

1

2

1998-2019

3	
4	
5	Andreas Kellerer-Pirklbauer (1), Michael Avian (2), Douglas I. Benn (3), Felix Bernsteiner (1),
6	Philipp Krisch (1), Christian Ziesler (1)
7	
8	(1) Cascade - The mountain processes and mountain hazards group, Institute of Geography and
9	Regional Science, University of Graz, Austria
10	(2) Department of Earth Observation, Zentralanstalt für Meteorologie und Geodynamik
11	(ZAMG), Vienna, Austria
12	(3) School of Geography and Geosciences, University of St Andrews, St Andrews, UK
13	
14	Correspondence
15	Andreas Kellerer-Pirklbauer; andreas.kellerer@uni-graz.at
16	
17	Funding information
18	Research relevant for this study was funded through different projects: (a)
19	Austrian Science Fund, project no. FWF P18304-N10, (b) Hohe Tauern National Park authority
20	(various projects), (c) Glockner Ökofonds (GROHAG) 2018, and (d) Austrian Alpine Association
21	(through the annual glacier monitoring program)
22	

Buoyant calving and ice-contact lake evolution at Pasterze Glacier (Austria) in the period

23	Abstract: Rapid growth of proglacial lakes in the current warming climate can pose significant
24	outburst flood hazards, increase rates of ice mass loss, and alter the dynamic state of glaciers.
25	We studied the nature and rate of proglacial lake evolution at Pasterze Glacier (Austria) in the
26	period 1998-2019 using different remote sensing (photogrammetry, laserscanning) and
27	fieldwork-based (GPS, time-lapse photography, geoelectrical resistivity tomography/ERT, and
28	bathymetry) data. Glacier thinning below the spillway level and glacier recession caused
29	flooding of the glacier, initially forming a glacier-lateral to supraglacial lake with subaerial and
30	subaquatic debris-covered dead-ice bodies. The observed lake size increase in 1998-2019
31	followed an exponential curve (1998: 1900 m ² ; 2019: 304,000 m ²). ERT data from 2015 to 2019
32	revealed widespread existence of massive dead-ice bodies exceeding 25 m in thickness near the
33	lake shore. Several large-scale and rapidly occurring buoyant calving events were detected in
34	the 48 m deep basin by time-lapse photography, indicating that buoyant calving is a crucial
35	process for fast lake expansion. We identified a sequence of processes: glacier recession into a
36	basin and glacier thinning below spillway-level; glacio-fluvial sedimentation in the glacial-
37	proglacial transition zone covering dead ice; initial formation and accelerating enlargement of a
38	glacier-lateral to supraglacial lake by ablation of glacier ice and debris-covered dead ice forming
39	thermokarst features; increase in hydrostatic disequilibrium leading to destabilization of ice at
40	the lake bottom or at the near-shore causing fracturing, tilting, disintegration or emergence of
41	new icebergs due to buoyant calving; and gradual melting of icebergs along with iceberg
42	capsizing events. We conclude that buoyant calving, previously not reported from the European
43	Alps, might play an important role at alpine glaciers in the future as many glaciers are expected
44	to recede into valley or cirque overdeepenings.

- 45
- 46 Keywords: ice-contact lake; dead ice decay; buoyant calving; hydrostatic equilibrium; proglacial
- 47 landscape evolution
- 48

49 1. INTRODUCTION

50 Ongoing recession of mountain glaciers worldwide reveals dynamic landscapes exposed to high

- rates of geomorphological and hydrological changes (Carrivick and Heckmann, 2017). In suitable
- 52 topographic conditions, proglacial lakes may form, including ice-contact lakes (physically
- 53 attached to an ice margin) and ice-marginal lakes (lakes detached from or immediately beyond
- 54 a contemporary ice margin) (Benn and Evans, 2010; Carrivick and Tweed, 2013). Such lakes
- 55 have increased in number, size and volume around the world due to climate warming-induced
- 56 glacier melt (Carrivick and Tweed, 2013; Otto, 2019). Buckel et al. (2018) for instance studied
- 57 the formation and distribution of proglacial lakes since the Little Ice Age (LIA) in Austria
- revealing a continuous acceleration in the number of glacier-related lakes particularly since the
- 59 turn of the 21st century.
- 60

The formation of proglacial lakes is important because they can pose significant outburst flood hazards (e.g. Richardson and Reynolds, 2000; Harrison et al., 2018), increase rates of ice mass loss, and alter the dynamic state of glaciers (e.g. Kirkbride and Warren, 1999; King et al., 2018, 2019; Liu et al., 2020). However, detailed descriptions of proglacial lake formation and related subaerial and subaquatic processes are still rare. Carrivick and Heckmann (2017) pointed out

- 66 that there is an urgent need for inventories of proglacial systems including lakes to form a
- baseline from which changes could be detected.
- 68
- 69 The evolution of proglacial lakes is commonly linked to the subsurface, particularly to changes
- in the distribution of debris-covered dead ice (defined here as any part of a glacier which has
- 71 ceased to flow) and permafrost-related ground ice bodies (Bosson et al., 2015; Gärtner-Roer
- and Bast, 2019) affecting lake geometry and areal expansion.
- 73
- 74 Water bodies at the glacier surface form initially as supraglacial lakes which might be either
- 75 perched lakes (i.e. above the hydrological base level of the glacier) or base-level lakes (spillway
- controlled). The former type is prone to drainage if the perched lake connects to the englacial
- conduit system (Benn et al., 2001). Rapid areal expansion of such lakes is controlled by
- 78 waterline and subaerial melting of exposed ice cliffs and calving (Benn et al., 2001).
- 79 Furthermore, supraglacial lakes may transform into proglacial lakes lacking any ice core (full-
- 80 depth lakes) through melting of lake-bottom ice. However, this is a slow process in which
- 81 energy is conducted from the overlying water and cannot account for some observed instances
- of fast lake-bottom lowering (>10 m yr⁻¹). It has been argued that fast lake-bottom lowering
- could occur by buoyant calving (Dykes et al., 2010; Thompson et al., 2012), but the rare and
- 84 episodic nature of such events mean that little is known about how buoyant calving might
- 85 contribute to the transformation of supraglacial lakes into full-depth lakes.
- 86

87	Ablation of lake-terminating glaciers may lead to the development of submerged ice feet or
88	thinning of ice margins below the point of hydrostatic equilibrium. Rises in lake level can have
89	similar results. In such cases, ice becomes super-buoyant and subject to net upward buoyant
90	forces, promoting fracture propagation and calving (Benn et al., 2007). Calving by this process
91	has been described by Holdsworth (1973), Warren et al. (2001) and Boyce et al. (2007).
92	Hydrostatic disequilibrium caused the sudden disintegration of debris-covered dead ice in the
93	proglacial area of Pasterze Glacier in September 2016 (Fig. 2). This event was briefly described
94	in Kellerer-Pirklbauer et al. (2017) and was one of the main motivations for the present study.
95	
96	In the present study, we analysed rates and processes of glacier recession and formation and
97	evolution of an ice-contact lake at Pasterze Glacier, Austria, over a period of 22 years. The aims
98	of this study are (i) to examine glaciological and morphological changes at the highly dynamic
99	glacial-proglacial transition zone of the receding Pasterze Glacier and (ii) to discuss related
100	processes which formed the proglacial lake named Pasterzensee (See is German for lake) during
101	the period 1998-2019. Regarding the latter, we focus particularly on the significance of buoyant
102	calving. In doing so, we consider subaerial, subsurface, aquatic, as well as subaquatic domains
103	applying fieldwork-based and remote-sensing techniques.
104	
105	2. STUDY AREA

The study area comprises the glacial-proglacial transition zone of Pasterze Glacier, Austria. This
 glacier covered 26.5 km² during the LIA maximum around 1850 and is currently the largest

108 glacier in the Austrian Alps with an area of 15.4 km² in 2019 (Fig. 1). The glacier is located in the

109	Glockner Mountains, Hohe Tauern Range, at 47°05'N and 12°43'E (Fig. 1b). The gently sloping,
110	4.5 km long glacier tongue is connected to the upper part of the glacier by an icefall named
111	Hufeisenbruch (meaning "horseshoe icefall" in German) attributed to its former shape in plan
112	view. This icefall disintegrated and narrowed substantially during the last decades attributed to
113	the decrease of ice replenishment from the upper to the lower part of the glacier (Kellerer-
114	Pirklbauer, et al. 2008; Kaufmann et al., 2015).
115	
116	The longest time series of length changes at Austrian glaciers has been compiled for Pasterze
117	Glacier. Measurements at this glacier were initiated in 1879 and interrupted in only three years.
118	Furthermore, annual glacier flow velocity measurements and surface elevation changes at
119	cross-sections were initiated in the 1920s with almost continuous measurements since then
120	(Wakonigg and Lieb, 1996). Technical details of the measurement can be found in Kellerer-
121	Pirklbauer et al. (2008) as well as in Lieb and Kellerer-Pirklbauer (2018). Minor glacier advances
122	at Pasterze Glacier occurred in only seven years since 1879, the most recent of which was in the
123	1930s. Even during wetter and cooler periods (1890s, 1920s and 1965-1980), the glacier did not
124	advance substantially, which can be attributed to the long response time of the glacier (Zuo and
125	Oerlemans, 1997). In 1959-2019, Pasterze Glacier receded by 1550 m, three times the mean
126	value for all Austrian glaciers (520 m), related to its large size. Today, Pasterze Glacier is
127	characterised by annual mean recession rates in the order of 40 m yr $^{-1}$ (Lieb and Kellerer-
128	Pirklbauer, 2018) causing a rather high pace of glacial to proglacial landscape modification
129	favouring paraglacial response processes (Ballantyne, 2002; Avian et al., 2018).

