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Abstract. Sea level contributions from the Greenland Ice
Sheet are influenced by the rapid changes in glacial termi-
nus positions. The documentation of these evolving calving
front positions, for which satellite imagery forms the ba-
sis, is therefore important. However, the manual delineation5

of these calving fronts is time consuming, which limits the
availability of this data across a wide spatial and temporal
range. Automated methods face challenges that include the
handling of clouds, illumination differences, sea ice mélange,
and Landsat-7 Scanline Corrector Errors. To address these10

needs, we develop the Calving Front Machine (CALFIN),
an automated method for extracting calving fronts from
satellite images of marine-terminating glaciers, using neu-
ral networks. The results are often indistinguishable from
manually-curated fronts, deviating by on average 86.76 ±15

1.43 meters from the measured front. Landsat imagery from
1972 to 2019 is used to generate 22,678 calving front lines
across 66 Greenlandic glaciers. This improves on the state of
the art in terms of the spatio-temporal coverage and accuracy
of its outputs, and is validated through a comprehensive in-20

tercomparison with existing studies. The current implemen-
tation offers a new opportunity to explore sub-seasonal and
regional trends on the extent of Greenland’s margins, and
supplies new constraints for simulations of the evolution of
the mass balance of the Greenland Ice Sheet and its contri-25

butions to future sea level rise.

1 Introduction

The evolution of Greenland’s tidewater glaciers is an im-
portant constraint on the evolution of the Greenland Ice
Sheet (Nick et al., 2013). Likewise, changes in Greenland 30

are important in tracking and predicting future sea level rise
over the next century (Andersen et al., 2015; Fürst et al.,
2015; van den Broeke et al., 2016). Constraining Greenland’s
glacial evolution is thus an important part of improving the
understanding of the earth system as a whole. One constraint 35

on glacial evolution is the position of glacial calving fronts
and ice margins over time (King et al., 2018). While satel-
lite imagery allows for the extensive documentation of this
evolving constraint, most calving front delineation is still
done with time-consuming manual labor (Carr et al., 2017; 40

Bunce et al., 2018; Catania et al., 2018). This results in the
under-utilization of available satellite imagery, and causes
gaps in seasonal records that introduce uncertainty when
modeling past and projected climate change (Catania et al.,
2020). Significant efforts have been made to improve this 45

situation, which include the ESA-CCI dataset of 26 Green-
landic glaciers from 1990-2016, the PROMICE dataset of
47 glaciers from 1990-2018, and the MEaSUREs dataset
of 200+ glaciers from 2000-2017 (ENVEO, 2017; Ander-
sen et al., 2019; Joughin et al., 2015). Yet the increasing 50

availability of new datasets through missions like Landsat
8 and the release of old datasets through improved repro-
cessing call for new automated ways of detecting the calv-
ing front. In particular there is a strong need for these au-
tomated ways to be robust, specifically against cloud cover, 55



2 TEXT: TEXT

ice mélange, shadows, and Landsat 7 Scanline Corrector Er-
rors. Traditional automated techniques such as the edge de-
tection utilized by Seale et al. (2011) and Paravolidakis et al.
(2016) have significant challenges with respect to these is-
sues. Modern machine learning techniques and deep neu-5

ral networks provide a robust, scalable, and accurate solu-
tion to these processing challenges. Existing work by Mo-
hajerani et al. (2019) pioneers the usage of these techniques
by applying the Ronneberger et al. (2015) UNet deep neural
network for Jakobshavn, Helheim, Sverdrup, and Kangerlus-10

suaq Glaciers. It achieves a mean distance error of 96.3 m,
but is restricted by the preprocessing requirement of align-
ing the flow direction to be vertical, and inability to han-
dle branching/non-linear calving fronts. Zhang et al. (2019)
evaluates a modified UNet applied to TerraSAR-X data over15

Jakobshavn Glacier, and achieves a mean distance error of
104 m, but is limited in scope. Baumhoer et al. (2019) ex-
pands the application of the UNet to Sentinel 1 imagery of
Antarctica, extracting full coastline delineations and achiev-
ing a mean distance error of 108 m. Ultimately, these case20

studies provide the groundwork for the automatic, accurate,
large scale, long time-series, high temporal resolution, and
potentially multi-sensor extraction of glacial terminus posi-
tions. This study seeks to assess the feasibility of achieving
robust automatic extraction for a selection of Greenland’s25

glaciers, and to provide the resulting dataset for use by the
wider community. Additionally, this study seeks to assess im-
provements to the neural network design and post-processing
methods.

In this study, Sect. 2 covers the data source along with the30

spatial and temporal coverage. Sect. 3 examines the CALFIN
algorithm and method for processing the data. Sect. 4 vali-
dates the algorithm through error analysis. Sect. 5 and Sect.
6 show and discuss the results - the calving front dataset and
algorithm.35

2 Data Source and Scope

For the production of the CALFIN dataset, Landsat optical
images are used for their long time-series availability and
reasonable spatial distribution/resolution. The area of interest
for the dataset production is restricted to Greenland, in par-40

ticular the calving fronts for 66 Greenlandic basins shown
in Fig. 1, spanning the 1972 to 2019 time period shown in
Fig. 2. The basins are selected for their high discharge vol-
umes, wide spatial distribution, and diverse morphological
features. The product used is the 60/30 meter resolution Near45

Infrared band. The 15 meter resolution panchromatic band
was not used, due to computational and logistical limitations.
A unique characteristic of this data source is the presence of
Landsat 7 Scanline Corrector Errors from 2003-2013, which
manifests as black stripes that interfere with automated calv-50

ing front extraction methods.

For the training and validation of the CALFIN methodol-
ogy, TerraSAR-X and Sentinel 1A/B SAR images are added
to enforce the applicability of the method across different
sensors and domains. The area of interest for the training 55

and validation of the methodology thus includes Antarctic
SAR data in addition to the Greenlandic Landsat optical data
(see Sect. 3.2 and Fig. S4). The TerraSAR-X product used
is the StripMap 3 meter resolution HH polarization band.
The Sentinel 1A/B product used is the Extra Wide Swath, 60

Ground Range Multi-Look Detected, 40 meter resolution HH
polarization band. The other data products and polarization
bands are not used since the backscatter intensity provides
sufficient information for the data processing methodology
to succeed. A characteristic of SAR data is the presence of 65

speckle noise, which is addressed by the methodology de-
scribed in the following section.

Figure 1. Spatial Coverage Map: Spatial distribution of 66 se-
lected Greenlandic glaciers. The velocity map is taken from Nagler
et al. (2015).



