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Abstract. We consider the problem of inferring the basal
sliding coefficient field for an uncertain Stokes ice sheet for-
ward model from synthetic surface velocity measurements.
The uncertainty in the forward model stems from unknown
(or uncertain) auxiliary parameters (e.g., theology param-
eters). This inverse problem is posed within the Bayesian
framework, which provides a systematic means of quanti-
fying uncertainty in the solution. To account for the asso-
ciated model uncertainty (error), we employ the Bayesian
10 Approximation Error (BAE) approach to approximately pre-
marginalize simultaneously over both the noise in measure-
ments and uncertainty in the forward model. We also carry
out approximative posterior uncertainty quantification based
on a linearization of the parameter-to-observable map cen-
15 tered at the maximum a posteriori (MAP) basal sliding coeffi-
cient estimate, i.e., by taking the Laplace approximation. The
MAP estimate is found by minimizing the negative log poste-
rior using an inexact Newton conjugate gradient method. The
gradient and Hessian actions to vectors are efficiently com-
20 puted using adjoints. Sampling from the approximate covari-
ance is made tractable by invoking a low-rank approxima-
tion of the data misfit component of the Hessian. We study
the performance of the BAE approach in the context of three
numerical examples in two and three dimensions. For each
s example the basal sliding coefficient field is the parameter
of primary interest, which we seek to infer, and the rheol-
ogy parameters (e.g., the flow rate factor, or the Glen’s flow
law exponent coefficient field) represent so-called nuisance
(secondary uncertain) parameters. Our results indicate that
a0 accounting for model uncertainty stemming from the pres-
ence of nuisance parameters is crucial. Namely our findings
suggest that using nominal values for these parameters, as

o

is often done in practice, without taking into account the re-
sulting modeling error, can lead to overconfident and heavily
biased results. We also show that the BAE approach can be
used to account for the additional model uncertainty at no
additional cost at the online stage.

1 Introduction

Inferring the basal sliding coefficient field using both the lin-
ear and nonlinear Stokes ice sheet model from noisy surface
velocity measurements, has received considerable attention
in recent years, see for example Truffer (2004); Raymond
and Gudmundsson (2009); Pollard and DeConto (2012);
Isaac et al. (2015b); Morlighem et al. (2013); Zhao et al.
(2018a, b); Giudici et al. (2014); Petra et al. (2012, 2014);
Isaac et al. (2015a). The standard approach to this problem
invariably assumes that the other parameters of the ice, such
as those controlling the rheology, are known precisely. This
is particularly common, for example, in the case of the so-
called flow rate factor and the Glen’s flow law exponent,
where nominal values such as A=10716 Pa=" a~! and
n = 3, respectively, are prescribed; we refer, e.g., to Isaac
et al. (2015a); Petra et al. (2014); Raymond and Gudmunds-
son (2009); Truffer (2004); Morlighem et al. (2013); Zhu
et al. (2016); Zhao et al. (2018b); Giudici et al. (2014); Pol-
lard and DeConto (2012). The inference problem is made sig-
nificantly more challenging (both theoretically and numeri-
cally) by allowing the rheology parameters to be uncertain,
and spatially varying. One possible approach to solve the
problem is to infer both the basal sliding coefficient and the
rheology parameters. However, this considerably increases
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both the ill-posedness of the inverse problem and the asso-
ciated computational costs. For most ice sheet inverse prob-
lems considered in the literature the field of interest is the
basal sliding parameter, which arguably presents the largest
uncertainty in determining the ice flow rate.

It is well documented that, in practice, the rheology pa-
rameters of ice sheets are not known exactly (e.g., Bons et al.,
2018; Marshall, 2005; Gillet-Chaulet et al., 2011, 2012; Cuf-
fey and Paterson, 2010; Brondex et al., 2019; Raymond and
10 Gudmundsson, 2011). Compounding this issue is the fact

that measured ice velocities can be heavily influenced by

rheology parameters (Schlegel et al., 2015; Bulthuis et al.,

2019). This fact was demonstrated in Petra et al. (2012),

where the authors used the same Stokes ice sheet model as in
1s the current paper to reconstruct reasonable estimates of the

Glen’s flow law exponent from noisy surface velocity mea-

surements, suggesting that the surface measurements are in-

deed sensitive to changes in the Glen’s flow law exponent
field. Despite these findings, it is standard in the literature to
20 assume that rtheology—among other—parameters of the ice
are known a priori, see for instance Bons et al. (2018); Mar-
shall (2005); Gillet-Chaulet et al. (2011, 2012); Cuffey and
Paterson (2010); Brondex et al. (2019); Van der Veen (2013).

In this paper, we treat the rheology parameters (specifi-
cally the Glen’s flow law exponent and the flow rate fac-
tor fields) as auxiliary (nuisance) parameters, i.e., parameters
which are not of primary interest. However, fixing these aux-
iliary parameters at incorrect, though possibly well-justified
values, often induces so-called modeling errors. It is well un-
a0 derstood, though, that the solutions to inverse problems are
generally sensitive to modeling errors, which—if not prop-
erly accounted for—can lead to inaccurate, nonphysical, and
in some cases, meaningless solutions of the inverse prob-
lem (Brynjarsdéttir and O’Hagan, 2014; Giudici et al., 2014;
Kaipio and Somersalo, 2007, 2005). From a statistical view-
point, fixing auxiliary parameters to nominal values suggest
that these parameters are known exactly, and hence neglects
all associated uncertainties. This in turn often results in bi-
ased and overconfident estimates for the parameters of inter-
w0 est, see for example Kaipio and Somersalo (2007); Kaipio

and Kolehmainen (2013); Nicholson et al. (2018), and the

references therein.
We carry out estimation of the basal sliding coefficient
within the Bayesian framework (Kaipio and Somersalo,
45 2005; Stuart, 2010), which is particularly well suited to in-
corporating various sources and types of uncertainties, in-

cluding those resulting from model errors (Tarantola, 2005;

Kaipio and Somersalo, 2005, 2007). Moreover, to ensure

the work here is readily transferable to inference problems
s0 in large-scale ice flow problems, such as those discussed

in Isaac et al. (2015a), we make use of the computational
framework proposed in Bui-Thanh et al. (2013) and Petra
et al. (2014) for handling infinite-dimensional Bayesian in-
verse problems (Stuart, 2010). This approach, combined with
ss adjoint-based means to compute the derivative information
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needed by the optimization solver, ensures mesh indepen-
dence and computational efficiency.

To account for the uncertainty in the rheology param-
eters we utilize the Bayesian Approximation Error (BAE)
approach (Kaipio and Somersalo, 2005, 2007; Kaipio and
Kolehmainen, 2013), which, broadly speaking, lumps all
modeling and measurement uncertainties into a single ad-
ditive total error term. The total error can then be approx-
imately marginalized over, in a similar manner to how stan-
dard additive errors are dealt with (Kaipio and Kolehmainen,
2013). The BAE approach is particularly attractive computa-
tionally as,

(a) the approximate marginalization can be carried out prior
to data acquisition, i.e., premarginalization, and

(b) the equations to be solved in the adjoint-state approach
maintain the same general form (Nicholson et al., 2018).

The BAE approach has been used in a variety of settings, see
for example Kaipio and Kolehmainen (2013); Arridge et al.
(2006); Castello and Kaipio (2019); Lamien et al. (2019),
among others, and the references therein. A particularly rel-
evant, and recent, example is the application of the approach
to the so-called Robin inverse problem encountered for in-
stance in corrosion detection (Nicholson et al., 2018). There
the parameter of interest is also a Robin-type boundary con-
dition on an inaccessible part of the domain, while the nui-
sance parameter is the (electrical or thermal) conductivity of
the domain.

To study the performance of the BAE approach, we formu-
late and solve three ice sheet flow model problems involving
syhthetic data. Our results suggest that simply setting rheol-
ogy parameters to nominal values can result in severely mis-
leading estimates of the basal sliding coefficient field, and as-
sociated posterior uncertainty, if the additional uncertainty in
the rheology parameters is not accounted for. In comparison,
we show that incorporating the additional modeling uncer-
tainties using the BAE approach leads to sensible estimates
of the basal sliding coefficient and reasonable posterior un-
certainty, at no additional online cost. We place particular
emphasis on the feasibility of the posterior uncertainty esti-
mates, in particular, on how well the true parameter is con-
tained within the posterior distribution.

