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Abstract. We combine satellite observations and numerical models to show that Earth lost 28 trillion tonnes of ice between 

1994 and 2017. Arctic sea ice (7.6 trillion tonnes), Antarctic ice shelves (6.5 trillion tonnes), mountain glaciers (6.1 trillion 10 

tonnes), the Greenland ice sheet (3.8 trillion tonnes), the Antarctic ice sheet (2.5 trillion tonnes), and Southern Ocean sea ice 

(0.9 trillion tonnes) have all decreased in mass. Just over half (58 %) of the ice loss was from the northern hemisphere, and 

the remainder (42 %) was from the southern hemisphere. The rate of ice loss has risen by 57 % since the 1990s – from 0.8 to 

1.2 trillion tonnes per year – owing to increased losses from mountain glaciers, Antarctica, Greenland, and from Antarctic 

ice shelves. During the same period, the loss of grounded ice from the Antarctic and Greenland ice sheets and mountain 15 

glaciers raised the global sea level by 34.6 ± 3.1 mm. The majority of all ice losses were driven by atmospheric melting (68 

% from Arctic sea ice, mountain glaciers ice shelf calving and ice sheet surface mass balance), with the remaining losses (32 

% from ice sheet discharge and ice shelf thinning) being driven by oceanic melting. Altogether, these elements of the 

cryosphere have taken up 3.2 % of the global energy imbalance. 

1 Introduction 20 

Fluctuations in Earth’s ice cover have been driven by changes in the planetary radiative forcing (Vaughan et al., 2013), 

affecting global sea-level (The IMBIE Team, 2018, 2020; Zemp et al., 2019), oceanic conditions (Rahmstorf et al., 2015), 

atmospheric circulation (Francis and Vavrus, 2012; Vellinga and Wood, 2002) and freshwater resources (Huss and Hock, 

2018; Immerzeel et al., 2020). Earth’s cryosphere is created as meteoric ice in Antarctica, Greenland, and in mountain 

glaciers, and as frozen sea water in the Arctic and Southern oceans (Fig. 1). The polar ice sheets store more than 99 % (30 25 

million km3) of Earth’s freshwater ice on land (Fretwell et al., 2013; Morlighem et al., 2017), and even modest losses raise 

the global sea level (The IMBIE Team, 2018, 2020), increase coastal flooding (Vitousek et al., 2017) and disturb oceanic 

currents (Golledge et al., 2019). To-date, these losses have tracked the upper range of climate warming scenarios forecast by 

the Intergovernmental Panel on Climate Change, which predict an ice sheet sea level contribution of up to 42 cm by 2100 

(Slater et al., 2020). Ice sheet mass balance is the net balance between mass losses associated with ice flow, melting at the 30 
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ice-ocean interface, subglacial melt and the surface mass balance (the net difference between precipitation, sublimation, 

evaporation, wind erosion and meltwater runoff). Ice shelves are a major source of ocean fresh water (Jacobs et al., 1992), 

impart resistive forces on grounded ice upstream (buttressing), which would speed up in its absence (Weertman, 1974), and 

have been a persistent element of the climate system throughout the Holocene period (Domack et al., 2005). There are over 

300 documented ice shelves (the vast majority of Earth’s inventory) around Antarctica (SCAR, 2020; Shepherd et al., 2018) 35 

containing an estimated 380 thousand km3 of ice (Fretwell et al., 2013), and fluctuations in their volume occur as a result of 

changes in their extent (Cook and Vaughan, 2010) and thickness (Adusumilli et al., 2020). Although ice shelves are much 

smaller and sparsely distributed across the Arctic, ice shelves fringing the northern coast of Ellesmere Island in Canada 

(Mortimer et al., 2012) and the Russian Arctic islands (Willis et al., 2015) have collapsed in recent decades. Mountain 

glacier ice moderates global sea-level and regional hydrology (Huss and Hock, 2018), impacting local communities who rely 40 

on it as a source of freshwater (Immerzeel et al., 2020). There are over 215 thousand glaciers worldwide (RGI Consortium, 

2017) containing 160 thousand km3 of ice (Farinotti et al., 2019), and their retreat has accounted for 21 % of global sea-level 

rise between 1993 and 2017 (WCRP Global Sea Level Budget Group, 2018). Typically 15 to 25 million km2 of the global 

ocean surface is covered in sea ice at any one time of year, though its thickness and extent vary seasonally and due to long-

term changes in Earth’s climate (Maksym, 2019). Sea ice plays a key role in the freshwater and energy budgets of the polar 45 

regions and impacts the marine ecosystem (Stroeve and Notz, 2018), as well as regulating the absorption of solar radiation in 

summer (Pistone et al., 2014). Furthermore, sea ice loss could influence oceanic and atmospheric circulation and affect 

weather patterns in the mid-latitudes (Maksym, 2019; Vihma, 2014). 

