
Anonymous Referee #1  

General Comments: 

This manuscript introduces the novel developed Calving Front Machine “CALFIN” for 

the automated extraction of Greenlandic calving fronts. This is a major contribution to the 

field as it replaces time-consuming manual delineated fronts by automatically extracted 

dense glacier front time series. The CALFIN algorithm was validated extensively against 

test datasets and results from previous studies through a model intercomparison. The 

scientific community will definitely benefit from this development as an automatically 

derived calving front position data set of 66 Greenlandic glaciers will be released with 

this publication. 

Despite the impressive results and technical details of this manuscript, I have some 

concerns about the structure of this paper and the (sometimes) very short explanations. 

However, after re-structuring some parts of the manuscript and adding additional 

information as indicated below, this paper will present an important contribution to the 

field. In my opinion, the abstract should be structured more clearly. For a better 

understanding, I would recommend to re-order the abstract by using the common schema: 

1) Statement of the problem, 2) Research question, 3) Research design, 4) Central results, 

5) Brief interpretation of the results, and 6) Outlook/ future use of the data set. 

We thank the reviewer for this feedback and have integrated the suggestions into the 

manuscript. The abstract has now been rewritten according to the standardized schema as 

follows: 

“Sea level contributions from the Greenland Ice Sheet are influenced by the rapid 

changes in glacial terminus positions. However, the manual delineation of these calving 

fronts is time consuming, which limits the availability of this data across a wide spatial 

and temporal range. Automated methods face challenges that include the handling of 

clouds, illumination differences, sea ice mélange, and Landsat-7 Scanline Corrector 

Errors. To address these needs, we develop the Calving Front Machine (CALFIN), an 

automated method for extracting calving fronts from satellite images of marine-

terminating glaciers using neural networks. CALFIN's results are often indistinguishable 

from manually-curated fronts, deviating by on average 86.76 meters ± 1.43 m from the 

measured front. CALFIN's outputs use Landsat imagery from 1972 to 2019 to generate 

22,678 calving front lines across 66 Greenlandic glaciers. This improves on the state of 

the art in terms of the spatio-temporal coverage and accuracy of its outputs. The current 

implementation offers a new opportunity to explore sub-seasonal trends on the extent of 

Greenland's margins, and supplies new constraints for simulations of the evolution of the 

mass balance of the Greenland Ice Sheet and its contributions to future sea level rise.” 

P2L4: The paper introduces a new method and provides an inter-comparison with other 

studies. For readers not familiar with the studies of Zhang et al, Mohajerani et al. and 

Baumhoer et al. it would be helpful to have a brief state-of-the-art paragraph reviewing 

existing calving front extraction methods. For example, P2L4 could be extended and give 

more insights into the studies used in the inter-comparison as well as the studies of Seale 

et al. 2011 and similar approaches. 



These suggestions are appreciated, and we focus on the shortcomings of studies like 

Seale et al. 2011 to handle Landsat 7 Scanline Corrector Errors, as well as expand upon 

the state of the art by integrating the Existing Works Sect. 6.2 into the introduction. The 

edited lines are as follows: 

“Existing work by Mohajerani et al. (2019) pioneers the usage of these techniques by 

applying the Ronneberger et al. (2015) UNet deep neural network towards Jakobshavn, 

Helheim, Sverdrup, and Kangerlussuaq. It achieves a mean distance error of 96.3 m, but 

is restricted by the preprocessing requirement of aligning the flow direction to be vertical, 

and inability to handle branching/non-linear calving fronts. Zhang et al. (2019) evaluates 

a modified UNet applied to TerraSAR-X data over Jakobshavn, and achieves a mean 

distance error of 104 m, but is limited in scope. Baumhoer et al. (2019) expands the 

application of the UNet to Sentinel 1 imagery of Antarctica, extracting full coastline 

delineations and achieving a mean distance error of 108 m. Ultimately, these case studies 

provide the groundwork for the automatic, accurate, large scale, longtime-series, high 

temporal resolution, and potentially multi-sensor extraction of glacial terminus 

positions.” 

P2L11: In my opinion this section is incomplete. Please mention all potential data sources 

in Table 1 (add Sentinel-2, Envisat, ERS, Radarsat) and justify why they are not suitable. 

Another option would be to just focus on Landsat data and remove the incomplete Table 

1. Figure 1 is really great so I would try to put the focus on it and highlight the incredible 

amount of processed data and outline the advantages, data amount, and characteristics of 

Landsat. 

Thank you for these comments - Table 1 has been removed in favor of elaborating on the 

advantages/characteristics of the data sources evaluated in the study, which now covers 

Sentinel 1A/B as well. 

P2L17: The methodology section could give a short overview of the entire workflow 

from pre-processing to the final extracted calving front by showing a flow chart. This 

would guide the reader through the methodology part and link the numerous subchapters 

of section 3. Besides, in my opinion, the training of the network explained in P12L2 

should be part of the methodology and not subject to the discussion.  

These are good points, and a methodology flowchart has been added to the beginning of 

Sect. 3 (see Fig. R1 below). Additionally, the network training discussion subsection 

Sect. 6.1 has been integrated into the methodology as Sect 3.2p4. 



 

Figure R1. CALFIN Processing Flowchart 

Specific Comments: 

P5 Figure 5c: How does the filtering of unconfident predictions work? Please describe 

this in the methodology section. 

The filtering of unconfident predictions is performed by measuring the certainty of each 

pixel’s classification in a 5 pixel wide buffer around the calving front. Predictions with a 

mean certainty exceeding an empirically chosen threshold will be filtered from the 

results. The following explanation of the method is now given at the end of Sect 3.3p4:  

“Since the neural network assigns each pixel a value between 0 and 1 based on its 

perceived class, any deviation from these two values can used as a measure of 

uncertainty. The filtering method averages the deviation of the ice/ocean classification 

mask in a 5 pixel wide buffer around the calving front, and discards any fronts whose 

mean deviation exceeds an empirically chosen threshold of 0.125.” 

P6L1: Please outline the calving front re-processing in more detail. Does the reprocessing 

allow a higher spatial accuracy when re-processing a part of the image?  

Yes, the reprocessing allows for higher spatial accuracy when re-processing the image. 

The re-processing step is now more clearly shown in the Fig. R1 flowchart and described 

at the beginning of Sect 3.3p4: “Once each front is located, its bounding box is used to 

extract a higher resolution subset from the original image, and reprocessed. This 

innovation allows for increased spatial accuracy when processing multiple fronts in large 

basins.” 

P6L16: How much smoothing of the extracted coastline is allowed and can this also 

decrease accuracy? 



The smoothed coastline is allowed to vary by no more than 1 pixel from the raw extracted 

coastline, as seen in Fig. R2. Since the variations are on the sub-pixel scale, the error 

introduced is no more than the uncertainty of the base resolution, and well within the 

neural network uncertainty. The following clarification has been added to the end of the 

line: “, deviating no more than 1 pixel from the raw extracted coastline.”. Fig. R2 has also 

been added to the Supplement as Fig. S2. 

 

Figure R2. Smoothed (Orange) Versus Raw Coastline (Blue) 

P8L1: How did you handle the issue that your network was trained for 3-channel RGB 

imagery but tested on 1-channel SAR data?  

This is question is appreciated, as it highlights the manuscript’s shortcomings in 

describing the SAR preprocessing pipeline. A paragraph has been added in Sect. 2, Data 

Source and Scope, describing the usage of the Sentinel 1A/B Antarctic SAR HH band to 

measure backscatter intensity, which is then treated the same as a Landsat 1-channel NIR 

band and preprocessed into the final 3-channel false color RGB imagery.  

The flowchart in Fig. R1 also helps clarify the input preprocessing steps needed to derive 

a 3-channel false color RGB image from 1-channel input rasters (now Fig. 3 in the 

manuscript). 

P8L18: What are the characteristics of those outlier glaciers and how many glaciers are 

defined as “outlier”?  

Glaciers with ice tongues such as Kong Oscar can result in large disagreements between 

the predicted front and the manually delineated fronts. Kong Oscar is the only glacier in 

the CALFIN Validation Set that contains such extensive ice tongues. 

Since the “outlier” in this line refers only to the statistical outlying measurements, and no 

glaciers are excluded from the error metric calculations, the clause “When excluding 

outliers such as Kong Oscar, ” has been removed to reduce confusion. 

P11L15: The information of this section could also be shifted to methodology. Then 

rename Chapter 5 to “CALFIN Dataset”.  



Thank you for this suggestion - this change has been integrated, and Sect. 5.2 has been 

removed. 

P10L4: But also mention the mean distance which is comparable here.  

These lines have been rewritten to include the mean distance error as follows:  

“When comparing the mean distance error with the Baumhoer et al. (2019) equivalent 

Area over Front (A/F) error, the Baumhoer et al. (2019) neural network (B-NN) 

outperforms CALFIN-NN (330.63 m vs 108 m). Note that the easily detected static 

coastlines are masked out, raising the relative error, and negatively impacting CALFIN-

NN’s performance on this metric.” 

P10 Figure 11: How did you consider the fact that ice shelves are much bigger than 

glaciers? For example, in Figure 11 you show the Shackleton ice shelf. It is approx. 200 

km wide and if you resample that to 224x224 pixels, one pixel for your validation would 

be 892 m compared to 40 m pixels in the original study by Baumhoer et al. 2019. How 

did this influence the validation accuracy? For Zhang et al. you show that the use of 

higher resolution of TerraSAR-X data does not improve the mean distance accuracy 

(Figure 10).  

Errors in large ice shelves are the primary contributor to CALFIN’s large mean distance 

error values. For Shackleton ice shelf, the highly accurate detection prevents it from 

contributing excessive amounts of error, though indeed variations of even 1 pixel would 

cause significant error. The following graphs (Fig. R3-R5) shows a histogram that plots 

the distance between closest pixels in the predicted and manually delineated 3-pixel wide 

calving front masks. Shackleton’s mean distance of 287.48 meters (Fig. R3) for a single 

validation image is better than the overall average (330 meters) when compared to other 

large domains like Voyeykov (Fig. R4) and Land (Fig. R5). 

 

 

Figure R3. Shackleton Pixelwise Mean Distance Error Histogram 



 

Figure R4. Voyeykov Pixelwise Mean Distance Error Histogram 

 

Figure R5. Land Pixelwise Mean Distance Error Histogram 

For Zhang et al., the higher resolution inputs are resized to a lower resolution to fit into 

the 224x224 neural network input shape, and thus provides no improvements. A neural 

network with a larger input size would benefit from higher resolution imagery. 

P13 Figure 13: Can you explain why the PROMICE data set (2008/2009 and 2010/2011) 

shows twice a very different front position compared to the CALFIN data set?  

PROMICE (Anderson et al., 2019) does not provide dates for its delineations, instead 

stating that they are observed at the “end-of-melt season”. August 15th was chosen as the 

apparent date of these measurements, and it generally corresponds to the other 

measurements, but it is not a reliable indicator of the calving front at sub-annual 

timescales, and is only provided for context. 

P13L13: The model inter-comparison is only discussed for the study of Mohajerani et al. 

but validations were also done against the data sets of Zhang et al. and Baumhoer et al., 

hence those results should also be discussed. 

This is a valuable suggestion, and should be investigated in a follow up study, but is 

unfortunately out of the scope of this study due to the computational and logistical 

challenges of retraining the original networks used in Zhang et al. and Baumhoer et al. 

with the CALFIN training set, and the necessary involvement of the original authors in 

such an in-depth intercomparison. 



Anonymous Referee #2  

General Comments: 

General Comment Cheng et al. present an automated method for delineating glacier 

calving fronts – named Calving Front Machine (CALFIN) - based on a deep learning 

approach, accompanied by a new dataset of Greenland glacier termini. The principal 

input data are Landsat optical images acquired since 1972. The methodology builds on 

previous work by Mohajerani et al., Zhang et al., and Baumhoer et al. and uses 

computing systems, named neural networks, that learn patterns in training data, in order 

to identify similar patterns (such as glacier termini) in new data. The authors detail the 

various steps of the processing chain and produce a set of shapefiles, which are evaluated 

and intercompared with both internal and external (manually) retrieved calving front 

datasets using different quality metrics. The main outcome is an extensive dataset 

covering 66 outlet glaciers around Greenland with in total 22,679 individual calving 

fronts encompassing the period 1972-2019. The method and new data set reportedly 

exceeds the accuracy of previous work and approaches human levels of accuracy in 

delineating glacier termini, the key takeaway being the maturation of neural networks for 

automated calving front detection.  

Automated calving front extraction is a long sought after goal, that recently gained new 

attention thanks to advances in modern computing technology and increasing availability 

of satellite EO data. The use of deep learning/neural networks – the subject of this paper - 

to achieve this is very promising indeed. This paper by Cheng et al. is a welcome addition 

to existing literature on this topic as is the associated dataset for the community, 

expanding on previous efforts. In particular, the extension to the early days of Landsat 

acquisitions, enabling the retrieval of a dense Greenland dataset covering nearly 50 years, 

is of great relevance for exploring factors that are controlling the varying response to 

climate change for the outlet glaciers in this region and for quantifying their contribution 

to future sea level rise.  

That said, I do think there is some room for improvement of the manuscript, both in terms 

of presentation as well as substance. What is missing is a clear description of the 

objectives in the introduction, based on a literature review on the current standing, issues 

and knowledge gaps in calving front extraction based on machine learning. This gives the 

reader, not so familiar with the topic, as well as the presented methodological decisions 

and improvements a better context.  

