
Reply to the Reviewer 1:

Thanks for the careful reading and for your helpful comments and suggestions. Please find below point-
by-point replies (in black) to your comments and questions (which are reprinted in blue). To give you
an overview of all the changes in the paper, we also provide a diff-document that highlights the changes
between the initial submission and this re-submission.

In inferring the basal sliding coefficient field for the Stokes ice sheet model under rheological uncertainty,
Babaniyi and co-authors present the application of a Laplace approximation based Bayesian inference
procedure to the problem of determining the distribution of basal traction given observations. In particu-
lar, the authors make a significant contribution to inverse problems in glaciology by demonstrating what
happens when we ignore the uncertainties in model parameters apart from the ones that were primarily
interested in. In particular they show that ignoring a reasonable amount of rheological uncertainty leads
to a posterior distribution that is egregiously incorrect and far too sure of itself. They address this
problem by introducing the Bayesian Approximation Error approach, in which random samples from the
nuisance variable are used to generate an empirical covariance and bias in the model predictions, which
are added to observational noise to produce a much more realistic pseudo-likelihood model and thus a
much more reasonable posterior distribution. This paper is an excellent and timely contribution. First, it
builds upon a lineage of important papers (Bui-Tanh, 2013; Petra, 2014; Isaac, 2015) that have provided
a framework for (Bayesian) uncertainty quantification in large-scale ice sheet model (something that is
of critical importance, in my view), while also demonstrating the limitations of those methods that still
remain. In some ways, this paper raises more questions than it answers (and I mean that in a good way):
if even a relatively robust inversion framework like Bayesian inference can be led astray by unquantified
aleatoric model uncertainty, how can we going to deal with unquantified epistemic uncertainty going
forward? Second, numerical recipe that it introduces is general and viable across a large class of prob-
lems in ice sheet modelling, so long as there are a sufficient number of cores available for drawing Monte
Carlo samples. The development of ”embarassingly parallel” methods for uncertainty quantification (as
opposed to ones that require more intricate communication) make the implementation of these methods
broadly feasible for other researchers. Finally, the results are compelling. The posterior distributions
that the authors produce are indeed much more realistic than those produced in the absence of their
method, and any work that makes the case for a broader posterior variance in ice sheet model inversions
should be lauded. Nonetheless, There are a handful of factors that may limit the papers applicability. I
describe these issues below, interspersed with a handful of technical corrections.

1. P6 L15 The choice of covariance function should be motivated. First, why bother with this
inverse elliptic operator to begin with, when it doesnt seem any more physical in this case than
using squared exponential or Matern kernel? If elliptic inverse is justified, then why the exponent
of 2? This differs from that used by Petra (2014), so why the change?

We agree with the reviewer that some additional motivation for the prior should be given, and we
have now incorporated more discussion about the choice of the prior in the manuscript, please see
Section 3.1. It has been shown (see e.g. [7, 15] and references in the revised manuscript) that the
prior we use is equivalent to a Matérn prior with a certain smoothness parameter which depends
on the number of space dimensions. In particular for the three-dimensional problem in example 3,
our prior covariance is equivalent to that exponential covariance function. However, defining the
prior covariance as the inverse of an elliptic operator has several computational advantages since
evaluating the prior distribution only requires a matrix-vector product with a sparse precision
matrix, and sampling only requires solving a symmetric positive definite linear system, for which
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fast and scalable multigrid methods can be employed. In [12], the authors define the field m on
the boundary; here due to some technical limitations of FEniCS, we had to define the covariance
on the whole domain and then restrict it to the boundary.

2. P7 L10 Fix reference formatting.

Thank you for pointing this out. In the revised manuscript we have fixed this issue.

3. P8 L7 It would be better to use Isaac (2015a) as the reference here, since the ”generalized
eigenvalue problem” formulation does not appear in the previous works (although the solution to
the problem stated in those works is equivalent).

We have now updated the manuscript to reference [2].