Although sparse in situ records of glacier mass balance date back to the 1890’s (Zemp et al., 2015), substantial records of 

change for other components of the cryosphere did not begin until the advent of satellite observations in the 1970’s. Ice shelf 50 

extent has been recorded episodically in satellite imagery since the 1940’s (Cook and Vaughan, 2010), sea ice extent has 

been monitored by satellites since the late 1970’s (Cavalieri et al., 1999), and ice sheet, ice shelf, sea ice, and glacier 

thickness changes have been recorded systematically in satellite altimetry since the 1990s (Gardner et al., 2013; Laxon et al., 

2013; Shepherd et al., 2010; The IMBIE Team, 2018, 2020). Here, we combine satellite observations of changing ice sheet, 

ice shelf, glacier, and Arctic sea ice mass, with in situ and model-based estimates of glacier and Southern Ocean sea ice 55 

mass, to quantify trends in Earth’s meteoric and oceanic ice. We do not include elements of the cryosphere that are not ice 

(i.e. snow on land and permafrost), or where knowledge of their global extent and change is limited (river and lake ice). 

However, these elements of the cryosphere have also experienced considerable change over recent decades: for example, it is 

estimated that the quantity of snow on land has decreased by 49 ± 49 gigatonnes per decade in the northern hemisphere since 

1980 (Pulliainen et al., 2020); that permafrost (perennially frozen ground) has warmed globally by 0.29 ± 0.12 °C during the 60 

past decade (Biskaborn et al., 2019); and that the duration of river and lake ice cover has shortened by 12 days per century in 

the northern hemisphere over the last 200 years (Magnuson et al., 2000). 
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2 Mountain Glaciers 

We combined eight estimates of mass change from an extrapolation of local glaciological and geodetic measurements (Zemp 

et al., 2019, 2020), satellite gravimetry (Wouters et al., 2019), satellite swath altimetry (Foresta et al., 2016; Jakob et al., 65 

2020; Tepes et al., 2020) satellite synthetic differential aperture radar interferometry (DInSAR) (Braun et al., 2019), and 

satellite optical stereo images (Dussaillant et al., 2019; Shean et al., 2020), to produce a reconciled estimate of global glacier 

mass changes between 1962 and 2019 and over 19 glacier regions defined in the Randolph Glacier Inventory (RGI 

Consortium, 2017) (Fig. 2). Satellite gravimetry directly measures glacier mass change from fluctuations in Earth’s 

gravitational field at monthly intervals, and as a result does not require knowledge of the density of the material lost or 70 

gained (Wouters et al., 2019). However, satellite gravimetry provides measurements at a spatial resolution on the order of 

hundreds of kilometres, which limits the interpretation of the spatial distribution of ice loss within individual glaciers. 

Satellite swath altimetry, DInSAR and optical stereo imagery all measure surface elevation change, which is converted to 

mass by assuming a fixed density of ice with an associated uncertainty of 60 kg/m3 (Huss, 2013). Satellite swath altimetry 

uses the swath interferometric mode of CryoSat-2 which provides a dense grid of repeated elevation measurements (Foresta 75 

et al., 2016). CryoSat-2 swath altimetry provides up to two orders of magnitude more data than conventional altimetry 

processing, and homogeneous spatial coverage necessary to derive mass changes over relatively small glaciers with highly 

variable topography (Gourmelen et al., 2018; Jakob et al., 2020). The included DInSAR estimate measures surface elevation 

changes by differencing digital elevation models (DEMs) generated from the SRTM and TanDEM-X synthetic aperture 

radar missions (Braun et al., 2019). It is important to note that, for both satellite radar altimetry and DInSAR, the radar signal 80 

can penetrate beyond the glacier surface into snow and firn (Braun et al., 2019; Jakob et al., 2020); the impact of radar 

penetration on elevation measurements is difficult to quantify as it depends on spatiotemporal variations in snow and firn 

characteristics, and is an area of ongoing research. We also include estimates of glacier mass balance derived from satellite 

optical stereo imagery, which generates time series of high resolution DEMs from ASTER, Worldview-1/-2/-3 and GeoEye-

1 satellite imagery (Dussaillant et al., 2019; Shean et al., 2020). In glacier regions where these estimates are available (High 85 