Contributions. In previous work, we addressed the prob-
lem of inferring the basal sliding coefficient field from sur-
face velocity measurements in the context of ice sheet flow
in a deterministic, moderate scale, synthetic observational
data setting in Petra et al. (2012), in a Bayesian inference
and infinite-dimensional setting in Petra et al. (2014), and
more recently in a large-scale, real data setting in Isaac et al.
(2015a). Here the goal is to extend this inversion framework
to account for additional uncertainties in the ice sheet model.
The main contributions of this paper are as follows. Firstly
we show that setting rheology parameters to values com-
monly found for ice sheet models in the literature can lead
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to erroneous posterior estimates of the basal sliding coeffi-
cient if the underlying uncertainty in the rheology parameters
is not accounted for. Secondly, we show that this situation
can be remedied by employing the BAE approach to pre-
marginalize over rheology uncertainties. Thirdly, we show
that this approach requires no additional computational re-
sources or time at the online stage, as all computations re-
quired for premarginalization are carried out prior to the ac-
quisition of data.

Organization of paper. The paper is organized as fol-
lows. In Section 2, we outline the forward nonlinear Stokes
flow equations for ice sheet problems, while in Section 3 we
briefly review the Bayesian framework for inverse problems,
the computation of the maximum a posteriori estimate and
the approximate posterior covariance. In Section 4, we show
how to apply the BAE approach to premarginalize over auxil-
iary parameters. In Sections 5 and 6, we formulate and solve
three ice sheet inverse problems and study the performance
of the proposed method. Finally, Section 7 provides conclud-
ing remarks.

2 Forward ice sheet flow model

In this section, we describe the forward ice sheet flow prob-
lem that is used for the inference of the basal sliding coeffi-
cient field under uncertain rheology. As in Petra et al. (2012,
2014); Isaac et al. (2015a), we model the flow of ice as an
isothermal, viscous, shear-thinning, incompressible fluid via
the balance of mass and linear momentum (Hutter, 1983;
Marshall, 2005; Paterson, 1994), namely

V-u=0
—V.ou=pg

in Q,
in £,

(1a)
(1b)

where u denotes the velocity field, o,, the stress tensor, p
the density of the ice, and g gravity. The stress, o, can be
decomposed as o, = T, — Ip, where 7, is the deviatoric
stress tensor, p the pressure, and I the identity tensor. The
domain considered in this paper is Q2 = [0, L]~ x [0, H], for
d =2 or d = 3. We employ the Glen’s flow law (Glen, 1955)
which relates the stress and strain rate tensors by

1—n
Tu=2m(w)é, with n(u)=-A"7"& (1c)
where 7 is the effective viscosity, A is the flow rate fac-
tor, &y = 2(Vu+VuT) and &y = Str(é2) are the strain
rate tensor and its second invariant. Above, n = n(x) is the
spatially varying Glen’s flow law exponent, which satisfies
n(x) > 1 for all z € Q to ensure the ice is a shear-thinning
fluid (Glen, 1955).

Inline with Petra et al. (2012), the top boundary I'y is
equipped with a traction-free boundary condition, all lateral
boundaries I';, are equipped with periodic boundary condi-
tions, and on the basal surface I';, we apply a no flow condi-

Figure 1. Schematic of a two-dimensional slab of ice (used in Ex-
amples 1 and 2). The schematic can also be thought of as a cross
section through the three-dimensional slab of ice used for Exam-
ple 3. The blue circles show representative (random) measurement
locations, but do not necessarily coincide with the actual measure-
ment locations used in the examples. 0 is the slope of the ice slab.

tion for the normal component of u along with a linear slid-
ing law for the tangential components. That is, the boundary
conditions are given by

oun =20 on Iy, (1d)

u|Fl = u|Fr and o'un|Fl = o'un|r,. onTp, (1e)
u-n=>0 onI,, (1f)
To,n+exp(f)Tu=0 onTI',, (1g)

where (3(z) is the log basal sliding coefficient field', n is the
outward normal unit vector, and T := I — nn” is the pro-
jection onto the tangential plane. Above we generically used
I'} and I, to denote pairs of opposing boundaries on I';, on
which periodic conditions are imposed. We note that 3 gener-
ally represents a combination of complex phenomena, see for
example Schoof (2005, 2010); Perego et al. (2014). Further-
more, the methods and results discussed in the current paper
do not rely on the particular top and lateral boundary con-
ditions specified. As such, alternative boundary conditions
could also be imposed on I'y and I',,. For a simple illustra-
tion of the problem set up (shown in two dimensions) see
Fig. 1.

The weak form of the Stokes equation. In what follows,
let us introduce the weak form of (1), as it is the starting
point for both the finite element discretization of the forward
model and the computation of the gradient and action of the
Hessian required for the solution of the inverse problem us-
ing the adjoint-state method, see e.g., Isaac et al. (2015a).
Multiplying the nonlinear Stokes system (1) with arbitrary
tests functions @ and p and using integration by parts over
) (Gockenbach, 2006; Elman et al., 2005), the weak form of

'The ‘exp’ function is used to ensure the basal sliding coeffi-
cient remains positive. For simplicity, in what follows, we will refer
to [ as the basal sliding coefficient.
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4 O. Babaniyi et al.: Inferring the basal sliding coefficient under rheological uncertainty

(1) is given by: Find (u,p) € W =V x Q such that

/Qn(u)éu (€q dmf/(pv-iwrﬁv-u) dx
Q Q

+/exp(ﬁ)Tu~T'& ds:/pg~'&da3,
Iy Q

(@)

for all (w,p) € W. Inline with Elman et al. (2005);
Isaac et al. (2015b), we set V:={u e (H'(Q)*: ul;, =
ulp ,w-n|,, =0} and Q:= (L*(Q))% ford=2o0rd=3.

Discretization. To guarantee the inf-sup stability (well-
posedness) of the discretized forward problem, we discretize
the velocity and pressure using Taylor-Hood finite elements,
i.e., quadratic elements for each velocity component, and
linear elements for pressure, see for example Elman et al.
(2005). The basal sliding coefficient field is discretized us-
ing continuous linear Lagrange basis functions {¢;(s)}]",,
ie., Bn(s) =>_"", B;¢;(s), where s € I'},. In what follows,
we denote by 3= (81,02,-..,8m) € R™ the discrete basal
sliding coefficient field.

3 Inferring the basal sliding coefficient field

In this section, we summarize the Bayesian inference frame-
work, which will be used in combination with the Bayesian
approximation error approach, to account for uncertainties
in rheology parameters. To allow for systematic incorpora-
tion of uncertainties, we consider the inverse problem in the
Bayesian framework (Tarantola, 2005; Kaipio and Somer-
salo, 2005). In this framework, the solution of the underlying
statistical inverse problem is given by the posterior probabil-
ity density. For nonlinear inverse problems with expensive
forward models and high-dimensional parameters (as is the
case for ice sheet inverse problems), fully characterizing the
posterior is typically not tractable. Consequently, we com-
pute the Laplace approximation of the posterior, which re-
quires only the maximum a posteriori (MAP) estimate, i.e.,
the basal sliding coefficient which maximizes the posterior
density and the approximate posterior covariance.

We use Bayes’ Theorem to write the solution of the
Bayesian inverse problem as the posterior measure, which
describes the probability law of the parameter conditioned
on measurements (Tarantola, 2005; Stuart, 2010). Formula-
tion of the posterior relies on both the prior density and the
likelihood function, which we outline below. We note that,
initially we pose the problem in an infinite-dimensional set-
ting, which is particularly well suited to large-scale prob-
lems (e.g., Bui-Thanh et al., 2012; Isaac et al., 2015a), as it
ensures discretization invariance and well-posedness of the
Bayesian inverse problem (Stuart, 2010).

3.1 The prior

We postulate a Gaussian prior density on the (spatially vary-
ing) basal sliding coefficient, i.e., 3 ~ N (Bs,Cg), with co-
variance operator Cg, and mean value 3, € & where £ is

defined as the range of Cé , see for example Stuart (2010);
Bui-Thanh et al. (2013) for more details. To ensure the in-
verse problem is well-posed in infinite dimensions, we use
a squared inverse elliptic operator to define the prior co-
variance operator2 (e.g., Flath et al., 2011; Bui-Thanh et al.,
2013; Petra et al., 2014).