4. P8 L12 What does sufficiently mean?

We agree, this is indeed quite vague. In the revised manuscript, we have incorporated more
precise guidelines on how the truncation index is chosen along with references. Furthermore, we
have corrected a typo in the generalized eigenvalue problem. Below is a slightly more detailed
explanation (which we believe is best left out of the current manuscript) which can be found in,
for example, [2]. We start with the full posterior covariance matrix, Γpo ∈ Rm×m, which can be
written as

Γpo = Γpr − V rDrV
T
r +O

(
n∑

i=r+1

λi
λi + 1

)
,

for Dr = Λr(Ir + Λr)
−1 ∈ Rm×m and Λr ∈ Rm×m and V r ∈ Rm×r satisfying the generalized

eigenvalue problem

HV r = Γ−1
pr V rΛr.

Here H is the Hessian of the data misfit component of negative log-posterior. We choose r such
that

O

(
n∑

i=r+1

λi
λi + 1

)

is small, which happens for λi � 1 (in practice we choose r when λi is about 0.01). Once r is
determined, the approximation of the posterior covariance can be written as

Γpo ≈ Γpr − V rDrV
T
r .

5. Eq. 14, 16 This right arrow notation isnt very informative.

We have changed this in the revised manuscript.

6. P9 L13 ε∗ is defined (empirically) later, but it should at least be given a name or description here.
We have now introduced ε∗ and Γε as the mean and covariance of the approximation errors.

7. Eq. 21 This method seems to rely on the modelling error being well-approximated by a normal
distribution. Is there any evidence to suggest that this is true for the problems being considered
here? (The forward model is non-linear after all). What happens if its not?
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The standard BAE approach does take a normal approximation to the modeling errors, by consid-
ering only the mean and covariance matrix, however, as the total errors are premarginalized over,
it is in fact the effect of this marginalization we hope to capture. There is empirical evidence that
this Gaussian approximation is a sensible choice, see for example[3, 13, 6, 1, 9, 11]. Gaussian
process approximation to model error was also advocated in [4]. Testing for normality could be
done visually or more formally using, for example, a ShapiroWilk test.

We also point out that some recent work has been carried out in which the normality approximation
has been dropped [8, 10, 16]. These approaches, however, are generally based on machine learning
techniques, such as random forests [8], convolutional neural networks [10], or deep neural networks
[16], which come with their own set of (computational and otherwise) challenges.

8. P10 L1118 These rules of thumb need some explanation. What are they telling us and why are
they different? A qualitative description would help.

The rules of thumb provide a guideline for determining when the approximation dominates the
measurement noise. We have updated this paragraph to included more intuition.

9. P11 L1519 This is a very unrealistic prior relative to the typical situation in ice sheet modelling. In
what case do we typically know the true value of a parameters mean? Thats a lot of information!
I think a much more interesting case would be to provide a vague prior with a mean not equal
to the true value. A frequent assumption for GRFs is mean zero and a large marginal variance,
because there isnt any more information than that to go off of a priori. Does this method still
work for a less informative prior, or does it ruin the estimates of ε∗ and Γε

The reviewer is right, we typically don’t know much a-priori about the basal boundary coefficient
field. However, one can argue that the topography and especially the top surface velocity field
can give us some prior information about the basal boundary condition and one could construct
a useful prior (for instance we know that we cannot reconstruct highly oscillatory features of the
basal boundary conditions, hence the samples from the prior should be fairly smooth, etc.). The
mean value β∗ of the prior here is the same as the spatial mean of the β by coincidence. Our
conclusion does not change if we change the prior mean and variance (as long as it makes sense
physically). Though as expected, a more variable prior will generally lead to larger uncertainty, and
a true β that is less well supported by the prior will likely not be estimated as well. We have run a
couple of simulations for Example 1 to illustrate this. In Figure 1, we show results obtained with
prior mean β∗ = 6 (first row), β∗ = 5 (second row) and β∗ = 5 plus increased variance (bottom
row). These results show that the conclusion indeed does not change when using different prior
information.
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Figure 1: Use of different priors on β and resulting posteriors for Example 1a (of the manuscript). Top
row: Prior mean taken as β∗ = 6 and variance unchanged, Middle row: Prior mean taken as β∗ = 5
and variance unchanged, Bottom row: Prior mean taken as β∗ = 5 and variance increased.