We thank the reviewer for their time, comments, and suggestions, which have been 

integrated into the manuscript. A clear description of the objective has been added to the 

introduction and abstract. This is based on issues and knowledge gaps covered in the 

added literature review, which repurposes existing sections to provide better 

methodological context. Additional references have been added throughout the 

introduction, and a new paragraph has been integrated as follows: “Existing work by 

Mohajerani et al. (2019) pioneers the usage of these techniques by applying the 

Ronneberger et al. (2015) UNet deep neural network towards Jakobshavn, Helheim, 

Sverdrup, and Kangerlussuaq. It achieves a mean distance error of 96.3 m, but is 

restricted by the preprocessing requirement of aligning the flow direction to be vertical, 

and inability to handle branching/non-linear calving fronts. Zhang et al. (2019) evaluates 



a modified UNet applied to TerraSAR-X data over Jakobshavn, and achieves a mean 

distance error of 104 m, but is limited in scope. Baumhoer et al. (2019) expands the 

application of the UNet to Sentinel 1 imagery of Antarctica, extracting full coastline 

delineations and achieving a mean distance error of 108 m. Ultimately, these case studies 

provide the groundwork for the automatic, accurate, large scale, longtime-series, high 

temporal resolution, and potentially multi-sensor extraction of glacial terminus 

positions.” 

Another weak point is that the ‘data analysis’ does not go any further than a figure 

showing a rather simple comparison with existing data sets along a flowline of one single 

glacier. Even though this is clearly written as a methodology paper this is a missed 

opportunity to showcase a nice data product in my opinion. Perhaps something can be 

said about general trends in advance/retreat in different regions. Also, I think some 

sections and descriptions are too brief and need further expansion. Further comments and 

suggestions for improvement are provided below:  

Several sections have been expanded based on provided feedback. Additionally, the data 

analysis has been expanded, with a new figure showing the regional trends for NW, CW, 

CE, SW, and SE Greenland, along with 9 additional glacial flowline graphs: 

“

 

Figure 14. Regional Terminus Advance and Retreat Over Time. (a-f) Regional 

delineations (left) and terminus position graphs (right)for Greenland (a) and the 

northwestern (b), central western (c), central eastern (d), southeastern (e), and 

southwestern (f) regions. Note that the total Greenland mean advance and retreat is 

unadjusted, and dominated by the trend lines of numerous smaller glaciers in CW and 

NW Greenland. Note that branches in the 66 studied basins are independently counted, 

for a total of 87 glaciers.  

Additionally, Fig. 14 shows the regional mean advance and retreat change, alongside the 

mean for the entirety of Greenland covered by the CALFIN dataset. Contributions from 

NW Greenland influence the overall trend the most, due to the presence of many small 

glaciers/branches in the regions. Note that the mean for Greenland also includes 

contributions from Petermann, which is visible in the summers of 2010 and 2012. Shared 



regional trends are visible across NW and CW Greenland, which both show relative 

stability before 2000, followed by steady retreat up until 2017-2018. CE and SE 

Greenland also share similar but less pronounced retreat, showing accelerating retreat 

beginning around 1995. These regional trends are less visible in SW Greenland, which is 

dominated by Narsap Sermia’s retreat from 2010-2013. Overall, these regional trends 

generally agree with studies such as Wood et al. (2021) and King et al. (2020), helping 

further validate the CALFIN method and data.” 

Specific Comments: 

Pg 1 – Ln 2: The results uses -> the method uses 

Done. 

Pg 1 – Ln 6: CALFIN provides improvements: briefly describe these improvements 

Among existing works, CALFIN improves on the spatial accuracy, is applied towards a 

large selection of glacial basins, and provides the outputs for scientific usage. 

“…improvements on the current state of the art.” is now described as “…improves on the 

state of the art in terms of the spatio-temporal coverage and accuracy of its outputs.” 

Pg 1 – Ln 7: CALFIN’s ability to generalize to SAR imagery is also evaluated: briefly 

describe the outcome. 

CALFIN is able to process SAR imagery with similar levels of accuracy when compared 

to its performance on Landsat image, and is competitive with existing studies. 

“CALFIN's ability to generalize to SAR imagery” has been moved from the abstract and 

expanded upon in Sect 2. (see the response to Pg 2 – Ln 12). 

Pg 1 – Ln 8: ..deviating by 2.25 px -> deviating by on average 2.25 px 

Done. 

Pg 2 – Ln 4: Previous techniques -> Previous automated techniques 

Done. 

Pg 2 – Ln 3: . . .is a a strong. . . -> is a strong 

Fixed. 

Pg 2 – Ln 7: Something seems to be missing after this sentence, what has been done 

already on this topic and what are you going to do/improve in this study? See also above 

issue raised above. 

Thank you for raising these points - the section has been expanded upon, and now 

includes a literature review of existing work and a statement of goals. The added text is 

as follows:  

“Existing work by Mohajerani et al. (2019) pioneers the usage of these techniques by 

applying the Ronneberger et al. (2015) UNet deep neural network for towards 

Jakobshavn, Helheim, Sverdrup, and Kangerlussuaq. It achieves a mean distance error of 

96.3 m, but is restricted by the preprocessing requirement of aligning the flow direction 

to be vertical, and inability to handle branching/non-linear calving fronts. Zhang10et al. 



(2019) evaluates a modified UNet applied to TerraSAR-X data over Jakobshavn, and 

achieves a mean distance error of104 m, but is limited in scope. Baumhoer et al. (2019) 

expands the application of the UNet to Sentinel 1 imagery of Antarctica, extracting full 

coastline delineations and achieving a mean distance error of 108 m. Ultimately, these 

case studies provide the groundwork for the automatic, accurate, large scale, long time-

series, high temporal resolution, and potentially multi-sensor extraction of glacial 

terminus positions. This study seeks to assess the feasibility of achieving robust 

automatic extraction for a15selection of Greenland’s glaciers, and to provide the resulting 

dataset for use by the wider community. Additionally, this study seeks to assess 

improvements to the neural network design and post-processing methods.” 

Pg 2 – Ln 9: Sect 4.1 -> Sect 4 

Fixed. 

Pg 2 – Ln 9/10: Sect. 5 and Sect. 6 shows as well as discusses the results -> Sect. 5 and 

Sect. 6 show and discuss the results. 

Done. 

Pg 2 – Ln 12: Sentinel: Sentinel-1 or 2? Not clear from table or text. 

We use Sentinel 1 - this is now addressed by a new paragraph at the end of Sect. 2, 

describing the addition of Sentinel 1A/B Antarctic SAR data for the sole purposes of 

training and validating the CALFIN methodology. We have added the following new 

paragraph to this Section:  

“For the training and validation of the CALFIN methodology, Sentinel 1A/B SAR 

images are added to enforce the applicability of the method to other sensor types and 

domains. The area of interest for the training and validation of the methodology thus 

includes Antarctic SAR data in addition to the Greenlandic Landsat optical data (see Sect.  

and Fig. S4). The product used is the Extra Wide Swath, Ground Range Multi-Look 

Detected, 40 meter resolution HH polarization band. The other data products and 

polarization bands are not used since the HH backscatter intensity provides sufficient 

information for the data processing methodology to succeed. A characteristic of Sentinel 

1A/B - and SAR data in general - is the presence of speckle noise, which is addressed by 

the methodology described in the following section.” 

Pg 2 – Section 2: This section is too brief and there is no need to add the table if only 

Landsat data is used in the current work as stated. Aside, it is not clear which Sentinel is 

meant, e.g. the Sentinel-1 SAR satellite has a repeat cycle of 6/12, not 10/12, Sentinel-2 

has 10 days but is optical. Why not use higher resolution 15 m panchromatic band 

Landsat data? 

Thank you for raising these points – the first is addressed by the revisions to Sect. 2, 

which describes the use of Landsat data for dataset production, and both Landsat as well 

as Sentinel 1A/B data for training and validation. 

The 15-meter resolution panchromatic band is not used due to resolution bottlenecks in 

the data processing methodology. In other words, the increase in resolution did not 

provide significant increases in accuracy, as it would be downscaled to the same 



resolution as the 30 meter inputs to fit the small neural network input size. This 

clarification has been added to the end of the first paragraph in Sect. 2. 

Pg 2 – Ln 15: The basin selection is based on high drainage volume, based on what 

source? Also, for robust methodological development it is better to base the selection of 

study sites on different (fjord/glacier) morphology, scale or front type (e.g. with melange, 

no melange). 

The selection metric is based off the basin area/velocities from Nagler et al., 2015. The 

basins are indeed also selected for robust methodological development, and the 10 areas 

of interest as well as any nearby basins were selected to contain unique features like ice 

tongues, branches, and various mélange types. The line now states this explicitly as “The 

basins are selected for their high drainage volume, wide spatial distribution, and diverse 

morphological features.” 

Pg 2 – Ln 20: remove space at beginning. 

Fixed. 

Pg 3 – Ln 1: This produces -> This results in 

Done. 

Pg 4 – Ln 2: resized: Do you mean crop or actually resize, as the latter would involve 

changing the resolution? 

The subsets are resized, and the resolution is indeed changed. This loss of resolution is 

addressed by the reprocessing step, where the subset is recropped at the original 

resolution and resized again, to allow for maximum resolution within the constraints of 

the neural network input size. 

Pg 4 – Ln 1: ..cloud pixel.. -> how are the cloud pixels identified? Did you include a 

cloud detection? 

The cloud pixels are identified using the Landsat QA band, which assigns each pixel a 

value based on its detected cloud coverage. The line has been clarified as “…cloud pixels 

detected in the Landsat QA band,”. We rely on the provided cloud masks given by 

Landsat to do additional filtering per subset, as the scene cloud cover filtering only filters 

raster based on whole scene cloud coverage. 

Pg 4 – ln 14/16: encoder/decoder: it would be nice to show this in the figure for clarity 

Done. 

Pg 4 – Ln 22: 224 px: wasn’t it 256, can you clarify? 

The 256px subsets are split into 9 224 px overlapping windows. The Sect. 3, 

Methodology flowchart (Fig. 3) and Sect. 3.2p4 now clarifies this apparent discrepancy. 

Pg 4 – Ln 22: What is the effect of the reduction in input resolution? 

This is a good question, as the reduction of input resolution allows for greater 

complexity, faster training, and higher practical accuracy of the model, but limits the 

maximum theoretical spatial accuracy of the network. We use other methods (such as 



overlapping subsets) to extract higher accuracy predictions from the lower input 

resolution model. 

These considerations have been clarified, and the line has been rephrased to state how 

reducing the input size results indirectly in increased accuracy, from “To facilitate faster 

training and performance, the input size is reduced from 512 px to 224 px” to “The input 

size is reduced from 512 px to 224 px to facilitate better computational performance, 

allowing for additional training and thus higher accuracy”. 

Pg 6 – Ln 4: This section is too brief and needs more details on the confidence measure 

and applied filter criteria. 

This is a fair point - the section has been expanded, and surrounding sections have been 

rearranged to better support the new narrative. The added material is as follows:  

“Once each front is located, its bounding box is used to extract a higher resolution subset 

from the original image, and reprocessed. This innovation allows for increased spatial 

accuracy when processing multiple fronts in large basins. After reprocessing, the nature 

of CALFIN-NN’s dual outputs as a confidence measure is exploited to filter and discard 

uncertain detections. Since the neural network assigns each pixel a value between 0 and 1 

based on its perceived class, any deviation from these two values can be used as a 

measure of uncertainty. The filtering method averages the deviation of the ice/ocean 

classification masking a 5 pixel wide buffer around the calving front, and discards any 

fronts whose mean deviation exceeds an empirically chosen threshold of 0.125.” 

Pg 6 – Ln 12: Fjord boundary masks: how are these created and based on what source 

data? Can you expand on this? Also, are they static for the whole time series? I can 

imagine that ice thinning over several decades affects the ice/ocean/fjord boundary. 

Thank you for these questions and comments - the masks are static and manually created 

using the image subsets and BedMachine V3 for reference. They are static and averaged 

across the whole time series – while there are indeed minor changes in the coastline over 

this time, they do not affect the accuracy of the calving front delineation within the fjord. 

This has been clarified as “Static masks of the average fjord boundaries are first created 

for each basin using the image subsets and BedMachine V3 for reference” 

Pg 6 – Ln 18: . . .verification each. . . -> verification of each 

Fixed. 

Pg 7 – Ln 2: error -> the error 

Fixed. 

Pg 7 – Ln 7: data that is -> data that are 

Fixed. 

Pg 8 – Ln 2: list tables that print -> show tables with 

Done. 

Pg 8 – Ln 8: CALFIN-VS-L7-only/none: explain what this means 



A new sentence has been added to this section, which now defines CALFIN-VS-L7-only/ 
CALFIN-VS-L7-none: “To evaluate performance on Landsat 7 Scanline Corrector 

Errors, the validation subset CALFIN-VS-L7-only isolates images with L7SCEs, and the 

CALFIN-VS-L7-none excludes images with L7SCEs.” 

Pg 8 – Ln 11: Antarctic basins: this contradicts Pg 2 - Ln 14 stating that the area of 

interest is restricted to Greenland 

This observation is appreciated - the response to Pg 2 – Ln 12 addresses this by adding a 

new paragraph at the end of Sect. 2, Data Source and Scope, describing the addition of 

Antarctic SAR data for the sole purpose of training and validating the CALFIN 

methodology. 

Pg 8 – section 4.3.1: The varying conversion of pixels to distance in this paragraph is 

confusing, can you clarify this, what is the pixel resolution, how is this calculated, why 

does it vary? 