More specifically, we take Cs = .A~2, where A is the sec-
ond order elliptic differential operator defined by
AB:=—=V-(vsVB)+638 onlhy, 3)
where the strictly positive parameters v (m?) and dg (adi-
mensional) control the correlation length and the marginal
variance. Specifically, the correlation length (defined as the

distance for which the two-points have a correlation coef-
ficient of 0.1) is proportional to /vg/dg (m), while the

d—1
variance is proportional to 652 (vs/d3) = , see for exam-

ple Khristenko et al. (2019) and the references therein. This
choice of prior covariance operator is particularly well suited
to large-scale problems, as discretization of A (using a fi-
nite element discretization) is sparse, see e.g. Lindgren et al.
(2011); Osborn et al. (2017). As discussed in Khristenko
et al. (2019); Daon and Stadler (2018); Roininen et al.
(2014), suitable boundary conditions need to be stipulated to
reduce boundary artifacts. In this work we choose to equip A
with periodic boundary conditions on OI'},, which parallels
the periodic boundary condition (le) of the forward model.
We note that the discrete representation of the prior covari-
ance operator, denoted I',, is defined as (e.g., Bui-Thanh
et al., 2013; Petra et al., 2014; Villa et al., 2020)

[I‘;rl]l] = /¢1<8)A2¢](8)d8 Za] € {1727' . am}' 4
Iy

Therefore, the discrete parameter 3 follows a Gaussian dis-
tribution N/ (3,, T}, ), with prior mean 3, € R and covari-
ance I'p;. That is the prior density of 3 is given by

1
o) xp{ 3 18 8.1 | )

where H'”F;& denotes the I‘grl weighted 5 inner product.

%For cases in which 3 has only one spatial dimensional, an in-
verse elliptic operator, i.e., without the squaring, also results in a
valid covariance operator, see (Petra et al., 2014). However, in the
current paper we consider cases in which /3 is one-dimensional and
two-dimensional, and thus for ease of exposition, and in the inter-
est of space, we limit the choice of prior covariance operator to the
squared inverse elliptic operator.
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3.2 The data likelihood

We assume the velocity measurements, denoted d, are cor-
rupted by additive noise and are related to the basal sliding
coefficient through
d=F(B)+e, (6)
where F:L?(Q) —R? is called the parameter-to-
observable map, and e € R? denotes the noise in the
measurements.

As is somewhat common in the literature (e.g., Raymond
and Gudmundsson, 2009; Petra et al., 2012, 2014), we take
the data to consists of (noisy) point-wise observations of each
component of the velocity field on the top surface®. In dis-
crete settings, we compute F(3) by first solving the Stokes
equations (1) and then applying a linear observation operator
that extracts the velocity at the measurement locations. We
assume the noise, e, is independent of the basal sliding co-
efficient, has zero mean, and is Gaussian, i.e., e ~ A/(0,T,).
The likelihood is then of the form (e.g., Tarantola, 2005; Kai-
pio and Somersalo, 2005)

me(d}f) xexp {3 17(8) .+ . )

3.3 The posterior

By applying Bayes’ theorem, the posterior density of 3 is
proportional to the product of the prior density (5) and the
data likelihood (7). This is given by

1 1
s 81d) xexp { =3 1F(8) — s - 318,18 |

®)

The corresponding MAP estimate is then defined as
. 1 2 1 2
Buiap = argm1n§ |F(B) — d”r;l + ) 18 —ﬁ*“r;} -9
BeR™

We note that the problem of finding the MAP estimate,
defined in (9), reduces to a deterministic inverse problem.
To solve this problem we use an inexact Newton conjugate
gradient (CG) method, as in Petra et al. (2012). To derive
the required first (i.e., gradient) and second (i.e., Hessian)
derivative information needed by Newton’s method, we use
an adjoint-based method, and refer the reader to Petra et al.
(2012) for the derivation and expressions of the required
derivatives.

3Vertical velocity measurements may not always be available,
however as shown in Raymond and Gudmundsson (2009), these
measurements are fairly insignificant. Furthermore, the assumed
noise level in the current paper is larger than the vertical velocities.

3.4 Quantifying posterior uncertainty

To (approximately) quantify the resulting uncertainty in the
inferred basal sliding parameter, we invoke a local Gaussian
approximation of the posterior (i.e., the Laplace approxima-
tion). That is, the solution to the Bayesian inverse problem
is now given by a Gaussian distribution with mean Byap
and covariance I',, given by the inverse of the (Gauss-
Newton) Hessian of the negative log-posterior, evaluated at
the MAP estimate. More specifically, we make the approxi-
mation, B|d ~ N (Byiap: I'po), With By ap given by (9), and

Tho = H(Byap) " = (H(Byap) + T )

(10)
= (F"(Byap) T, ' F(Byap) + P;rl)fl,

where H (3) is the Gauss-Newton Hessian of the data mis-
fit term (i.e., the negative log-likelihood), and F' is the Ja-
cobian matrix of the parameter-to-observable map, F (e.g.,
Bui-Thanh et al., 2013).

The construction of the posterior covariance matrix (i.e.,
the inverse of the Hessian) is prohibitive for large-scale prob-
lems since its dimension is equal to the dimension of the pa-
rameter. To make operations with the posterior covariance
matrix tractable, we exploit the fact that the eigenvalues of
H (B ap) collapse to zero rapidly, since the data contain
limited information about the (infinite-dimensional) param-
eter field. Thus a low-rank approximation of the data misfit
component of the Hessian H can be constructed as in Isaac
et al. (2015a) by solving the generalized eigenvalue problem

HV,=T_'V,A,, (11)

where A, = diag(A1, A2,...,A\r) € R"™*" is a diagonal ma-
trix collecting the r largest generalized eigenvalues, \;, and
V,=[v1,va,...,v,] €ER™*" is the matrix collecting the
corresponding I‘;rl -orthonormal eigenvectors, v,;. Above,
the truncation index r is chosen such that the remaining
eigenvalues, \;, for i =r+1,...,m, are sufficiently smaller
than one (often chosen such that \; < ¢, for some 0.01 < ¢ <
1 (e.g., Isaac et al., 2015a; Flath et al., 2011)).

Substituting H ~ TV, A, VIT_ ! into (10) and us-
ing the Sherman-Morrison-Woodbury identity (Golub and
Van Loan, 1996), after a few algebraic manipulations (e.g.,
Isaac et al., 2015a), we obtain the following low rank-based
approximation of the posterior covariance (under the Laplace
approximation)

Ty~ Ty —V,D, V], (12)

where D, =diag(A1/(M+1), /(A +1),..., A /(A +
1)) e R,
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4 Premarginalization over auxiliary parameters and
the Bayesian approximation error approach

The Bayesian approximation error (BAE) approach (Kaipio
and Somersalo, 2007, 2005; Kaipio and Kolehmainen, 2013)
can be used to approximately premarginalize over auxiliary
parameters. The BAE approach essentially combines all un-
certainties, including those generated by fixing uncertain pa-
rameters, into a single additive fotal error term. The total er-
ror term can then be premarginalized over, i.e., marginalized
over before the acquisition of data. We next outline the pro-
cess.

We denote by a the auxiliary parameters, which in the cur-
rent study are defined over the entire computational domain,
), and are assumed to be Gaussian distributed with covari-
ance operator C, = £~ 2, where L is defined by
La:=-V " (v,Va)+d,a, inQ, (13)
and mean value a,. Inline with the forward problem, L is
equipped with periodic boundary conditions on the lateral
boundaries of {2, while on the top and bottom boundaries
we enforce Robin boundary conditions. Note that explicit
knowledge of the distribution of a is not needed, we only re-
quire the ability to sample realizations of a. In what follows
we denote by a any (possibly more than one) discretized aux-
iliary (uncertain) parameter, such as the rheology parameters.

Next, we let F (B,a) denote an accurate parameter-to-
observable mapping, so that the relationship between the pa-
rameters and the measured data is given by
d=F(B,a)+e. (14)
Then, with the aim of avoiding so-called joint inversion, i.e.,
estimating 3 and a simultaneously, we introduce the approx-
imate parameter-to-observable mapping, F(8) = F(8, a..).
That is, the approximate parameter-to-observable map, is the
accurate parameter-to-observable map, but with the auxiliary
parameters fixed to the associated mean value, i.e., a = a,.
Fixing a to some other nominal value is also possible.

The goal is then to carry out estimation of 3 using only
the approximate parameter-to-observable map, F(3), while
taking into account the (statistics of) the discrepancy between
the models. To this end, equation (14) is reformulated as
d=F(B,a)+e=F(B)+e+e=F(B) +v, (15)
where € = F(8,a) — F(B) is known as the approximation
error and v = e + € as the total error (e.g., Nicholson et al.,
2018; Tarvainen et al., 2010). Next, the approximation error
is approximated as a Gaussian with mean €, and covariance
T., ie., € ~ N (g4, ). Though, formally, the approxima-
tion error depends on the parameters, i.e., € = (3, a), a fur-
ther approximation, termed the enhanced error model or the
composite error model approximation, is often made, which
approximates € as independent of all parameters (Kaipio and

Kolehmainen, 2013). This leads to the total errors being dis-
tributed as v ~ N'(v,,T,) = N(e,, T +T.).