TEXT: TEXT 3

Figure 2. Temporal Coverage Map: Number of fronts per year
from 1972-2019 for 10 high discharge volume basins. For the full
temporal coverage map, see attached Supplement, Fig. S1.

3 Methods

The automated data processing methodology uses innovative
techniques and state-of-the-art neural networks to process
raw Landsat and Sentinel 1A/B data into useful calving front
Shapefiles. The following section explores this methodology,5

as outlined by the flowchart below (Fig. 3).

3.1 Preprocessing

The first stage involves preprocessing the input data for use
with the neural network, as illustrated in Fig. 4. The proceed-
ing steps cover the details of handling Landsat data, but can 10

be applied to Sentinel 1 data for validation purposes. To be-
gin, raster images are selected from areas centered around
one of 9 primary glacial basins. These basins include Kong
Oscar, Hayes, Rink Isbrae, Upernavik, Jakobshavn, Kangiata
Nunaata, Helheim, Kangerlussuaq, and Petermann. Next, all 15

L1TP (precision and terrain corrected) rasters from Land-
sats 1-8 with low cloud coverage (<20%) are collected. A
few L1GS/L1GT (non-corrected) products are also selected,
which are manually georeferenced, and used to fill in Land-
sat 1-2 time series gaps (1972-1985). This results in a total of 20

4956 Landsat rasters. Next, predefined basin domain Shape-
files that enclose the terminus are used to clip the Landsat
raster subsets. Additional filtering removes subsets that still
contain ≥30% NODATA pixels or ≥20% cloud pixels de-
tected in the Landsat QA band, as subsets that exceed these 25

thresholds are not likely to contain detectable fronts. At this
stage, 20188 GeoTIFF subsets are accumulated. Each sub-
set is then resized to 256x256 px, and lastly enhanced using
Pseudo-HDR Toning (HDR) and Shadows/Highlights (S/H)
through Adobe Photoshop. The raw, HDR, and S/H enhanced 30

subsets are then stacked into a single RGB image. At this
point, the images are ready for processing into calving front
masks.

3.2 Neural Network Processing

Images are processed using the Calving Front Machine Neu- 35

ral Network (CALFIN-NN), as illustrated in Fig. 5. Neu-
ral networks like CALFIN-NN work by learning patterns in
training data, and finding them in new data. CALFIN-NN is
trained using manually delineated calving front masks. Once
trained, CALFIN-NN outputs a probability mask that shows 40

each pixel’s likelihood of lying on the coastline/calving front.
CALFIN-NN also generates a ice/ocean probability mask as
a secondary output. Following this, the calving front is ex-
tracted during post-processing, discussed in Sect. 3.3.

Neural networks are the foundation of several automated 45

delineation methods, including Mohajerani et al. (2019),
Zhang et al. (2019), and Baumhoer et al. (2019). This
method builds upon this work, and uses a modification of
the DeepLabV3+ Xception neural network from Chen et al.
(2018), as shown in Fig. 5. The first half, the encoder, uses 50

the Xception-65 network to extract image features (Chollet,
2017). It does this by assembling basic features, like edges
and corners, into more abstract features, such as glacier/land
textures. The second half of the network, the decoder, takes
the output of the encoder and up-samples the features to pre- 55

dict the final probability mask outputs.
Several architectural modifications are made to the orig-

inal DeepLabV3+ Xception model to enhance its perfor-
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Figure 3. Methodology Flowchart: The CALFIN workflow, which processes single band raster imagery into calving front and ocean mask
Shapefiles. Note that Sentinel 1A/B imagery is only used for validation, as it is not corrected and thus not qualified for geolocation/extraction.

Figure 4. Preprocessing Pipeline: (a) First, input the raw Landsat GeoTIFF rasters with <20% clouds. (b) Next, subset using QGIS/GDAL
and the domain Shapefile to clip each raster. (c) Then, filter the clouded/NODATA subsets. (d) Now, resize the subsets to 256x256 px. (e)
Finally, enhance contrast and stack with the raw subset.

mance. To accurately recognize line-like features such as
calving fronts, additional Atrous Spatial Pyramidal Pooling
(ASPP) blocks are added in between the encoder and de-
coder, with the dilation scales 0, 1, 2, 3, 4, and 5. The num-
ber of Middle Blocks (MB in Fig. 5) is reduced from 16 to5

8, as the extra discriminative power from those blocks is not
needed. The input size is reduced from 512 px to 224 px to
facilitate better computational performance, allowing for ad-
ditional training and thus higher accuracy. Since the input
resolution is reduced, the encoder is also modified to remove10

several down-sampling "max-pool" layers. The last contri-
bution adds a 2-channel output to the decoder, allowing for
both calving front masking and ice/ocean masking. Together,

these changes reduce number of model parameters from 40M
to 29M, while also increasing the overall accuracy. 15

Several techniques are used during the training of
CALFIN-NN to improve its performance. First, a large set of
training data is manually delineated (see Fig. S4), totalling
1541 Landsat and 232 Antarctic Sentinel 1A/B image/mask
pairs, with the Antarctic data taken from the same training 20

scenes used by Baumhoer et al. (2019). Data augmentation
is used to increase the accuracy of the network by expand-
ing the training set, which entails adding random amounts
of flips, Gaussian noise, sharpening filters, rotations of up
to 12°, crops, and scaling to the pre-processed training im- 25

ages. Through empirical testing, it is determined that exces-
sive image padding, rotation, warping, and cropping of calv-
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Figure 5. The CALFIN-NN Processing Architecture: Each orange "Xception" block consists of convolution kernels that detect features in
the previous block. Blocks are reduced in size periodically to pool increasingly complex and numerous feature maps. "U" shaped connections
help refine the probability masks during up-sampling. Note that the 7 repeated "Xception" blocks in the middle section are omitted for brevity.

ing fronts to close to the image bounds result in sub-optimal
performance. Another helpful technique is the use of test-
time augmentations, wherein each image subset is cut into 9
overlapping 224x224 image windows and processed individ-
ually, before being reassembled into the final 256x256 output5

mask. This allows for multiple independent classifications
of the central pixels, ensuring agreement and confidence in
detected calving fronts. To increase accuracy, a custom loss
function optimizes the binary cross entropy and Intersection-
over-Union (see Eq. 1, Sect. 4.1) (Mannor et al., 2005). This10

penalizes mismatches between calving front pixels in the pre-
dicted (Icf ) and measured (̂Icf ) image masks. Mismatched
ice/ocean pixels in the predicted (Iio) and measured (̂Iio) im-
age masks are less heavily weighted by an empirically chosen
factor of α= 1/25, as seen in the final loss function L in Eq.15

2.