Mountain Asia, Southern Andes), they offer almost complete coverage of glaciated areas at high (metre-scale) resolution 

which can resolve changes within individual glaciers. However, optical imagery is weather-dependent and cloud cover can 

limit coverage in glacier regions. For each region we aggregated annual mass change rates determined from the techniques 

available: each region includes between 2 and 4 estimates except for glaciers peripheral to Antarctica and Greenland, where 

only estimates derived from the extrapolation of in-situ and geodetic data are available. For studies in which time-varying 90 

mass change rates are not available, we assume the mass change rate to be linear over the period considered and scale the 

uncertainty by the square root of the number of years. We computed the cumulative mass change as the integral of the 

aggregated mass change rates and accumulate the associated uncertainty over time as the root sum square of the annual 

errors. We summed the regional estimates to derive the global glacier mass change and the overall uncertainty as the root-

mean square of the regional errors. 95 
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We assessed the consistency of the in situ and satellite gravimetry, altimetry and stereo imagery estimates between 2010 and 

2015 in 7 regions (Arctic Canada North and South, Russian Arctic, Iceland, Svalbard and Jan Mayen, High Mountain Asia 

and Southern Andes) where measurements from all techniques overlap (Fig. 2). We record the largest difference (26 Gt yr-1) 

and standard deviation (14 Gt yr-1) between mass balance estimates in Arctic Canada North – the largest region included in 

our inter-comparison. The standard deviations of the mass change estimates are 9 Gt yr-1, 8 Gt yr-1, 6 Gt yr-1, 5 Gt yr-1, 2 Gt 100 

yr-1 and 2 Gt yr-1 for the Southern Andes, Russian Arctic, High Mountain Asia, Arctic Canada South, Iceland and Svalbard 

and Jan Mayen regions, respectively. Based on our reconciled estimate, glaciers have collectively lost -9,975 ± 1,667 Gt of 

ice between 1962 and 2019, raising the global mean sea-level by 27.7 ± 4.6 mm during this period. Glaciers peripheral to 

Greenland and in Alaska and the Southern Andes have experienced the largest losses (Fig. 2) – 5,694 ± 635 Gt between 1962 

and 2019 – and account for more than half (57 %) of the global glacier mass loss over this period. Globally, the rate of 105 

glacier mass loss has increased from -120 ± 70 Gt yr-1 in the 1970s to -327 ± 65 Gt yr-1 between 2010 and 2019, peaking at -

506 ± 192 Gt yr-1 in 2018. Glacier mass loss is linked to increasing air temperatures; approximately 70 % of the global 

glacier mass loss has been attributed to anthropogenic forcing, and the remainder is due to natural climate variability 

(Marzeion et al., 2014). 

3 Ice sheets 110 

Ice sheets lose mass when ice discharge and melting at the surface and ice-ocean interface combined exceed snowfall. We 

use estimates of ice sheet mass balance and their uncertainty derived from an ensemble of satellite altimetry, satellite 

gravimetry and input-output datasets which span the period 1992-2018. For the Antarctic (24 datasets) (The IMBIE Team, 

2018) and Greenland (26 datasets) (The IMBIE Team, 2020) ice sheets, independently derived estimates of mass change 

from the three satellite geodetic techniques were combined into a single estimate of ice sheet mass balance. Estimates of ice 115 

sheet mass balance derived from these methods at the continental scale are similar and can be collated to reduce uncertainty 

(The IMBIE Team, 2018, 2020): satellite altimetry directly measures changes in ice sheet height (Otosaka et al., 2019; 

Sandberg Sørensen et al., 2018) converted into mass by assigning a specific density to the volume change (Shepherd et al., 

2019) or by explicitly accounting for snowfall fluctuations through firn modelling (Sørensen et al., 2011). Satellite 

gravimetry measures temporal variations in Earth’s gravity field using spherical harmonic solutions (Velicogna et al., 2020) 120 

or through local mass concentration analysis (Luthcke et al., 2006). The input-output method removes ice discharge into the 

oceans (output), estimated from satellite observations of ice velocity and estimates of ice thickness, from the net snow 

accumulation (input) (Mouginot et al., 2019; Rignot et al., 2019) determined from regional climate modelling (Noël et al., 

2018; van Wessem et al., 2018).  