Use of the BAE approach results in an updated posterior
density for 3;

1 1
BAF(8) e exp{ 3 I7(8) —d vl — 18- B |

(16)

which is obtained by explicit marginalization over v (Kaipio
and Kolehmainen, 2013). The updated MAP estimate is then

BA

BER™
(17)

This updated expression for the MAP estimate is only a
slight modification of the original MAP estimate given in
(9), thus reformulating the corresponding adjoint, incremen-
tal forward, and incremental adjoint equations is essentially
trivial. Lastly, the updated posterior covariance matrix (under
the Laplace approximation) is now given by

FE?E = (F"(Byap)T, 'F(Byap) + T, )7 (18)

4.1 Computing the approximation error statistics

In the current paper, all parameters are taken to have Gaus-
sian (prior) distributions, i.e., 2 ~ N (z,C,), with z = (8, a).
We also assume /3 and a are independent, thus specifying S,
a, Cg, and C, fully describes the prior density.

Unlike the statistics of the parameters and the measure-
ment noise, the mean (¢,) and covariance (I';) of the approx-
imation errors must in general be estimated based on (Monte
Carlo) samples. That is,

1N
- (0)
Ex = ;—1 e\,

with NV € N the number of samples, (¥ = F(8) a®) —
.7-"(5(6)), for¢{=1,2,...,N, where 8 and a®) are samples
drawn from the joint prior density, and E = [¢(") —¢,,e(?) —
Exyenns eW) — €.]. The samples, ,B(e) and a9, are generated
efficiently as in (Villa et al., 2020, Equation (30)).

It’s worth noting, that all sampling and computations of
the approximation errors and the associated statistics can be
carried out prior to the acquisition of any data, and is thus
often termed offline computations (Kaipio and Kolehmainen,
2013). Furthermore, though the computational cost per sam-
ple of € in the current paper is two forward (nonlinear) Stokes
solves, the sampling procedure is embarrassingly parallel,
i.e., each sample can be carried out independently, and in
practice, only a fairly small number of samples is required.

We conclude this section by giving several rules of thumb
relating to the use of the BAE approach, for more details

1
and I'.=-—FEET,

N-1 (19)
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see Kaipio and Kolehmainen (2013). Firstly, the total num-
ber of samples required to accurately construct the statistics
of the approximation errors is generally (often substantially)
less than N = 1000. Secondly, two measures have been de-
veloped to identify when neglecting the approximation er-
rors can result in misleading, and potentially infeasible, re-
sults (Kaipio and Kolehmainen, 2013). Specifically, if either

o

trace(T.) < |le.||* + trace(T;) (20)
holds, or if for any w € RY,
ww! Tow < (whe,)? + w!'T.w, 201

holds, then the approximation errors are said to dominate the
noise, and ignoring them often gives erroneous results. Intu-
itively, if the approximation errors dominate the noise, then
ignoring them often results in overconfidence in the approx-

1s imate forward model, in turn leading to overly confident and
biased posterior estimates.

5 Numerical examples

In this section, we outline three numerical examples to as-

sess the applicability, performance, and robustness of the
20 BAE approach to account for uncertain rheology parameters.
Several additional examples are provided in the accompa-
nying Supplementary Material, as detailed in Section 6.4.In
all cases the parameter of interest is the basal sliding coef-
ficient, 5. Any other unknown/uncertain parameters are (ap-
proximately) premarginalised over using the BAE approach,
as outlined in Section 4.

The forward problems considered here are based on the
models used in the Ice Sheet Model Intercomparison Project
for Higher-Order Models (ISMIP-HOM) benchmark study
a0 carried out in Pattyn et al. (2008). Accordingly, all problems
are considered in box-like geometries, i.e., 2 = [0, L]?~1 x
[0, H], for d =2 (in Examples 1 and 2) or d = 3 (in Exam-
ple 3). Furthermore, in all model problems we take the ice
slab to be set on an incline plane with slope 6§ = 0.1°, the
density of the ice to be p = 910 kg m~<, and the gravitational
acceleration constant to be g = 9.81 m s~2. For all examples
we set the length at I = 10* m, while for Examples 1 and 2,
we set H = 250 m, and for Example 3, we set H = 103 m.
In Fig. 1 we show a two-dimensional schematic of the model
40 problems set up.

The true basal sliding coefficient fields used for each ex-
ample are based on those in Petra et al. (2012). Specifically,
letting w = 27/ L, for Examples 1 and 2 (posed in two di-
mensions) we set

B(s) =7+ sin(ws),

2!

a

3

&

Vs €Ty, (22)

4

o

as shown in Fig. 7, while in Example 3 (posed in three di-
mensions) we set

B(s) =7+ 3sin(wsy)sin(wss), VseTly, (23)

as shown in Fig. 13.

For all numerical experiments we use synthetic measure-
ments; these are randomly placed noisy point-wise measure-
ments of each component of the velocity on the top surface of
the domain, i.e., at points on I';. Examples 1 and 2 are carried
out based on ¢ = 80 measurement locations, while for Ex-
ample 3 we use ¢ = 100 measurement locations. These mea-
surements are obtained by adding zero mean white noise to
the solution of the forward problem. Thus the additive noise
is of the form e ~ AN (0,I'.) with covariance matrix I, =
521. We take 6, to satisfy d, = (1/100) x (max(Bu(Birue)) —
min(Bu(Birue))), i-€., the noise level is 1% of the range of
the noiseless synthetic measurements. The precise noise level
is problem specific, however, when using GPS techniques
and InSAR velocity measurements, a 1% noise level is re-
alistic; see for example Martin and Monnier (2014) and the
references therein.

For all examples considered here, the prior mean for the
basal sliding coefficient, 3, is set at 3, = 7. On the other
hand, the prior covariance operator, Cg, is identical for Ex-
amples 1 and 2, while for Example 3 different controlling pa-
rameters are used, details are provided in Table 1. Along with
the true basal sliding coefficient used in Examples 1 and 2,
we also show the prior distribution and three samples drawn
from the prior in Fig. 7. In Fig. 12, we show four samples
from the prior used for Example 3.

5.1 Example problems

We now give the specific details of each model problem, and
make apparent which parameters we treat as auxiliary pa-
rameters, and subsequently premarginalize over. Key details
about each model problem are summarized in Table 1.

Example 1: Uncertain flow rate factor in the
two-dimensional linear Stokes ice sheet model

The first example is carried out assuming a linearized
(Stokes) ice sheet model in two-dimensions. Specifically,
we set n =1 in (1), resulting in the effective viscosity be-
ing given by n(x) = 2 A(x)~'. The flow rate factor, 4, is
taken to be unknown and spatially varying, as is often the
case in reality. We represent the flow rate factor as A =
Apexp(—na(zx)), with Ag =2.140373 x 10~7 Pa~! a=!,
n =1 is the Glen’s flow law exponent, and the pre-factor,
exp(—na(x)), taking the role of the auxiliary parameter,
which will subsequently be premarginalized over using the
BAE approach. The pre-factor accounts for several physical
and computational phenomena, such as the Arrhenius rela-
tionship between A(x) and the ice temperature (e.g., Cuffey
and Paterson, 2010; Zhu et al., 2016), and the use of so-called
enhancement factors (Cuffey and Paterson, 2010; Ma et al.,
2010). The ‘exp’ function is used to ensure the pre-factor
remains positive.

50

55

60

65

70

75

80

85

90

95



8 O. Babaniyi et al.: Inferring the basal sliding coefficient under rheological uncertainty

x [km]

x [km]

Figure 2. Samples of the flow rate pre-factor for Example 1. Left
column: Samples for Example 1a. Right column: Samples for Ex-
ample 1b. The samples in the top row are taken as the true flow rate
pre-factors. Note that the axes have been stretched in the y-direction
for ease of visualization.

The prior distribution of the flow rate pre-factor is set by
taking the prior mean to be a, = 0, while the controlling pa-
rameters of the prior covariance operator are given in Ta-
ble 1. The true pre-factor, and three other samples drawn

s from this prior distribution, are shown in Fig. 2 for Exam-
ples 1a and 1b. As outlined below, the computational meshes
used for Examples 1a and 1b are different. This leads to dif-
ferences in the true pre-factor used for both examples. This
in turn results in different synthetic data being used for the

10 inversions, however, in both cases the standard deviation of
the noise is 6. =~ 0.07. In both cases the flow rate pre-factor is
discretized using continuous quadratic Lagrange basis func-
tions.