The pixel conversion varies due to 2 effects: images are reprocessed at lower sizes due to 

detection failures (see Fig. 5c), and pixel error increases as resolution decreases (see Sect. 

4.1). Since the pixel-to-meter rate is depends on the scaling factor of each subset, the 

distribution of rates changes as Landsat 7 images are added/removed. 

The methodology flowchart and the elaboration of the filtering/reprocessing step should 

make this interaction of effects more understandable.  

Additionally, the addition of scales to the subsets should aid in communicating the 

different pixel to meter conversion ratios per subset. 

Furthermore, the pixel error metrics have been removed from the paragraph to reduce 

confusion and to not detract from the more intuitive meter error metrics. 

Pg 9 – Ln 2: generalization capability: please briefly explain what this means. 

In this context, generalization capability is the ability of a neural network to accurately 

make new predictions on data it has not been trained on before.  

The line “This demonstrates the generalization capability of CALFIN-NN” has been 

clarified as “This demonstrates CALFIN-NN’s ability to accurately process new data”. 

Pg 9 – section 4.3.3 & 4.3.4: For both intercomparisons the mean pixel distance 

comparisons is skewed, in the caption of figure 11 it is also mentioned ‘undeservedly’. 

How then can we use this metric to decide which one is better? 

This is a good question - the mean pixel distance metric can be used to decide which 

network is better only when comparing neural networks of the same input size. Indeed, 

the metric is not useful when comparing networks of different input sizes, since it favors 

smaller input sizes. 

We still provide the metric for comparison to provide additional context when comparing 

CALFIN with existing studies, as these studies have done the same. 

Pg 11 – Ln 14: make sure to make this an active link. 



Fixed and verified. 

Pg 12 – Ln 3-5: Too brief, more discussion needed to explain the loss function. 

Thanks for this noting this shortcoming in the manuscript - a more detailed explanation 

and relevant equations have been added as follows: 

“To increase accuracy, a custom loss function optimizes the binary cross entropy and 

Intersection-over-Union (see Eq. 1, Sect.4.1). This penalizes mismatches between calving 

front pixels in the predicted (Icf) and measured (Îcf) image masks. Similarly mismatched 

ice/ocean pixels in the predicted (Iio) and measured (Îio) image masks are less heavily 

weighted by an empirically chosen factor of α = 1/25, as seen in the final loss function L 

in Eq. 2.” 

 

Pg 12 – Ln 5: Explain what is meant by “over-fitting” 

In this context, “over-fitting” means that the model has been trained too heavily on a 

small dataset, and has only effectively memorized it instead of learning more general 

features of the observed data. This prevents it from accurately making predictions on new 

data, as it has “over-fit” the training data. 

These lines have been rephrased to be clearer, from “To prevent over-fitting the neural 

network” to “In order to train the neural network”, and from “Another measure to prevent 

over-fitting involves data augmentation” to “Data augmentation is used during training to 

increase the accuracy of the network when processing new data”. 

The only other instance of “over-fitting” on Pg 15, Sect 6.4. is elaborated as “over-fitting, 

or memorizing,”. 

Pg 12 – Ln 12-13: Once. . .processing: sentence incomplete. 

Thanks for catching this error. The line has been fixed and rephrased from “Once trained, 

an NVIDIAGTX 1080 with 6GB VRAM for off-line data processing” to “Once trained, 

an NVIDIA GTX1060 with 6GB VRAM is used for the off-line data processing of the 

20188 GeoTIFF subsets”. The phrase “of the 20188 GeoTIFF subsets” has been moved 

from a subsequent line to clarify what data is being processed off-line. 

Pg 12 – Ln 25: While the methodology is restricted by its preprocessing requirements and 

inability to handle branching/nonlinear calving fronts: How are the preprocessing 

requirements different? 

The primary difference in preprocessing requirements is the necessary alignment of the 

flow direction to be vertical. This line has been elaborated as “the preprocessing 

requirement of aligning the flow direction to be vertical”. 

Pg 12 – Section 6.2: Some of this existing work description should go to the introduction 

to show where gaps/shortcomings are and as motivation for the improvements introduced 

in the current implementation. 



Thank you for this suggestion - Sect. 6.2 has been integrated into the introduction, along 

with descriptions of the gaps/shortcomings of each approach that form the motivation for 

the study. The end of the first paragraph of the introduction now reads, “Existing work by 

Mohajerani et al. (2019) pioneers the usage of these techniques by applying the 

Ronneberger et al. (2015) UNet deep neural network for towards Jakobshavn, Helheim, 

Sverdrup, and Kangerlussuaq. It achieves a mean distance error of 96.3 m, but is 

restricted by the preprocessing requirement of aligning the flow direction to be vertical, 

and inability to handle branching/non-linear calving fronts. Zhang et al. (2019) evaluates 

a modified UNet applied to TerraSAR-10X data over Jakobshavn, and achieves a mean 

distance error of 104 m, but is limited in scope. Baumhoer et al. (2019) expands the 

application of the UNet to Sentinel 1 imagery of Antarctica, extracting full coastline 

delineations and achieving a mean distance error of 108 m. Ultimately, these case studies 

provide the groundwork for the automatic, accurate, large scale, longtime-series, high 

temporal resolution, and potentially multi-sensor extraction of glacial terminus positions. 

This study seeks to assess the feasibility of achieving robust automatic extraction for a 

selection of Greenland’s glaciers, and to provide the resulting dataset for use by the wider 

community. Additionally, this study seeks to assess improvements to the neural network 

design and post-processing methods.” 

Pg 13 – Section 6.3: As mentioned in the general comment, this section is hardly a data 

analysis and very brief, even the description of the figure. A clear improvement, obvious 

from the figure, is the much denser and longer temporal coverage, this should be 

mentioned somewhere. 

Thank you for pointing out this weakness in the original manuscript. The figure 

description has been expanded with the following details: “Note the seasonal variations 

shown by the solid lines, and the dotted lines from 1972-1985 that indicate a lack of such 

seasonal observations. Also note that the vertical axis scaling is applied differently for 

each graph to highlight seasonal trends.” Text that highlights the denser and longer 

temporal coverage has been added throughout the section. Furthermore, the original Fig. 

12 (now Fig. 13) has been expanded to include additional flowlines: 



 

Figure R1. Updated Terminus Advance and Retreat Over Time 

See also the response to the general comment for additional added content that adds to 

the data analysis. 

Pg 13 – Ln 2: validate -> compare 

Done. 

Pg 13 – Ln 7: length change -> I would rather call it “advance and retreat” 

Done. 

Pg 13 – Ln 18/19: To perform . . . the results: this sentence seems incomplete. 

Thank you for noticing this – the sentence has been rephrased for clarity, from “To 

perform this task, the M-NN is retrained using CALFIN training data, process validation 

data, and compare the results” to “This task involves retraining the M-NN on CALFIN 

training data, and comparing its performance against CALFIN-NN using a shared 

validation set”. 

Pg 14 – Ln 18: ground truth fronts: None of these fronts are actual ground truth fronts, 

even when manually delineated (also elsewhere in manuscript). 

This is a good point, and has been corrected from “ground truth” to “manually 

delineated” throughout the manuscript. 

Pg 15 – Ln 2: Overall, the goal of . . .: this goal was nowhere clearly stated  

This observation is appreciated, and the introduction has been edited to include this goal, 

which is stated as, “This study seeks to assess the feasibility of achieving robust 

automatic extraction for a selection of Greenland’s glaciers, and to provide the resulting 



dataset for use by the wider community. Additionally, this study seeks to assess 

improvements to the neural network design and post-processing methods.” 

Figures/Tables: 

Most figures lack a proper scale bar, this would be very helpful to evaluate the different 

results. Also, individual lines are sometimes very difficult to distinguish (for example in 

fig 10). Not sure if this can be improved. 

Thank you for this suggestion - scale bars have been added in Figs. 9-13, and high 

contrast colorblind-friendly line colors have been added for Figs. 6-12. 

Table 1: As no data other than Landsat is used in the study, I don’t see much need for this 

table. See issue raised previously. 

Table 1 has been removed. 

Figure 1: For a nicer figure, updated maps, without gaps, are available at the Greenland 

Ice Sheet CCI website (see: http://esa-icesheets-greenland-cci.org/) 

Thanks for this suggestion, Fig. 1 has been updated to utilize an updated gapless velocity 

map. 

Figure 2: The legend should provide a range  

Fig. 2 key has been updated to show the full range of the data. 

Figure 3 & 5: No need to add c) in my opinion 

This is a fair suggestion that highlights the lack of importance placed on the filtering step 

in the manuscript. To address this concern, Fig. 3 & 5 (now 4 & 6) have added a 

visualization of the filtering under (c), as shown in the new flowchart (now Fig. 3). 

Figure 6: It appears that several ‘difficult’ sections/gaps are connected with a straight 

line, how does this work (e.g. what gap tresholds are used)? 

This is a valuable question that highlights the manuscript’s insufficient explanation of 

this algorithm. Gaps are given negative exponential distance-based weights, so that they 

add a penalty to the maximum path, but can be used if they connect two long paths in the 

final Minimum Spanning Tree. An explanation of this behavior has been added to the end 

of Sect. 3.3.1: “Such gaps are given weights based on the negative exponential distances 

between nodes, which allows for connections if the paths connected are significantly 

longer than the gap itself.” 

Figure 6a: I don’t see a red coastline mask 

Fig. 6 (now Fig. 7) has been updated to use a high contrast colorblind-friendly color 

scheme, and the red coastline mask has been enhanced to make it more visible. 

Figure 8-12: There seem to be no references in the text to these figures, please add. 

Thank you for noting this, references to these figures (now Fig. 9-13) have been added in 

the text. 



Figure 12: caption “Sample” -> Examples 

Done. 

Figure 13: caption “1995-2016 (ESA-CCI), 2005-2017 (MEaSUREs)”: check years vs 

line in image, ESA CCI starts in 1990, MEaSUREs in 2000 

Fixed. 
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Abstract. We present
:::
Sea

:::::
level

:::::::::::
contributions

:::::
from

:::
the

:::::::::
Greenland

:::
Ice

:::::
Sheet

:::
are

::::::::::
influenced

::
by

:::
the

:::::
rapid

:::::::
changes

:::
in

::::::
glacial

:::::::
terminus

::::::::
positions.

:::::::::
However,

:::
the

::::::
manual

::::::::::
delineation

::
of

:::::
these

::::::
calving

:::::
fronts

::
is
:::::

time
:::::::::
consuming,

::::::
which

:::::
limits

:::
the

::::::::::
availability

::
of

:::
this

::::
data

:::::
across

::
a
::::
wide

::::::
spatial

:::
and

::::::::
temporal

:::::
range.

::::::::::
Automated

:::::::
methods

::::
face

:::::::::
challenges

:::
that

:::::::
include

:::
the

:::::::
handling

::
of
:::::::

clouds,

::::::::::
illumination

::::::::::
differences,

:::
sea

:::
ice

::::::::
mélange,

:::
and

:::::::::
Landsat-7

::::::::
Scanline

::::::::
Corrector

::::::
Errors.

:::
To

::::::
address

:::::
these

::::::
needs,

:::
we

:::::::
develop

:::
the

Calving Front Machine (CALFIN), an automated method
:
, for extracting calving fronts from satellite images of marine-5

terminating glaciers . Our results use
::::
using

::::::
neural

:::::::::
networks.

:::
The

::::::
results

:::
are

:::::
often

::::::::::::::
indistinguishable

:::::
from

:::::::::::::::
manually-curated

:::::
fronts,

::::::::
deviating

:::
by

:::
on

::::::
average

::::::
86.76

::::::
meters

:
±
::::
1.43

:::
m

::::
from

:::
the

:::::::::
measured

:::::
front. Landsat imagery from 1972 to 2019 , and

generate 20,004
::
is

::::
used

::
to

:::::::
generate

::::::
22,678

:
calving front lines across 66 Greenlandic glaciers. Our method uses deep learning,

and builds on existing work by Mohajerani et al., Zhang et al., and Baumhoer et al. Additional post-processing techniques allow

our method to achieve accurate segmentation of imagery into Shapefile outputs. This method is uniquely robust to the impact10

of clouds, illumination differences, ice mélange, and Landsat-7 Scan Line Corrector errors. CALFIN provides improvements

on the current
::::
This

::::::::
improves

:::
on

:::
the

:
state of the art . We show this by performing a model inter-comparison and evaluate

performance against existing methodologies. We also evaluate CALFIN’s ability to generalize to SAR imagery. CALFIN’s

fronts are often indistinguishable from manually-curated fronts, deviating by 2.25 pixels (86.76 meters) from the true front

on a diverse set of 162 testing images
::
in

:::::
terms

::
of

:::
the

:::::::::::::
spatio-temporal

::::::::
coverage

::::
and

:::::::
accuracy

:::
of

::
its

:::::::
outputs. The current im-15

plementation offers a new opportunity to explore sub-seasonal trends on the extent of Greenland’s margins, and supplies new

constraints for simulations of the evolution of the mass balance of the Greenland Ice Sheet and its contributions to future sea

level rise.