LBI(I, Î) =−I log(̂I)− (1− I) log(1− Î)− log

(
I∩ Î
I∪ Î

)
(1)

L(Icf , Îcf ,Iio, Îio) = αLBI(Iio,Iio)+ (1−α)LBI(Icf , Îcf )
(2)

After integrating these improvements, CALFIN-NN is
trained for a total of 80 epochs, with 4000 batches per epoch,20

and 8 images per batch. Training is carried out on a K40
Nvidia Tesla GPU with 12GB of VRAM, with each epoch
taking about 126 minutes to complete, and almost 1 week
in total to obtain the optimal weights at epoch 65. Once
trained, an NVIDIA GTX1060 with 6GB VRAM is used for25

the off-line data processing of the 20188 GeoTIFF subsets.

The CALFIN algorithm takes about 3.5 days to process all
of the subsets into calving fronts, excluding preprocessing,
but including post-processing, as discussed in the following
section. 30

3.3 Post-Processing

At this stage, the 2-channel pixel mask output of CALFIN-
NN is post-processed to extract the Shapefile data products
(Fig. 6).

First, a polyline is fit to the pixel mask to retrieve the 35

correct coastline boundary. This is performed by converting
each pixel in the mask to nodes in a graph, connecting the
nearest neighboring nodes, then finding the single longest
path in the graph’s minimum spanning tree (MST) (Kruskal,
1956). This path not only corresponds with the coastline 40

edge, but also out-performs outputs from other contour find-
ing algorithms by eliminating noise, errors, and gaps inher-
ited from previous steps. Such gaps are given weights based
on the negative exponential distances between nodes, which
allows for connections if the joined paths are significantly 45

longer than the gap itself. A visual example is given in Fig.
7a-d.

Next, the calving front is isolated from the coastline poly-
line. Static masks of the average fjord boundaries are manu-
ally created for each basin using the image subsets and Bed- 50

Machine v3 for reference (Morlighem et al., 2017). By cal-
culating the distance from each point in the coastline to the
nearest fjord boundary pixel, then selecting the contiguous
pixels which are the farthest from the fjord boundaries, the
calving front can be isolated. The result of this is shown in 55

Fig 7e.
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Figure 6. Postprocessing Pipeline: (a) First, get the processed image from CALFIN-NN. (b) Then, isolate and re-process each front. (c)
Next, filter unconfident predictions. (d) Now, fit line and mask static coastline (see also Fig. 7). (e) Lastly, export and validate the Shapefile.

Figure 7. Mask to Polyline Algorithm: (a) First, extract the coastline mask (red/yellow) from the CALFIN-NN output. (b) Then create a
graph, connecting each pixel (red) to 15% of its nearest neighbors with an edge (black). (c) Next, create an MST from the graph. (d) Now,
extract the longest path from the MST. (e) Finally, mask the static coastline using the fjord boundaries (cyan) to extract the calving front.

Once each front is located, its bounding box is used to ex-
tract a higher resolution subset from the original image, and
reprocessed. This innovation allows for increased spatial ac-
curacy when processing multiple fronts in large basins. After
reprocessing, the nature of CALFIN-NN’s 2-channel output5

as a confidence measure is exploited to filter out uncertain de-
tections. Since the neural network assigns each pixel a value
between 0 and 1 based on its perceived class, any deviation
from these two values can used as a measure of uncertainty.
The filtering method averages the deviation of the ice/ocean10

classification mask in a 5 pixel wide buffer around the calv-
ing front, and discards any fronts whose mean deviation ex-
ceeds an empirically chosen threshold of 0.125.

The last step is to export the polylines and the corre-
sponding polygon as geo-referenced Shapefiles. First, the15

polylines are smoothed to eliminate noise artifacts inherited
from previous steps, deviating no more than 1 pixel from
the raw extracted coastline (see Supplement Fig. S2). Next,
the smoothed polylines, fjord boundary mask, and land-
ice/ocean masks are combined to create a polygonal ocean20

mask. Optionally, manual verification of each output with the
original GeoTIFF subset can be performed. This was done
for all cases in this study to ensure the validity of the auto-
mated pipeline. This constrains the mean distance error to be
<100 m, as covered in the following section.25

4 Validation

Two methods are used to evaluate CALFIN. For the pri-
mary method, the error is estimated by calculating the
Mean/Median Distance between predicted and manually de-
lineated fronts (see Fig. 8a and Sect. 4.1). For the secondary 30

method, the classification accuracy is calculated with the In-
tersection over Union metric (see Fig. 8b and Sect. 4.2). Ad-
ditionally, the detection accuracy is evaluated, and the associ-
ated confusion matrix is provided (see Table 1 and Sect. 4.4).
These metrics are evaluated on several validation sets, taken 35

from existing studies as discussed in Sect. 1. These valida-
tion sets contain data that are excluded during model training.
This prevents the models from memorizing data and skewing
the accuracy assessment.

4.1 Error Estimation 40

The primary quality assessment method is the Mean Distance
Error (Mohajerani et al., 2019; Zhang et al., 2019; Baumhoer
et al., 2019). Conceptually, this method resembles the nu-
merical integration of the area between two curves, normal-
ized by the average length of the curves (see Fig. 8a). Also 45

referred to as the Area over Front (A/F) in literature, this
method can also be seen as a generalization of the method of
transects along arbitrarily oriented fronts (Mohajerani et al.,
2019; Baumhoer et al., 2019). This metric is implemented
by taking the mean/median of the distances between closest 50

pixels in the predicted and manually delineated fronts. Note
that pixel distance is biased to be inversely proportional to a
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Figure 8. Error Measures: (a) A visual outline of Mean/Median Distance Error Estimation and (b) Classification Accuracy using Intersec-
tion over Union (IoU) for (i) the primary calving front, and (ii) the secondary ice/ocean mask, respectively.

network’s input size, so the error in meters is also provided
in the following analysis.