10. P13 L1 Why introduce rejection sampling when one could use a similar log-transform as for the
enhancement factor? Why does constraining the parameter space to shear thinning matter in this
synthetic case anyways?

Various transforms such as the log-transform could be used, and we updated the manuscript to
acknowledge this. The rejection sampling approach has the benefit of truncating the distribution,
while otherwise leaving the distribution unchanged. On the other hand, the samples are rejected
before any simulations are carried out.

11. P13 L13 Where does the weird constant 3 come from in the rate factor parameterization?

Thanks for pointing this out. We agree that this is confusing as the constant was originally 1 in
our parameterization of the flow rate factor for Example 1 (the linear Stokes case). This constant

is there to make sure that the effective viscosity simplifies to η(u) = 1
2 exp(a(x))A

− 1
n

0 ε̇
− 1−n

2n
II

meaning that the constant has to equal to the Glen’s flow law exponent. We have redefined our
parameterization of the flow rate factor in the paper to be A = A0 exp(−na) to make it clear
that it always depends on n.

12. Table 1 These values on prior distributions seem arbitrary, and because theyre parameters of an
elliptic model rather than the more interpretable length scale and variance that wed find in a more
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traditional GRF kernel, they are a bit opaque. Why were these values of γ. and δ. chosen?

The parameters in the elliptic PDE-based prior have a nice physical interpretation as well. In
particular, γβ and δβ control the correlation length and the marginal variance of the prior distri-
bution. Specifically, the correlation length (defined as the distance for which the two-points have
a correlation coefficient of 0.1) is proportional to

√
γβ/δβ, while the variance is proportional to

δ−2
β (γβ/δβ)

d−1
2 , see for example [5] and the references therein. The values for these parameters

were chosen by visually inspecting samples from the distributions. We have added these details
to the manuscript.

13. Sections 5/6 I think that these sections should be reordered to put both setup and results for
each example right next to one another. This would be more brief, and the reader wouldnt have
to flip back and forth between sections.

We understand this concern. However, we believe that the current setup allows readers to focus
on the results rather then having to read through a long section mixed with the problem setup,
and perhaps more importantly this setup allows us to create a summary table to which we can
refer from the results sections easily. For these reasons, we prefer to keep the current setup.

14. Figure 5 and supporting text Its unusual for vertical velocity to be available in an inversion (we
dont really get it from remotely sensed data). Would it change results much to not have access
to it?

We agree that the vertical velocities are not always available. However, as shown in [14], they are
also usually fairly non-informative. Furthermore, the assumed noise level in the current paper is
larger than the vertical velocities, and we thus expect the results would not change if we ignored
the vertical velocity data.

15. P17 L6 ‘Finally, we see that the off-diagonal blocks also display fairly complex behavior’ is not a
useful sentence. Complex in what way, and why?

We have revised this statement to be more precise.

16. P27 L67 We omit... This sentence is redundant.

We agree, and have modified the manuscript accordingly.
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Reply to the Reviewer 2:

Thanks for the careful reading and for your helpful comments and suggestions. Please find below point-
by-point replies (in black) to your comments and questions (which are reprinted in blue). To give you
an overview of all the changes in the paper, we also provide a diff-document that highlights the changes
between the initial submission and this re-submission.

The paper ”inferring the basal sliding coefficient field for the Stokes ice sheet model under rheological
uncertainty” by Babaniyi and co-authors, addresses the challenging topic of accounting for modeling
errors when estimating the basal sliding coefficient β from surface velocity observations. In particular,
the paper considers uncertainty in the rheology and demonstrate how it can be properly accounted for
using the Bayesian Approximation Error approach. Several numerical results on simplified ISMIP-HOM
like problems demonstrate the effectiveness of their approach and the failure of the traditional approach.
I think the paper is well written and it represent a significant contribution to the ice sheet community.
Before recommending it for publication, I would like the authors to address the following concerns:

1. While I am convinced of the effectiveness and usefulness of the proposed approach, I am wondering
whether the difference between the proposed approach and the traditional one has been overem-
phasized by taking a regularization (prior) for β that is too small. In fact, it seems to me that
the data are overfitted when using the traditional approach (REF/CEM). It would be interesting
to see what happens when γβ and δβ are increased (one could do that using the L-curve rule, for
the deterministic inversion to compute the MAP point). In general, I think that the parameters
used for all the priors should be motivated.

