changes. Regarding the
tropospheric delays, we use the in situ air temperature and pressure measurements to quantify them, using the refraction
correction model of Bennett (1982). The tropospheric biases are ~1.3 cm and relatively steady (Fig. 10). As we focus on the
temporal changes of the surface elevation changes, the impact of the tropospheric biases is negligible. For the thermal
expansion/contraction of the monument, the coefficient of linear thermal expansion of galvanized steel is 11~13 x 10¢
m-(m-°C) !, Given a temperature variation range of 20 °C in a thaw season, for a 2-m-high monument, the magnitude of the

thermal expansion is less than 1 mm, at least one order of magnitude smaller than that of surface elevation changes.
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Figure 10: Tropospheric biases of ground surface elevation changes during DOY 182-243 in 2018. They are the mean values of the

biases of all satellite tracks, whose standard deviations are represented by error bars.

The temporal variation of soil moisture may also introduce bias to the GPS-IR-measured surface elevation changes then to
the measurements of soil moisture content. Assuming the phase as a constant introduces bias to the frequency retrieval then
reflector height. Such bias is called compositional reflector height, as it manifests itself as a part of reflector height
(Nievinski, 2013). Liu and Larson (2018) conducted simulations and found that the bias was less than 2 cm and varied in the
range of less than 1 cm, given soil moisture between 15% and 40%. In this study, such bias is expected to be limited, as the
precipitation is scarce and light in the cold and dry plateau climate and that we focus on the temporal changes of the surface
elevations.

5.2 Benefits of the three-in-one framework to permafrost studies

The three-in-one framework can fully utilize the GPS-IR in permafrost studies. We can obtain the GPS-IR measurements of
three key variables by one GPS station, which is crucially important due to the lack of observations in permafrost areas. Our

study in QLBG serves as an example of this framework.

The obtained GPS-IR measurements can be directly used to study the changes in permafrost areas at local scales. We can use
the snow depth to study the variation of snow cover and its insulating effect and hydrological impact on the frozen ground.
The ground surface elevation changes can indicate the amount of melting ground ice and the changes of active layer
thickness with ancillary information such as soil moisture profiles. The magnitude of surface elevation changes in permafrost
areas mainly depends on the moisture content within the thawed/frozen soil. We can estimate the active layer thickness if we
have the seasonal surface elevation changes and soil moisture profile (Liu et al., 2012). The soil moisture content
measurements aid in studying the water cycles and surface energy balance and analyzing the interaction between the

atmosphere and frozen ground.

The GPS-IR measurements can be used to calibrate/validate the remote sensing observations at regional scales. At present,

surface elevation changes, soil moisture, snow depth can be provided by air/satellite-borne measurements, such as InNSAR
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measurements for surface elevation changes (Liu et al., 2010), Soil Moisture Active Passive (SMAP) data for soil moisture
content (Entekhabi et al., 2010), and snow depth estimated from passive microwave radiometry data (Walker and Silis, 2002;
Che et al., 2008). These remote sensing observations have relatively broad spatial coverages, typically on the order of
several tens of kilometers. As the GPS-IR measurements have intermediate spatial coverages, they can be used to

calibrate/validate the remote sensing observations.

The three-in-one framework can be extended to other GPS sites, such as those in the Arctic. The GPS station SG27 in
Utqgiagvik (formerly Barrow), Alaska has been proved to be usable for GPS-IR studies (Liu and Larson, 2018). Zhang et al.
(2020) also identified 12 usable GPS stations in the Northern Canada permafrost areas. We can apply the framework to these

stations to obtain GPS-IR measurements, which will contribute to the research on permafrost.

6 Conclusion

This study highlights the improvement to the default GPS-IR algorithm for estimating soil moisture content. It can correct
the bias introduced by the seasonal surface elevation changes in permafrost areas. We use the GPS data and the in situ
measurements of soil moisture at QLBG to validate this modified method. The correlation coefficient and RMSE between

the GPS-IR estimates and the in situ ones improve from 1.85% to 1.51% and 0.71 to 0.82, respectively.

We implement a framework to integrate the GPS-IR measurements of ground surface elevation changes, soil moisture, and
snow depth at one single site. Following the framework, we obtain the GPS-IR measurements at QLBG. The framework
helps to comprehensively use GPS-IR in frozen ground. It also can be extended to other sites, for instance, those in the

Arctic, where multiple stations have been identified to be usable for GPS-IR studies.

This study is also the first to use GPS-IR in the QTP. QLBG fills a spatial gap in the existing sparse permafrost-monitoring
sites. Its GPS-IR measurements are complementary to the existing observations, such as ground temperatures. They can also

be used to calibrate/validate remote sensing observations.
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