4.2 Classification Accuracy

The secondary quality assessment method calculates the In-
tersection over Union (IoU) (Baumhoer et al., 2019). This5

metric evaluates the degree of overlap between the predicted
and manually delineated masks of the calving front. It is cal-
culated by dividing the number of pixels in the intersection
of two masks over the number of pixels in the union of the
two masks (see Fig. 8b). When calculating the IoU of 3 pixel10

wide edges, this measure is very strict: 1 pixel of difference
results in a score of 0.5, and scores at or above that range are
indicative of human levels of accuracy. When calculating the
IoU of land-ice/ocean masks, this measure is less strict, and
scores at or above 0.9 indicate human levels of accuracy.15

4.3 Validation Results

The following subsections show tables with the above met-
rics for the associated validation sets, the values from the
original studies, and a subset of the outputs of CALFIN-NN
on each. The primary validation set, the CALFIN validation20

set (CALFIN-VS), consists of 162 images with clouds, illu-
mination differences, ice mélange, and Landsat 7 Scanline
Corrector Errors (L7SCEs). The CALFIN-VS contains data
from 62 Greenlandic basins, including Helheim, which was
specifically excluded from CALFIN’s training set for vali-25

dation purposes - as done by Mohajerani et al. (2019). The
CALFIN-VS ensures CALFIN-NN produces consistent re-
sults on new data, addressing concerns raised by Zhang et al.
(2019) Sect. 7.3. To evaluate performance on Landsat 7 Scan-
line Corrector Errors, the validation subset CALFIN-VS-L7-30

only isolates images with L7SCEs, and the CALFIN-VS-L7-
none excludes images with L7SCEs. To allow for compar-
isons between studies, CALFIN-NN’s performance metrics
on previous studies’ validation sets are also shown, where
appropriate. The sets include the 10 Landsat Helheim subsets35

used in Mohajerani et al. (2019) (M-VS), the 6 TerraSAR-X
Jakobshavn subsets used in Zhang et al. (2019) (Z-VS), and

62 Sentinel-1 Antarctic basins taken from the 11 validation
scenes used in Baumhoer et al. (2019) (B-VS). Note that the
error metrics are still sensitive to how each study implements 40

them, which are nevertheless reproduced and documented for
comparison’s sake. These concerns are also addressed in the
comprehensive inter-model comparison, discussed in Sect. 6.

CALFIN-NN performs well on the CALFIN-VS (Fig. 9).
The true mean distance error of the CALFIN dataset is calcu- 45

lated to be 86.76 ± 1.43 m with 95% confidence. When in-
cluding only images with L7SCEs (CALFIN-VS-L7-only),
the error is 91.93 m, showcasing CALFIN-NN’s unique ro-
bustness to L7SCEs. Intuitively, excluding "difficult" images
with L7SCEs in the validation set (CALFIN-VS-L7-none) 50

decreases the error to 81.65 m. The median distance error
is only 44.59 m, showing that only a few outliers contribute
considerably to the mean. For full outputs, see Supplement
Figs. S5-S8.

CALFIN-NN performs well on the M-VS (Fig. 10). This 55

demonstrates CALFIN-NN’s ability to accurately process
new data, which builds upon the Mohajerani et al. (2019)
neural network (M-NN). Note that M-NN implements dis-
tances errors differently, and omits ice/ocean masks from the
evaluation. This differences are further explored in the Sect. 60

6 model inter-comparison.
CALFIN-NN performs competitively on the Z-VS (Fig.

11). It achieves a similar mean meter distance (115.24 m
vs. 104 m) despite being constrained to using lower reso-
lution TerraSAR-X data. Note though that the Zhang et al. 65

(2019) neural network (Z-NN) uses higher resolution input
data (960×720) compared to CALFIN-NN (224x224), which
skews the mean pixel distance comparison, where CALFIN-
NN performs better (2.11 px vs. 17.3 px). Another source of
skew comes from CALFIN-NN confidence filtering, as only 70

8 of 12 fronts in the set are confidently detected (see Sect.
4.4). Increasing CALFIN-NN’s input resolution and training
on higher resolution SAR data may enable CALFIN-NN to
detect more fronts with greater accuracy.

CALFIN-NN performs sub-par on the B-VS (Fig. 12). 75

When comparing the mean distance error with the Baumhoer
et al. (2019) equivalent Area over Front (A/F) error, the
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Validation Set Model Mean Distance Median Distance IoU Calving Front IoU Ice/Ocean

CALFIN-VS CALFIN-NN 2.25 px, 86.76 m 1.21 px, 44.59 m 0.4884 0.9793
CALFIN-VS-L7-none CALFIN-NN 2.27 px, 81.65 m 1.16 px, 44.01 m 0.4880 0.9819
CALFIN-VS-L7-only CALFIN-NN 2.22 px, 91.93 m 1.33 px, 49.24 m 0.4888 0.9766

Figure 9. CALFIN-VS Validation Output Results: Yellow represents human (green) and machine (red) agreement on the front location.
Note that the drop in mean pixel distance despite the increase in mean meter distance (and vice versa) comes from L7SCE images being
reprocessed at lower sizes due to detection failures (see Fig. 6c), and pixel error bias being inversely related to input size (see Sect. 4.1).

Validation Set Model Mean Distance Median Distance IoU Calving Front IoU Ice/Ocean

M-VS CALFIN-NN 2.56 px, 97.72 m 2.55 px, 97.44 m 0.3332 N/A
M-VS M-NN 1.97 px, 96.31 m N/A N/A N/A

Figure 10. M-VS Validation Output Results: Note that CALFIN-NN has never trained on Helheim, but can still predict the front under
different conditions and preprocessing methods. See Fig. S9. for full outputs.

Validation Set Model Mean Distance Median Distance IoU Calving Front IoU Ice/Ocean

Z-VS CALFIN-NN 2.11 px, 115.24 m 1.65 px, 77.29 m 0.3832 0.9761
Z-VS Z-NN 17.3 px, 104 m N/A N/A N/A

Figure 11. Z-VS Validation Output Results: CALFIN-NN works well on SAR data in addition to optical data. See Fig. S10. for full outputs.

Validation Set Model Mean Distance Median Distance IoU Calving Front IoU Ice/Ocean

B-VS CALFIN-NN 2.35 px, 330.63 m 0.74 px, 112.75 m 0.6451 0.9879
B-VS B-NN 2.69 px, 108 m N/A N/A 0.905
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Figure 12. B-VS Validation Output Results: Similar to Z-NN, B-NN uses a high resolution input (768×768) relative to CALFIN-NN
(224x224), which skews the mean pixel distance comparison in CALFIN-NN’s favor. See Fig. S11-S12 for full outputs.