130

131	Analyses of brittle and ductile structures at the surface of the glacier tongue revealed that
132	many of these structures are relict and independent from current glacier motion (Kellerer-
133	Pirklbauer and Kulmer, 2019). The glacier tongue is in a state of rapid decay and thinning and
134	thus prone to fracturing by normal fault formation. Englacial and subglacial melting of glacier
135	ice caused the formation of circular collapse structures with concentric crevasses, which form
136	when the ice between the glacier surface and the roof of water channels decreases. Kellerer-
137	Pirklbauer and Kulmer (2019) concluded that the tongue of the Pasterze Glacier is currently
138	turning into a large dead-ice body characterized by a strong decrease in ice replenishment from
139	further up-glacier, movement cessation, accelerated thinning and ice disintegration by supra-,
140	en- and subglacial ablation, allowing normal fractures and circular collapse features to develop.
141	This rapid deglaciation and decrease in activity are favourable for dead ice and proglacial lake
142	formation.
142 143	formation.
142 143 144	formation. An automatic weather station is located close to the study area operated by Austrian Hydro
142 143 144 145	formation. An automatic weather station is located close to the study area operated by Austrian Hydro Powers since 1982 (AWS in Fig. 1a). The coldest year in the period 1998-2019 was 2005 with a
142 143 144 145 146	formation. An automatic weather station is located close to the study area operated by Austrian Hydro Powers since 1982 (AWS in Fig. 1a). The coldest year in the period 1998-2019 was 2005 with a mean annual air temperature (MAAT) of 0.9°C whereas the warmest year was 2015 with 4.0°C
142 143 144 145 146 147	formation. An automatic weather station is located close to the study area operated by Austrian Hydro Powers since 1982 (AWS in Fig. 1a). The coldest year in the period 1998-2019 was 2005 with a mean annual air temperature (MAAT) of 0.9°C whereas the warmest year was 2015 with 4.0°C (range 3.1°C, mean of the 22-year period 2.4°C; Fig. 1c). Interannual variation is high although a
142 143 144 145 146 147 148	formation. An automatic weather station is located close to the study area operated by Austrian Hydro Powers since 1982 (AWS in Fig. 1a). The coldest year in the period 1998-2019 was 2005 with a mean annual air temperature (MAAT) of 0.9°C whereas the warmest year was 2015 with 4.0°C (range 3.1°C, mean of the 22-year period 2.4°C; Fig. 1c). Interannual variation is high although a warming trend is clear. A MAAT value >3°C was calculated for eight of the nine years between
142 143 144 145 146 147 148 149	formation. An automatic weather station is located close to the study area operated by Austrian Hydro Powers since 1982 (AWS in Fig. 1a). The coldest year in the period 1998-2019 was 2005 with a mean annual air temperature (MAAT) of 0.9°C whereas the warmest year was 2015 with 4.0°C (range 3.1°C, mean of the 22-year period 2.4°C; Fig. 1c). Interannual variation is high although a warming trend is clear. A MAAT value >3°C was calculated for eight of the nine years between 2011 and 2019. No such high MAAT values were recorded for the entire previous 28-year
142 143 144 145 146 147 148 149 150	formation. An automatic weather station is located close to the study area operated by Austrian Hydro Powers since 1982 (AWS in Fig. 1a). The coldest year in the period 1998-2019 was 2005 with a mean annual air temperature (MAAT) of 0.9°C whereas the warmest year was 2015 with 4.0°C (range 3.1°C, mean of the 22-year period 2.4°C; Fig. 1c). Interannual variation is high although a warming trend is clear. A MAAT value >3°C was calculated for eight of the nine years between 2011 and 2019. No such high MAAT values were recorded for the entire previous 28-year period 1982-2010 indicating significant recent atmospheric warming. Two ground temperature
142 143 144 145 146 147 148 149 150 151	formation. An automatic weather station is located close to the study area operated by Austrian Hydro Powers since 1982 (AWS in Fig. 1a). The coldest year in the period 1998-2019 was 2005 with a mean annual air temperature (MAAT) of 0.9°C whereas the warmest year was 2015 with 4.0°C (range 3.1°C, mean of the 22-year period 2.4°C; Fig. 1c). Interannual variation is high although a warming trend is clear. A MAAT value >3°C was calculated for eight of the nine years between 2011 and 2019. No such high MAAT values were recorded for the entire previous 28-year period 1982-2010 indicating significant recent atmospheric warming. Two ground temperature

- see Fig. 1a) using GeoPrecision data logger equipped with PT1000 temperature sensors
- 154 (accuracy of $+/-0.05^{\circ}$ C) and logging hourly. Positive mean values for a 363-day long period
- 155 (13.09.2018-10.09.2019) were recorded for both sites (PRO1: 2.6°C, PRO2: 3.7-3.9°C) suggesting
- 156 permafrost-free conditions in the proglacial area and unfavourable conditions for long-term
- 157 dead ice conservation even below a protecting sediment cover.
- 158

159 3. MATERIAL AND METHODS

- 160 **3.1. GNSS data**
- 161 The terminus position of Pasterze Glacier was measured directly in the field by Global

162 Navigation Satellite System (GNSS) techniques in 14 years between 2003 and 2019 (annually

between 2003 and 2005, in 2008, and between 2010 and 2019). Direct measurements of the

164 subaerial glacier limit are essential in areas where debris cover obscures the glacier margin,

hindering the successful application of remote-sensing techniques (e.g. Kaufmann et al., 2015;

Avian et al., 2020). GNSS measurements were mostly carried out in September of the above

167 listed years, thus, close to the end of the glaciological years of mid-latitude mountain regions.

168 Until 2013, conventional GPS technique was applied using different handheld GARMIN devices

169 (geometric accuracy in the range of meters). Afterwards, real time kinematics (RTK) technique

170 was used, where correction data from the base station whose location is precisely known are

171 transmitted to the rover (geometric accuracy in the range of centimetres). We utilized a

172 TOPCON HiPer V Differential GPS (DGPS) system. The base station was either our own local

173 station (base-and-rover setup) or we obtained correction signals from a national correction-

174 data provider (EPOSA, Vienna).

175

176 **3.2. Airborne photogrammetry and land cover classification**

- 177 Nine sets of high-resolution optical images with a geometric resolution of 0.09-0.50 m derived
- 178 from aerial surveys between 1998 and 2019 (Table 1) were available for land cover analyses.
- 179 For the years 2003, 2006, and 2009, the planimetric accuracy of single point measurements is
- 180 better than ±20 cm (Kaufmann et al., 2015). Comparable planimetric accuracies can be
- 181 expected for the other stages. The optical data sets were used for visual classification using a
- 182 hierarchical interpretation key following a scheme developed for Pasterze Glacier by Avian et al.
- 183 (2018) for laserscanning data and modified later for optical data by Krisch and Kellerer-
- 184 Pirklbauer (2019). Land cover classification was accomplished at a scale of 1:300 (for the stages
- 185 1998-2015; data based on Krisch and Kellerer-Pirklbauer, 2019) or 1:200 (2018-2019; this
- 186 study). The classification results for a 1.77 km² area at Pasterze Glacier were published earlier
- 187 by Krisch and Kellerer-Pirklbauer (2019) for 1998, 2003, 2006, 2009, 2012, and 2015. For a 0.37
- 188 km² area, manual land cover classification was accomplished in this study for 2018 and 2019
- 189 using the same mapping key.
- 190

191 3.3. Terrestrial laserscanning

The glacial-proglacial transition zone of Pasterze Glacier has been monitored by terrestrial laser scanning (TLS) since 2001 from the scanning position Franz-Josefs-Höhe (FJH). The area of interest in the scan sector covers 1.2 km² (Fig. 1a). Using scanning position FJH, one minor limitation of TLS-based data for glacier lake delineation is the oblique scan geometry causing data gaps due to scan-shadowed areas (Avian et al., 2018; 2020). Until 2009 the Riegl LPM-2k

197	system was used followed by the Riegl LMS-Z620 system since then. Technical specifications
198	regarding the two Riegl laser scanning systems as well as the configuration of the geodetic
199	network (scanning position and reference points) can be found in Avian et al. (2007; 2018).
200	Processing and registration of the TLS data was performed in Riegl RiScan, subsequently DTMs
201	(with 1 or 0.5 m grid resolution) were calculated in Golden Software Surfer. In this study we
202	used the DTMs to delineate the water bodies in the scan sector manually (for details see Avian
203	et al., 2020) supported by GPS data (cf. above) for the glacier boundary. TLS-data from 2010 to
204	2017 (13.09.2010, 27.09.2011, 07.09.2012, 24.08.2013, 09.09.2014, 12.09.2015, 27.08.2016,
205	and 22.09.2017) were used.
206	
207	3.4. Time-lapse photography
208	At Pasterze Glacier six remote digital cameras (RDC) are installed to monitor mainly
209	glaciological processes with a very high temporal resolution (see Avian et al., 2020; overview
210	regarding the six cameras). One time-lapse camera was operated by the Grossglockner
211	Hochalpenstraße AG (GROHAG) using a Panomax system. The model used is a Roundshot
212	Livecam Generation 2 (Seitz, Switzerland) with a recording rate of mostly 5 minutes during
213	daylight. The camera is installed at the Franz-Josefs-Höhe lookout point (Fig. 1a) at an elevation
214	of 2380 m asl and, thus, 310 m above the present lake level of Lake Pasterzensee. Based on this
215	optical data, Kellerer-Pirklbauer et al. (2017) reported a sudden ice-disintegration event at the
216	glacier lake in September 2016 where tilting, lateral shifting, and subsidence of the ground
217	accompanied by complete ice disintegration of a debris-covered ice body occurred. For this

study, we visually checked all available Panomax images from 2016 to 2019. Four large-scale