1 Introduction

The evolution of Greenland’s tidewater glaciers is an important constraint on the evolution of the Greenland Ice Sheet
:::::::::::::::
(Nick et al., 2013)20

. Likewise, changes in Greenland are important in tracking and predicting future sea level rise over the next century
:::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Andersen et al., 2015; Fürst et al., 2015; van den Broeke et al., 2016)

1



. Constraining Greenland’s glacial evolution is thus an important part of improving our
::
the

:
understanding of the earth system as

a whole. One constraint on glacial evolution is the position of glacial calving fronts and ice margins over time
:::::::::::::::
(King et al., 2018)

. Currently, most calving front delineation is done with time-consuming manual labor
:::::::::::::::::::::::::::::::::::::::::::::::
(Carr et al., 2017; Bunce et al., 2018; Catania et al., 2018)

. This results in the severe under-utilization of available satellite imagery. As a result, many smaller glaciers have no calving

front data, while others have annual or seasonal coverage at best,
::::
and

:::::
causes

::::
gaps

::
in

::::::::
seasonal

::::::
records

:::
that

::::::::
introduce

::::::::::
uncertainty5

::::
when

:::::::::
modeling

:::
past

::::
and

::::::::
projected

:::::::
climate

::::::
change

:::::::::::::::::
(Catania et al., 2020). Significant efforts have been made to improve this

situation, which include the ESA-CCI dataset of 26 Greenlandic glaciers from 1990-2016, the PROMICE dataset of 47 glaciers

from 1990-2018, and the MEaSUREs dataset of 200+ glaciers from 2000-2017 (ENVEO, 2017; Andersen et al., 2019; Joughin

et al., 2015). Yet the increasing availability of new datasets through missions like Landsat 8 and the release of old datasets

through improved reprocessing call for new automated ways of detecting calving front delineations. In particular there is10

a a strong need for these automated ways to be robust, specifically against cloud cover, ice mélange, and shadows. Previous

:::::::
shadows,

::::
and

::::::
Landsat

::
7

:::::::
Scanline

::::::::
Corrector

::::::
Errors.

:::::::::
Traditional

:::::::::
automated techniques such as edge detection and texture analysis

::
the

:::::
edge

::::::::
detection

:::::::
utilized

::
by

:::::::::::::::::
(Seale et al., 2011)

:::
and

::::::::::::::::::::::
Paravolidakis et al. (2016) have significant challenges with respect to

these issues(Paravolidakis et al., 2016; Malik et al., 2001). Modern machine learning techniques and deep neural networks

provide a robust, scalable, and accurate solution to these processing challenges.
:::::::
Existing

::::
work

:::
by

:::::::::::::::::::::
Mohajerani et al. (2019)15

:::::::
pioneers

:::
the

:::::
usage

:::
of

:::::
these

:::::::::
techniques

:::
by

::::::::
applying

:::
the

::::::::::::::::::::::
Ronneberger et al. (2015)

:::::
UNet

::::
deep

::::::
neural

:::::::
network

::::
for

:::::::
towards

::::::::::
Jakobshavn,

::::::::
Helheim,

::::::::
Sverdrup,

::::
and

:::::::::::::
Kangerlussuaq.

::
It
::::::::

achieves
::
a

:::::
mean

:::::::
distance

:::::
error

::
of

::::
96.3

:::
m,

:::
but

:::
is

::::::::
restricted

:::
by

:::
the

:::::::::::
preprocessing

::::::::::
requirement

:::
of

:::::::
aligning

:::
the

::::
flow

::::::::
direction

::
to

:::
be

:::::::
vertical,

:::
and

::::::::
inability

::
to

::::::
handle

:::::::::::::::::
branching/non-linear

:::::::
calving

:::::
fronts.

:::::::::::::::::
Zhang et al. (2019)

:::::::
evaluates

::
a
::::::::
modified

:::::
UNet

::::::
applied

:::
to

:::::::::::
TerraSAR-X

::::
data

::::
over

:::::::::::
Jakobshavn,

:::
and

::::::::
achieves

::
a

:::::
mean

:::::::
distance

::::
error

:::
of

:::
104

:::
m,

:::
but

::
is
:::::::

limited
::
in

::::::
scope.

::::::::::::::::::::
Baumhoer et al. (2019)

::::::
expands

:::
the

::::::::::
application

::
of

:::
the

:::::
UNet

:::
to

:::::::
Sentinel

::
120

:::::::
imagery

::
of

:::::::::
Antarctica,

:::::::::
extracting

:::
full

::::::::
coastline

::::::::::
delineations

::::
and

::::::::
achieving

:
a
:::::

mean
::::::::
distance

::::
error

::
of

::::
108

::
m.

::::::::::
Ultimately,

:::::
these

:::
case

:::::::
studies

::::::
provide

:::
the

:::::::::::
groundwork

:::
for

:::
the

:::::::::
automatic,

:::::::
accurate,

:::::
large

:::::
scale,

::::
long

::::::::::
time-series,

::::
high

::::::::
temporal

:::::::::
resolution,

::::
and

:::::::::
potentially

::::::::::
multi-sensor

:::::::::
extraction

::
of

::::::
glacial

:::::::
terminus

:::::::::
positions.

::::
This

:::::
study

:::::
seeks

::
to

:::::
assess

:::
the

:::::::::
feasibility

::
of

::::::::
achieving

::::::
robust

::::::::
automatic

::::::::
extraction

:::
for

:
a
::::::::
selection

::
of

::::::::::
Greenland’s

:::::::
glaciers,

:::
and

::
to

:::::::
provide

:::
the

:::::::
resulting

::::::
dataset

:::
for

:::
use

::
by

:::
the

:::::
wider

::::::::::
community.

::::::::::
Additionally,

::::
this

:::::
study

:::::
seeks

::
to

:::::
assess

::::::::::::
improvements

::
to

:::
the

:::::
neural

:::::::
network

::::::
design

::::
and

:::::::::::::
post-processing

:::::::
methods.

:
25

In this study, we present in Sect. 2 our data
:::::
covers

:::
the

::::
data

::::::
source along with the spatial and temporal coverage. In Sect. 3 we

present our
::::::::
examines

:::
the CALFIN algorithm and method for processing the data. In Sect. 4.1 we validate our

::::
Sect.

:
4
::::::::
validates

::
the

:
algorithm through error analysis. In Sect. 5 and Sect. ?? we

:
6 show and discuss our results (

:::
the

::::::
results

:
- the calving front

dataset and algorithm).

2 Data Source and Scope30

We begin by evaluating several potential data sources, including Terra/MODIS, TerraSAR-X, Landsat , and Sentinel (see Table

??). Landsat is selected for its
:::
For

:::
the

:::::::::
production

:::
of

:::
the

::::::::
CALFIN

:::::::
dataset,

:::::::
Landsat

::::::
optical

::::::
images

::::
are

::::
used

:::
for

::::
their

:
long

time-series availability and reasonable spatial distribution/resolution.

2



Potential Data Sources: A comparison of the data sources available for use. Name Resolution(s) Time Series Repeat

Cycle Sensor Seasonal Coverage Landsat 30 m , 60 m 1972-present 16 day Optical Spring-Fall Terra (MODIS) 250 m ,

500 m , 1000 m 1999-present 1, 8, 16 day Optical Spring-Fall Sentinel 10 m , 20 m , 60 m 2014-present 10, 12 day SAR

Spring-WinterTerraSAR-X 1 m , 3 m , 6 m 2007-present 3-11 day SAR Spring-Winter

Here we restrict our
::::
The area of interest

:::
for

:::
the

::::::
dataset

:::::::::
production

::
is

::::::::
restricted to Greenland, in particular the calving fronts5

for 66 Greenlandic basins shown in Fig. 1, spanning the 1972 to 2019 time period shown in Fig. 2. The basins are selected

for their high drainage volume and
::::::::
discharge

::::::::
volumes,

:
wide spatial distribution. ,

::::
and

::::::
diverse

::::::::::::
morphological

::::::::
features.

::::
The

::::::
product

::::
used

::
is
:::
the

:::::
60/30

:::::
meter

:::::::::
resolution

::::
Near

:::::::
Infrared

:::::
band.

::::
The

::
15

:::::
meter

:::::::::
resolution

:::::::::::
panchromatic

:::::
band

::::
was

:::
not

::::
used,

::::
due

::
to

::::::::::::
computational

:::
and

::::::::
logistical

::::::::::
limitations.

::
A

::::::
unique

:::::::::::
characteristic

::
of

::::
this

::::
data

::::::
source

::
is

:::
the

:::::::
presence

:::
of

:::::::
Landsat

:
7
::::::::
Scanline

::::::::
Corrector

:::::
Errors

:::::
from

::::::::::
2003-2013,

::::::
which

::::::::
manifests

:::
as

:::::
black

::::::
stripes

::::
that

:::::::
interfere

::::
with

::::::::::
automated

::::::
calving

:::::
front

:::::::::
extraction10

:::::::
methods.

:

:::
For

:::
the

::::::
training

:::
and

:::::::::
validation

::
of

:::
the

:::::::
CALFIN

::::::::::::
methodology,

::::::
Sentinel

:::::
1A/B

::::
SAR

:::::::
images

::
are

:::::
added

::
to
:::::::
enforce

:::
the

::::::::::
applicability

::
of

:::
the

::::::
method

::
to

:::::
other

::::::
sensor

::::
types

::::
and

::::::::
domains.

:::
The

::::
area

::
of
:::::::

interest
:::
for

:::
the

:::::::
training

:::
and

:::::::::
validation

::
of

:::
the

:::::::::::
methodology

::::
thus

:::::::
includes

::::::::
Antarctic

::::
SAR

::::
data

::
in

:::::::
addition

::
to

:::
the

::::::::::
Greenlandic

::::::
Landsat

::::::
optical

::::
data

::::
(see

::::
Sect.

:::
3.2

:::
and

::::
Fig.

::::
S4).

:::
The

:::::::
product

::::
used

::
is

::
the

:::::
Extra

:::::
Wide

::::::
Swath,

::::::
Ground

::::::
Range

::::::::::
Multi-Look

::::::::
Detected,

::
40

:::::
meter

::::::::
resolution

::::
HH

::::::::::
polarization

:::::
band.

:::
The

:::::
other

:::
data

::::::::
products15

:::
and

::::::::::
polarization

:::::
bands

:::
are

:::
not

::::
used

:::::
since

:::
the

::::
HH

:::::::::
backscatter

::::::::
intensity

:::::::
provides

::::::::
sufficient

::::::::::
information

:::
for

:::
the

::::
data

:::::::::
processing

:::::::::::
methodology

::
to

:::::::
succeed.

::
A

:::::::::::
characteristic

::
of

:::::::
Sentinel

:::::
1A/B

:
-
::::
and

::::
SAR

::::
data

::
in

::::::
general

:
-
::
is

:::
the

::::::::
presence

::
of

::::::
speckle

:::::
noise,

::::::
which

:
is
:::::::::
addressed

::
by

:::
the

:::::::::::
methodology

::::::::
described

::
in
:::
the

:::::::::
following

::::::
section.

:

3 Methodology
::::::::
Methods

:::
The

:::::::::
automated

::::
data

:::::::::
processing

:::::::::::
methodology

:::::
uses

::::::::
innovative

::::::::::
techniques

:::
and

:::::::::::::
state-of-the-art

:::::
neural

::::::::
networks

::
to
:::::::

process
::::
raw20

::::::
Landsat

::::
and

:::::::
Sentinel

:::::
1A/B

::::
data

::::
into

::::::
useful

:::::::
calving

::::
front

::::::::::
Shapefiles.

::::
The

::::::::
following

::::::
section

::::::::
explores

::::
this

:::::::::::
methodology,

:::
as

:::::::
outlined

::
by

:::
the

::::::::
flowchart

:::::
below

:::::
(Fig.

::
3).

:

3.1 Preprocessing

We develop a pipeline (see Fig. 4)that automates much of the data preprocessing that prepares raw data for input into
:::
The

::::
first

::::
stage

:::::::
involves

::::::::::::
preprocessing

:::
the

::::
input

::::
data

:::
for

:::
use

::::
with

:
the neural network.25

:
,
::
as

::::::::
illustrated

:::
in

:::
Fig.

::
4.
::::

The
::::::::::
proceeding

::::
steps

:::::
cover

:::
the

::::::
details

::
of

::::::::
handling

:::::::
Landsat

::::
data,

:::
but

::::
can

::
be

:::::::
applied

::
to

:::::::
Sentinel

::
1

:::
data

:::
for

:::::::::
validation

::::::::
purposes.

The first step is to collect all the input raster images
::
To

::::::
begin,

:::::
raster

::::::
images

:::
are

:::::::
selected

:::::
from

:::::
areas centered around one

of 9 primary glacial basins. These basins include Kong Oscar, Hayes, Rink Isbrae, Upernavik, Jakobshavn, Kangiata Nunaata,

Helheim, Kangerlussuaq, and Petermann. Next, we select all the
::
all

:
L1TP (precision and terrain corrected) rasters from Land-30

sats 1-8 with low cloud coverage (<20%)
::
are

::::::::
collected. A few L1GS/L1GT (non-corrected) products are also selected, which

we manually georeference, and use
::
are

::::::::
manually

:::::::::::::
georeferenced,

:::
and

::::
used

:
to fill in Landsat 1-2 time series gaps (1972-1985).
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Figure 1. Spatial Coverage Map: Spatial distribution of 66 selected Greenlandic

glaciers. The velocity map is taken from Nagler et al. (2015).

Figure 2. Temporal Coverage Map: Num-

ber of fronts per year from 1972-2019 for

9 high-drainage glaciers
::
10

::::
high

:::::::
discharge

:::::
volume

:::::
basins. For the full temporal cover-

age map, see attached Supplement, Fig. S1.