Baumhoer et al. (2019) neural network (B-NN) outperforms
CALFIN-NN (330.63 m vs 108 m). Note that the easily
detected static coastlines are masked out, raising the rela-
tive error, and negatively impacting CALFIN-NN’s perfor-
mance on this metric. When comparing metrics that iso-5

late the calving front, the absolute median distance error is
calculated (achieving 112.75 m) whereas Baumhoer et al.
(2019) uses signed median distance error (achieving 0 m),
which is not directly comparable in this context, and thus
omitted. Currently, the error is affected by kilometer-range10

deviations in very large domains like Voyeykov Ice Shelf,
and differences in sea-ice mélange as seen along the Gillet
and Wordie Ice Shelves, which would be consistent with
findings in Baumhoer et al. (2019) Sect. 5.2. After exclud-
ing such outliers, fronts are detected in 55 out of 62 do-15

mains (88.71%), achieving median distance errors of 0.95
px (127.87 m). Intensive retraining on ice shelves may be
required for CALFIN-NN to improve.

4.4 Detection Accuracy

Lastly, CALFIN-NN is shown to automatically filter images20

that do not have detectable calving fronts. To verify this, 13
images are included in the CALFIN-VS which do not contain
calving fronts discernible to the human eye. The true posi-
tive (TP), true negative (TN), false positive (FP), and false
negative (FN) rates are computed for the entire 162 image25

CALFIN-VS, and the associated confusion matrix is shown
in Table 1. Note that CALFIN-NN does not output any false
positives on the CALFIN-VS. While this ensures accurate
fronts are output rather than incorrect fronts, this filtering
behavior removes potentially large errors, and must be ac-30

counted for when comparing errors across other sets.

Table 1. Confusion Matrix: CALFIN-NN misses fronts in 8 of 149
valid CALFIN-VS images, but this trade-off is acceptable.

Front Detected?

Yes No

Front
Detectable?

Yes TP = 141/149
(94.63%)

FN = 8/149
(5.76%)

No FP = 0/13
(0.00%)

TN = 13/13
(100.00%)

5 Results and Discussion

The code implementation of the CALFIN method is released,
along with its associated calving front data products as de-
scribed in the following section, for use within the scien- 35

tific community. The CALFIN dataset spans 66 Greenlandic
basins, over the period Sept. 1972 - June 2019. It consists
of over 1500 manual delineations and 22,678 total calving
fronts. Two levels of CALFIN data products are provided.
The Level 0 products include the Shapefile domains used 40

for subsetting, the neural network training image/mask pairs,
the fjord boundary masks, the full Landsat scene ID list,
and the quality assurance images for validation purposes.
The use cases of Level 0 products may include studies of
reproducibility, validation, or training new neural networks. 45

The Level 1 products include the calving front polyline and
polygon Shapefiles. The polyline product consists of the iso-
lated, refined, geo-referenced, and verified calving fronts for
each domain. The polygon product consists of an ocean mask
bounded by the domain subset, the fjord boundaries, and 50

the calving front(s), for each domain. Both of the Shapefiles
share a common metadata feature schema (see Table S2) de-
rived from the MEaSUREs Glacial Termini Dataset (Moon
and Joughin, 2008; Joughin et al., 2015), and names are de-
rived from Bjørk et al. (2015). These products can be found 55

via these links to Github and DataDryad (Cheng et al., 2020).
With the new data available to use in the CALFIN dataset,

it is possible to explore seasonal trends across the Green-
land Ice Sheet, and validate a subset of 10 high discharge
basins of interest against existing ESA-CCI, MEaSUREs, 60

and PROMICE data products (ENVEO, 2017; Joughin et al.,
2015; Andersen et al., 2019). Fig 13 shows the high temporal
resolution and spatial accuracy of the CALFIN data product
alongside corresponding available data products from 1972-
2019. For Joughin et al. (2015), if a date range is given, the 65

same relative change at both start and end dates (Moon and
Joughin, 2008) is plotted. For Andersen et al. (2019), Au-
gust 15th is used as the "end-of-melt-season" date of delin-
eation, as the date is otherwise not specified in the provided
data. The advance and retreat of the calving front along the 70

basin centerlines is relative to their earliest positions. Note
the large improvement in temporal/seasonal coverage and the
general agreement of CALFIN with existing data products.

https://github.com/daniel-cheng/CALFIN
https://doi.org/10.7280/D1FH5D
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Figure 13. Terminus Advance and Retreat Over Time. (a-j) Basin setup (left) and graph (right) for 10 high discharge basins. Positive length
change represents retreat relative to the earliest position along the centerlines in red. Note the seasonal variations captured by CALFIN, in
blue. Time series for other studies span 1990-2016 (ESA-CCI), 2000-2017 (MEaSUREs), and 1999-2019 (PROMICE). Note the seasonal
variations shown by the solid lines, and the dotted lines from 1972-1985 that indicate a lack of such seasonal observations. Also note that the
vertical axis scaling is applied differently for each graph to highlight seasonal trends.

Note also that the discrepancies such as that during 2005-
2009 in Jakobshavn (Fig. 13e) mostly stem from a lack of
winter coverage during Landsat’s optical blackout period.
Additional outliers in Kong Oscar (Fig. 13g) stem from the
somewhat arbitrary delineation of the ice tongue front po-5

sition. Kangiata Nunaata (Fig. 13j) suffers from both of the
aforementioned effects, but otherwise shows the same gen-
eral agreement with existing datasets from 2000 onwards.

Additionally, Fig. 14 shows the regional mean advance
and retreat change, alongside the mean for the entirety of10

Greenland covered by the CALFIN dataset. Contributions
from NW Greenland influence the overall trend the most,
due to the presence of many small glaciers/branches in the
region. Note that the mean for Greenland also includes con-
tributions from Petermann, which is visible in the summers15

of 2010 and 2012. Shared regional trends are visible across
NW and CW Greenland, which both show relative stabil-

ity before 2000, followed by steady retreat up until 2017-
2018. CE and SE Greenland also share a similar but less
pronounced retreat, showing an accelerating retreat begin- 20

ning around 1995. These regional trends are less visible in
SW Greenland, which is dominated by Narsap Sermia’s re-
treat from 2010-2013. Overall, these regional trends gener-
ally agree with studies such as Wood et al. (2021) and King
et al. (2020), helping further validate the CALFIN method 25

and data.