These satellite surveys (e.g. Fig. 1) show the Antarctic ice sheet lost 2,603 ± 563 Gt of ice between 1992 and 2017, and the 125 

Greenland ice sheet lost 3,902 ± 342 Gt of ice between 1992 and 2018. Since 2012, the rate of ice loss from Antarctica has 



5 
 

tripled when compared to the previous two decades, owing to widespread glacier speedup (Mouginot et al., 2014) and 

thinning (Shepherd et al., 2019) in the Amundsen and Bellingshausen Sea sectors in response to the circulation of warm 

water under the region’s ice shelves (Jacobs et al., 2011). Ice shelf collapse (Cook and Vaughan, 2010) (Fig. 3) and thinning 

at the Antarctic Peninsula has triggered speedup of glaciers upstream (Hogg et al., 2017) as a consequence of reduced ice 130 

shelf buttressing. Unlike in Antarctica, where almost all of the ice loss is associated with ice dynamical imbalance, just over 

half of Greenland’s mass loss during this period arose due to increases in meltwater runoff (Enderlin et al., 2014) enhanced 

by atmospheric circulation during several warm summers (Bevis et al., 2019). The remaining ice loss was due to increased 

glacier discharge, primarily at Jakobshavn Isbræ (Holland et al., 2008) and at outlet glaciers in the southeast (Howat et al., 

2008) and northwest (Moon et al., 2012). Both ice dynamic and surface processes in Greenland have led to widespread 135 

thinning at the ice sheet margins and within individual glacier catchments (McMillan et al., 2016) (Fig. 1). Altogether, ice 

losses from Antarctica and Greenland have caused global sea levels to rise by 17.8 ± 1.8 mm between 1992 and 2017 (The 

IMBIE Team, 2018, 2020). 

4 Antarctic ice shelves 

To compute trends in the volume of Antarctic ice shelves associated with changes in their extent, we combined satellite-140 

based records of their thickness (Fretwell et al., 2013) and area change (Cook and Vaughan, 2010) over time, adjusted for 

changes in thickness where they have been recorded (Adusumilli et al., 2020). We restrict this calculation to ice shelves at 

the Antarctic Peninsula, where a record of progressive retreat has been well-established (Fig. 3). Although area changes have 

been mapped since the late 1940’s, comprehensive estimates of their thickness only began in the early 1990’s. To estimate 

the thickness of icebergs calved prior to this period, we combined in situ, airborne, and satellite-derived measurements of ice 145 

thickness recorded prior to when the ice shelf calving took place (Fig. 3). Uncertainties in volume change associated with ice 

shelf retreat were computed as the product of errors in ice thickness, determined from the variance of the thickness data, and 

extent, determined from the precision of the satellite imagery (Cook and Vaughan, 2010). We then used satellite altimetry to 

determine the volume changes of Antarctic ice shelves owing to changes in their thickness, and their associated uncertainty. 

For this calculation, we use time series of ice thickness change and their estimated uncertainty derived by Adusumilli et al. 150 

(2020) from ERS-1, ERS-2, Envisat and CryoSat-2 satellite radar altimetry between 1994 and 2020, following the method of 

Paolo et al. (2015). Adusumilli et al. (2020) applied the following processing steps: (i) ice shelf surface elevation was 

computed by adjusting the altimeter range measurements for changes in ocean surface height, including contributions due to 

the geoid, mean dynamic topography, ocean tide, ocean load tide, atmospheric pressure, and sea-level rise; (ii) time series of 

ice shelf elevation change were produced by grouping the elevation measurements within regularly spaced 10 km grid cells, 155 

applying a space-time polynomial fit to data from each mission; (iii) time series of ice shelf thickness change were calculated 

by adjusting the elevation change for fluctuations in firn air content and using a hydrostatic buoyancy relationship, assuming 

values of 917 and 1,028 kg/m3 for the densities of ice and ocean water, respectively; and (iv) time series of ice shelf volume 
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change were computed from the thickness changes and using the minimum (fixed) area for each ice shelf. Full details of the 

methods used in this calculation can be found in Paolo et al. (2015). The total change in ice shelf volume is computed as the 160 

sum of changes due to thinning and retreat, and the uncertainty is estimated as the root sum square of the respective 

uncertainties. 

Antarctic ice shelves have lost 8,667 ± 1240 Gt of their mass between 1994 and 2020, 54 % of which has been due to 

reductions in their extent and the remainder due to changes in their thickness. Although episodic iceberg calving is part of 

the natural cycle of ice mass transport through the continent, there has been a 39,717 km2 loss of ice shelf area at the 165 

Antarctic Peninsula (e.g. (Cook and Vaughan, 2010)), where air temperatures have risen several times faster than the global 

trend (Vaughan et al., 2003). Warmer air leads to increased surface melting, which can promote iceberg calving through 

hydraulic fracture of crevasses (Scambos et al., 2013). At the same time, ocean-driven melting has caused some ice shelves 

to thin at their base, particularly in the Amundsen and Bellingshausen Seas (Paolo et al., 2015; Shepherd et al., 2010) where 

warm circumpolar deep water is present (Jacobs et al., 1996), but also at the Antarctic Peninsula (Shepherd et al., 2003). Ice 170 

shelf thinning can promote instability by weakening their lateral margins (Vieli et al., 2007). Both processes – calving front 

retreat and basal melting – have triggered speedup of inland ice (Rignot et al., 2004; Scambos et al., 2004; Shepherd et al., 