It would be extremely difficult (likely impossible), to take into account the correlation structure
embedded in (the covariance matrix of) the approximation errors via a regularization parameter,
thus loosing valuable information. Furthermore, the mean of the approximation errors is not
negligible in all cases, that is, disregarding the unknown rheological parameters induces systematic
bias, which would be challenging (at best) to accomodate by changing γβ and δβ.

2. In real applications, the flow factor is not considered uniform, but it is a function of the temper-
ature. Of course, because of modeling errors, the rheology will still be affected by uncertainty.
I’m wondering how your approach and results would change if the parameter a∗ were spatially
variable.

Indeed the flow factor is in practice not constant, and is generally temperature dependent. The
choice of a∗ was chosen only to be in line with commonly chosen values in the literature. The
prior chosen for a in each of the examples is based on the assumption that we expect smooth
variations of a about the mean value, a∗. If on the other hand we had (a priori) reason to believe
that a smoothly varied about some other (nonuniform) value, this could certainly be incorporated.
In such a case, we expect the results would be qualitatively the same.

3. I think it would be better if the true value of the parameter atrue were not sampled from the
same distribution used for computing the statistics for the approximation error, but from another
distribution (e.g. non Gaussian/ with different mean/variance)? As a matter of fact, we don’t
know the distribution for a.

We agree that atrue could be sampled from a different distribution to fully demonstrate the
robustness of the BAE approach in situations where atrue or its distribution is unknown. The
choice of atrue used in the manuscript was based on ease of exposition, and convenience, however

1



Prior REF CEM BAE

Figure 1: Prior and MAP estimates of the basal sliding parameter for Example 1a with the true auxiliary
parameter set to atrue = sin(2πx1/L) + sin(2πx2/H). Prior (far left), accurate/reference (REF) case
(centre left), conventional error model (CEM) case (center right), and Bayesian approximation error
(BAE) case (far right). The “truth” (red line), the prior mean and the MAP point (blue line) in the
left plot and the right three plots, respectively are shown along with three samples from the respective
distributions (green lines), the marginal distribution under Laplace approximation (shaded) with darker
shading indicating higher probability, and the ±2 (approximate) standard deviation intervals (black
dashed line).

we expect the approach to perform similarly for a different atrue (not sampled from the prior used
to generate the statistics of the approximation errors, but still supported by the prior). To test
this hypothesis, in Fig. 1 we show results for Example 1a, where atrue was defined as a sinusoidal
function, namely atrue = sin(2πx1/L) + sin(2πx2/H). The results reveal similar conclusions.

4. The authors make the point that the (offline) computation of the statistics for the approximation
error requires a ”fairly small number of samples”. This is true for the numerical results reported
in the paper. However, I would argue that in real applications, with complex geometries and
real data, that won’t necessarily be the case. As a different but related example, the number of
eigenvalues needed to accurately approximate the prior-preconditioned Hessian for data, in the
examples reported in this paper, is about two order of magnitude smaller than that needed for the
Antarctic ice sheet (Isaac et al. SISC, 2015).

The number of eigenvalues and eigenvectors of the prior-preconditioned data misfit Hessian that
must be retained to give an accurate approximation for the posterior covariance matrix only
provides an upper bound on the rank of the approximation error covariance matrix. The rank of
the approximation error covariance matrix (and thus the number of samples required) is dictated
by how accurate/inaccurate the approximative model, g(β), is relative to the accurate model,
f(β, a). That is, the more accurate the approximative model is, the less samples we require to
characterize the covariance of the approximation errors. This also helps to motivate the use of a
physically based approximative models (rather than a completely arbitrary model). Therefore, for
the large-scale problem defined on the Pine Island or Antartica geometries, we expect the rank
of the model error covariance–and therefore the number of samples needed to compute the BAE
statistics–to be much smaller than the number of informed eigen-directions of the Hessian of the
negative log-likelihood.