We use this example to also demonstrate that the proposed

15 approach is independent of the discretization, a critical prop-
erty to have when aiming to solve large-scale problems. This
is done by considering identical problems on two different
levels of discretization. Specifically, we consider the prob-
lem on two structured meshes having substantially different

20 levels of discretization:

a) In the first case, the computational mesh consists of 2000
triangular elements, which results in the discretized veloc-
ity and pressure having 8400 degrees of freedom (dofs),
and 1100 dofs while the basal sliding coefficient has 100

> unknowns, and the flow rate pre-factor has 4200 dofs.

b) In the second case, the mesh is refined and it consists
of 8000 triangular elements, leading to 32800, and 4200
dofs for the discretized velocity and pressure, respec-
tively, while the dimensions of the basal sliding coeffi-

s  cient and the flow rate pre-factor are 200 and 16400, re-
spectively.

Example 2: Uncertain Glen’s flow law exponent in the
two-dimensional nonlinear Stokes ice sheet model

For the second example we use the nonlinear Stokes prob-
lem (1) as the governing equation. We take the Glen’s flow
law exponent, n(x), as an uncertain (and unknown) spatially
varying auxiliary parameter, i.e., we set a(x) = n(x), and
proceed to approximately premarginalize over it. The prior
mean of the Glen’s flow law exponent is set to a, = 3, while
the parameters controlling the covariance operator, C,, are
given in Table 1, and are chosen to ensure that the Glen’s
flow law exponents are inline with the literature. As noted,
a shear-thinning rheology is generally used when modelling
ice sheets, and we thus enforce 1 < n(x). In the current pa-
per this is done by rejection sampling, which corresponds to
constraining the function space in which n lies, see (Dashti
and Stuart, 2016, Equation (10.10)) for details, though other
methods could also be used, such as reparameterizing the
Glen’s flow law exponent.

We also use this example to study the effect of larger mod-
eling errors (i.e., excessive errors). That is, we consider the
case when the variance of the approximation errors is so large
that essentially all information in the data is washed out. As
we shall see, however, the resulting uncertainty estimates are
still feasible. To induce larger uncertainties (and resulting ap-
proximation errors) we alter the prior covariance operator for
the Glen’s flow law exponent, n, to favor more highly oscilla-
tory realizations. We can thus further divide Example 2 into
two cases:

a) modest approximation errors, and
b) excessive approximation errors.

The parameters used to control the covariance of the distribu-
tions on n are shown in Table 1. The true Glen’s flow law ex-
ponents used to generate the data for Examples 2a and 2b are
drawn from the respective distributions, which, along with
several other samples of the Glen’s flow law exponent from
each of the distributions, are shown in Fig. 3. In both cases
the Glen’s flow law exponent is discretized using continu-
ous linear Lagrange basis function, while the computational
mesh used is the same as that used in Example 1a. Finally, in
Example 2a we have §, ~ 0.04 while in Example 2b we have
6. ~ 0.05.

Example 3: Uncertain flow rate factor in the
three-dimensional nonlinear Stokes ice sheet model

In this example, we consider a three-dimensional (d = 3),
nonlinear analogue of Example 1. Specifically, we con-
sider (1) in three dimensions, with the Glen’s flow law ex-
ponent set to n = 3. Similarly to Example 1, we suppose
the flow rate factor is spatially heterogeneous, unknown, and
parameterized as A = Agexp(—na(x)). Here the nominal
value for the flow rate factor is set to Ay = 10" 16 Pa=3 a~1,

the Glen’s flow law exponent to n = 3, and the pre-factor,
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X [km] x [km]

Figure 3. Samples of the Glen’s flow law exponent for Example 2.
Left column: Samples for Example 2a. Right column: Samples for
Example 2b. The samples in the top row are taken as the true Glen’s
flow law exponents. Note that the axes have been stretched in the
y-direction for ease of visualization.

Figure 4. Samples of the flow rate pre-factor for Example 3. The
top-left sample is taken as the true flow rate pre-factor. Note that
the domain has been stretched in the z-direction for ease of visual-
ization.

exp(—na(x)), takes into account several physical and com-
putational phenomena as described previously.

The mean value of the auxiliary parameter is set at a, = 0,
while the parameters controlling the distribution of the pre-
factor are given in Table 1. These values for the prior co-
variance operator of a ensure the flow rate values are inline
with those presented in the literature, see for example Ta-
ble 3.4 of Cuffey and Paterson (2010). In Fig. 4, we show
the true flow rate pre-factor (a sample from the prior) along
10 with three other samples from the associated prior density.

Unlike Example 1, the flow rate pre-factor in this example is

discretized using continuous linear Lagrange basis functions.

The computational mesh used consists of 19200 tetrahedral

elements, leading to 81600 dofs for the velocity, 3600 dofs
15 for the pressure, 27200 for the flow rate pre-factor, and 400

for the basal sliding coefficient.

3

5.2 Estimates and approximate posterior covariances

For each of the examples listed above, we compare the es-
timation results (MAP points and approximate posterior co-
variances) for three different approaches. Within each exam-
ple, for each of the approaches, the same prior distribution is
used for the basal sliding coefficient, thus it is only the as-
sociated likelihoods that differ. In our analysis we place par-
ticular emphasis on the feasibility of the posterior estimates,
that is, whether or not the computed posterior distributions
support the true basal sliding coefficient. The three different
approaches considered are:
a) The accurate case (REF): in this case any auxiliary
parameters are set to their true values, i.e., we use
F (B, atrue) as the parameter-to-observable map. REF is
computed as a benchmark/reference. The resulting likeli-
hood for REF is

7REF(d|3) o exp {; H]:"(B,atme) . d’

2
} (24)
o

while the accurate MAP estimate and the corresponding
posterior covariance matrix are denoted by Byisp and
I‘EEF, respectively.

b) The conventional error model approach (CEM): this
approach uses the standard error model (induced by the
additive error, e), while using the approximate model,
F(B), where the auxiliary parameters are set to some
nominal value (such as a = a,). The likelihood is then of
the form
R xexp{ <3 17B) - dli | @9
We denote the corresponding MAP estimate and the pos-
terior covariance matrix by ﬁf&l\é and I‘SEM, respec-
tively.

¢) The Bayesian approximation error approach (BAE):
this approach also uses the approximate model, 7 (3), but
accounts for the approximation errors using the BAE ap-
proach outlined in Section 4. As given in (17), the updated
likelihood found using the BAE approach is

7TBAE(d|,E)') X exp {—; IF(B)— d+V*H%;1 }, (26)

with the MAP estimate and the posterior covariance ma-

trix denoted by ,81]\3/[13,;% and I‘E?E, respectively.

6 Results

Here we discuss and compare MAP estimates for the basal
sliding coefficient and the respective approximate posterior
covariance for each example. As alluded to previously, we
pay particular attention to the feasibility of the posterior un-
certainty estimates when comparing the results. We also ex-
amine the spectrum of the prior preconditioned misfit Hes-
sians, which gives further insight into the uncertainty, and
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Table 1. Details for each of the examples considered. The first column (Ex.) refers to the example number; the second, third, and fourth
columns give details of the forward model used, including which Stokes model is used, the aspect ratio, =/, and the definition of the
auxiliary parameter; the fifth, sixth, and seventh columns give the discretization details, including the number of degrees of freedom for
the velocities and pressure, the number of degrees of freedom of the unknown parameters ((3,a) dofs), and the number of measurements,
q; finally, the eighth through twelfth columns give details on the prior distributions for the unknowns, including the parameters controlling
the prior covariance operator for 3, the controlling parameters for the prior covariance operator of a, and the prior mean, a.. Note that in
Examples 2a and 2b the prior for the auxiliary parameter is further constrained by enforcing 1 < n(x), while for all examples the prior mean
for the basal sliding coefficient is taken as 8. = 7. Furthermore, the correlation length for 8 in Examples 1 and 2 is approximately 4900m,
while in Example 3 the correlation length is approximately 3200m. Finally, in the definition of the auxiliary parameter for example 3, the

Glen’s flow law exponent is n = 3.

Model details Discretization details Prior distribution details
Ex. Stokes L/a a (u,p) dofs (B,a) dofs q o 0p asx | Ya 0a
la Linear 2D 40 In(Ag/A) (8400, 1100) (100, 4200) 80 [ 840 | 7.0x10~> | 0 300 | 1.5x 1072
1b Linear 2D 40 In(Ag/A) (32800, 4200) | (200, 16400) | 80 | 840 | 7.0x 10~ | 0 300 | 1.5x 107 %
2a Nonlinear 2D | 40 n (8400, 1100) (100, 1100) 80 | 840 | 7.0x 1077 3 90 9.0x 1073
2b Nonlinear 2D | 40 n (8400, 1100) (100, 1100) 80 | 840 | 7.0x 1077 3 41 41%x1073
3 Nonlinear 3D 10 %ln(Ao/A) (81600, 3600) | (400,27200) | 100 | 7.5 | 7.5x10~" | 0 125 [ 25x10°°

the sensitivity of each approach. To conclude the section, we
give a brief comparison of the online computational costs (in
terms of linearized Stokes PDE solves) for computing the
MAP estimates.