2004) due to the associated reduction in buttressing (Joughin et al., 2012), leading to global sea-level rise (The IMBIE Team, 

2018) even though ice shelves themselves are not a direct source of ocean mass. The ice shelf losses combined amount to 3 

% of their present volume, while those in the Amundsen and Bellingshausen Seas are now 10 to 18 % thinner (Paolo et al., 175 

2015) and those at the Antarctic Peninsula are 18 % smaller in extent (Cook and Vaughan, 2010). 

5 Sea ice 

We estimated trends in the mass of Arctic sea ice using a combination of sea-ice ocean modelling and satellite measurements 

of thickness change: between 1980 and 2011 we used the Pan-Arctic Ice-Ocean Modelling and Assimilation System 

(PIOMAS), a coupled sea ice-ocean model forced with atmospheric reanalyses (Zhang and Rothrock, 2003); from 2011, we 180 

used CryoSat-2 satellite radar altimetry measurements of sea ice volume (Tilling et al., 2018). We converted PIOMAS 

volume estimates to mass assuming a fixed density of 917 kg/m3: this is the density used in the PIOMAS model to attribute a 

volume to the simulated sea ice growth (Schweiger, personal comm), therefore it is appropriate to convert PIOMAS volume 

estimates back to mass using this same density, as opposed to one that varies according to season or ice type. We divided 

CryoSat-2 monthly volume estimates into regions of multi-year and first-year ice and multiplied by densities of 882 kg/m3 185 

and 916.7 kg/m3, respectively, to convert to mass (Tilling et al., 2018). The presence of melt ponds on the Arctic sea ice 

surface from May to September make it difficult to discriminate between radar returns from leads and sea ice floes, 

preventing the retrieval of summer sea ice thickness and volume from radar altimetry (Tilling et al., 2018). As a result, we 

computed the winter-mean (October to April) mass trend across the Arctic for both CryoSat-2 and PIOMAS estimates to 
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maintain consistency: the difference between winter (October-April) and annual (January-December) PIOMAS mass trends 190 

during 1980-2011 is 19 Gt yr-1 (6 %) smaller when compared to the magnitude of the overall 12-month trend (-324 Gt yr-1). 

Since the annual trend is slightly larger, we consider our winter-average mass trend to be a conservative estimate of the 

actual Arctic sea ice mass loss. In the absence of an available satellite-derived Antarctic sea ice volume product, we used the 

Global Ice-Ocean Modelling and Assimilation System (GIOMAS) (Zhang and Rothrock, 2003), the global equivalent to 

PIOMAS, to estimate the trend. We gridded GIOMAS sea ice thickness data onto 0.2 x 0.5 degree grids, multiplied by cell 195 

area to retrieve total volume and used a density of 917 kg/m3 to convert to mass (as in PIOMAS, this is the density used to 

attribute a volume to the simulated sea ice growth in GIOMAS (Zhang, personal comm)). Antarctic sea ice trends were 

computed as annual averages between January and December. The uncertainties on PIOMAS volume for October and March 

are 1,350 and 2,250 km3, respectively, estimated in Schweiger et al. (2011) using a range of methods, including comparison 

to in situ data and model sensitivity analyses, We take the average of these (1,800 km3) as the uncertainty for all months and, 200 

in the absence of a formal error budget, we assign the same uncertainty to monthly GIOMAS estimates. We convert this 

monthly volume error of 1,800 km3 to a mass error using the fixed PIOMAS/GIOMAS density of 917 kg/m3. We estimated 

the uncertainty on monthly Arctic sea ice volume and mass from CryoSat-2 as a percentage uncertainty, which varies from 

14.5 % volume in October to 13 % volume in April (Tilling et al., 2018). The uncertainty on the winter-average (Arctic) and 

annual-average (Antarctic) mass was propagated from the monthly uncertainties.  Finally, we estimated the uncertainty 205 

associated with a rate of mass change over a given time period by dividing the total error by the number of years. 