219	and rapidly occurring ice-breakup events (IBE) were detected in the period September 2016 to
220	October 2019 (IBE1: 20.09.2016; IBE2: 09.08.2018, IBE3: 26.09.2018, IBE4: 24.10.2018). The
221	effects on the proglacial landscape during these four IBE was quantitatively analysed as follows.
222	
223	For the orthorectification process of the Panomax images (7030x2048 px) it is necessary to find
224	a suitable mathematical model. To get the necessary parameters for this model, control points
225	are needed which are visible in both the Panomax images and pre-existing orthophotos used
226	for the orthorectification process. We applied an interpolation approach using the rubber
227	sheeting model in ERDAS IMAGINE 2018. This model calculates a Triangulated Irregular
228	Network (TIN) for all control points at the reference orthophoto and at the Panomax image and
229	transforms the calculated triangles of the oblique images in such a way that they equal the ones
230	of the reference orthophoto. First degree polynomials were used for the transformation within
231	the triangles. Only control points at the lake level were utilized to achieve a maximum accuracy
232	at lake-level objects. Reasons for minor geometric errors in the analysed orthorectified images
233	were changes in the lake level or an offset of the camera (maximum of 5 px). Direct lake level
234	measurements at Lake Pasterzensee between 25.06.2019 and 12.09.2019 indicate an
235	amplitude of 95 cm (temperature range 0.9-1.8°C) in the 80-day period (pers. comm. Jakob
236	Abermann), thus, we assume a lake level variation in the order of 1m during the summer
237	months. Three groups of control points were generated using the three pre-existing
238	orthophotos of 11.07.2015, 11.09.2018, and 15.11.2018 (Table 1) and suitable Panomax images
239	from the same days. For the IBE1 we used the model of 11.07.2015, for IBE2 and IBE3 the
240	model of 11.09.2018, and for IBE 4 the one of 15.11.2018. The calculated orthorectified images

- 241 have a geometric resolution of 0.2 m. ArcGIS 10.5 was subsequently used to analyse landform
- changes. For more details see Bernsteiner (2019).
- 243

244 **3.5. Geophysics**

- 245 Electrical resistivity tomography (ERT) and seismic refraction (SR) has been applied in the study
- area between 2015 and 2019. For space reasons, we focus only on selected aspects of the ERT
- 247 results in this paper. Electrical resistivity is a physical parameter related to the chemical
- 248 composition of a material and its porosity, temperature, water and ice content (Kneisel and
- 249 Hauck 2008). For ERT a multi-electrode system (GeoTom, Geolog, Germany) and two-
- 250 dimensional data inversion (Res2Dinv) was applied. ERT was carried out at a total of 43 profiles
- 251 (3 in 2015, 4 in 2016, 4 in 2017 [Fig. 3a,b], 5 in 2018, and 27 in 2019 [Fig. 3c]) with 2 or 4 m
- electrode spacing and profile lengths of 80-196 m. Salt water was sometimes used at the
- 253 electrodes to improve electrical contact. RTK was applied to measure the position of each
- electrode and thus the course of the profile (Fig. 3b). We applied in most cases both the
- 255 Wenner and Schlumberger arrays (Kneisel and Hauck, 2008). Focus is given here on the Wenner
- results, which are more suitable for layered structures (Kneisel and Hauck 2008). ERT data from
- 257 2015 and 2016 were taken from Hirschmann (2017) and Seier et al. (2017). The apparent
- resistivity data were inverted in Res2Dinv using the robust inversion modelling. Bad datum
- 259 points were removed before the inversion. The number of iterations was stopped when the
- change in the RMS error between two iterations was small (Locke, 2000).
- 261

262 3.6. Bathymetry

263	Sonar measurements were carried out at Lake Pasterzensee at the 13.09.2019. Water depth in
264	the lake was measured with a Deeper Smart Sonar CHIRP+ system (depth range 0.15-100 m)
265	consisting of an echo sounding device and a GPS positioning sensor. The estimated accuracy of
266	raw water-depth measurements should be less than 10 cm according to the manufacturer. The
267	system was mounted on a Styrofoam platform for stability reasons and dragged behind a small
268	(and rather unstable) inflatable canoe operated by two people. Altogether 4276 water depth
269	measurements along a 4.3 km long route were accomplished (Fig. 1d) measuring with 290 kHz
270	(cone angle 16°). Because icebergs and wind cause boat instability, the canoe was not navigated
271	along a regular shore-to-shore route but rather in a zigzag mode starting in the northwest of
272	the lake and ending in the southeast. GPS and water depth data were imported into ArcGIS for
273	further analysis. To compute the lake geometry, the measured lake depth values and a lake
274	mask of September 2019 were combined using the Topo to Raster interpolation tool to
275	calculate a digital terrain model (DTM) with a 5m grid resolution. Lake volume was calculated
276	using the functional surface toolset.
277	

278 **4. RESULTS**

279 4.1. Glacier recession and areal expansion of the lake

Figure 4a depicts the terminus positions between 1998 and 2019 as well as the proglacial water surfaces including Lake Pasterzensee and the proglacial basin as defined for September 2019 (area of 0.365 km²). The glacier steadily receded into the current proglacial basin over a longitudinal distance of c.1.4 km. In detail, however, this recession was not evenly distributed along the glacier margin due to differential ablation below the uneven supraglacial debris. The

285	east part of the glacier tongue receded up-valley beyond the proglacial basin. The west part of
286	the glacier tongue is still in contact with the proglacial lake and changed morphologically rather
287	little during the last two decades. Figure 4a also depicts 100 m wide strips where mean values
288	for longitudinal and lateral backwasting were calculated. Results are shown in Fig. 4b. The
289	longitudinal backwasting rate was between 29.0 and 217.2 m yr ⁻¹ , 2 to 19 times larger than the
290	lateral backwasting rate of 7.3 to 13.2 m yr ⁻¹ . High annual longitudinal backwasting rates where
291	measured in most years when the glacier was in the basin. Since 2017, this rate drastically
292	dropped, presumably due to the detachment of the glacier from the lake.
293	
294	Figure 5 illustrates glacier recession and the evolution of proglacial water bodies for the period
295	1998-2019 in relation to the 0.365 km ² proglacial basin as defined for September 2019. In 1998
296	only 0.5% of the basin was covered by water (Fig. 5a). Up to 2006, water surfaces still covered
297	less than 5% of the basin (Fig. 5c). By 2009, this value increased to 11.2% (Fig. 5d) and was
298	rather constant until two years later (Fig. 5f). By 2016, more than 50% of the basin was covered
299	by water (Fig. 5k) and in 2019 water surfaces in the basin covered 83.2% (Fig. 5n). The increase
300	in water surface areas in the basin since 1998 follows an exponential curve (Fig. 6a). However,
301	in single years this areal increase follows a distinct pattern with enlargement of water surfaces
302	during summer and a decrease in autumn due to lake level lowering as revealed by field
303	observations. The exceptionally low value of November 2018 (62.4%) in relation to September
304	2018 (73.2%) is related to the widespread existence of ice floes. Figure 6a also depicts the
305	extent of icebergs in the proglacial basin with values below 1% in most cases. High percentage

- values were only mapped for 15.11.2018 (7.3%) suggesting rapid iceberg loss during the
- ablation season 2019.
- 308

4.2. Land cover change in the lake-proximal surrounding since 1998

Different glacial and proglacial surface types and landforms were mapped for a 0.76 km² area in 310 the glacial-proglacial transition zone for nine different stages between 1998 and 2019 (Fig. 7). 311 312 The visual landform classification gives a more detailed picture on landform changes in the area of interest. Figure 6b quantitatively summarises the relative changes of different surface types 313 314 in this transition zone. Debris-poor, rather clean-ice covered 58% of the area in 1998, decreased to 9.3% until 2015, and vanished afterwards from the area. In contrast, debris-rich glacier parts 315 316 covered in all nine stages between 20.5% (2019) and 33.4% (2015) of the transition zone. For 317 this class, areal losses due to glacier recession were partly compensated by areal gains due to 318 an increase in supraglacial debris-covered areas. Water surfaces increased from 2.1% in 1998 to 45.5% in 2019. The low value for 15.11.2018 is related to ice floes (3.4%), data gaps (4.1%), as 319 well as high values for both debris-rich (2.1%) and debris-poor (1.5%) icebergs. Areas covered 320 321 by bedrock and vegetation were always around 4%. Areas covered by fine-grained sediments 322 reached a maximum in 2012 decreasing substantially afterwards (mainly due to lake extension). 323 Areas covered by coarse-grained sediments increased from 3.3% in 1998 to about 26-27% in 324 2018 and 2019 and are located at the northern and eastern margin of the basin. Finally, dead 325 ice holes were mapped for all stages, but their spatial extent was always very small (maximum in 2012 with a total area of 618 m²) and covered less than 0.1% of the basin. 326

327

328 **4.3. Buoyant calving at the ice-contact lake**

- 329 Four large-scale ice-breakup events (IBE) related to buoyancy were detected for the period
- 330 September 2016 to October 2019 (IBE1: 20.09.2016; IBE2: 09.08.2018, IBE3: 26.09.2018, and
- 331 IBE4: 24.10.2018). Twelve smaller to mid-sized iceberg-tilting or capsize events were
- additionally documented by the Panomax images (27.05.2017, 28.05.2017, 09.06.2017,

333 11.06.2017, 20.06.2017, 05.07.2017, 19.07.2017, 25.09.2017, 22.06.2018, 23.09.2018,

334 26.09.2018, and 30.10.2018).