To solve the optimization problems we use an inexact
Newton-CG method, see for example Petra et al. (2012). In
all cases we start the optimization procedure using the prior
mean for the initial estimate of the basal sliding coefficient,
while the prior covariance operator is used as the precondi-
tioner. The optimization is carried out using Gauss-Newton
Hessian approximation for the first five iterations and then
full Newton, combined with an Armijo linesearch (Nocedal
and Wright, 2006). Convergence is established when the gra-
dient has decreased by a factor of 105, relative to the norm of
the initial gradient.

The numerical results presented in this paper are obtained
using hIPPYlib (an inverse problem Python library (Villa
et al., 2018; Villa et al., 2020)). hIPPYlib implements state-
of-the-art scalable adjoint-based algorithms for PDE-based
deterministic and Bayesian inverse problems. It builds on
FEniCS (Dupont et al., 2003; Logg et al., 2012) for the dis-
cretization of the PDEs and on PETSc (Balay et al., 2009) for
scalable and efficient linear algebra operations and solvers
needed for the solution of the PDEs. Inline with the finite el-
ement discretization used for the weak form of the forward
problem (2), in what follows we use Taylor-Hood finite ele-
ments for the adjoint, incremental forward, and incremental
adjoint equations, as in Petra et al. (2012).

6.1 Example 1

In this example, we consider the case of an uncertain flow
rate factor in the two-dimensional linear Stokes ice sheet
model, and demonstrate the mesh independence of the ap-
proach. We begin by discussing the statistics of the ap-

proximation errors, which are induced by treating the un-
known flow rate factor as a known constant, specifically, A =
2.140373 x 10~ "Pa~'a~!. In Fig. 5, we show the marginal
distribution of the approximation errors in the z-component
(top) and y-component (bottom) for Example la (left) and
Example 1b (right). The approximation errors are similar for
the coarser mesh (Example 1a) and the finer mesh (Exam-
ple 1b), both having fairly constant mean and variance in
each component. For both examples, the mean of the approx-
imation errors in the x—component of the velocity measure-
ments is non-zero, €, =~ 0.2, while the standard deviation of
the approximation errors is substantially larger than the addi-
tive noise (0. ~ 0.07). That is, the approximation errors dom-
inate the additive noise, as explained in Section 4.1, and it is
likely (and is indeed the fact), that ignoring the approxima-
tion errors may lead to infeasible results.

To illustrate the convergence of the approximation errors,
in the top row of Fig. 6 we show the spectrum of the ap-
proximation errors covariance matrices, I'., for Examples 1a
and 1b for increasing sample sizes (N = 62,250,500, and
1000). From the figure, it is evident that for N > 250 sam-
ples, the spectra essentially coincide, and have both con-
verged, thus demonstrating the discretization independence
of the approach, and that approximately N > 250 samples
is likely sufficient to characterize the approximation error
statistics. Note, however, that the results displayed here use
N = 1000 samples.

To give further insight into the distribution of the ap-
proximation errors, we show the (Pearson’s) correlation ma-
trix of the approximation errors for Example la (left) and
1b (right) in the bottom row of Fig. 6. Firstly, we notice
that the correlation matrices are highly structured (unlike
the noise covariance matrix which is diagonal). It is also
apparent that the correlation matrices are (visually) identi-
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Figure 5. Second order statistics of the approximation errors for
Example 1. Top row: Distribution of the approximation errors in
the x—direction velocity measurements for Example 1a (left) and
1b (right). Bottom row: Distribution of the approximation errors in
the y—direction velocity measurements for Example 1a (left) and 1b
(right). The mean of the approximation errors, €., is indicated with
a red line, while higher probability density is indicated by darker
shading.

cal, further illustrating the discretization independence. The
2 x 2 block structure of the correlation matrices is to be ex-
pected since the measurement number indexing used corre-
sponds to measuring the ¢ = 80 velocity measurements in the
x—direction first, followed by the 80 velocity measurements
in the y—direction. The behavior within the diagonal blocks
is also fairly intuitive as periodic boundary conditions are
used, while the structure also illustrates that measurements
(relatively) far away from each other are fairly uncorrelated.
Comparing the diagonal blocks we see that the approxima-
tion errors in the x—component of the velocity measure-
ments are more highly correlated at greater distances than
those of the y—component. Finally, the off-diagonal blocks
show nontrivial correlation between the approximation errors
in the z— and y—components. In particular, this figure shows
that the approximation errors has a similar structure to the
main diagonal but reveals smaller (Pearson’s) correlation co-
efficients (these range from about —0.5 to 0.5).

In the top row of Fig. 7, we show the marginal prior dis-
tributions and the resulting marginal posterior distributions.
Also shown are the corresponding MAP estimates, the true
basal sliding coefficient, and three draws from each of the
distributions. Firstly, the accurate MAP estimate, ,6'55&, isin

11

N =62

10*

10 20 30 40 50 60
eigenvalue number
: -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

Figure 6. Convergence and (Pearson’s) correlation matrix of the
approximation errors for Example 1. Top row: Spectrum of I'. for
various sample sizes, N, for Example 1a (orange) and Example 1b
(cyan), along with the noise variance, §2. Bottom row: (Pearson’s)
correlation matrix of the approximation errors for Example 1a (left)
and 1b (right).

good agreement with the true basal sliding coefficient, while
the accurate posterior is clearly feasible in the sense that the
true basal sliding coefficient is well supported by the Laplace
approximated posterior. On the other hand, the MAP esti-
mate found using the conventional error model, 35 xp., dif-
fers substantially from the true basal sliding coefficient, over
most of the domain. Furthermore, the posterior is essentially
infeasible, with the actual coefficient having virtually no pos-
terior density. Conversely, the MAP estimate found using the
BAE approach, ﬁf,ﬁ%, is in fairly good agreement with the
true coefficient, and the Laplace approximated posterior sup-
ports the truth well. We do see that the marginal posterior
standard deviations found using the BAE approach are some-
what larger than those found using the accurate and conven-
tional error approaches. This is typical, and to be expected, as
the additional uncertainty in the flow rate pre-factor manifest
itself as extra posterior uncertainty.

In the bottom row of Fig. 7, we show the corresponding
results for Example 1b. The results are fairly similar to Ex-
ample 1a when using the accurate approach and when using
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12 O. Babaniyi et al.: Inferring the basal sliding coefficient under rheological uncertainty

the BAE approach* despite the substantial difference in the
discretizations used. Lastly, the MAP estimate found using
the conventional error model has changed drastically from
Example 1a, though the posterior is equally as bad.

6.2 Example 2

In this example, we consider the case of an uncertain Glen’s
flow law exponent in the two-dimensional nonlinear Stokes
ice sheet model, and also demonstrate what happens when
the approximation errors are, in some sense, too large. The
approximation errors here are the result of treating the un-
known, and spatially varying, Glen’s flow law exponent as a
fixed constant, i.e., setting n = ny = 3. To induce the larger
approximation errors for Example 2b, compared to Exam-
ple 2a, we increase the uncertainty in the Glen’s flow law
exponent by altering the associated prior distribution (see Ta-
ble 1). The difference in magnitude of the approximation er-
rors is apparent in Fig. 8, where we show the marginal dis-
tribution of the approximation errors at the observation lo-
cations in the x—direction (top) and y—direction (bottom)
velocities for Examples 2a (left) and 2b (right). Note that
the variance of the approximation errors for Example 2b
is substantially larger than that of Example 2a. Consider-
ing that the standard deviation of the added noise for the
small approximation error case (Example 2a) is é., ~ 0.04
and for the large approximation error case (Example 2b) is
e, = 0.05, the approximation errors in both examples dom-
inate the noise, see Section 4.1. The top row of Fig. 9 shows
the spectrum of the covariance matrices of the approxima-
tion errors, I'c, for N = 125,500, 1000, and 2000 samples,
for Example 2a, and for N = 250, 1000, 2000, and 4000 sam-
ples, for Example 2b. For Example 2a, it appears N = 500 is
enough samples, though for the results here we used N =
1000, while for Example 2b we require N ~ 2000 samples.
The fact that more samples are required to ensure conver-
gence of the approximation errors in Example 2b follows nat-
urally from the increased uncertainty. It’s worth pointing out
that Example 2b is used mainly to demonstrate how the BAE
approach performs in the presence of roo much modeling un-
certainty, thus for the purposes of the current study we deem
taking /N = 2000 as tolerable.