This produces
:::::
results

::
in a total of 4956 Landsat rasters. Next, predefined basin domain Shapefiles that enclose the terminus are

used to clip the Landsat raster subsets. Additional filtering removes subsets that still contain ≥30% NODATA pixels or ≥20%
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Figure 3.
::::::::::
Methodology

:::::::::
Flowchart:

::::
The

::::::
CALFIN

::::::::
workflow,

:::::
which

:::::::
processes

:::::
single

::::
band

::::
raster

:::::::
imagery

:::
into

::::::
calving

::::
front

:::
and

::::
ocean

:::::
mask

::::::::
Shapefiles.

::::
Note

:::
that

::::::
Sentinel

::::
1A/B

:::::::
imagery

:
is
::::
only

::::
used

::
for

::::::::
validation,

::
as

:
it
::
is

:::
not

:::::::
corrected

:::
and

:::
thus

:::
not

::::::
qualified

:::
for

:::::::::::::::::
geolocation/extraction.

Figure 4. Preprocessing Pipeline: (a) First, input the raw Landsat GeoTIFF rasters with <20% clouds. (b) Next, subset using QGIS/GDAL

and the domain Shapefile to clip each raster. (c) Then, filter the clouded/NODATA subsets. (d) Now, resize the subsets to 256x256 px. (e)

Finally, enhance contrast and stack with the raw subset.

cloud pixels
:::::::
detected

::
in

:::
the

::::::
Landsat

::::
QA

::::
band, as subsets that exceed these thresholds are not likely to contain detectable fronts.

At this stage, we accumulate 20188 GeoTIFF subsets
::
are

:::::::::::
accumulated. Each subset is then resized to 256x256 px, and lastly

enhanced using Pseudo-HDR Toning (HDR) and Shadows/Highlights (S/H) through Adobe Photoshop. The raw, HDR, and

S/H enhanced subsets are then stacked into a single RGB image. At this point, the images are ready for processing into calving

front masks.5
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3.2 Neural Network Processing

Images are processed using the Calving Front Machine Neural Network (CALFIN-NN), as illustrated in Fig. 5. Neural networks

like CALFIN-NN work by learning patterns in training data, and finding them in new data. We train CALFIN-NN
::
is

::::::
trained

using manually delineated calving front masks, discussed in Sect. ??. .
:
Once trained, CALFIN-NN outputs a probability mask

that shows each pixel’s likelihood of lying on the coastline/calving front. CALFIN-NN also generates a land
::
ice/ice-ocean

:::::
ocean5

probability mask as a secondary output. Once each image is processed
::::::::
Following

::::
this, the calving front is ready to be extracted

during post-processing.
:
,
::::::::
discussed

::
in

::::
Sect.

::::
3.3.

Figure 5. The CALFIN-NN Processing Architecture: Each orange "Xception" block consists of convolution kernels that detect features in

the previous block. Blocks are reduced in size periodically to pool increasingly complex and numerous feature maps. "U" shaped connections

help refine the probability masks during up-sampling. Note that the 7 repeated "Xception" blocks in the middle section are omitted for brevity.

3.2.1 Network Architecture & Modifications

Neural networks are the foundation of several automated delineation methods, including Zhang et al. (2019), Mohajerani et al. (2019)

,
:::::::::::::::::::
Mohajerani et al. (2019)

:
,
::::::::::::::::
Zhang et al. (2019),

:
and Baumhoer et al. (2019). We build

:::
This

:::::::
method

:::::
builds

:
upon this work, and10

use
::::
uses a modification of the DeepLabV3+ Xception neural network from Chen et al. (2018), as shown in Fig. 5. The first half,

the encoder, uses the Xception-65 network to extract image features (Chollet, 2017). It does this by assembling basic features,

like edges and corners, into more abstract features, such as glacier/land textures. The second half of the network, the decoder,

takes the output of the encoder and up-samples the features to predict the final probability mask outputs.

We make several modifications to the
::::::
Several

:::::::::::
architectural

:::::::::::
modifications

:::
are

:::::
made

::
to

:::
the

:::::::
original

:
DeepLabV3+ Xception15

network
:::::
model

::
to

:::::::
enhance

::
its

:::::::::::
performance. To accurately recognize line-like features such as calving fronts, additional Atrous

Spatial Pyramidal Pooling (ASPP) blocks are added in between the encoder and decoder, with the dilation scales
::
0, 1, 2, 3, 4,
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and 5. The number of Middle Blocks (MB in Fig. 5) is reduced from 16 to 8, as the extra discriminative power from those blocks

is not needed. To facilitate faster training and performance, the
:::
The input size is reduced from 512 px to 224 px

:
to

::::::::
facilitate

:::::
better

::::::::::::
computational

:::::::::::
performance,

::::::::
allowing

:::
for

:::::::::
additional

:::::::
training

:::
and

::::
thus

::::::
higher

::::::::
accuracy. Since the input resolution is

reduced, the encoder is also modified to remove several down-sampling "max-pool" layers. Our
:::
The

:
last contribution adds a

2-channel output to the decoder, allowing for both calving front mask
::::::
masking

:
and ice/ocean masking. Together, these changes5

reduce the size of the network
::::::
number

::
of
::::::

model
:::::::::
parameters

:
from 40M parameters to 29Mparameters ,

:
while also increasing

the overall accuracy.

::::::
Several

:::::::::
techniques

:::
are

:::::
used

:::::
during

::::
the

::::::
training

:::
of

:::::::::::
CALFIN-NN

::
to
::::::::

improve
::
its

::::::::::::
performance.

::::
First,

::
a
:::::
large

::
set

:::
of

:::::::
training

:::
data

::
is
:::::::::

manually
::::::::
delineated

::::
(see

::::
Fig.

::::
S4),

::::::::
totalling

::::
1541

:::::::
Landsat

::::
and

::::
232

::::::::
Antarctic

:::::::
Sentinel

:::::
1A/B

::::::::::
image/mask

:::::
pairs,

:::::
with

::
the

::::::::
Antarctic

::::
data

:::::
taken

::::
from

:::
the

:::::
same

:::::::
training

::::::
scenes

::::
used

::
by

:::::::::::::::::::
Baumhoer et al. (2019)

:
.
::::
Data

::::::::::::
augmentation

:
is
:::::
used

::
to

:::::::
increase10

::
the

::::::::
accuracy

:::
of

:::
the

:::::::
network

:::
by

:::::::::
expanding

:::
the

:::::::
training

:::
set,

::::::
which

::::::
entails

::::::
adding

:::::::
random

:::::::
amounts

:::
of

::::
flips,

::::::::
Gaussian

::::::
noise,

:::::::::
sharpening

:::::
filters,

::::::::
rotations

::
of

:::
up

::
to

:::
12°,

::::::
crops,

:::
and

::::::
scaling

::
to

:::
the

::::::::::::
pre-processed

:::::::
training

::::::
images.

::::::::
Through

::::::::
empirical

::::::
testing,

::
it

:
is
::::::::::
determined

:::
that

::::::::
excessive

:::::
image

::::::::
padding,

:::::::
rotation,

:::::::
warping,

:::
and

::::::::
cropping

::
of

::::::
calving

:::::
fronts

::
to

:::::
close

::
to

::
the

::::::
image

::::::
bounds

:::::
result

::
in

::::::::::
sub-optimal

:::::::::::
performance.

:::::::
Another

::::::
helpful

::::::::
technique

::
is

:::
the

:::
use

::
of

::::::::
test-time

::::::::::::
augmentations,

:::::::
wherein

::::
each

::::::
image

:::::
subset

::
is

:::
cut

:::
into

::
9

:::::::::
overlapping

::::::::
224x224

:::::
image

::::::::
windows

:::
and

::::::::
processed

:::::::::::
individually,

:::::
before

:::::
being

::::::::::
reassembled

::::
into

:::
the

::::
final

:::::::
256x256

::::::
output15

:::::
mask.

::::
This

:::::
allows

:::
for

:::::::
multiple

:::::::::::
independent

:::::::::::
classifications

::
of

:::
the

::::::
central

::::::
pixels,

:::::::
ensuring

:::::::::
agreement

:::
and

::::::::::
confidence

::
in

:::::::
detected

::::::
calving

::::::
fronts.

::
To

::::::::
increase

::::::::
accuracy,

:
a
:::::::
custom

:::
loss

::::::::
function

::::::::
optimizes

:::
the

::::::
binary

:::::
cross

::::::
entropy

::::
and

::::::::::::::::::::
Intersection-over-Union

:::
(see

:::
Eq.

::
1,
:::::
Sect.

::::
4.1)

:::::::::::::::::
(Mannor et al., 2005)

:
.
::::
This

::::::::
penalizes

::::::::::
mismatches

:::::::
between

::::::
calving

:::::
front

:::::
pixels

::
in

:::
the

::::::::
predicted

::::
(Icf )

::::
and

::::::::
measured

::::
(̂Icf )

::::::
image

::::::
masks.

:::::::::::
Mismatched

::::::::
ice/ocean

:::::
pixels

:::
in

:::
the

::::::::
predicted

::::
(Iio)

::::
and

::::::::
measured

:::::
(̂Iio)

:::::
image

::::::
masks

:::
are

::::
less

::::::
heavily

::::::::
weighted

::
by

:::
an

:::::::::
empirically

::::::
chosen

:::::
factor

:::
of

::::::::
α= 1/25,

::
as

::::
seen

:::
in

::
the

:::::
final

:::
loss

:::::::
function

::
L
::
in

:::
Eq.

::
2.
:

20

BCE_IoU(I, Î) =−I · log(̂I)− (1− I) · log(1− Î)− log

(
I∩ Î
I∪ Î

)
::::::::::::::::::::::::::::::::::::::::::::::::::::::

(1)

L(Icf , Îcf ,Iio, Îio) = α ·BCE_IoU(Iio,Iio)+ (1−α) ·BCE_IoU(Icf , Îcf )
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(2)

::::
After

:::::::::
integrating

:::::
these

::::::::::::
improvements,

::::::::::::
CALFIN-NN

::
is

::::::
trained

:::
for

:
a
::::
total

::
of

:::
80

:::::::
epochs,

::::
with

::::
4000

:::::::
batches

:::
per

::::::
epoch,

:::
and

::
8

::::::
images

:::
per

:::::
batch.

:::::::
Training

::
is

::::::
carried

:::
out

:::
on

:
a
::::
K40

::::::
Nvidia

:::::
Tesla

::::
GPU

::::
with

:::::
12GB

::
of

:::::::
VRAM,

::::
with

:::::
each

:::::
epoch

:::::
taking

:::::
about

::::
126

::::::
minutes

::
to

:::::::::
complete,

:::
and

::::::
almost

:
1
:::::
week

::
in

::::
total

::
to

:::::
obtain

:::
the

:::::::
optimal

::::::
weights

::
at

:::::
epoch

:::
65.

:::::
Once

::::::
trained,

:::
an

:::::::
NVIDIA

:::::::::
GTX106025

::::
with

::::
6GB

::::::
VRAM

::
is
:::::
used

::
for

:::
the

:::::::
off-line

::::
data

:::::::::
processing

::
of

:::
the

::::::
20188

::::::::
GeoTIFF

::::::
subsets.

::::
The

::::::::
CALFIN

::::::::
algorithm

:::::
takes

:::::
about

:::
3.5

::::
days

::
to

::::::
process

:::
all

::
of

:::
the

::::::
subsets

::::
into

::::::
calving

::::::
fronts,

::::::::
excluding

:::::::::::::
preprocessing,

:::
but

::::::::
including

:::::::::::::
post-processing,

:::
as

::::::::
discussed

::
in

:::
the

:::::::::
following

::::::
section.

:

3.3 Post-Processing

At this stage, the 2-channel pixel mask output of CALFIN-NN is post-processed to extract useful
::
the

:
Shapefile data products30

as shown in
:
(Fig. 6

:
).
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Figure 6. Postprocessing Pipeline: (a) First, get the processed image from CALFIN-NN. (b) Then, isolate and re-process each front. (c)

Next, filter unconfident predictions. (d) Now, fit line and mask static coastline (see also Fig. 7). (e) Lastly, export and validate the Shapefile.

3.3.1 Calving Front Reprocessing

We first isolate individual fronts from the processed image and reprocess subsets of the input image wherever they are detected.

The front detection method is described in Sect. ??. We also exploit the nature of CALFIN-NN’s output as a confidence

measure, so that generated fronts can be filtered out based on classification confidence thresholds.

3.3.1 Pixel Mask to Coastal Polyline5

Next, we fit a polyline
:::::
First,

:
a
:::::::
polyline

::
is

::
fit

:
to the pixel mask to retrieve the correct coastline boundary. This is performed by

converting each pixel in the mask to nodes in a graph, connecting the nearest neighboring nodes, then finding the single longest

path in the graph’s minimum spanning tree (MST) (Kruskal, 1956). This polyline not only corresponds with the coastline edge,

but also out-performs other contour finding algorithms by eliminating noise, errors, and gaps inherited from previous steps.

::::
Such

::::
gaps

:::
are

:::::
given

:::::::
weights

:::::
based

:::
on

:::
the

:::::::
negative

::::::::::
exponential

::::::::
distances

:::::::
between

::::::
nodes,

:::::
which

::::::
allows

:::
for

::::::::::
connections

::
if

:::
the10

:::::
joined

:::::
paths

:::
are

:::::::::::
significantly

:::::
longer

:::::
than

:::
the

:::
gap

:::::
itself.

:
A visual example is given in Fig. 7a-d. For additional context, see

Supplement Fig. S2.