335

336 IBE1 occurred on 20.09.2016. Figure 8a presents two ortho-images from this event at its

beginning (9:00 am) and its end (11:15 am). The latter also indicates the position of the

338 geoelectric profile ERT17-1 for orientation. Figure 2 visualizes the same event. Different

339 processes occurred as indicated by the capital letters in Fig. 7a: Limnic transgression (A and F)

of water due to tilting of ice slabs, uplift of a debris-covered ice slab (B and G), formation of a

341 massive crevasse (C), complete ice disintegration (D), ice disintegration and lateral

342 displacement of several ice slabs (E), and drying out of a meltwater channel (H). All processes

apart from the limnic transgressions ended by 11:15 am, the latter terminated at 3:30 pm. The

344 formation of the large crevasse started initially at 9:30 am, followed by a rapid widening until

345 9:45 am (crack width 3.5 m), steady conditions until 10:45 am, followed by a second widening

- 346 phase (crack width 5.5 m) until 10:50 am (see inset graph in Fig. 8a). The morphologically most
- distinct event happened between 9:50 am (Fig. 2d) and 9:55 am (Fig. 2e) when the total
- 348 collapse of a 1700 m² large ice slab occurred accompanied by lateral shift and tilting of

- neighbouring ice slabs by lateral push (E) and lowering of the surface of previously tilted slabs
- 350 (B).
- 351

352	IBE2 happened on 09.08.2018. Figure 8b depicts the changes that occurred between 4:35 pm
353	and 4:58 pm. At this event three different processes were identified: (A) detachment of a
354	debris-covered ice peninsula (945 m ²) from Pasterze Glacier at the western lakeshore and
355	separation into four icebergs (total area 1054 m ²), (B) emergence of a 1035 m ² large iceberg
356	(4:35-4:40 pm) followed by capsizing and partially disintegration of this iceberg into ice debris
357	(4:40-4:58 pm) pushing away other icebergs which cause (C) lateral iceberg displacement of up
358	to 65.6 m as well as a clockwise iceberg rotation of 95°.
359	
360	IBE3 occurred on 26.09.2018. This event involved four main processes as visualised in Fig. 8c:
361	(A) uplift of debris-covered ice bodies increasing the surface area from 6820 to 13245 m^2 in
362	only 10 minutes (at 2:35-2:45 pm), (B) emergence of a new iceberg between 2:35 and 2:40
363	which capsized a few minutes afterwards, (C) limnic transgression, and (D) lateral iceberg
364	displacement (both at 2:35-3:00 pm). At the southern part of the affected area, icebergs moved
365	away from the uplifting area (push effect). In contrast, at the eastern part of the affected area
366	icebergs moved towards the uplifting area possibly due to compensatory currents causing a
367	suction effect. A large iceberg (IB1 in Fig. 7c) was hardly moving at all suggesting grounding
368	conditions.

369

370	The last major IBE took place on 24.10.2018 (IBE4) spanning only 5 minutes (Fig. 8d). Like IBE2,
371	a debris-covered ice peninsula (1,933 m ²) detached from Pasterze Glacier at the western
372	lakeshore and separated into several icebergs (A). Furthermore, (B) ice disintegration and (C)
373	lateral iceberg displacement was observed during the event. The large iceberg IB1 experienced
374	a lateral offset of 22 m accompanied by a clockwise rotation by 43°. Spatial extent, volume and
375	freeboard of this iceberg was calculated based on a high-resolution DTM derived from the
376	aerial survey dating to 15.11.2018 (cf. Table 1). The subaerial volume of iceberg IB1 was 3271
377	m ³ on 15.11.2018, which should be around 10% of the entire iceberg. Hence, some 29,500 m ³
378	(90%) were during that time below the lake level. Maximum freeboard of IB1 was 3.7 m with a
379	mean freeboard value of 1.4 m. If we assume the same surface area of the iceberg below lake
380	level (2287 m ²), we could further assume a mean ice thickness of the iceberg of 14.3 m (12.9 m
381	draft, 1.4 m freeboard). Therefore, in order to have a freely moveable iceberg, a water depth
382	exceeding 13 m is needed.
383	

No large buoyant calving events were detectable in the time-lapse images after 24.10.2018.
However, at least the occurrence of small-sized buoyant calving events which are hardly
detectable by the time-lapse camera can be assumed. During field work in June 2019, we
observed buoyant calving of a small, c.3 m long iceberg ("shooter" according to Benn and
Evans, 2010) c.200 m from the subaerial glacier front (Fig. 3d). The whole event took only few
minutes and was hardly visible in the time-lapse images of that particular day.

4.4. Ground ice conditions at the lake basin and its proximity

392	Altogether 43 ERT profiles were measured in the proglacial area between 2015 and 2019 with
393	profile lengths of between 80 and 196 m. In this study we focus on the quantification of
394	sediment-buried dead ice bodies detected by ERT. A detailed discussion on the ERT results will
395	be presented elsewhere. Resistivity values >20,000 Ohm m indicate buried glacier ice and
396	water-saturated glacial sediments show values <3,000 Ohm m (Pant and Reynolds, 2000). Clay
397	and sand have resistivity values in the ranges of 1-100 and 100-5,000 Ohm m, respectively.
398	Temperate glacier ice may exceed 1×10^6 Ohm m (Kneisel and Hauck, 2008). We used the
399	20,000 Ohm m-boundary in the interpretation to estimate the maximum ice thickness for each
400	profile as depicted in Fig. 9 which shows three profiles from 2017. In many cases, ice thickness
401	exceeded the depth of ERT penetration. Therefore, we only were able to calculate "minimum
402	ice thickness estimates" based on the ERT data.
403	
404	Figure 10 summarises the results of the surveys for 2015, 2016, 2017, 2018 and September
405	2019. Two of the three ERT profiles measured in 2015 (ERT15-1, ERT15-2) revealed only very
406	thin ice lenses. Both are located outside the proglacial basin as defined in September 2019 (Fig.
407	10a). The profile in the basin had an estimated ice thickness of 14 m (ERT15-3). The profiles
408	measured in 2016 revealed minimum ice thickness values of 8-10 m (Fig. 10b). The four profiles
409	measured in 2017 in the central part of the proglacial area revealed minimum ice thicknesses of
410	between 13 (ERT17-4) and 28 m (ERT17-2) (Fig. 10c) confirming the existence of massive dead
411	ice beneath a thin veneer of debris (Fig. 9).

412

413 The interpretation of four profiles measured in 2018 are shown in Fig. 10d. Profiles ERT18-2 and ERT18-3 are free of ice located outside the basin or at its margin. ERT18-4 and ERT18-5 were 414 both located in the basin and revealed minimum ice thicknesses of 13 (ERT18-5) and 14 m 415 (ERT18-4). The September-2019 measurements supported earlier measurements (Fig. 10e). The 416 417 profiles at the eastern margin of the basin showed again a thin layer (ERT19-18; 8m ice) or only 418 very small occurrences of glacier ice (ERT19-19; 1 m ice). The three profiles near the north-419 western shore of the lake revealed minimum ice thickness estimates of up to 26 m (ERT19-26). 420 In summary, ERT profiles outside the proglacial basin typically showed little buried dead ice 421 remnants, whereas profiles in the basin (particularly at its north-western part) typically yielded resistivity values consistent with widespread massive dead ice. 422 423 424 4.5. Bathymetry of the lake basin

425 Lake bottom geometry and water volume of Lake Pasterzensee was calculated based on 4276 sonar measurements (Fig. 1d). Measured water depths ranged from 0.35 m to 48.2 m yielding 426 an arithmetic mean of 13.4 m and a median of 10.7 m. During the time of bathymetric 427 428 measurements, the lake level was 2069.1 m asl implying that the lowest point at the lake bottom was 2020.9 m asl (Fig. 11a). Several sub-basins (marked as A-D in Fig. 11a) were 429 430 identified along the 1.2 km long and up to 300 m wide lake basin. One small sub-basin (A) was 431 detected close to the southern end of the lake with maximum measured water depths 432 exceeding 20 m (maximum 24.1 m, 2045 m asl), an E-W extent of 160 m, and a N-S dimension of 140 m. A second sub-basin (B) is slightly less deep (max. 20.5 m) but seems to be broader 433 434 compared to basin (A). The third sub-basin (C) is by far the deepest, the largest, and the most