Between the winters of 1980 (October 1979 to April 1980) and 2019 (October 2018 to April 2019), Arctic sea ice mass 

reduced by 230 ± 27 Gt yr-1, predominantly due to a decline in the lateral extent of the ice cover (Fig. 1), which accounts for 

93 % of the variance in volume over the entire PIOMAS record. The entire summer ice pack has thinned, largely attributable 

to the loss of the oldest and thickest ice, and sea ice cover has receded in the Beaufort, Chukchi and East Siberian seas 210 

(Stroeve and Notz, 2018). Arctic sea ice loss has been attributed to atmospheric warming driven by anthropogenic CO2 

emissions (Meredith et al., 2019; Stroeve and Notz, 2018), which has been enhanced in the Arctic when compared to the 

mid-latitudes likely due to sea ice loss itself (Dai et al., 2019; Screen and Simmonds, 2010).  Between 1980 and 2019, 

GIOMAS volume estimates, which incorporate observations of sea ice extent, show an increase in Antarctic sea ice of +43 ± 

17 Gt yr-1. No consensus has been reached on whether trends in Antarctic sea ice cover are anthropogenically driven, for 215 

example via the depletion of the Ozone layer (Ferreira et al., 2015), or the result of natural climate variability (Meehl et al., 

2016; Zhang et al., 2019). Given the vastness of the continent it surrounds, regional analyses of Southern Ocean sea ice are 

essential to understand the processes driving it. The overall trend is a combination of sea ice thickening in the Weddell Sea 

and thinning in the Amundsen Sea (Fig. 1), accompanied by increases and reductions of the extent in each region, 

respectively (Parkinson, 2019). In general, global climate models predict a shrinking southern ice cap in response to climate 220 

change; projections from the latest coupled climate models suggest that Antarctic sea ice will decline during the 21st century 

(Roach et al., 2020). 
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6 Earth’s ice imbalance 

To determine the global ice imbalance, we summed the mass change of each ice component computed at annual intervals 

and estimated the combined uncertainty as the root sum square of the individual uncertainty estimates. Between 1994 and 225 

2017, the Earth lost 27.5 ± 2.1 Tt of ice (Fig. 4) – at an average rate of 1.2 ± 0.1 Tt per year (Table 1). Ice losses have been 

larger in the northern hemisphere, primarily owing to declining Arctic sea ice (-7559 ± 1021 Gt) followed by glacier retreat 

(-5,148 ± 564 Gt) and Greenland ice sheet melt (-3,821 ± 323 Gt). Ice in the southern hemisphere from the ice shelves (-

6,543 ± 1221 Gt), the Antarctic ice sheet (-2,545 ± 554 Gt), glaciers (-965 ± 729 Gt), and sea ice in the Southern Ocean (-

924 ± 674 Gt) has been lost at a total rate of -477 ± 146 Gt yr-1  – 34 % slower than in the northern hemisphere (-719 ± 207 230 

Gt yr-1). Earth’s ice can be categorised into its floating and on-land components; grounded ice loss from ice sheets and 

glaciers raises the global sea-level (The IMBIE Team, 2018, 2020; Zemp et al., 2019), influences oceanic circulation through 

freshwater input (Rahmstorf et al., 2015) and glacier retreat impacts local communities who rely on glaciers as a freshwater 

resource (Immerzeel et al., 2020). Grounded ice losses have raised the global mean sea-level by 24.9 ± 1.8 mm and 9.7 ± 2.5 

mm in the northern and southern hemispheres respectively, totalling 34.6 ± 3.1 mm over the 24-year period. Although the 235 

loss of floating sea ice and ice shelves does not contribute to global sea-level rise, sea ice decline increases habitat loss (Rode 

et al., 2014), coastal erosion (Overeem et al., 2011) and ocean circulation (Armitage et al., 2020), and may affect mid-

latitude weather and climate (Blackport et al., 2019; Overland et al., 2016). 

There is now widespread evidence that climate change has caused reductions in Earth’s ice. On average, the planetary 

surface temperature has risen by 0.85 °C since 1880, and this signal has been amplified in the polar regions (Hartmann et al., 240 

2013). Although this warming has led to higher snowfall in winter, it has also driven larger increases in summertime surface 

melting (Huss and Hock, 2018). The global oceans have warmed too (Hartmann et al., 2013), with significant impacts on 

tidewater glaciers (Hogg et al., 2017; Holland et al., 2008), on floating ice shelves (Shepherd et al., 2010), and on the ice 

streams which have relied on their buttressing (Rignot et al., 2004). Atmospheric warming – anthropogenic or otherwise – is 

responsible for the recent and long-term reductions in mountain glacier ice (Marzeion et al., 2014), and ocean-driven melting 245 

of outlet glaciers has caused the vast majority of the observed ice losses from Antarctica (The IMBIE Team, 2018). 