In the bottom row of Fig. 9, we show the (Pearson’s) cor-
relation matrices of the approximation errors. The correla-
tion matrices for this example share several of the character-
istics seen in the corresponding correlation matrices in Ex-
ample 1. Specifically, the block structure, and general be-
havior within the blocks. Comparing the correlation matrices
for Examples 2a and 2b, it appears the approximation errors
in the z—component for Example 2a are more highly corre-
lated at greater distances towards the edges of the computa-

“We attribute the differences in the BAE approach to the differ-
ences in the true flow rate pre-factor, the noise realization, and the
specific samples of €.

tional domain, compared to the approximation errors in the
x—component of the velocity measurements for Example 2b.

In the top row of Fig. 10, we show the marginal prior
and Laplace approximated posterior distributions, as well as
three draws from each of the distributions, the corresponding
MAP estimates, and the true basal sliding coefficient for Ex-
ample 2a. A couple of conclusions can be drawn from this
figure. First, the accurate MAP estimate, ﬁf\{/&Fp, closely re-
sembles the true basal sliding coefficient, and the truth is
well supported by the accurate posterior distribution. Second,
the Laplace approximated posterior found using the conven-
tional error approach is infeasible for most of the right half
of the domain, with the MAP estimate, ﬂg&l\g, (severely)
underestimating the true basal sliding coefficient. Third, the
true basal sliding coefficient lies well within the bulk of
the (Laplace approximated) posterior for the BAE approach,
with the MAP estimate, ﬁf/fﬁ), in fairly good agreement with
the true basal sliding coefficient.

In the bottom row of Fig. 10, we show the corresponding
results for Example 2b, in which the approximation errors
are excessive. Under the Laplace approximation, the accu-
rate posterior, found by using the true Glen’s flow law ex-
ponent, remains an accurate representation of the truth as in
Example 2a. The posterior found using the conventional er-
ror model approach has significantly deteriorated, however,
with the true basal sliding coefficient even more markedly
underestimated, and the truth lying well outside the bulk
of the Laplace approximated posterior over almost all of
the domain. Conversely, by taking into account the exces-
sive modeling errors in Example 2b, the posterior found us-
ing the BAE approach is comparable to the prior, with the
corresponding MAP estimate, ﬁﬁﬁ%, being fairly similar to
the prior mean. This demonstrates that when using the BAE
approach, as the modeling errors become larger, the corre-
sponding posterior density tends towards the prior, as should
be hoped, to avoid overconfidence in biased results.

6.3 Example 3

In this example, we consider an uncertain flow rate factor in
a larger scale, three-dimensional nonlinear Stokes ice sheet
model. The approximation errors are the result of setting the
unknown flow rate factor to A =10"'Pa~3a~!. The spec-
trum for the approximation errors are shown in Fig. 11. The
plot indicates that taking 500 < N < 1000 samples would
likely suffice to accurately characterize the approximation er-
rors. For the results discussed here we used N = 1000 sam-
ples. The average standard deviation of the approximation
errors in the z-component of the approximation errors is ap-
proximately 3.1, while for the y- and z- components, the av-
erage standard deviation of the approximation errors are 0.5
and 0.4, respectively. The standard deviation of the noise, on
the other hand, is 6. =~ 0.25. We thus can expect the resulting
estimates found by disregarding the approximation errors to
be unreasonable, see Section 4.1.
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Figure 7. Prior and MAP estimates of the basal sliding parameter for Example 1. Top row: Example 1la prior (far left), accurate/reference
(REF) case (centre left), conventional error model (CEM) case (centre right), and Bayesian approximation error (BAE) case (far right).
Bottom row shows the same plots for Example 1b. In each plot, the mean of the distribution (blue line) is shown along with the true basal
sliding parameter, S;rue, (red line), three samples from the respective distributions (green lines), the marginal distribution (shaded) with
darker shading indicating higher probability, and the £2 (approximate) standard deviation intervals (black dashed line).

In Fig. 12, we show four draws from the prior density on
the basal sliding coefficient, while in Fig. 13, we show the
true basal sliding coefficient (top left), and each of the MAP
estimates; 315 xp (top right), ﬁf&\é (bottom left), and ﬁﬁﬁ%

s (bottom right). We also show the locations (y = 2.5km and
y = 7.5km) of two lines, labeled /; and [5, for which cross
sectional plots are shown in Fig. 14. It is clear from Figures
13 and 14 that the reference posterior is completely feasible,
and the corresponding MAP estimate is in good agreement

10 with the true basal sliding coefficient. On the other hand, al-
though the MAP estimate found using the conventional error
model (CEM) shows similar qualitatively behavior, as seen
in Fig. 13, when taking the corresponding posterior density
into account, it is clear that the approach is essentially infea-

15 sible, with the truth lying well outside the bulk of the pos-
terior across most of the domain, see Fig. 14. Finally, from
Fig. 13 and 14 we see that, though not as good as the accurate
case, the MAP estimate found using the BAE approach qual-
itatively remains similar to the truth. Furthermore, the truth

20 is generally very well supported by the BAE posterior under
the Laplace approximation.

6.4 Additional examples in the Supplementary
Material

To further demonstrate the flexibility and robustness of the
2s proposed approach, we provide several additional numerical
examples in the Supplementary Material accompanying this
manuscript. Specifically, we consider three additional cases

that are variations of Example 1. Section S.1 of the Supple-
mentary Material demonstrates the robustness of the BAE
approach in the case in which the true distribution of the
auxiliary parameter is not known. The results show that as
long as the true auxiliary parameter is well supported by the
assumed distribution, the BAE approach provides posterior-
consistent estimates of the basal sliding coefficient 3. Section
S.2 compares the CEM and BAE approaches for different as-
sumptions of the mean and marginal variance of the prior
distribution. The results show that the qualitative behavior of
the two approaches is consistent to that observed for Example
1. Finally, Section S.3 compares the BAE approach and a so-
called tempering approach, where an heuristic criterion (such
as the L-curve) is used to select an appropriate scaling of the
prior or likelihood density. This tempering approach can be
understood as varying the regularization parameter in a de-
terministic setup. This example demonstrates that the BAE
approach provides a robust solution to the inverse problem
without requiring multiple solutions of the inverse problem
for different scaling parameters. In addition, in contrast to
the tempering approach, the BAE approach does not rely on
(possibly) unreliable heuristic methods to select the scaling
parameter.

6.5 Spectra of the data misfit Hessians and
computational costs.

In this section, we compare the spectra of the data misfit Hes-
sian and the computational cost of the three approaches (ac-
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Figure 8. Second order statistics of the approximation errors for
Example 2. Top row: Distribution of the approximation errors in the
x—direction velocity measurements for Example 2a (left) and 2b
(right). Bottom row: Distribution of the approximation errors in the
y—direction velocity measurements for Example 2a (left) and 2b
(right). The mean of the approximation errors, €., is indicated with
a red line, while higher probability density is indicated by darker
shading.

curate, conventional error, and Bayesian approximation er-
ror) for each of the three examples. The dominant eigenval-
ues of the data misfit Hessian, H, see (10), evaluated at the
corresponding MAP estimate, are shown in Fig. 15 for each
example. Firstly, we observe that for all three approaches in
all three examples, we only need to retain a relatively low
number of eigenvalues and eigenvectors to compute a reason-
able low rank approximation of the Laplace posterior covari-
ance matrix. Secondly, we see that the dominant spectrum re-
sulting from using the BAE approach is often lower than that
of the reference and conventional error approach cases. This
is to be expected since we are accommodating the approxi-
mation errors, which naturally lead to an increase in uncer-
tainty. Finally, the dominant spectrum of the misfit Hessian
for Examples 1 and 2, found using the conventional error ap-
proach, further illustrate the fact that ignoring the uncertainty
in the auxiliary parameters can lead to overconfidence in er-
roneous estimates.

The spectrum of the misfit Hessian for Example 3, found
using the conventional error approach, seems to be somewhat
anomalous in that the spectrum decays faster than that of the
misfit Hessian found using the BAE approach. However, this

2a 2b
10! N =125 N =250
N =500 N = 1000
N = 1000 N = 2000
10° s N = 2000 === N = 4000
;_% -2 .....531)
>
'g 107!
[
1072
1073 N

20 40 60 80
eigenvalue number

100 120

Figure 9. Convergence and (Pearson’s) correlation matrix of the
approximation errors for Example 2. Top row: Spectrum of I'. for
various sample sizes, N, for Example 2a (orange) and Example 2b
(cyan), along with the noise variance for Example 2a, 5;, and 2b,
5§b. Bottom row: (Pearson’s) correlation matrix of the approxima-
tion errors for Example 2a (left) and 2b (right).

is possibly explained by the fact that the respective misfit
Hessian are evaluated at quite different MAP estimates.