Minor comments:

• abstract: I would specify, both in the abstract and in the introduction, that the paper is targeting
synthetic/manufactured geometries and data
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Thank you for this suggestion, we have changed this in the revised manuscript.

• p. 8, I. 24: Please motivate the assumption of Gaussianity of the unknown parameters. I think
there is little evidence to suggest that the distribution of these parameters is Gaussian, and anyway
in general we do not know parameters such as γ and δ. Is the Gaussianity required by the Bayesian
Approximation Error theory?

The choice of a Gaussian prior distribution is in line with several related previous works carried
out within the Bayesian framework, see, for example [1, 6, 8, 7]. Also, postulating a Gaussian
prior leads to an optimization problem which is fairly similar to that solved in the deterministic
framework using Tikhonov-type regularization, and is thus related to e.g., [5, 2, 4].

As discussed below, prescribing values for γ and δ is equivalent to providing a prior variance and
correlation length, which we believe is not overly restrictive, and is fairly standard for Bayesian
inference of distributed parameters in PDE forward models.

The Bayesian approximation error approach does not assume that any prior distribution is Gaussian,
see e.g., [3]. It only requires the ability of sampling from the prior distribution and of evaluating
the log-distrubution.

• p. 8, I. 28: Can you please explicitly write (not necessarily here) how the samples are computed
using the covariance matrix? I think the readers of this journal could benefit from that.

To sample from a Gaussian distribution, N (β∗,Γβ) with β∗ ∈ Rm and Γβ ∈ Rm×m, we require a
matrix, L ∈ Rp×m (p ≥ m) such that LLT = Γβ. With such a matrix in hand (common choices
for L are the Cholesky-factor, or the principal square root), a sample, s ∈ Rm, from N (β∗,Γβ)
can be generated taking

s = β∗ +Lη,

where η is sampled from the so-called standard Gaussian, i.e., η ∼ N (0, I). To verify, note firstly,
that E[s] = E[β∗ +Lη] = β∗ +LE[η] = β∗, and secondly,

Γs = E[(s− β∗)(s− β∗)
T ]

= E[(β∗ +Lη − β∗)(β∗ +Lη − β∗)
T ]

= E[(Lη)(Lη)T ]
= LE[ηηT ]LT

= LLT

= Γβ

In the manuscript, for computational efficiency, we carry this process out using the procedure
given in [9, Equation (30)].

• Table 1: Report units of δ and γ. Also, in my understanding
√

γ
δ is a correlation length for the

samples. It might be worth pointing that out.

We have specified the units of δ (adimensional) and γ (m2) in the manuscript, and have reported
the corresponding correlation lengths (which is indeed proportional to

√
γ/δ) for each of the

examples in the caption of Table 1.

• sect. 5.1: In each of the 3 examples, I would remind the reader that atrue is chosen as previously
shown in Figures 3 and 4.

Done.
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• p. 25, I. 17: I would rephrase this sentence “The rheology parameters of the ice, in particular the
flow rate factor and the Glen’s flow law exponent, were treated as unknown random fields, which
is often the case in reality.” In real application the rheology is computed out of the temperature
based on physical models.

We agree that some rheological parameters, such as the flow rate factor, are often computed
using physical models, such as the Arrhenius relation, as in [6]. The temperature is, however,
itself uncertain, as it is typically only measured on the surface of the ice. Thus, the flow rate
factor is still uncertain since it depends on the unknown (or uncertain) temperature field. On the
other hand, we are not aware of physical models for other rheological parameters, such as the
Glen’s flow law exponent, which are often fixed to nominal and approximate best-fit values. We
have modified the sentence in an attempt to make this point clearer.
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