Elsewhere, the picture is more complicated. In Greenland, for example, roughly half of all ice losses are associated with 

trends in surface mass balance, and the remainder is due to accelerated ice flow triggered by ocean melting at glacier termini 

(The IMBIE Team, 2020). Although the retreat and collapse of ice shelves at the Antarctic Peninsula has occurred in tandem 

with a rapid regional atmospheric warming (Vaughan et al., 2003), warm circumpolar deep water has melted the base of ice 250 

shelves in the Amundsen and Bellingshausen Seas (Jacobs et al., 2011) and this now amounts to over half of their net loss. 

While the progressive retreat of Arctic sea ice has been driven by radiative forcing, this has been mediated in part by the 

increasing presence of open water (Perovich and Richter-Menge, 2009), and broader changes in oceanic conditions are 

expected to play an increasingly important role (Carmack et al., 2016). Finally, although the extent of Southern Ocean sea 

ice has shown little overall change, there have been considerable regional variations owing to changes in both atmospheric 255 
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and oceanic forcing (Hobbs et al., 2016). Attributing Arctic sea ice decline and ice shelf calving to increased radiative 

forcing, approximately 68 %  of the recent global ice imbalance is due to atmospheric warming, and the remainder is due to 

ocean-driven melting. We determine the energy required to melt the total ice loss as: 

𝐸 = 𝑀(𝐿 + 𝑐!∆𝑇) ,           (1) 

where 𝑀 is the mass of ice, ∆𝑇 is the rise in temperature required (we assume an initial ice temperature of -20 ± 10 °C), 𝐿 is 260 

the latent heat of fusion for water (333 J g-1), and 𝑐! is the specific heat capacity of water (2108 J Kg-1 °C-1). Although the 

initial temperature is poorly constrained, the fractional energy required for warming is a small (0.7 % °C-1) percentage of the 

total energy imbalance. Altogether, the ice sheet, glacier, ice shelf and sea ice loss amounts to an 8.9 ± 0.9 x 1021 J sink of 

energy, or 3.2 ± 0.3 % of the global imbalance over the same period (Schuckmann et al., 2020). 

7 Conclusions 265 

Even though Earth’s cryosphere has absorbed only a small fraction of the global energy imbalance, it has lost a staggering 28 

trillion tonnes of ice between 1994 and 2017. The loss of grounded ice during this period has caused sea-levels to rise by 

34.6 ± 3.1 mm, and the loss of floating ice has caused reductions in the planetary albedo (Thackeray and Hall, 2019), 

reductions in the buttressing of grounded ice (Rignot et al., 2004), ocean freshening (Jacobs et al., 1996), and ocean cooling  

(Bintanja et al., 2013). Our assessment is based primarily on observations; we use satellite measurements to determine 270 

Antarctic and Greenland ice sheet mass balance and to determine changes in the mass of Antarctic ice shelves associated 

with retreat and thinning, we use a combination of satellite observations and in situ measurements to determine changes in 

the mass of mountain glaciers, and we use a combination of numerical models and satellite observations to determine 

changes in the mass of sea ice. There is generally good agreement in mass trends derived from observations and models, 

where both are available. Only our estimate of Southern Ocean sea ice mass imbalance depends on modelling alone (Zhang 275 

and Rothrock, 2003), though satellite observations of changes in its extent (Parkinson, 2019) and in situ observations of 

changes in its thickness (Worby et al., 2008) suggest that little change has occurred in Antarctic sea ice cover. The overall 

rate of ice loss has increased by 57 % over the past 24 years compared to the 1990s, and in situ measurements of changes in 

glacier mass (Zemp et al., 2019) and satellite records of ice shelf extent (Cook and Vaughan, 2010) which pre-date the 

complete survey confirm this trend. Although a small fraction of mountain glacier losses are associated with retreat since the 280 

little ice age (Marzeion et al., 2014), there can be little doubt that the vast majority of Earth’s ice loss is a direct consequence 

of climate warming. 
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 1980s 1990s* 2000s 2010s** 1994-2017 

Arctic Sea Ice -156 ± 88 -298 ± 88 -360 ± 88 -94 ±119 -329 ± 44 

Antarctic Sea Ice +196 ± 67 -27 ± 67 +71 ± 67 -83 ± 75 -40 ± 29 

Ice Shelves Calving -140 ± 15 -125 ± 25 -176 ± 57 -250± 68 -155 ± 36 

Ice Shelves Thinning - -19 ± 52 -233 ± 57 -53 ± 71 -129 ± 39 

Total Floating Ice - -469 ± 125 -698 ± 137 -480 ± 172   -653 ± 75 

Antarctic - -55 ± 38 -78 ± 37 -206 ± 47 -111 ± 24 

Greenland - -34 ±  24 -166 ± 21 -247 ± 23 -166 ± 14 

Glaciers -62 ± 66 -206 ± 63 -252 ± 60 -327 ± 65 -266 ± 41 

Total Grounded Ice - -296 ± 77 - 495 ± 74 -779 ± 83 -543 ± 49 

Total - -764 ± 147 -1193 ± 156 -1259 ± 191  -1196 ± 90 

*1990s: the decade is not entirely surveyed but starts from 1994 for Ice Shelves Thinning, and from 1993 for 