Figure 7. Mask to Polyline Algorithm: (a) First, extract the red coastline mask
:::::::::
(red/yellow) from the CALFIN-NN output. (b) Then create

a graph, connecting each pixel (blue
:::
red) to 15% of its nearest neighbors with an edge (black). (c) Next, create an MST from the graph. (d)

Now, extract the longest path from the MST. (e) Finally, mask the static coastline using the fjord boundaries (blue
::::
cyan) to extract the calving

front.
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3.3.1 Coastline to Calving Front

Next, we isolate
::::
Next,

:
the calving front

::
is

:::::::
isolated from the coastline polyline. We use fjord boundary masks

:::::
Static

:::::
masks

:::
of

::
the

:::::::
average

:::::
fjord

:::::::::
boundaries

:::
are

::::::::
manually

:
created for each basin

:::::
using

:::
the

:::::
image

:::::::
subsets

:::
and

:::::::::::
BedMachine

:::
v3

:::
for

::::::::
reference

::::::::::::::::::::
(Morlighem et al., 2017). By calculating the distance from each point in the coastline to the nearest fjord boundary pixel, then

selecting the contiguous pixels which are the farthest from the fjord boundaries, the calving front can be isolated. The result of5

this is shown in Fig 7e.

3.3.1 Calving Front to Shapefile

The
::::
Once

::::
each

:::::
front

::
is

:::::::
located,

::
its

:::::::::
bounding

:::
box

::
is
:::::
used

::
to

::::::
extract

:
a
::::::

higher
:::::::::
resolution

::::::
subset

::::
from

:::
the

:::::::
original

::::::
image,

::::
and

::::::::::
reprocessed.

::::
This

::::::::::
innovation

::::::
allows

:::
for

::::::::
increased

::::::
spatial

::::::::
accuracy

:::::
when

:::::::::
processing

::::::::
multiple

:::::
fronts

:::
in

::::
large

:::::::
basins.

:::::
After

:::::::::::
reprocessing,

:::
the

::::::
nature

::
of

:::::::::::::
CALFIN-NN’s

:::::::::
2-channel

::::::
output

:::
as

:
a
::::::::::

confidence
:::::::
measure

:::
is

::::::::
exploited

::
to

:::::
filter

:::
out

:::::::::
uncertain10

:::::::::
detections.

:::::
Since

:::
the

:::::
neural

::::::::
network

::::::
assigns

::::
each

:::::
pixel

:
a
:::::

value
::::::::

between
:
0
::::
and

:
1
::::::

based
::
on

:::
its

::::::::
perceived

:::::
class,

::::
any

::::::::
deviation

::::
from

:::::
these

:::
two

::::::
values

::::
can

::::
used

:::
as

:
a
::::::::
measure

::
of

::::::::::
uncertainty.

::::
The

:::::::
filtering

:::::::
method

::::::::
averages

:::
the

::::::::
deviation

::
of

:::
the

:::::::::
ice/ocean

::::::::::
classification

:::::
mask

::
in

::
a

:
5
:::::
pixel

::::
wide

:::::
buffer

::::::
around

:::
the

::::::
calving

:::::
front,

::::
and

:::::::
discards

:::
any

:::::
fronts

::::::
whose

:::::
mean

::::::::
deviation

::::::
exceeds

:::
an

:::::::::
empirically

::::::
chosen

::::::::
threshold

::
of

::::::
0.125.

:::
The

:
last step is to export the polyline and

::::::::
polylines

:::
and

:::
the

:
corresponding polygon as geo-referenced Shapefiles. We first15

smooth the polyline
::::
First,

::::
the

::::::::
polylines

:::
are

::::::::
smoothed

:
to eliminate noise artifacts inherited from previous steps. Next, we

combine ,
::::::::
deviating

:::
no

:::::
more

::::
than

::
1

::::
pixel

:::::
from

:::
the

::::
raw

::::::::
extracted

::::::::
coastline

::::
(see

::::::::::
Supplement

::::
Fig.

::::
S2).

:::::
Next,

:
the smoothed

polylines, fjord boundary mask, and land-ice/ocean masks
::
are

:::::::::
combined to create a polygonal ocean mask. Optionally, we can

manually verify
::::::
manual

::::::::::
verification

::
of each output with the original GeoTIFF subset

::
can

:::
be

:::::::::
performed. This was done for all

cases in this study to ensure the validity of our
::
the

:
automated pipeline. This constrains the mean distance error to be <100 m,20

as covered in the following section.

4 Error Analysis and Quality Assessment
::::::::
Validation

We use two methods
::::
Two

:::::::
methods

:::
are

::::
used

:
to evaluate CALFIN. For our

::
the

:
primary method, we estimate the error

::
the

:::::
error

:
is
::::::::
estimated

:
by calculating the Mean/Median Distance between predicted and manually delineated fronts (see

::::
Fig.

::
8a

:::
and

:
Sect.

4.1). For our
:::
the secondary method, we calculate the classification accuracy

::
is

::::::::
calculated

:
with the Intersection over Union25

metric (see
:::
Fig.

:::
8b

:::
and

:
Sect. 4.2). Additionally, we can evaluate the detection accuracy and provide

:
is

:::::::::
evaluated,

::::
and the

associated confusion matrix (see
::
is

:::::::
provided

::::
(see

:::::
Table

:
1
::::
and Sect. 4.4). We evaluate these metrics

::::
These

:::::::
metrics

:::
are

::::::::
evaluated

on several validation sets, taken from existing studies as discussed in Sect. ??
:
1. These validation sets contain data that is

:::
are

excluded during model training. This prevents the models from memorizing data and skewing the accuracy
:::::::::
assessment.
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Figure 8. Error Measures: (a) A visual outline of Mean/Median Distance Error Estimation and (b) Classification Accuracy using Intersec-

tion over Union (IoU) for (i) the primary calving front, and (ii) the secondary ice/ocean mask, respectively.

4.1 Error Estimation

The primary quality assessment method is the Mean Distance Error (Mohajerani et al., 2019; Zhang et al., 2019; Baumhoer et al., 2019)

::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Mohajerani et al., 2019; Zhang et al., 2019; Baumhoer et al., 2019). Conceptually, this method resembles the numerical inte-

gration of the area between two curves, normalized by the average length of the curves (see Fig. 8a). Also referred to as the

Area over Front (A/F) in literature, this method can also be seen as a generalization of the method of transects along arbitrarily5

oriented fronts (Mohajerani et al., 2019; Baumhoer et al., 2019). This metric is implemented by taking the mean/median of the

distances between closest pixels in the predicted and manually delineated fronts. We note
::::
Note that pixel distance is biased

to be inversely proportional to a network’s input size, so we also provide the error in meters
:
is

::::
also

:::::::
provided

:
in the following

analysis.

4.2 Classification Accuracy10

The secondary quality assessment method calculates the Intersection over Union (IoU) (Baumhoer et al., 2019). This metric

evaluates the degree of overlap between the predicted and ground truth
::::::::
manually

:::::::::
delineated masks of the calving front. It is

calculated by dividing the number of pixels in the intersection of two masks over the number of pixels in the union of the two

masks (see Fig. 8b). When calculating the IoU of 3 pixel wide edges, this measure is very strict: 1 pixel of difference results

in a score of 0.5000, and scores in that range or above are indicative of human levels of accuracy. When calculating the IoU of15

land-ice/ocean-mélange
::::
ocean

:
masks, this measure is less strict, and scores in the range of 0.9000 and above are indicative of

::::::
indicate

:
human levels of accuracy.

4.3 Validation Results

The following subsections list tables that print
:::::
show

:::::
tables

::::
with the above metrics for the associated validation sets, the values

from the original studies, and a subset of the outputs of CALFIN-NN on each. Our
:::
The

:
primary validation set, the CALFIN20

validation set (CALFIN-VS), consists of 162 images with clouds, illumination differences, ice mélange, and Landsat 7 Scan-
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line Corrector Errors (L7SCEs). The CALFIN-VS contains data from 62 Greenlandic basins, including Helheim, which was

specifically excluded from CALFIN’s training set for validation purposes - as done by Mohajerani et al. (2019). The CALFIN-

VS ensures CALFIN-NN produces consistent results on new data, addressing concerns raised by Zhang et al. (2019) Sect. 7.3.

We also evaluate the two validation subsets,
::
To

:::::::
evaluate

:::::::::::
performance

:::
on

:::::::
Landsat

:
7
::::::::
Scanline

::::::::
Corrector

::::::
Errors,

:::
the

:::::::::
validation

:::::
subset

:
CALFIN-VS-L7-only /none, which isolate and exclude

::::::
isolates

:::::::
images

::::
with

::::::::
L7SCEs,

:::
and

:::
the

:::::::::::::::::::
CALFIN-VS-L7-none5

:::::::
excludes images with L7SCEs, respectively. To allow for comparisons between studies, we also output CALFIN-NN’s perfor-

mance metrics on previous studies’ validation sets
:::
are

:::
also

::::::
shown, where appropriate. The sets include the 10 Landsat Helheim

subsets used in Mohajerani et al. (2019) (M-VS), the 6 TerraSAR-X Jakobshavn subsets used in Zhang et al. (2019) (Z-VS),

and 62 Sentinel-1 Antarctic basins taken from the 11 validation scenes used in Baumhoer et al. (2019) (B-VS). Note that the

error metrics are still sensitive to how each study implements them, which we nevertheless reproduce and document to the10

best of our ability
::
are

:::::::::::
nevertheless

:::::::::
reproduced

::::
and

::::::::::
documented

:::
for

:::::::::::
comparison’s

::::
sake. These concerns are also addressed in the

comprehensive inter-model comparison, discussed in Sect. 6.

4.3.1 CALFIN Validation Set

CALFIN-NN performs well on the CALFIN-VS . We calculate the
::::
(Fig.

:::
9).

::::
The true mean distance error of the CALFIN

dataset to be within
:
is
:::::::::

calculated
::
to
:::

be
:
86.76 ± 1.43 m with 95% confidence. When including only images with L7SCEs15

(CALFIN-VS-L7-only), the error changes to 2.22 px (
:
is

:
91.93 m), showcasing CALFIN-NN’s unique robustness to L7SCEs.

When excluding outliers such as Kong Oscar, the
::::::::
Intuitively,

:::::::::
excluding

::::::::
"difficult"

:::::::
images

::::
with

:::::::
L7SCEs

::
in

:::
the

:::::::::
validation

:::
set

:::::::::::::::::::
(CALFIN-VS-L7-none)

::::::::
decreases

:::
the

:::::
error

::
to

::::
81.65

:::
m.

::::
The median distance error is only 1.21 px (44.59 m),

:::::::
showing

::::
that

::::
only

:
a
:::
few

:::::::
outliers

::::::::
contribute

:::::::::::
considerably

::
to

:::
the

:::::
mean. For full outputs, see Supplement Fig. S4-S7

:::::
S5-S8.

Validation Set Model Mean Distance Median Distance IoU Calving Front IoU Ice/Ocean

CALFIN-VS CALFIN-NN 2.25 px, 86.76 m 1.21 px, 44.59 m 0.4884 0.9793

CALFIN-VS-L7-none CALFIN-NN 2.27 px, 81.65 m 1.16 px, 44.01 m 0.4880 0.9819

CALFIN-VS-L7-only CALFIN-NN 2.22 px, 91.93 m 1.33 px, 49.24 m 0.4888 0.9766

Figure 9. CALFIN-VS Validation Output Results: Yellow represents human (green) and machine (red) agreement on the front location.

Note that the drop in mean pixel distance despite the increase in mean meter distance (and vice versa) comes from L7SCE images being

reprocessed at lower sizes due to detection failures (see Fig. 6c), and pixel error bias being inversely related to input size (see Sect. 4.1).
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4.3.1 Mohajerani et al. (2019) Validation Set

CALFIN-NN performs well on the M-VS . This demonstrates the generalization capability of
:::
(Fig.

::::
10).

::::
This

::::::::::::
demonstrates

CALFIN-NN, which improves
:
’s
::::::
ability

::
to

:::::::::
accurately

::::::
process

::::
new

::::
data,

::::::
which

:::::
builds upon the Mohajerani et al. (2019) neural

network (M-NN). Also note
::::
Note that M-NN implements distances errors differently,

:
and omits ice/ocean masks from the

evaluation. This is
:::::::::
differences

:::
are further explored in the model inter-comparison discussed in Sect. 6

:::::
model

::::::::::::::
inter-comparison.5

Validation Set Model Mean Distance Median Distance IoU Calving Front IoU Ice/Ocean

M-VS CALFIN-NN 2.56 px, 97.72 m 2.55 px, 97.44 m 0.3332 N/A

M-VS M-NN 1.97 px, 96.31 m N/A N/A N/A

Figure 10. M-VS Validation Output Results: Note that CALFIN-NN has never trained on Helheim, but can still predict the front at multiple

scales and
::::
under

::::::
different

:
conditions

::
and

:::::::::::
preprocessing

::::::
methods. See Fig. S8

::
S9. for full outputs.

4.3.1 Zhang et al. (2019) Validation Set

CALFIN
:::::::::::
CALFIN-NN performs competitively on the Z-VS . We achieve

:::
(Fig.

::::
11).

::
It

:::::::
achieves

:
a similar mean meter distance

(115.24 m vs. 104 m) despite being constrained to using lower resolution TerraSAR-X data. Note though that the Zhang et al.

(2019) neural network (Z-NN) uses higher resolution input data (960×720) compared to CALFIN-NN (224x224), which skews

the mean pixel distance comparison, where CALFIN-NN performs better (2.11 px vs. 17.3 px). Another source of skew comes10

from CALFIN-NN confidence filtering, as only 8 of 12 fronts in the set are confidently detected (see Sect. 4.4). We suspect that

increasing
::::::::
Increasing CALFIN-NN’s input resolution and training on higher resolution SAR data will

::::
may enable CALFIN-NN

to detect more fronts with greater accuracy.