6 Inter-model Comparison

To further reinforce the validity of the study, and address the
shortcomings of different error metric comparisons (as dis-
cussed in Sect. 4.3), a comprehensive inter-model compari- 30

son is conducted between CALFIN-NN and the model devel-
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Figure 14. Regional Terminus Advance and Retreat Over Time. (a) Regional delineations (left) and terminus position graphs (right) for
Greenland (b), as well as the northwestern (c), central western (d), central eastern (e), southeastern (f), and southwestern (g) regions. Note
that the total Greenland mean advance and retreat is unadjusted, and dominated by the trend lines of numerous smaller glaciers in CW and
NW Greenland. Note that branches in the 66 studied basins are independently counted, for a total of 87 glaciers.

oped by Mohajerani et al. (2019) (M-NN). This experiment
seeks to understand how both models perform, holding all
other variables constant. In particular, this experiment seeks
to determine if the M-NN model, and by extension other
UNet models, perform on par with the CALFIN-NN model,5

given the same training data. This task involves retraining
the M-NN on CALFIN training data, and comparing its per-
formance against CALFIN-NN using a shared validation set.
For the fairest results, only images without L7SCEs are eval-
uated in this validation set - CALFIN-VS-L7-none - which10

is within the known capabilities of the M-NN. Furthermore,
the same pre- and post-processing is applied to both models.

Across all non-Landsat 7 test images in the CALFIN val-
idation set, CALFIN-NN attains a 2.27 pixel (81.65 meter)
mean distance between the predicted and the manually de-15

lineated fronts. This exceeds the level of accuracy achieved
by the model from Mohajerani et al. (2019), which after re-
training on CALFIN training data, is 4.45 pixels (201.35 me-
ters). Note again that Landsat 7 images were excluded during
reevaluation for the M-NN. This supports the findings that20

the CALFIN-NN architecture is an improvement over exist-
ing UNet models.

With this added context, the validation table is repro-
duced from Sect. 4.3, Fig. 10, and the error analysis is con-
tinued below. To reemphasize the differences in mean dis-25

tance error calculation between different studies, Mohajerani
et al. (2019) begins by breaking each predicted front to 1000

smaller segments within a small buffer from the fjord walls
and calculating the mean deviation between the segments of
the predicted and manually delineated fronts. The method be- 30

gins by averaging the mean distance between each pixel of
the predicted front and the closest pixel of the manually de-
lineated front as detailed in Sect 4.1. While the line-segment
methodology of Mohajerani et al. (2019) provides a stricter
estimate by enforcing close agreement between correspond- 35

ing front segments, the CALFIN method allows for non-
aligned evaluation of the mean distance error. Although both
implementations quantify the differences between the lines,
the differences in implementation should still be considered
when evaluating the comparison below. 40

Across all 10 test images in the M-VS, CALFIN-NN
attains a 2.56 pixel (97.72 meter) mean distance between
the predicted and the manually delineated fronts. This ap-
proaches the level of accuracy achieved in the original study,
which is 1.97 pixels (96.31 meters). This supports the find- 45

ings that the CALFIN-NN architecture generalizes to new
data well. Note that CALFIN-NN’s larger network size re-
quires additional training data to avoid over-fitting, or mem-
orizing, the training data, which could explain the slightly
lesser accuracy when compared to the M-NN. In summary, 50

this comprehensive model inter-comparison supports the hy-
pothesis that the CALFIN-NN model improves on existing
studies and is generalizing well.
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Table 2. Model Inter-comparison Error Table: Metrics for the CALFIN-NN and M-NN models on all non-Landsat 7 test images in the
CALFIN validation set.

Validation Set Training Set Model Mean Distance Median Distance IoU Front IoU Ice/Ocean

CALFIN-VS-L7-none CALFIN CALFIN-NN 2.27 px, 81.65 m 1.16 px, 44.01 m 0.4880 0.9819

CALFIN-VS-L7-none CALFIN M-NN 4.45 px, 201.35 m 1.25 px, 50.52 m 0.4935 0.9699

Table 3. M-VS Validation Output Results: Accuracy and error metrics for the CALFIN-NN and the M-NN models on the M-VS. Again,
some metrics are not provided by Mohajerani et al. (2019), so they are omitted from this table.

Validation Set Training Set Model Mean Distance Median Distance IoU Front IoU Ice/Ocean

M-VS CALFIN CALFIN-NN 2.56 px, 97.72 m 2.55 px, 97.44 m 0.3332 N/A

M-VS Mohajerani M-NN 1.97 px, 96.31 m N/A N/A N/A

7 Conclusion

Overall, the goal of automatically delineating calving fronts
from satellite imagery is accomplished. The CALFIN
method uses the cutting-edge in deep learning architectures,
allowing for robustness to minor cloud cover, Landsat 75

Scanline Corrector Errors, and illumination changes. The
method is validated through a comprehensive data intercom-
parison with existing studies, and the results deviate by on
average 86.76 ± 1.43 meters from the measured fronts. Re-
gional trends show larger than average absolute retreat in10

SE Greenland, and new sub-seasonal trends are available for
further investigation with the release of the 22,678 calving
front lines generated across 66 Greenlandic glaciers. Future
work may entail accuracy improvements, expansion of in-
cluded domains, usage of SAR data sources, and near-real15

time data products. Within the community, the benefits of
standardized training, validation sets, and outputs/metadata
are anticipated. The community’s development of new auto-
mated extraction studies, such as grounding line delineation,
iceberg tracking, and sea ice mélange measurements, is also20

anticipated. A key takeaway is the maturation of neural net-
works for automated calving front detection. Specifically, a
well trained network now approaches human levels of ac-
curacy in picking arbitrary glacial calving fronts. This rein-
forces existing studies on the viability of the methodology,25

and paves the way for applications on other data process-
ing tasks. Ultimately, this work showcases the state-of-the-
art in automated calving front detection, and provides a new
database of glacial termini positions for the cryosphere com-
munity.30

Code and data availability. The code used to automate the imple-
ment the CALFIN pipeline is freely available at github.com/daniel-
cheng/CALFIN. It is written in Python 3, using the Keras & Tensor-
flow libraries. The data generated by CALFIN is currently available
at datadryad.org/stash/dataset/doi:10.7280/D1FH5D.35

The Supplement related to this article is available online
at: https://doi.org/10.5194/tc-0-1-2021-supplement

Author contributions. DC developed the code/model, created the
training data, carried out the data processing/error analysis, and 40

wrote the majority of the manuscript. WH provided input on the
processing methodology, post-processing algorithms, error analy-
sis, discussion topics, and writing the manuscript. EL provided key
direction for the overall study, error analysis, outputs, and writ-
ing the manuscript. YM performed the model inter-comparison 45

and assisted with the writing of the manuscript. MW performed
the data preprocessing for the model inter-comparison. IV as-
sisted in organizing collaborators and the model inter-comparison.
ER contributed suggestions regarding the error analysis and inter-
comparison. WH, EL, MW, and YM revised the manuscript and 50

results.

Competing interests. The authors declare no competing interests.