Figure 15 shows that the number of eigenvalues required
to compute a reasonable low rank approximation, in the sense
of (12), is considerably lower for the BAE approach in most
of the examples. This result suggests that computing the low-
rank approximation is cheaper for the BAE approach com-
pared to the other two approaches.

With regard to the computational cost, we consider the
number of (linearized) Stokes problem solves required for
the optimization algorithm to converge as the unit of cost.
As stated in Section 3, we use the inexact Newton-CG algo-
rithm with Armijo line search to find the MAP point. At each
iteration, inexact Newton-CG requires:

a) one (or more if required to satisfy the sufficient de-
scent condition) evaluation of the log-likelihood, which
involves solving the nonlinear Stokes equations;

b) one gradient evaluation, which involves solving an addi-
tional linearized Stokes problem, i.e., the adjoint equa-
tion;
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Figure 11. Spectrum of I'. for various sample sizes, IV, for Exam-
ple 3, along with the noise variance, 5.
c) one Newton system solve using the conjugate gradient

(CG) method, which at each CG iteration requires solv-
ing two linearized Stokes problems, i.e., the incremental Figure 12. Four samples from the prior for the basal sliding param-
forward and adjoint problems. eter field for Example 3.

s The total number of linearized Stokes solves required
to compute the MAP estimate can then be calculated—per
Gauss-Newton iteration—as the sum of the number of itera- incremental forward solve and one incremental adjoint solve 1o
tions required to solve the nonlinear forward problem, plus (to calculate the action of the Hessian) per CG iteration.
one adjoint solve (to calculate the gradient), along with one To ensure a sufficient decrease in the objective function at
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Figure 13. Basal sliding parameter estimates. Top row: The true
basal sliding coefficient (left), and the accurate MAP estimate Shap
(right). Bottom row: The conventional error model MAP estimate
BOAEN (left), and the Bayesian approximation error MAP estimate

vap (right). The black dashed lines are used to show the location

/BBAE
of the cross sections (/1 = 2.5km and /> = 7.5km) for Fig. 14.

each (Gauss-)Newton iteration, the forward problem may be
solved multiple times until the Armijo condition is satis-
fied, thus further increasing the number of linearized Stokes
solves.

The results shown in Table 2 indicate that in each of the ex-
amples considered in this paper, the BAE approach generally
requires less than half the number of the linearized Stokes
solves that are required for the REF case to converge to the
MAP point. Furthermore, the conventional error approach re-
quires (in some cases, significantly) more iterations, and thus
linearized Stokes solves, than the accurate model. This is to
be expected as the optimization is hampered by model mis-
match. It is also worth noting that the CEM approach requires
substantially more backtracking iterations compared to the
REF and BAE approaches, which is inline with Nicholson
et al. (2018). Furthermore, the number of CG iterations is
significantly reduced for the BAE approach when compared
to the CEM and REF case.

7 Conclusions

In this paper, we have considered the inference for the basal
sliding coefficient field for ice sheet flow problems with un-
certain rheology from surface velocity measurements. The
rheology parameters of the ice, in particular the flow rate fac-

O. Babaniyi et al.: Inferring the basal sliding coefficient under rheological uncertainty

Table 2. The cost of solving for the MAP estimates, measured in
number of linearized Stokes solves. The first column (Ex.) refers to
the example number, and the second column (Est.) refers to which
MAP estimate we are solving for, i.e., the reference MAP (REF),
the MAP found using the conventional error model (CEM), or the
MAP found using the BAE approach (BAE). The third column (#N)
gives the number of (Gauss-)Newton iterations, while fourth col-
umn (#CG) reports the total number of CG iterations. The fifth col-
umn (#back) reports the number of backtracks needed throughout
the (Gauss-)Newton iterations, and the sixth column (#O) gives the
total number of objective function evaluations. Finally, the last col-
umn (#Stokes) gives the total number of linearized Stokes solves
(for forward, adjoint, incremental forward, and incremental adjoint
problems). The (Gauss-)Newton iterations are terminated when the
norm of the gradient is decreased by a factor of 10°, while the
CG iterations are terminated inline with the Eisenstat-Walker con-
dition (Eisenstat and Walker, 1996) (to avoid over-solving) and the
Steihaug criteria (Steihaug, 1983) (to avoid negative curvature). The
results illustrate that the use of the approximation error approach
can be carried out at no additional online cost compared to the con-
ventional error approach and reference case.

Ex. Est. #O | #N | #CG | #back | #Stokes
REF 10 | 10 68 0 156
la CEM | 19 17 96 2 228
BAE 7 7 30 0 74
REF 12 | 11 68 1 159
1b CEM | 18 16 91 2 216
BAE 7 7 28 0 70
REF | 21 16 66 5 244
2a CEM | 42 | 27 99 15 376
BAE | 12 | 11 25 1 110
REF 12 | 11 78 1 241
2b CEM | 35 | 26 62 9 286
BAE 8 8 18 0 78
REF 18 16 178 2 491
3 CEM | 37 | 23 115 14 438
BAE | 14 | 13 64 1 240

tor and the Glen’s flow law exponent, are often uncertain and
can, at best, only be estimated in practice. We considered ex-
amples in both two and three dimensions, and used both the
linear and nonlinear Stokes ice sheet model. In each of the
cases considered, our goal was to infer the basal sliding coef-
ficient only, as such the unknown rheology parameters were
a priori fixed to nominal values, and treated as auxiliary pa-
rameters. To account for the resulting modeling uncertainties
(or errors), we employed the Bayesian Approximation Er-
ror (BAE) approach. This approach shifts all uncertainty into
a single additive total error term, which is approximated as
Gaussian, and can be premarginalized over.

Quantification of the resulting uncertainty in the estimated
basal sliding coefficient was carried out based on the Laplace
approximation to the posterior. In all of the examples consid-
ered here, the results suggest that fixing rheology parameters
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Figure 14. Cross-sections of prior and MAP estimates of the basal sliding parameter for Example 3. Top row: Cross section along line /;
(y = 2.5km) of prior (far left), accurate/reference (REF) case (center left), conventional error model (CEM) case (center right), and Bayesian
approximation error (BAE) case (far right). Bottom row shows cross section along line [> (y = 7.5km) in the same order. In each plot, the
mean of the distribution (blue line) is shown along with the true basal sliding parameter, Sirue, (red line), three samples from the respective
distributions (green lines), the marginal distribution (shaded) with darker shading indicating higher probability, and the -2 (approximate)
standard deviation intervals (black dashed line).
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Figure 15. Spectra of the prior-preconditioned Hessian of the data misfit computed using (11) for Example 1 (far left), Example 2a (centre
left), Example 2b (centre right), and Example 3 (far right). The spectrum for Example 1a (coarse mesh) are shown in the fainter colors, while

the spectrum for Example 1b (fine mesh) are shown in the richer colors. The horizontal black dashed-line (at A = 1) shows the reference

value for the truncation of the spectrum of the prior-preconditioned Hessian of the data misfit.

to standard values found in the literature, can lead to overly
confident and (heavily) biased estimates, with the true basal
sliding coefficient generally lying outside the bulk of the pos-
terior density, if the uncertainty in the rheology parameters
is not accounted for. Conversely, carrying out approximate
premarginalization over the unknown rheology parameters,
via the BAE approach, leads to feasible estimates for the
basal sliding coefficient in all cases considered. To illustrate
a limitation of the BAE approach, we included an example in
10 which the modeling errors introduced were, in some sense,

too large. This case led to a posterior density (found using

the BAE approach) which showed very little reduction in

o

variance compared to the prior, though it still contained the
truth.

By avoiding simultaneous estimation of the basal slid-
ing coefficient and rheology parameters (which are spatially
varying over the entire domain) the online computational
overheads of the estimation problem are substantially re-
duced. To ensure the work carried out here is applicable
to large-scale problems, i.e., scalable, we initially posed
the problem in infinite dimensions and then employed the
adjoint-state methodology to compute the MAP estimate.

In assessing the applicability and performance of the BAE
approach, the current study only considers fairly limited do-

20
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mains, i.e., box-like geometries, and idealized boundary con-
ditions. A natural next step for future work is to apply the
same framework to more realistic setups and to continental-
scale ice flow problems.
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