435	complex one with a maximum water depth of 48.2 m and a secondary basin in the south
436	reaching a measured maximum depth of 31.0 m. In this sub-basin, water depths exceeding 30
437	m were calculated for a 34,000 m ² large in the central part of the entire lake basin. The lake
438	basin gets generally shallower towards the northwest. Finally, a fourth sub-basin (D) was
439	identified at the north-western end of Lake Pasterzensee where a broad basin is located with a
440	maximum measured depth of 17.7 m. Based on our gridded DTM for the lake bottom, the
441	estimated water volume of the 299,496 m ² large Lake Pasterzensee in September 2019 was 4 x
442	10 ⁶ m ³ . The gradient from the deep basin (C) to the shore seems to be rather gradual at the
443	eastern margin of the lake. In contrast, at the western margin of the lake basin where Lake
444	Pasterzensee is in ice-contact, the gradient is steep in most areas (e.g. at sub-basin C: horizontal
445	distance between sonar measurement location and glacier margin 19 m vs. water depth 26.1m)
446	suggesting a steep glacier margin with a pronounced ice foot.
447	
448	5. DISCUSSION
440	E 1. Classich to produced landscape modification

449 **5.1. Glacial-to-proglacial landscape modification**

450 Pasterze Glacier receded by some 1.4 km between 1998 and 2019 thereby causing the

451 formation of a bedrock-dammed lake in an over-deepened glacial basin. During these two

452 decades, the glacier decelerated, fractured (Kellerer-Pirklbauer and Kulmer, 2019) and lost the

- 453 connection to the lake at its eastern part. In contrast, at the western shore, the lake was still in
- 454 ice contact with the glacier in 2019. This ice-contact difference is related to an unequal
- 455 recession pattern of the eastern and western part of the glacier tongue caused by an uneven
- 456 distribution of the supraglacial debris cover (Kellerer-Pirklbauer, 2008). The debris cover

457	distribution pattern promotes differential ablation (Kellerer-Pirklbauer et al., 2008). Rapid
458	deglaciation as well as glacier thinning is much more intensive at the debris-poor part of the
459	glacier affecting the stress and strain field and modifying the flow directions of the ice mass
460	(Kaufmann et al., 2015). Therefore, the proglacial lake predominantly developed in areas where
461	debris-poor ice was located before.
462	
463	At the waterline, thermo-erosional undercutting causes the formation of notches (cf. Röhl,
464	2006). Such notches are frequent features at Pasterze Glacier, and were first reported in 2004
465	(Kellerer-Pirklbauer, 2008). DPGS measurements at the glacier margin on 13.09.2019 showed
466	that waterline notches occurred during that time at 53% of the 935 m long ice-contact line
467	between Pasterze Glacier and Lake Pasterzensee (Fig. 5n). Notches observed at Pasterze Glacier
468	during several September-field-campaigns during the last years had a stepped geometry due to
469	lake-level drop. The amplitude of water-level fluctuations at Pasterzesee is in the order of one
470	meter during the summer months as shown by lake level measurements (pers. comm. Jakob
471	Abermann; cf. methods section). Stepped geometries were observed also at other alpine lakes
472	(e.g. Röhl 2006). Rates of notch formation and, thus, thermo-erosional undercutting at Pasterze
473	Glacier are unknown. However, if we consider the annual lateral backwasting rates derived
474	from DGPS (Fig. 4) as indicative for thermo-erosional undercutting, a mean melt rate of about
475	10 m yr ⁻¹ for the period 2010-2019 can be assumed. This is about one third of the values
476	quantified for Tasman Glacier (Röhl, 2006). The difference is possibly related to cooler (higher
477	elevation) and more shaded (NE-facing) conditions at Pasterze Glacier. Outward toppling of
478	undercut ice masses due to thermal erosion, a process potentially relevant for calving at ice-

479	contact lakes (Benn and Evans 2010), was not observed at Pasterze Glacier. Lateral backwasting
480	at Pasterze Glacier is mainly controlled by ice melting either beneath supraglacial debris or at
481	bare ice cliffs above notches where the slope is too steep to sustain a debris cover and thus the
482	rock material slides into the lake (see Fig. 10 in Kellerer-Pirklbauer, 2008).
483	
484	The analysis of the relationship between glacier recession and the evolution of proglacial water
485	surfaces showed drastic changes in 1998-2019. The spatial extent of water surfaces in the 0.37
486	km ² proglacial basin followed an exponential curve with 0.5% water surfaces in 1998, 21% by
487	2013, 51% by 2016, and 83% by 2019. On an annual timescale water surface changes follow a
488	distinct pattern with enlargement during summer due to glacier and dead-ice ablation in lake-
489	contact locations causing lake transgression and a shrinkage in size in autumn due to lake level
490	lowering. This annual pattern at Lake Pasterzensee has been also detected and quantified by
491	Sentinel-1 and Sentinel-2 data (Avian et al., 2020).
492	

Carrivick and Tweed (2013) discuss the enhanced ablation at ice-contact lakes via mechanical 493 494 and thermal stresses at the glacier-water interfaces. They report increasing lake sizes in the 495 proglacial area of Tasersuag Glacier, west Greenland, for four different stages between 1992 and 2010. An exponential increase in lake size, as observed at Pasterze Glacier, was however 496 497 not observed at Tasersuag Glacier as judged from their provided map in the paper. More general, detailed studies of increasing lake size on an annual basis are rare impeding the 498 499 comparison of our results with other studies accomplished in similar topoclimatical settings. 500 Some comparative observations are, however, as follows.

501

502	Schomacker and Kjær (2008) report from a glacier in Svalbard that an ice-contact lake increased
503	near-exponentially in size during a period of 40 years due to dead-ice melting. Schomacker
504	(2010) report from the enlargement of proglacial lakes at Vatnajökull in Iceland where the lake
505	Jökulsárlón enlarged by 40% in only 9 years (2000-2009). For the same lake, Canas et al. (2015)
506	revealed an enlargement by 74% for the period 1999-2014. Stockes et al. (2007) report an 57%
507	increase in the surface area of supra- and proglacial lakes in the Caucasus Mountains in the
508	period 1985-2000. Loriaux and Casassa (2012) described the evolution of glacial lakes from the
509	Northern Patagonia Icefield reporting a total lake area increase of 64.9% in a 66-year period
510	(1945-2011). Gardelle et al. (2011) detected for the Eastern Himalaya an enlargement of glacial
511	lakes by 20% to 65% between 1990 and 2009. To conclude, the numbers summarised here
512	clearly show that the increase in lake size at Pasterze Glacier is particularly high although this
513	relative increase in area at Lake Pasterzensee is likely biased by the very small initial size of the
514	lake in 1998.
515	

Landscape changes were quantified for a 0.76 km² large transition zone between Pasterze
Glacier and its foreland for the period 1998-2019. Apart from rapid deglaciation and lake size
increase, areas covered by coarse-grained glacio-fluvial sediments increased in their extent.
Furthermore, icebergs in the lake were mapped for the first time in 2015 (0.7% of the 0.76 km²
large area) and reached their maximum extent in 2018 (3.5%). By the end of the ablation
season in 2019, the areal extent of icebergs decreased dramatically to only 0.3% attributed to
high melt rates in a warm summer 2019 (Fig. 1c: the MAAT in 2019 was the second highest in

523	the period 1998-2019). After 2015, an alluvial fan with a lake delta developed at the northern
524	end of the lake because the glacier receded at this location from the lake basin connecting the
525	main glacial stream directly with the lake (Fig. 6f and g). This recession was, however, only
526	superficial, and huge amounts of dead ice remained in the basin – as detected by ERT
527	measurements – and were covered by fluvio-glacial sediments.
528	
529	5.2. Dead-ice conditions and changes
530	Subsurface conditions at the proglacial area of Pasterze Glacier were studied by measuring
531	electrical resistivity along 43 profiles distributed over the entire proglacial area between 2015
532	and 2019. Our measurements showed that dead ice bodies covered by sediments were absent
533	outside the proglacial basin as defined for September 2019. In contrast, all ERT measurements
534	carried out in the basin revealed very high maximum and median resistivity values (e.g. Fig. 9)
535	indicative of buried ice. Long-term air temperature data from a nearby automatic weather
536	station as well as two ground temperature data series directly from the proglacial area clearly
537	suggest that permafrost is absent at the shores of Lake Pasterzensee due to permafrost-
538	unfavourable thermal conditions (MAAT always >2.5°C since 2011). Furthermore, a distinct
539	warming trend occurred in the period 1998-2019 at Pasterze Glacier enhancing ice ablation and
540	deglaciation processes at the surface and the surface in more recent years.
541	
542	In addition to the geomorphic observations made at the surface such as dead-ice holes (Figs 6b
543	and 7) or cracks (Fig. 2) in hummocky fluvio-glacial sediments (Fig. 3c), our subsurface data

544 clearly suggest substantial and rapid dead-ice degradation at present. Gärtner-Roer and Bast