Validation Set Model Mean Distance Median Distance IoU Calving Front IoU Ice/Ocean

Z-VS CALFIN-NN 2.11 px, 115.24 m 1.65 px, 77.29 m 0.3832 0.9761

Z-VS Z-NN 17.3 px, 104 m N/A N/A N/A

12



Figure 11. Z-VS Validation Output Results: CALFIN-NN works well on SAR data in addition to optical data. See Fig. S9
:::
S10. for full

outputs.

4.3.1 Baumhoer et al. (2019) Validation Set

CALFIN
:::::::::::
CALFIN-NN

:
performs sub-par on the B-VS . However, when we compare our

::::
(Fig.

::::
12).

:::::
When

:::::::::
comparing

::::
the

mean distance error estimate with the Baumhoer et al. (2019) equivalent Area over Front (A/F) error, we mask out
:::
the

:::::::::::::::::::
Baumhoer et al. (2019)

:::::
neural

:::::::
network

:::::::
(B-NN)

:::::::::::
outperforms

::::::::::::
CALFIN-NN

:::::::
(330.63

::
m

:::
vs

:::
108

::::
m).

:::::
Note

::::
that

:::
the

:
easily de-

tected static coastlines that could raise our relative error
::
are

:::::::
masked

::::
out,

::::::
raising

:::
the

:::::::
relative

:::::
error,

:::
and

:::::::::
negatively

:::::::::
impacting5

::::::::::::
CALFIN-NN’s

:::::::::::
performance

::
on

::::
this

::::::
metric. When comparing metrics that isolate the calving front, we calculate the absolute

median distance error
:
is

:::::::::
calculated (achieving 112.75 m) whereas the Baumhoer et al. (2019) uses signed median distance error

(
:::::::
achieving

:
0 m), which is not applicable

::::::
directly

::::::::::
comparable

:
in this context, and thus omitted. Currently, our

::
the

:
error is af-

fected by kilometer range
:::::::::::::
kilometer-range deviations in very large domains like Voyeykov Ice Shelf, and differences in sea-ice

mélange as seen along the Gillet and Wordie Ice Shelves, which would be consistent with findings in Baumhoer et al. (2019)10

Sect. 5.2. After excluding such outliers, we detect fronts
::::
fronts

:::
are

::::::::
detected in 55 out of 62 domains (88.71%), and achieve

::::::::
achieving median distance errors of 0.95 px (127.87 m). Intensive retraining on ice shelves may be required for CALFIN-NN

to improve.

Validation Set Model Mean Distance Median Distance IoU Calving Front IoU Ice/Ocean

B-VS CALFIN-NN 2.35 px, 330.63 m 0.74 px, 112.75 m 0.6451 0.9879

B-VS B-NN 2.69 px, 108 m N/A N/A 0.905

Figure 12. B-VS Validation Output Results: Similar to Z-NN, B-NN uses a high resolution input (768×768) relative to CALFIN-NN

(224x224), which skews the mean pixel distance comparison undeservedly in CALFIN-NN’s favor. See Fig. S10-S11.
::::::
S11-S12 for full

outputs.
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4.4 Detection Accuracy

Lastly, we show that CALFIN-NN has the ability
:
is

::::::
shown to automatically filter images that do not have detectable calving

fronts. To verify this, we include 13 images
::
are

::::::::
included in the CALFIN-VS which do not contain calving fronts discernible to

the human eye. We calculate the
:::
The true positive (TP), true negative (TN), false positive (FP), and false negative (FN) rates

::
are

:::::::::
computed

:
for the entire 162 image CALFIN-VS, and output the confusion matrix below

:::
the

::::::::
associated

:::::::::
confusion

::::::
matrix5

:
is
::::::
shown

::
in

:::::
Table

::
1. Note that CALFIN-NN does not output any false positives on the CALFIN-VS. While this ensures we

output accurate fronts rather than output
::::::
accurate

::::::
fronts

:::
are

:::::
output

:::::
rather

::::
than

:
incorrect fronts, this filtering behavior removes

potentially large errors, and must be accounted for when comparing errors across other sets.

Table 1. Confusion Matrix: CALFIN-NN misses fronts in 8 of 149 valid CALFIN-VS images, but we deem this
::
is

::::::
deemed as an acceptable

tradeoff
::::::
trade-off.

Front Detected?

Yes No

Front Detectable?
Yes TP = 141/149 = 94.63% FN = 8/149 = 5.76%

No FP = 0/13 = 0.00% TN = 13/13 = 100.00%

5 Data Product Results
:::
and

:::::::::
Discussion

We release the
:::
The

:
code implementation of the CALFIN method

:
is
::::::::

released, along with its associated calving front data10

products as described in the following subsections
::::::
section, for use within the scientific community.

5.1 CALFIN Dataset

CALFIN Dataset Samples: Data products for Upernavik (left), Jakobshavn (center), and Helheim (right), from 1972-2019.

We release the CALFIN dataset , which
:::
The

::::::::
CALFIN

::::::
dataset

:
spans 66 Greenlandic glaciers

:::::
basins, over the period Sept.

1972 - June 2019. This
:
It
:
consists of over 1500 manual delineations and 20,004

:::::
22,678

:
total calving fronts. We provide 215

:::
Two

:
levels of CALFIN data products .

::
are

::::::::
provided.

::::
The

:
Level 0 products include the raw inputs and basic outputs used for

CALFIN-NN. These products consist of the raw GeoTIFF domain subsets, the domain Shapefiles used for subsetting, neural

network pixel mask outputs, and a quality assurance image
:::::::
Shapefile

:::::::
domains

:::::
used

::
for

::::::::::
subsetting,

::
the

::::::
neural

:::::::
network

:::::::
training

::::::::::
image/mask

:::::
pairs,

:::
the

::::
fjord

:::::::::
boundary

::::::
masks,

:::
the

:::
full

:::::::
Landsat

:::::
scene

:::
ID

::::
list,

:::
and

:::
the

::::::
quality

:::::::::
assurance

::::::
images

:
for validation

purposes. Use
:::
The

::::
use cases of Level 0 products may include studies of reproducibility, validation, or training new neural20

networks.
:::
The Level 1 products includes

:::::
include

:
the calving front polyline and polygon Shapefiles. The polyline product

consists of the isolated, refined, geo-referenced, and verified calving fronts for each domain. The polygon product consists of

an ocean mask bounded by the domain subset, the fjord boundaries, and the calving front(s), for each domain. Shapefiles are

projected to EPSG:3413. These data products can currently be found at .
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5.1 CALFIN-NN Implementation

We release an implementation of CALFIN-NN, available at , which includes the parameters and architecture we develop

throughout this study. It is our intention that any innovations as described in Sect. 3.2 can be applied to other networks and

investigations. The implementation is written in Python 3 using the Keras & Tensorflow libraries. Note that access to the

network parameters are also hosted as part of the associated DataDryad dataset linked above (Cheng et al., 2020). For additional5

insight into the network training and processing requirements, see the following discussion in Sect. ??.

6 Discussion

5.1 Training Insights

Throughout the course of the study, we develop several innovations to improve the performance of CALFIN-NN. To increase

accuracy, we utilize a special loss function that heavily favors correct calving front predictions. To prevent over-fitting our10

neural network, a large set of training data was manually delineated (see Fig. S3) , totalling 1541 Landsat and 232 Antarctic

SAR image/mask pairs, with the SAR data taken from the same training scenes used by Baumhoer et al. (2019). Another

measure to prevent over-fitting involves data augmentation, which entails performing random flips/transpositions, random

Gaussian noise, random sharpen filters, random rotations of up to 12°, random crops, and random scaling on the pre-processed

images during CALFIN-NN training. We determine through empirical testing that excessive image padding, rotation, warping,15

and cropping calving fronts to close to the image bounds result in sub-optimal performance. Yet another helpful technique is

the use of test-time augmentations. More specifically, each image subset is cut into 9 overlapping 224x224 image windows

and processed individually, before being reassembled into the final 256x256 output mask. This allows for multiple independent

classifications of the central pixels, ensuring agreement and confidence in detected calving fronts.

After integrating these improvements, CALFIN-NN is trained for a total of 80 epochs, with 4000 batches per epoch, and20

8 images per batch. Training is carried out on a K40 Nvidia Tesla GPU with 12GB of VRAM, with each epoch taking about

126 minutes to complete, and almost 1 week in total to obtain the optimal weights at epoch 65. Once trained, we used an

NVIDIA GTX1080 with 6GB VRAM for off-line data processing. Our algorithm (excluding preprocessing, but including

post-processing) is capable of handling about 4 subsets per minute, taking about 3.5 days to process all 20188 GeoTIFF subsets

into calving fronts. Future investigations should thus consider the trade-offs between the processing time of large networks,25

their accuracy, and the required computational resources, as existing works may prove suitable for their needs.

5.1 Existing Works

Mohajerani et al. (2019) is an example of an existing study that uses deep neural networks to detect calving fronts. The study

pioneers the UNet-style network for application towards the Greenlandic glacial basins Jakobshavn, Helheim, Sverdrup, and

Kangerlussuaq. While the methodology is restricted by its preprocessing requirements and inability to handle branching/non-linear30

calving fronts, it nonetheless supports the viability of the neural network method. Zhang et al. (2019) and Baumhoer et al. (2019)

15



evaluate modified UNet architectures, as applied to SAR data in Jakobshavn and Antarctica, respectively. Their studies incorporate

large spatial context in order to capture high resolution and potentially whole-coastline delineations. These larger networks,

on the order of (960x720
::::
Both

::
of

::::
the

:::::::::
Shapefiles

:::::
share

:
a
::::::::

common
::::::::

metadata
:::::::

feature
::::::
schema

::::
(see

::::::
Table

:::
S2)

:::::::
derived

:::::
from

::
the

:::::::::::
MEaSUREs

::::::
Glacial

:::::::
Termini

:::::::
Dataset

:::::::::::::::::::::::::::::::::::::::
(Moon and Joughin, 2008; Joughin et al., 2015),

:
and 768x768 pixels respectively),

support the viability of both training and applying large networks to new data. The CALFIN-NN method builds on these5

studies by improving on the network design, capability, and post-processing methods. The following section shows a data

analysis example as performed in Zhang et al. (2019), and similarly showcases a possible application of a calving front dataset

in advancing our understanding of the Greenland Ice Sheet.
:::::
names

:::
are

::::::
derived

:::::
from

:::::::::::::::
Bjørk et al. (2015).

::::::
These

:::::::
products

:::
can

:::
be

:::::
found

:::
via

::::
these

:::::
links

::
to

::::::
Github

:::
and

:::::::::
DataDryad

::::::::::::::::
(Cheng et al., 2020).

:

5.1 Data Analysis and Usage Example10

With the new data available to use in the CALFIN dataset, we explore a subset and validate the evolution of Helheim Glacier
:
it
::
is

:::::::
possible

::
to

::::::
explore

:::::::
seasonal

::::::
trends

:::::
across

:::
the

:::::::::
Greenland

:::
Ice

:::::
Sheet,

:::
and

:::::::
validate

::
a

:::::
subset

::
of

:::
10

::::
high

::::::::
discharge

:::::
basins

::
of

:::::::
interest

against existing ESA-CCI, MEaSUREs, and PROMICE data products (ENVEO, 2017; Joughin et al., 2015; Andersen et al.,

2019). Similar to Zhang et al. (2019), we graph the relative change in position of the calving front along the fjord centerline

from 1972 to June 2019.
::
Fig

:::
13

:::::
shows

:::
the

::::
high

::::::::
temporal

::::::::
resolution

:::
and

::::::
spatial

::::::::
accuracy

::
of

:::
the

:::::::
CALFIN

::::
data

:::::::
product

::::::::
alongside15

:::::::::::
corresponding

::::::::
available

::::
data

::::::::
products

::::
from

::::::::::
1972-2019.

:
For Joughin et al. (2015), if a date range is given, we plot the same

relative change at both start and end dates
::::::::::::::::::::::
(Moon and Joughin, 2008)

:
is
:::::::
plotted. For Andersen et al. (2019), we use August

15th
:
is
:::::
used as the "end-of-melt-season" date of delineation, as the date is otherwise not specified in the provided data. Fig. ??

shows the length change
::::
The

:::::::
advance

:::
and

::::::
retreat

:
of the calving front along the basin centerline, relative to its Sept. 6, 1972

position.
::::::::
centerlines

::
is
:::::::
relative

::
to

::::
their

:::::::
earliest

::::::::
positions.

::::
Note

:::
the

:::::
large

:::::::::::
improvement

::
in

:::::::::::::::
temporal/seasonal

::::::::
coverage

::::
and

:::
the20

::::::
general

:::::::::
agreement

::
of

::::::::
CALFIN

::::
with

:::::::
existing

::::
data

::::::::
products.

::::
Note

::::
also

:::
that

:::
the

::::::::::::
discrepancies

::::
such

::
as

::::
that

:::::
during

::::::::::
2005-2009

::
in

:::::::::
Jakobshavn

:::::
(Fig.

::::
13e)

:::::
mostly

:::::
stem

::::
from

:
a
::::
lack

::
of

::::::
winter

:::::::
coverage

::::::
during

::::::::
Landsat’s

::::::
optical

:::::::
blackout

::::::
period.

:::::::::
Additional

:::::::
outliers

::
in

::::
Kong

:::::
Oscar

:::::
(Fig.