Acknowledgements. This work was conducted as a collaboration
between NASA’s Jet Propulsion Laboratory and the University of
California, Irvine. The CALFIN neural network architecture im- 55

plementation is derived from Emil Zakirov’s Deeplabv3+ Xcep-
tion codebase at github.com/bonlime/keras-deeplab-v3-plus (last
access: 13 August 2020). We acknowledge the USGS for providing
Landsat-1-8 images, the ESA for their Sentinel-1 images, as well as
the ESA-CCI, PROMICE, and MEaSUREs programs for providing 60

calving front data used in this study. Additionally, we thank the edi-
tors and reviewers for their contributions to the improvement of this
manuscript.

References

Andersen, J. K., Fausto, R. S., Hansen, K., Box, J. E., Andersen, 65

S. B., Ahlstrøm, A. P., Dirk, Citterio, M., Colgan, W., Karls-
son, N. B., and et al.: Update of annual calving front lines for
47 marine terminating outlet glaciers in Greenland (1999–2018),

https://github.com/daniel-cheng/CALFIN
https://github.com/daniel-cheng/CALFIN
https://github.com/daniel-cheng/CALFIN
https://datadryad.org/stash/dataset/doi:10.7280/D1FH5D
https://doi.org/10.5194/tc-0-1-2021-supplement
https://github.com/bonlime/keras-deeplab-v3-plus


TEXT: TEXT 13

GEUS Bulletin, 43, https://doi.org/10.34194/GEUSB-201943-
02-02, 2019.

Andersen, M., Stenseng, L., Skourup, H., Colgan, W., Khan,
S., Kristensen, S., Andersen, S., Box, J., Ahlstrøm, A.,
Fettweis, X., and Forsberg, R.: Basin-scale partition-5

ing of Greenland ice sheet mass balance components
(2007–2011), Earth and Planetary Science Letters, 409, 89
– 95, https://doi.org/10.1016/j.epsl.2014.10.015, 2015.

Baumhoer, C. A., Dietz, A. J., Kneisel, C., and Kuenzer, C.: Auto-
mated Extraction of Antarctic Glacier and Ice Shelf Fronts from10

Sentinel-1 Imagery Using Deep Learning, Remote Sensing, 11,
2529, https://doi.org/10.3390/rs11212529, 2019.

Bjørk, A. A., Kruse, L. M., and Michaelsen, P. B.: Brief commu-
nication: Getting Greenland’s glaciers right – a new data set of
all official Greenlandic glacier names, The Cryosphere, 9, 2215–15

2218, https://doi.org/10.5194/tc-9-2215-2015, 2015.
Bunce, C., Carr, J. R., Nienow, P. W., Ross, N., and Killick, R.:

Ice front change of marine-terminating outlet glaciers in north-
west and southeast Greenland during the 21st century, Journal
of Glaciology, 64, 523–535, https://doi.org/10.1017/jog.2018.44,20

2018.
Carr, J. R., Stokes, C. R., and Vieli, A.: Threefold increase in

marine-terminating outlet glacier retreat rates across the At-
lantic Arctic: 1992–2010, Annals of Glaciology, 58, 72–91,
https://doi.org/10.1017/aog.2017.3, 2017.25

Catania, G. A., Stearns, L. A., Sutherland, D. A., Fried, M. J.,
Bartholomaus, T. C., Morlighem, M., Shroyer, E., and Nash,
J.: Geometric Controls on Tidewater Glacier Retreat in Central
Western Greenland, Journal of Geophysical Research: Earth Sur-
face, 123, 2024–2038, https://doi.org/10.1029/2017JF004499,30

2018.
Catania, G. A., Stearns, L. A., Moon, T. A., Enderlin,

E. M., and Jackson, R. H.: Future Evolution of Green-
land’s Marine-Terminating Outlet Glaciers, Journal of Geo-
physical Research: Earth Surface, 125, e2018JF004 873,35

https://doi.org/10.1029/2018JF004873, 2020.
Chen, L., Zhu, Y., Papandreou, G., Schroff, F., and Adam, H.:

Encoder-Decoder with Atrous Separable Convolution for Se-
mantic Image Segmentation, European Conference on Computer
Vision, pp. 801–818, http://arxiv.org/abs/1802.02611, 2018.40

Cheng, D., Hayes, W., and Larour, E.: CALFIN: Calv-
ing Front Dataset for East/West Greenland, 1972-2019,
https://doi.org/10.7280/D1FH5D, 2020.

Chollet, F.: Xception: Deep Learning with Depthwise Separable
Convolutions, Computer Vision and Pattern Recognition, pp.45

1800–1807, https://doi.org/10.1109/cvpr.2017.195, 2017.
ENVEO: Greenland Calving Front Dataset, 1990

- 2016, v3.0, http://products.esa-icesheets-
cci.org/products/downloadlist/CFL/, 2017.

Fürst, J. J., Goelzer, H., and Huybrechts, P.: Ice-dynamic pro-50

jections of the Greenland ice sheet in response to atmo-
spheric and oceanic warming, The Cryosphere, 9, 1039–1062,
https://doi.org/10.5194/tc-9-1039-2015, 2015.

Joughin, I., Moon, T., Joughin, J., and Black, T.: MEaSUREs An-
nual Greenland Outlet Glacier Terminus Positions from SAR55

Mosaics, Version 1, https://doi.org/10.5067/DC0MLBOCL3EL,
2015.

King, M. D., Howat, I. M., Jeong, S., Noh, M. J., Wouters, B., Noël,
B., and van den Broeke, M. R.: Seasonal to decadal variability in

ice discharge from the Greenland Ice Sheet, The Cryosphere, 12, 60

3813–3825, https://doi.org/10.5194/tc-12-3813-2018, 2018.
King, M. D., Howat, I. M., Candela, S. G., Noh, M. J.,

Jeong, S., Noël, B. P. Y., Broeke, M. R. v. d., Wouters,
B., and Negrete, A.: Dynamic ice loss from the Greenland
Ice Sheet driven by sustained glacier retreat, Nature News, 65

https://doi.org/10.1038/s43247-020-0001-2, 2020.
Kruskal, J. B.: On the Shortest Spanning Subtree of a

Graph and the Traveling Salesman Problem, Proceed-
ings of the American Mathematical Society, 7, 48–50,
https://doi.org/10.2307/2033241, 1956. 70

Mannor, S., Peleg, D., and Rubinstein, R.: The Cross Entropy
Method for Classification, in: Proceedings of the 22nd Interna-
tional Conference on Machine Learning, ICML ’05, p. 561–568,
Association for Computing Machinery, New York, NY, USA,
https://doi.org/10.1145/1102351.1102422, 2005. 75

Mohajerani, Y., Wood, M., Velicogna, I., and Rignot, E.:
Detection of Glacier Calving Margins with Convolutional
Neural Networks: A Case Study, Remote Sensing, 11,
https://doi.org/10.3390/rs11010074, 2019.