545	(2019) conclude that only a few attempts have been made to describe and analyse the
546	occurrence, distribution, and dynamics of ground ice in recently deglaciated areas. However,
547	due to the rapid increase in proglacial areas at present, these authors point out that there is
548	increasing interest on research both for geomorphologist and hydrologists. With the presented
549	geophysical data from Pasterze Glacier, we proved the widespread existence of debris-covered
550	dead-ice bodies in a proglacial basin of an alpine valley glacier and, thus, contribute to this
551	emerging topic.
552	
553	5.3. Ice-breakup and buoyant calving
554	Four remarkable ice-breakup events (IBE) with horizontal extents in the order of hundreds of
555	meters occurred in the period September 2016 to October 2018. No comparable events were
556	observed before the 20.09.2016 (Kellerer-Pirklbauer et al., 2017) and no comparable event
557	happened between 25.10.2018 and 29.07.2020. Only smaller buoyant calving events can be
558	assumed for the latter period as suggested by a fortuitously observed event (Fig. 3d).
559	
560	Thanks to high-resolution (both spatial and temporal) time lapse photography overlooking the
561	glacial-proglacial transition zone, different ice-related processes can be clearly distinguished.
562	Common features of the IBEs are (a) limnic transgression due to ice slab lowering or tilting, (b)
563	drying out of meltwater channels due to slab uplift or tilting of ice slabs, (c) uplift – and
564	therefore enlargement – of previously existing ice-cored terraces or icebergs, (d) crack and
565	crevasse formation at previously stable-looking terraces, (e) sudden disintegration of ice
566	masses (i.e. collapsing ice masses) within minutes into ice debris, (f) lateral displacement of

567	icebergs (either pushed away or dragged towards uplifting icebergs), (g) emerging new icebergs
568	previously not mapped due to buoyant calving, (h) capsizing of new icebergs, and (i)
569	detachment of "ice peninsulas" attached to Pasterze Glacier at the western lakeshore and
570	subsequent fragmentation into several icebergs and disintegration into small, mainly floating
571	icebergs. Regarding emergence of new icebergs, our observations suggest both buoyant calving
572	of small ice masses (suggested by emerging small icebergs, e.g. Fig. 3d) but also full-thickness
573	ice calving (suggested by the large ice-breakup events; Fig. 8).
574	
575	All these processes are related to hydrostatic disequilibrium of the glacier margin or subaquatic
576	dead ice which becomes super-buoyant and subject to net upward buoyant forces (Benn et al.,
577	2007). Buoyant glacier margins can slowly move back into equilibrium by ice creep or can
578	fracture catastrophically as described for instance for Glacier Nef in Chile by Warren et al.
579	(2001). At Pasterze, creep rates are very low at the glacier margin with only few meters per
580	year near the terminus (Kellerer-Pirklbauer and Kulmer, 2019) therefore only the latter option
581	for a renewed hydrostatic equilibrium is feasible. A floating process of the glacier terminus was,
582	however, not observed at Pasterze Glacier (Boyce et al., 2007). Our buoyant calving
583	observations as well as the bathymetric data suggest the existence of an ice foot at the west
584	shore of the ice-contact lake. Such a presence of an ice foot below the water level of tidewater
585	ice cliffs of temperate glaciers has been debated for more than 120 years (Hunter and Powell,
586	1998). At Pasterze Glacier only small ice cliffs above thermo-erosional notches exist. However,
587	the existence of an ice foot at the western shore is very likely. This assumption is supported by
588	the occurrence of the ice breaking events with buoyant calving-related processes.

589

590	In summary, we identified the following sequence of processes at Pasterze Glacier: (a) glacier
591	recession into an overdeepened basin and glacier thinning below spillway-level; (b) glacio-
592	fluvial sedimentation in the glacial-proglacial transition zone covering dead ice; (c) initial
593	formation and accelerating enlargement of a glacier-lateral to supraglacial lake by ablation of
594	glacier ice and debris-covered dead ice forming thermokarst features; (d) increase in
595	hydrostatic disequilibrium leading to general glacier-ice instability; (e) destabilization of debris-
596	buried ice at the lake shore expressed by fracturing, tilting, and disintegration due to buoyancy;
597	(f) emergence of new icebergs due to buoyant calving; (g) gradual melting of icebergs along
598	with iceberg capsizing events. This sequence of processes is visualized in a conceptual model
599	depicted in Fig. 12. Our observations suggest that buoyant calving, previously not reported
600	from the European Alps, might play an important role at alpine glaciers in the future as many
601	glaciers are expected to recede into valley overdeepenings or cirques.
602	
603	6. CONCLUSIONS

We studied the glacial-to-proglacial landscape transformation at the largest glacier in Austria 604 during the period 1998 to 2019 focusing on ice-contact lake evolution and buoyant calving 605 606 processes in an overdeepened basin. The main conclusions which can be drawn from this study 607 are the following:

608 • High annual backwasting rates were measured in most years when the glacier terminated in the basin. The detachment of the glacier from the lake at the east side 609 610 drastically reduced backwasting rates.

611	•	Detailed studies of increasing lake size on an annual basis are rare. We showed that the
612		increase in water surfaces in the basin since 1998 follows an exponential curve (1998:
613		1900 m ² ; 2019: 0.3 km ²). The increase in lake size is particularly high although this
614		pattern is likely biased by the very small initial size of the lake in 1998. In single years
615		this areal increase follows a distinct pattern with enlargement of water surfaces during
616		summer and a decrease in autumn due to lake-level lowering supporting earlier
617		satellite-based studies (Avian et al. 2020).
618	•	Icebergs in the up to 48.2 m deep lake were observed for the first time in 2015 and
619		reached their maximum extent in 2018. By the end of the ablation season in 2019, the
620		areal extent of icebergs decreased dramatically, attributed to high melt rates in a warm
621		summer 2019.
622	•	Both, geomorphic observations made at the surface and geophysical data from the
623		subsurface clearly suggest widespread existence of debris-covered dead-ice bodies in
624		the proglacial basin which is substantially and rapidly affected by dead-ice degradation
625		at present due to permafrost-unfavourable ground temperature conditions.
626	•	Previously, little was known about how buoyant calving might contribute to the
627		transformation of supraglacial lakes into full-depth lakes lacking any ice at the lake
628		bottom. Thanks to time-lapse images and photogrammetric data analysis, we were able
629		to analyse four large-scale ice-breakup events related to ice buoyancy for the period
630		September 2016 to October 2018. However, no large buoyant calving events were
631		detectable in the time-lapse images after 24.10.2018 and until (at least) 29.07.2020.

632	Different ice-related processes related to hydrostatic disequilibrium have been				
633	identified: limnic transgression due to ice slab lowering or tilting; drying out of				
634	meltwater channels due to slab uplift or tilting of ice slabs; uplift and enlargement of				
635	ice-cored terraces or icebergs; crack formation at previously stable-looking terraces;				
636	sudden disintegration of ice masses into ice debris; lateral displacement or rotation of				
637	icebergs; emergence of new icebergs due to buoyant calving; capsizing of icebergs;				
638	detachment of ice peninsulas attached to the glacier and subsequent fragmentation into				
639	several icebergs.				
640	• Our observations suggest that buoyant calving, previously not reported from the				
641	European Alps, might play an important role at alpine glaciers in the future as many				
642	valley and cirque glaciers are expected to recede into valley overdeepenings or corries.				
643					
644	Data availability. The data sets used in this study will be available in a data repository not				
645	specified yet.				
646					
647	Author contributions. The study was designed by AKP. Fieldwork and analysis were carried out				
648	by AKP (GNSS, geophysics, bathymetry), MA (laserscanning), FB (time-lapse photography), PK				
649	(land cover mapping), CZ (geophysics, bathymetry). DIB contributed to the introduction and				
650	discussion. AKP prepared the manuscript with contributions from all co-authors				
651					
652	2 Competing interests. The authors declare that they have no conflict of interest.				
653					

654	Acknowledgments. This study was funded by different projects over the years. The most
655	important ones are: (a) Austrian Science Fund, project no. FWF P18304-N10, (b) Hohe Tauern
656	National Park authority (several projects), (c) Glockner Ökofonds (GROHAG) 2018, and (d)
657	Austrian Alpine Association (through the annual glacier monitoring program). Meteorological
658	data were kindly provided by Austrian Hydro Powers. Aerial surveys of 2018 and 2019
659	(AeroMap) were funded by project (c) and the Institute of Geography and Regional Science
660	(supported by Wolfgang Sulzer). Matthias Wecht, Gernot Seier and Wolfgang Sulzer are very
661	much thanked for supporting the aerial photograph analysis of the two AeroMap flight
662	campaigns in 2018 and 2019. Correction signals for RTK measurements were kindly provided
663	free of charge by EPOSA, Vienna. Field work was supported during numerous field trips by
664	several colleagues and numerous students especially Michael Bliem, Stefan Brauchart,
665	Alexander Dorić, Iris Hansche, Matthias Lichtenegger, Christian Lieb, Gerhard Karl Lieb,
666	Matthias Rathofer, Rupert Schwarzl, and Daniel Winkler. Finally, the authors acknowledge the
667	financial support by the University of Graz.
668	
669	ORCID
670	Andreas Kellerer-Pirklbauer https://orcid.org/0000-0002-2745-3953
671	