::::
13g)

::::
stem

::::
from

:::
the

:::::::::
somewhat

:::::::
arbitrary

:::::::::
delineation

::
of
:::
the

:::
ice

::::::
tongue

::::
front

::::::::
position.

:::::::
Kangiata

:::::::
Nunaata

:::::
(Fig.

:::
13j)

::::::
suffers

:::::
from

::::
both

::
of

:::
the

:::::::::::::
aforementioned

:::::::
effects,

:::
but

::::::::
otherwise

::::::
shows

:::
the

::::
same

:::::::
general

:::::::::
agreement

::::
with

:::::::
existing

:::::::
datasets

::::
from

::::
2000

::::::::
onwards.

:
25

Overall, there is high agreement between CALFIN and existing data products on the evolution of Helheim over the available

time series. Note that while Helheim is relatively easy to accurately and automatically delineate, we still produce all of the

above data without manual input outside of visual verification. Thus with this context in mind, we find that this comparison

with existing data products help validate the applicability of this study’s outputs
::::::::::
Additionally,

::::
Fig.

::
14

::::::
shows

:::
the

:::::::
regional

:::::
mean

:::::::
advance

:::
and

::::::
retreat

::::::
change,

:::::::::
alongside

:::
the

:::::
mean

::
for

:::
the

:::::::
entirety

::
of

:::::::::
Greenland

:::::::
covered

:::
by

:::
the

::::::::
CALFIN

::::::
dataset.

::::::::::::
Contributions30

::::
from

::::
NW

:::::::::
Greenland

::::::::
influence

:::
the

::::::
overall

::::
trend

:::
the

:::::
most,

::::
due

::
to

:::
the

::::::::
presence

::
of

:::::
many

:::::
small

::::::::::::::
glaciers/branches

:::
in

:::
the

::::::
region.

::::
Note

::::
that

:::
the

:::::
mean

::
for

:::::::::
Greenland

::::
also

::::::::
includes

:::::::::::
contributions

::::
from

::::::::::
Petermann,

:::::
which

::
is
::::::
visible

::
in
:::

the
::::::::

summers
:::
of

::::
2010

::::
and

:::::
2012.

::::::
Shared

:::::::
regional

::::::
trends

:::
are

::::::
visible

::::::
across

::::
NW

::::
and

::::
CW

::::::::::
Greenland,

:::::
which

:::::
both

:::::
show

::::::
relative

::::::::
stability

:::::
before

::::::
2000,

:::::::
followed

:::
by

:::::
steady

::::::
retreat

::
up

::::
until

::::::::::
2017-2018.

:::
CE

:::
and

:::
SE

:::::::::
Greenland

::::
also

:::::
share

:
a
::::::
similar

:::
but

:::
less

::::::::::
pronounced

:::::::
retreat,

:::::::
showing
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Figure 13.
:::::::
Terminus

:::::::
Advance

::::
and

::::::
Retreat

::::
Over

::::
Time

:
.
:::
(a-j)

:::::
Basin

::::
setup

::::
(left)

:::
and

::::
graph

:::::
(right)

:::
for

::
10

:::
high

:::::::
discharge

::::::
basins.

::::::
Positive

:::::
length

:::::
change

::::::::
represents

:::::
retreat

::::::
relative

::
to

:::
the

:::::
earliest

:::::::
position

::::
along

:::
the

::::::::
centerlines

::
in

:::
red.

::::
Note

:::
the

:::::::
seasonal

:::::::
variations

:::::::
captured

::
by

::::::::
CALFIN,

::
in

::::
blue.

::::
Time

::::
series

:::
for

::::
other

::::::
studies

::::
span

::::::::
1990-2016

:::::::::
(ESA-CCI),

:::::::::
2000-2017

:::::::::::
(MEaSUREs),

:::
and

::::::::
1999-2019

::::::::::
(PROMICE).

::::
Note

:::
the

:::::::
seasonal

:::::::
variations

:::::
shown

::
by

:::
the

::::
solid

::::
lines,

:::
and

:::
the

:::::
dotted

::::
lines

:::
from

:::::::::
1972-1985

:::
that

::::::
indicate

:
a
::::
lack

:
of
::::

such
:::::::
seasonal

::::::::::
observations.

:::
Also

::::
note

:::
that

:::
the

:::::
vertical

::::
axis

:::::
scaling

::
is

::::::
applied

::::::::
differently

::
for

::::
each

:::::
graph

:
to
:::::::
highlight

:::::::
seasonal

:::::
trends.

::
an

::::::::::
accelerating

::::::
retreat

::::::::
beginning

::::::
around

:::::
1995.

:::::
These

:::::::
regional

::::::
trends

:::
are

:::
less

::::::
visible

::
in

::::
SW

:::::::::
Greenland,

:::::
which

::
is
:::::::::
dominated

:::
by

::::::
Narsap

:::::::
Sermia’s

::::::
retreat

::::
from

:::::::::
2010-2013.

:::::::
Overall,

:::::
these

:::::::
regional

:::::
trends

::::::::
generally

:::::
agree

::::
with

::::::
studies

::::
such

::
as

::::::::::::::::
Wood et al. (2021)

:::
and

:::::::::::::::
King et al. (2020),

:::::::
helping

::::::
further

::::::
validate

:::
the

::::::::
CALFIN

::::::
method

::::
and

::::
data.
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Figure 14. Helheim Terminus Length Change Over Time
::::::
Regional

::::::::
Terminus

:::::::
Advance

::::
and

::::::
Retreat

::::
Over

:::::
Time. Positive length change

represents retreat relative to the 1972
:::
(a-f)

:::::::
Regional

::::::::::
delineations

::::
(left)

:::
and

:::::::
terminus position . Seasonal variations are captured by CALFIN

:::::
graphs (blue

:::
right) . Time series for other studies span 1995-2016

::::::::
Greenland (ESA-CCI

:
a)

::
and

:::
the

:::::::::
northwestern

:::
(b), 2005-2017

:::::
central

::::::
western

(MEaSUREs
:
c),

:::::
central

:::::
eastern

:::
(d),

:::::::::
southeastern

:::
(e),

:
and 1999-2019

:::::::::
southwestern

:
(PROMICE

:
f)

:::::
regions. See Fig

::::
Note

:::
that

::
the

::::
total

::::::::
Greenland

::::
mean

::::::
advance

:::
and

:::::
retreat

::
is

:::::::::
unadjusted,

:::
and

::::::::
dominated

::
by

::
the

:::::
trend

:::
lines

::
of
::::::::
numerous

::::::
smaller

::::::
glaciers

:
in
::::
CW

:::
and

:::
NW

::::::::
Greenland. S12

::::
Note

:::
that

:::::::
branches

::
in

::
the

:::
66

::::::
studied

:::::
basins

::
are

:::::::::::
independently

:::::::
counted,

:
for an enlarged CALFIN/ESA-CCI 1995-2016 comparisona

::::
total

::
of
:::

87

::::::
glaciers.

5.1 Inter-model Comparison

6
::::::::::
Inter-model

:::::::::::
Comparison

To similarly
::::::
further reinforce the validity of our

::
the

:
study, and address the shortcomings of different error metric comparisons

(as discussed in Sect. 4.3), we conduct a comprehensive inter-model comparison
:
is

:::::::::
conducted between CALFIN-NN and the

model developed by Mohajerani et al. (2019) (M-NN). This experiment seeks to understand how both models perform, holding5

all other variables constant. In particular, we want to understand
:::
this

:::::::::
experiment

:::::
seeks

::
to

:::::::::
determine if the M-NN model, and by

extension other UNet models, perform on par with the CALFIN-NN model, given the same training data. To perform this task

, we retrain
:::
This

::::
task

:::::::
involves

::::::::
retraining

:
the M-NN using

::
on CALFIN training data, process validation data, and compare the

results
:::
and

:::::::::
comparing

:::
its

::::::::::
performance

:::::::
against

:::::::::::
CALFIN-NN

:::::
using

::
a

:::::
shared

:::::::::
validation

:::
set. For the fairest results, we evaluate

only images with
::::
only

::::::
images

:::::::
without L7SCEs , which

:::
are

::::::::
evaluated

::
in

:::
this

:::::::::
validation

:::
set

:
-
::::::::::::::::::
CALFIN-VS-L7-none

:
-
::::::
which

::
is10

18



:::::
within

:::
the

::::::
known

::::::::::
capabilities

::
of the M-NN is already known to be capable of handling

::::::
M-NN. Furthermore, the same pre- and

post-processing is applied to both models.

Table 2. Model Inter-comparison Error Table: Metrics for the CALFIN-NN and M-NN models on all non-Landsat 7 test images in the

CALFIN validation set.

Validation Set Training Set Model Mean Distance Median Distance IoU Front IoU Ice/Ocean

CALFIN-VS-L7-none CALFIN CALFIN-NN 2.27 px, 81.65 m 1.16 px, 44.01 m 0.4880 0.9819

CALFIN-VS-L7-none CALFIN M-NN 4.45 px, 201.35 m 1.25 px, 50.52 m 0.4935 0.9699

Across all non-Landsat 7 test images in the CALFIN validation set, CALFIN-NN attains a 2.27 pixel (81.65 meter) mean

distance between the predicted and the ground truth
:::::::
manually

:::::::::
delineated

:
fronts. This exceeds the level of accuracy achieved

by the model from Mohajerani et al. (2019), which after retraining on CALFIN training data, is 4.45 pixels (201.35 meters).5

Note again that Landsat 7 images were excluded during reevaluation for the M-NN. This supports our
:::
the

:
findings that the

CALFIN-NN architecture is an improvement over existing UNet models.

With this added context, we reproduce the validation table
:
is
::::::::::
reproduced from Sect. ??

:::
4.3, Fig. 10, and continue the error

analysis
::
is

::::::::
continued

:
below. To reemphasize the differences in mean distance error calculation between different studies,

Mohajerani et al. (2019) begins by breaking each delineated
:::::::
predicted

:
front to 1000 smaller segments within a small buffer10

from the fjord walls and calculating the mean deviation between the segments of the true and
::::::::
predicted

:::
and

::::::::
manually

:
delineated

fronts. Our
:::
The method begins by averaging the mean distance between each pixel of the delineated

::::::::
predicted front and the

closest pixel of the true
::::::::
manually

::::::::
delineated

:
front as detailed in Sect 4.1. While the line-segment methodology of Mohajerani

et al. (2019) provides a stricter estimate by enforcing close agreement between corresponding front segments, our
::
the

::::::::
CALFIN

method allows for non-aligned evaluation of the mean distance error. Although both implementations quantify the differences15

between the lines, the differences in implementation should still be considered when evaluating the comparison below.

Table 3. M-VS Validation Output Results
::::
M-VS

:::::::::
Validation

::::::
Output

::::::
Results: Accuracy and error metrics for the CALFIN-NN and the M-NN

models on the M-VS. Again, some metrics are not provided by Mohajerani et al. (2019), so they are omitted from this table.

Validation Set Training Set Model Mean Distance Median Distance IoU Front IoU Ice/Ocean

M-VS CALFIN CALFIN-NN 2.56 px, 97.72 m 2.55 px, 97.44 m 0.3332 N/A

M-VS Mohajerani M-NN 1.97 px, 96.31 m N/A N/A N/A

Across all 10 test images in the M-VS, CALFIN-NN attains a 2.56 pixel (97.72 meter) mean distance between the predicted

and the ground truth
:::::::
manually

:::::::::
delineated fronts. This approaches the level of accuracy achieved in the original study, which is

1.97 pixels (96.31 meters). This supports our
:::
the findings that the CALFIN-NN architecture generalizes to new data well. Note

that CALFIN-NN’s larger network size requires additional training data to avoid overfitting,
::::::::::
over-fitting,

::
or

:::::::::::
memorizing,

:::
the20

::::::
training

:::::
data, which could explain the slightly lesser accuracy when compared to the M-NN. In summary, this comprehensive
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model inter-comparison supports the hypothesis that the CALFIN-NN model improves on existing studies and is generalizing

well.

7 Conclusion

Overall, we accomplish our
::
the

:
goal of automatically delineating calving fronts from satellite imagery . Our

::
is

::::::::::::
accomplished.

:::
The

::::::::
CALFIN

:
method uses the cutting-edge in deep learning architectures, allowing for robustness to minor cloud cover,5

Landsat 7 Scanline Corrector Errors, and illumination changes. Future work may entail accuracy improvements, expansion

of included domains, usage of SAR data sources, and near-real time data products. Within the community, we anticipate the

benefit
:::
the

:::::::
benefits of standardized training, validation sets, and outputs/metadata . We also anticipate the

:::
are

::::::::::
anticipated.

:::
The

:
community’s development of new automated extraction studies, such as grounding line delineation, iceberg tracking, and

sea ice mélange measurements. Our ,
::
is

::::
also

::::::::::
anticipated.

::
A key takeaway is the maturation of neural networks for automated10

calving front detection. Specifically, a well trained network now approaches human levels of accuracy in picking arbitrary

glacial calving fronts. This reinforces existing studies on the viability of the methodology, and paves the way for applications

on other data processing tasks. Ultimately, this work showcases the state-of-the-art in automated calving front detection, and

provides a new database of glacial termini positions for the cryosphere community.

Code and data availability. The code used to automate the implement the CALFIN pipeline is freely available at github.com/daniel-cheng/CALFIN.15

It is written in Python 3, using the Keras & Tensorflow libraries. The data generated by CALFIN is currently available at datadryad.org/stash/share/Q9guqsrdoB7v2a9JSLsgoV6HY_RS8RkCDvStx2eWsBg.
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