Moon, T. and Joughin, I.: Changes in ice front posi- 80

tion on Greenland’s outlet glaciers from 1992 to 2007,
Journal of Geophysical Research: Earth Surface, 113,
https://doi.org/10.1029/2007JF000927, 2008.

Morlighem, M., Williams, C. N., Rignot, E., An, L., Arndt,
J. E., Bamber, J. L., Catania, G., Chauché, N., Dowdeswell, 85

J. A., Dorschel, B., Fenty, I., Hogan, K., Howat, I., Hub-
bard, A., Jakobsson, M., Jordan, T. M., Kjeldsen, K. K., Mil-
lan, R., Mayer, L., Mouginot, J., Noël, B. P. Y., O’Cofaigh,
C., Palmer, S., Rysgaard, S., Seroussi, H., Siegert, M. J.,
Slabon, P., Straneo, F., van den Broeke, M. R., Weinrebe, W., 90

Wood, M., and Zinglersen, K. B.: BedMachine v3: Complete
Bed Topography and Ocean Bathymetry Mapping of Green-
land From Multibeam Echo Sounding Combined With Mass
Conservation, Geophysical Research Letters, 44, 11,051–11,061,
https://doi.org/10.1002/2017GL074954, 2017. 95

Nagler, T., Rott, H., Hetzenecker, M., Wuite, J., and Potin,
P.: The Sentinel-1 Mission: New Opportunities for Ice
Sheet Observations, Remote Sensing, 7, 9371–9389,
https://doi.org/10.3390/rs70709371, 2015.

Nick, F. M., Vieli, A., Andersen, M. L., Joughin, I., Payne, A., Ed- 100

wards, T. L., Pattyn, F., and van de Wal, R. S. W.: Future sea-level
rise from Greenland’s main outlet glaciers in a warming climate,
Nature, 497, 235–238, https://doi.org/10.1038/nature12068,
2013.

Paravolidakis, V., Moirogiorgou, K., Ragia, L., Zervakis, M., and 105

Synolakis, C.: COASTLINE EXTRACTION FROM AERIAL
IMAGES BASED ON EDGE DETECTION, ISPRS Annals of
Photogrammetry, Remote Sensing and Spatial Information Sci-
ences, III-8, 153–158, https://doi.org/10.5194/isprsannals-III-8-
153-2016, 2016. 110

Ronneberger, O., Fischer, P., and Brox, T.: U-Net: Convolu-
tional Networks for Biomedical Image Segmentation, CoRR,
abs/1505.04597, http://arxiv.org/abs/1505.04597, 2015.

Seale, A., Christoffersen, P., Mugford, R. I., and O’Leary, M.:
Ocean forcing of the Greenland Ice Sheet: Calving fronts and 115

patterns of retreat identified by automatic satellite monitoring of
eastern outlet glaciers, Journal of Geophysical Research: Earth
Surface, 116, https://doi.org/10.1029/2010JF001847, 2011.

https://doi.org/10.34194/GEUSB-201943-02-02
https://doi.org/10.34194/GEUSB-201943-02-02
https://doi.org/10.34194/GEUSB-201943-02-02
https://doi.org/10.1016/j.epsl.2014.10.015
https://doi.org/10.3390/rs11212529
https://doi.org/10.5194/tc-9-2215-2015
https://doi.org/10.1017/jog.2018.44
https://doi.org/10.1017/aog.2017.3
https://doi.org/10.1029/2017JF004499
https://doi.org/10.1029/2018JF004873
http://arxiv.org/abs/1802.02611
https://doi.org/10.7280/D1FH5D
https://doi.org/10.1109/cvpr.2017.195
https://doi.org/10.5194/tc-9-1039-2015
https://doi.org/10.5067/DC0MLBOCL3EL
https://doi.org/10.5194/tc-12-3813-2018
https://doi.org/10.1038/s43247-020-0001-2
https://doi.org/10.2307/2033241
https://doi.org/10.1145/1102351.1102422
https://doi.org/10.3390/rs11010074
https://doi.org/10.1029/2007JF000927
https://doi.org/10.1002/2017GL074954
https://doi.org/10.3390/rs70709371
https://doi.org/10.1038/nature12068
https://doi.org/10.5194/isprsannals-III-8-153-2016
https://doi.org/10.5194/isprsannals-III-8-153-2016
https://doi.org/10.5194/isprsannals-III-8-153-2016
http://arxiv.org/abs/1505.04597
https://doi.org/10.1029/2010JF001847


14 TEXT: TEXT

van den Broeke, M. R., Enderlin, E. M., Howat, I. M.,
Kuipers Munneke, P., Noël, B. P. Y., van de Berg, W. J., van
Meijgaard, E., and Wouters, B.: On the recent contribution of
the Greenland ice sheet to sea level change, The Cryosphere, 10,
1933–1946, https://doi.org/10.5194/tc-10-1933-2016, 2016.5

Wood, M., Rignot, E., Fenty, I., An, L., Bjørk, A., van den
Broeke, M., Cai, C., Kane, E., Menemenlis, D., Millan,
R., Morlighem, M., Mouginot, J., Noël, B., Scheuchl, B.,
Velicogna, I., Willis, J. K., and Zhang, H.: Ocean forc-
ing drives glacier retreat in Greenland, Science Advances, 7,10

https://doi.org/10.1126/sciadv.aba7282, 2021.
Zhang, E., Liu, L., and Huang, L.: Automatically delineating

the calving front of Jakobshavn Isbræ from multi-temporal
TerraSAR-X images: a deep learning approach, The Cryosphere,
2019, 1–20, https://doi.org/10.5194/tc-2019-14, 2019.15

https://doi.org/10.5194/tc-10-1933-2016
https://doi.org/10.1126/sciadv.aba7282
https://doi.org/10.5194/tc-2019-14

	Abstract
	Introduction
	Data Source and Scope
	Methods
	Preprocessing
	Neural Network Processing
	Post-Processing

	Validation
	Error Estimation
	Classification Accuracy
	Validation Results
	Detection Accuracy

	Results and Discussion
	Inter-model Comparison
	Conclusion
	Code and data availability
	Author contributions
	Competing interests
	Acknowledgements
	References