672

673 **REFERENCES**

- Avian, M., Lieb, G. K., Kellerer-Pirklbauer, A., and Bauer, A.: Variations of Pasterze Glacier (Austria)
- 675 between 1994 and 2006 combination of different data sets for spatial analysis, in: Proceedings of the
- 9th International Symposium of High Mountain Remote Sensing Cartography, Graz, Austria, 14-22
- 677 September 2006, 79-88, 2007.
- Avian, M., Kellerer-Pirklbauer, A., and Lieb, G. K.: Geomorphic consequences of rapid deglaciation at
- 679 Pasterze Glacier, Hohe Tauern Range, Austria, between 2010 and 2013 based on repeated terrestrial
- laser scanning data, Geomorphology, 310, 1-14, https://doi.org/10.1016/j.geomorph.2018.02.003, 2018.
- 681 Avian, M., Bauer, C., Schlögl, M., Widhalm, B., Gutjahr, K.H., Paster, M., Hauer, C., Frießenbichler, M.,
- 682 Neureiter, A., Weyss, G., Flödl, P., Seier, G., and Sulzer, W.: The status of earth observation techniques in
- 683 monitoring high mountain environments at the example of Pasterze Glacier, Austria: data, methods,
- accuracies, processes, and scales, Remote Sens-Basel, 12, 1251, https://doi.org/10.3390/rs12081251,
 2020.
- Ballantyne, C. K.: Paraglacial geomorphology, Quaternary Science Reviews, 21, 1935-2017,
- 687 https://doi.org/10.1016/S0277-3791(02)00005-7, 2002.
- 688 Benn, D. I., Wiseman, S., and Hands, K. A.: Growth and drainage of supraglacial lakes on the debris-
- 689 mantled Ngozumpa Glacier, Khumbu Himal, Nepal, J Glaciol, 47, 626-638,
- 690 https://doi.org/10.3189/172756501781831729, 2001.
- Benn, D. I. and Evans D. J. A.: Glaciers and Glaciation, 2nd edn. Hodder/Arnold Publication, London, UK,2010.
- Bernsteiner, F.: Dynamik von Eisbruchprozessen im proglazialen See der Pasterze. Bachelor Thesis,
 University of Graz, Graz, 54 pp., 2019.
- Bosson, J.B., Deline, P., Bodin, X., Schoeneich, P., Baron, L., Gardent, M., and Lambiel, C.: The influence
- of ground ice distribution on geomorphic dynamics since the Little Ice Age in proglacial areas of two
- cirque glacier systems. Earth Surf Process Land, 40, 666-680, https://doi.org/10.1002/esp.3666, 2015.
- Boyce, E.S., Motyka, R.J., and Truffer, M.: Flotation and retreat of a lake-calving terminus, Mendenhall
 Glacier, southeast Alaska, USA. J Glaciol, 53, 211-224, https://doi.org/10.3189/172756507782202928,
 2007.
- Buckel, J., Otto, J. C., Prasicek, G., and Keuschnig, M.: Glacial lakes in Austria distribution and formation
- since the Little Ice Age, Global Planet Change, 164, 39-51,
- 703 https://doi.org/10.1016/j.gloplacha.2018.03.003, 2018.
- 704 Buckel, J. and Otto J. C.: The Austrian Glacier Inventory GI 4 (2015) in ArcGis (shapefile) format.
- 705 PANGAEA, https://doi.org/10.1594/PANGAEA.887415, 2018.

- 706 Canas, D., Chan, W. M., Chiu A., Jung-Ritchie L., Leung M., Pillay L., and Waltham B.: Potential
- 707 environmental effects of expanding Lake Jökulsárlón in response to melting of Breiðamerkurjökull,
- 708 Iceland, Cartographica, 50, 204-213, https://doi.org/10.3138/cart.50.3.3197G, 2015.
- 709 Carrivick, J. L. and Tweed F. S.: Proglacial lakes: character, behaviour and geological importance, Quatern
- 710 Sci Rev, 78, 34-52, https://doi.org/10.1016/j.quascirev.2013.07.028, 2013.
- 711 Carrivick J. L. and Heckmann T.: Short-term geomorphological evolution of proglacial systems,
- 712 Geomorphology, 287, 3-28, https://doi.org/10.1016/j.geomorph.2017.01.037, 2017.
- 713 Dykes, R. C., Brook, M. S., and Winkler, S.: The contemporary retreat of Tasman Glacier, Southern Alps,
- 714 New Zealand, and the evolution of Tasman proglacial lake since AD 2000, Erdkunde, 141-154,
- 715 https://doi.org/10.3112/erdkunde.2010.02.03, 2010.
- 716 Gardelle, J., Arnaud, Y., and Berthier, E.: Contrasted evolution of glacial lakes along the Hindu Kush
- 717 Himalaya mountain range between 1990 and 2009. Global Planet Change, 75, 47-55,
- 718 https://doi.org/10.1016/j.gloplacha.2010.10.003, 2011.
- 719 Gärtner-Roer, I. and Bast, A.: (Ground) Ice in the proglacial zone: landform and sediment dynamics in
- recently deglaciated alpine landscapes, in: Geomorphology of proglacial systems, Geography of the
- 721 Physical Environment, edited by Heckmann, T. and Morche D., Springer, Berlin, Heidelberg, Germany,
- 722 85-98, https://doi.org/10.1007/978-3-319-94184-4_6, 2019.
- 723 Hirschmann, S.: Die glaziale und proglaziale Übergangszone im Bereich zweier Gletscher in den Hohen
- Tauern, Master Thesis, University of Graz, Graz, 106 pp., 2017.
- Holdsworth, G.: Ice calving into the proglacial Generator Lake, Baffin Island, NWT, Canada. J Glaciol, 12,
 235-250, 1973.
- Hunter L. E., and Powell R. D.: Ice foot development at temperate tidewater margins in Alaska. Geophys
 Res Let, 25, 1923-1926, https://doi.org/10.1029/98GL01403, 1998.
- 729 Kaufmann, V., Kellerer-Pirklbauer, A., Lieb, G. K., Slupetzky, H., and Avian, M.: Glaciological studies at
- 730 Pasterze Glacier (Austria) based on aerial photographs 2003-2006-2009, in: Monitoring and Modelling of
- 731 Global Changes: A Geomatics Perspective, edited by: Yang, X. and Li, J., Springer, Berlin, Heidelberg,
- 732 Germany, 173-198, https://doi.org/10.1007/978-94-017-9813-6_9, 2015.
- 733 Kellerer-Pirklbauer, A.: The supraglacial debris system at the Pasterze Glacier, Austria: spatial
- distribution, characteristics and transport of debris, Z. Geomorph. N.F. 52, Suppl., 1, 3-25,
- 735 https://doi.org/10.1127/0372-8854/2008/0052S1-0003, 2008.
- 736 Kellerer-Pirklbauer, A. and Kulmer, B.: The evolution of brittle and ductile structures at the surface of a
- partly debris-covered, rapidly thinning and slowly moving glacier in 1998–2012 (Pasterze Glacier,
- 738 Austria), Earth Surf Processes, 44, 1034–1049. https://doi.org/10.1002/esp.4552, 2019.

- 739 Kellerer-Pirklbauer, A., Lieb, G. K., Avian, M., and Gspurning, J.: The response of partially debris-covered
- valley glaciers to climate change: The Example of the Pasterze Glacier (Austria) in the period 1964 to
- 741 2006, Geogr Ann A, 90 A/4, 269-285, https://doi.org/10.1111/j.1468-0459.2008.00345.x, 2008.
- 742 Kellerer-Pirklbauer, A., Avian, M., Hirschmann, S., Lieb, G. K., Seier, G., Sulzer, W., and Wakonigg, H.:
- 743 Sudden disintegration of ice in the glacial-proglacial transition zone of the largest glacier in Austria, EGU
- General Assembly, Vienna, Austria, 23–28 April 2017, EGU2017-12069, 2017.
- 745 King, O., Dehecq, A., Quincey, D., and Carrivick, J.: Contrasting geometric and dynamic evolution of lake
- 746 and land-terminating glaciers in the central Himalaya. Global Planet Change, 167, 46-60,
- 747 https://doi.org/10.1016/j.gloplacha.2018.05.006, 2018.
- 748 King, O., Bhattacharya, A., Bhambri, R., and Bolch, T.: Glacial lakes exacerbate Himalayan glacier mass
- 749 loss, Sci Rep, 9, 18145, https://doi.org/10.1038/s41598-019-53733-x, 2019.
- 750 Kirkbride, M. P. and Warren, C. R.: Tasman Glacier, New Zealand: 20th-century thinning and predicted
- 751 calving retreat, Global Planet Change, 22, 11-28, https://doi.org/10.1016/S0921-8181(99)00021-1, 1999.
- 752 Kneisel, C. and Kääb, A.: Mountain permafrost dynamics within a recently exposed glacier forefield
- 753 inferred by a combined geomorphological, geophysical and photogrammetrical approach. Earth Surf
- 754 Proc Land, 32, 1797–1810, https://doi.org/10.1002/esp.1488, 2007.
- 755 Kneisel, C. and Hauck, C.: Electrical methods, in: Applied Geophysics in Periglacial Environments, edited
- 756 by: Hauck, C. and Kneisel, C., Cambridge University Press, Cambridge, UK, 3-27,
- 757 https://doi.org/10.1017/CBO9780511535628, 2008.
- Krisch, P. and Kellerer-Pirklbauer, A.: Landschaftsdynamik im glazialen-proglazialen Übergangsbereich
 der Pasterze im Zeitraum 1998-2015, Carinthia II, 209./129, 565-580, 2019.
- 760 Lieb, G. K., and Kellerer-Pirklbauer, A.: Die Pasterze, Österreichs größter Gletscher und seine lange
- 761 Messreihe in einer Ära massiven Gletscherschwundes, in: Gletscher im Wandel 125 Jahre
- 762 Gletschermessdienst des Alpenvereins, , edited by: Fischer, A., Patzelt, G., Achrainer, M., Groß, G., Lieb,
- 763 G. K., Kellerer-Pirklbauer, A., and Bendler, G., Springer, Heidelberg, Germany, 31-51,
- 764 https://doi.org/10.1007/978-3-662-55540-8, 2018.
- Liu, Q., Mayer, C., Wang, X., Nie, Y., Wu, K., Wei, J., and Liu, S.: Interannual flow dynamics driven by
- frontal retreat of a lake-terminating glacier in the Chinese Central Himalaya. Earth Planet Sc Lett, 546,
 116450, https://doi.org/10.1016/j.epsl.2020.116450, 2020.
- Loke, M.H.: Electrical imaging surveys for environmental and engineering studies a practical guide to 2 D and 3-D surveys, Penang, Malaysia, 2000.
- 770 Otto, J. C.: Proglacial Lakes in High Mountain Environments, in: Geomorphology of proglacial systems,
- 771 Geography of the Physical Environment, edited by Heckmann, T. and Morche D., Springer, Berlin,
- 772 Heidelberg, Germany, 231-247, https://doi.org/10.1007/978-3-319-94184-4_14, 2019.