Antarctica and from 1992 for Greenland 

**2010s: the decade is not entirely surveyed but covers up to 2016 for the Antarctic ice sheet, up to 2017 for 

Greenland, and up to 2019 for sea ice, glaciers and ice shelf calving. 

 585 

Table 1  Average mass change rates (Gt yr-1) of the different global ice components, total floating ice, total grounded ice and global 
total per decade and over the common period 1994-2017.  
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 590 

Figure 1 Average rate of ice thickness change in the (left) southern and (right) northern hemispheres. Changes in Antarctic (1992-
2017) and Greenland ice sheet (1992-2018) thickness were estimated using repeat satellite altimetry following the methods of 
(Shepherd et al., 2019).  Sea ice thickness trends between 1990 and 2019 are determined from numerical sea ice and ocean 
modelling (Zhang and Rothrock, 2003), as well as the average minimum of sea ice extent in February (Antarctic) and September 
(Arctic) (purple lines) for each decade during the same period. Glacier thickness change between 1992 and 2018 for glacier regions 595 
defined in the Randolph Glacier Inventory (RGI Consortium, 2017) (black boundaries) are from mass change estimates (Braun et 
al., 2019; Foresta et al., 2016; Jakob et al., 2020; Tepes et al., 2020; Wouters et al., 2019; Zemp et al., 2019) which have been 
converted to a thickness change assuming an ice density of 850 kg/m3. The black circle at the south pole indicates the southern 
limit of the orbit of ERS and ENVISAT satellite altimeters, which were in operation between 1992 and 2010. The area between 
81.5° and 88° S has been covered by CryoSat-2, which launched in 2010. 600 
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Figure 2 (a) Cumulative mass change for glacier regions (Gt) between 1962 and 2019. Outlines of the glacier regions (RGI 6.0) are 
marked by black lines and glacierized areas are indicated in orange: ACN, Arctic Canada North (area 105,110 km2); ACS, Arctic 605 
Canada South (40,888 km2); ALA, Alaska (86,725 km2); ANT, Antarctic and Subantarctic (132,867 km2); CAU, Caucasus and 
Middle East (1,307 km2); CEU, Central Europe (2,092 km2); GRL, Greenland (89,717 km2); HMA, High Mountain Asia (97,606 
km2); ISL, Iceland (11,059 km2); NZL, New Zealand (1,161 km2); RUA, Russian Arctic (51,591 km2); SAN, Southern Andes (29429 
km2); SCA, Scandinavia (2,949 km2); SJM, Svalbard and Jan Mayen (33,958 km2); TRP, Low Latitudes (2,341 km2); WNA, 
Western Canada and USA (14,524 km2). (b) Glacier rate of mass change (Gt yr-1) in regions where estimates from different 610 
techniques are available, including satellite altimetry (Foresta et al., 2016; Jakob et al., 2020; Tepes et al., 2020), extrapolation of 
in-situ glaciological and geodetic data (Zemp et al., 2019, 2020), satellite gravimetry (Wouters et al., 2019), satellite InSAR (Braun 
et al., 2019), and satellite stereo imagery (Dussaillant et al., 2019; Shean et al., 2020) over the period 2010-2015. The reconciled 
estimate (calculated as the average of the estimates available in a given region and year) is shown in grey. 
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Figure 3 Change in Antarctic ice shelf barrier position (left) and thickness (right) over time. Barrier positions are derived from 
episodic satellite imagery (Cook and Vaughan, 2010), and barrier thicknesses are derived from airborne ice penetrating radar 
(light grey lines) and satellite radar altimetry (Fretwell et al., 2013). Iceberg calving is calculated as the difference in area between 
successive barrier positions. 620 
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Figure 4 Global ice mass change between 1994 and 2017 partitioned into the different floating (blues) and grounded (purples)  
components. Shaded bars indicate the cumulative mass change and estimated uncertainty for each individual ice component 625 
(blues, purples) and their sum (black). The equivalent sea-level contribution due to the loss of grounded ice from Antarctica, 
Greenland and mountain glaciers is shown in the y-axis on the right hand side. 