- Pant, S. R. and Reynolds J. M.: Application of electrical imaging techniques for the investigation of
- natural dams: an example from the Thulagi Glacier Lake, Nepal. J Nepal Geolog Soc, 22, 211-218, 2000.
- 775 Richardson, S. D. and Reynolds, J. M.: An overview of glacial hazards in the Himalayas, Quatern Int,
- 776 65/66, 31-47, https://doi.org/10.1016/S1040-6182(99)00035-X, 2000.
- 777 Röhl, K.: Thermo-erosional notch development at fresh-water-calving Tasman Glacier, New Zealand. J
- 778 Glaciol, 52, 203-213, https://doi.org/10.3189/172756506781828773, 2009.
- 779 Seier, G., Kellerer-Pirklbauer, A., Wecht, W., Hirschmann, S., Kaufmann, V., Lieb, G. K., and Sulzer, W.:
- 780 UAS-based change detection of the glacial and proglacial transition zone at Pasterze Glacier, Austria,
- 781 Remote Sens-Basel, 9, 549, 1-19, https://doi.org/10.3390/rs9060549, 2017.
- Schomacker, A.: Expansion of ice-marginal lakes at the Vatnajökull ice cap, Iceland, from 1999 to 2009.
 Geomorphology, 119, 232-236, https://doi.org/10.1016/j.geomorph.2010.03.022, 2010.
- 784 Schomacker, A. and Kjær, K. H.: Quantification of dead-ice melting in ice-cored moraines at the high-
- 785 Arctic glacier Holmströmbreen, Svalbard, Boreas, 37, 211-225, https://doi.org/10.1111/j.1502786 3885.2007.00014.x, 2008.
- 787 Stokes, C.R., Popovnin, V., Aleynikov, A., Gurney, S.D., Shahgedanova, M.: Recent glacier retreat in the
- 788 Caucasus Mountains, Russia, and associated increase in supraglacial debris cover and supra-/proglacial
- 789 lake development. A Glaciol, 46, 195-203, https://doi.org/10.3189/172756407782871468, 2007.
- Wakonigg, H., and Lieb, G.K.: Die Pasterze und ihre Erforschung im Rahmen der Gletschermessungen,
 Kärntner Nationalpark-Schriften, 8, Großkirchheim, 99-115, 1996.
- 792 Warren, C., Benn, D. I., Winchester V., and Harrison, S.: Buoyancy-driven lacustrine calving, Glaciar Nef,
- 793 Chilean Patagonia, J Glaciol, 47, 135-146, https://doi.org/10.3189/172756501781832403, 2001.
- 794 Zuo Z. and Oerlemans J.: Numerical modelling of the historic front variation and the future behaviour of
- the Pasterze Glacier, Austria. Ann Glaciol, 24, 234-241, https://doi.org/10.3189/S0260305500012234,
 1997.

798 **Tables and table captions**

799

- 800 **Table 1:** Technical parameters of aerial surveys between 1998 and 2019 used in this study. For
- 2003, 2006, and 2009 see also Kaufmann et al. (2015). KAGIS = GIS Service of the Regional
- 802 Government of Carinthia; BEV = Federal Office of Metrology and Surveying.

	Acquisition		Geometric resolution of
Aerial survey	date	Source	calculated orthophotos
1998	Aug. 1998	National Park Hohe Tauen	0.5 m
2003	13.08.2003	Kaufmann et al. (2015)	0.5 m
2006	22.09.2006	Kaufmann et al. (2015)	0.5 m
2009	24.08.2009	Kaufmann et al. (2015)	0.5 m
2012	18.08.2012	KAGIS / BEV	0.2 m
2015	11.07.2015	KAGIS / BEV	0.2 m
2018	11.09.2018	KAGIS / BEV	0.2 m
2018	15.11.2018	AeroMap GmbH	0.1 m
2019	21.09.2019	AeroMap GmbH	0.09 m

803

804

806 Figures and figure captions

807

808 Figure 1: Pasterze Glacier. (a) Location of Pasterze Glacier at the foot of Großglockner (3798m asl).

809 Relevant sites are indicated; (b) location of the study area within Austria; (c) mean annual air

810 temperature (MAAT) at the automatic weather station (AWS) Margaritze in 1998-2019 (single years and

811 5-year running mean); (d) position of 4276 lake depth measurements carried out on 13.09.2019.

812 Hillshade in the background of (a) from 2012 source KAGIS. Extent of glacier and lake in 2019 this study.

- 813 Glacier extent of 2015 (*) based on Buckel and Otto (2018). Glacier extent of c.1850 based on own
- 814 mapping.

815

817 (20.09.2016; from 9:15 to 9:55 a.m.) due to loss of hydrostatic disequilibrium and buoyancy as depicted

- by an automatic time-lapse camera (a-e) and observed in the field a few hours after the event (f-h). Note
- the sudden fracturing between 9:50 and 9:55 am. (a-e) provided by GROHAG, (f-h) provided by Konrad

820 Mariacher, 20.09.2016.

822

823

825 depicting the distribution of water bodies, icebergs and debris-covered dead-ice bodies on 19.06.2017.

826 Courses of ERT profiles presented in Figure 9 are shown; (b) starting point of ERT17-1 surveyed by DGPS;

- 827 (c) thermokarst-affected area with courses of two ERT profiles on 10.09.2019. Note the Pasterze Glacier
- 828 and thermo-erosional notches at the lake level; (d) buoyant calving of a small iceberg ("shooter") c.200
- 829 m from the subaerial glacier front observed during fieldwork (all photographs Andreas Kellerer-
- 830 Pirklbauer).
- 831
- 832
- 833

834

Figure 4: Terminus position of Pasterze Glacier for the period 1998 to 2019 derived mainly from
sequential DGPS data. (a) the extent of water surfaces including the Lake Pasterzensee and the
delineation of the proglacial basin is shown for September 2019. 100 m wide profiles (lateral and
longitudinal) used for backwasting calculations are indicated. Backwasting results are depicted in (b)
(background hillshade based on 10m DTM, KAGIS).

841

842 Figure 5: Glacier recession and evolution of proglacial water surfaces since 1998 at Pasterze Glacier. The

843 proglacial basin as defined for September 2019 is depicted in all maps for comparison. For data sources

844 refer to text and Table 1. A=airborne photogrammetry, T=terrestrial laserscanning, D=DGPS.

845

846 Figure 6: Glacial-proglacial transition zone: (a) Evolution of water surfaces and icebergs in the proglacial

847 basin (100%=0.37 km²; Fig. 5 for delineation) of Pasterze Glacier since 1998 based on airborne

848 photogrammetry/A or terrestrial laserscanning/T data. Icebergs only based on airborne

849 photogrammetry/A; (b) summarising graph depicting relative changes of different surface types in the

850 glacial-proglacial zone (100%=0.76 km²; extent as shown in Fig. 7) since 1998.

851

852

853

855

Figure 7: Land cover evolution in the glacial-proglacial transition zone (0.76 km²) of Pasterze Glacier
between 1998 and 2019 based on visual landform classification. The proglacial basin as defined for
September 2019 is depicted in all maps for comparison. For data sources refer to text and Table 1.
Inset map in (h) depicts a digital elevation model and contour lines (0.5 m interval) of iceberg IB1.

860

861 Figure 8: Ice-breakup events (IBE) at the ice-contact lake Pasterzensee monitored by time-lapse

862 photography: (a) IBE1 20.09.2016; (b) IBE2 09.08.2018; (c) IBE3 26.09.2018; (d) IBE 4 24.10.2018; (e)

863 overview map of the events. Capital letter in the maps indicate different processes (for details see text).

865

Figure 9: ERT results (Wenner array) and interpretation of three profiles (50 electrodes, 4 m spacing, 866

867 length 196 m) measured in the proglacial area of Pasterze Glacier on 19.06.2017 (location: Figs 3, 10).

```
868
        Summary statistics in the inset table: (a) ERT17-1 - ice lens with a thickness of c.21 m; (b) ERT17-2 - ice
```

869 thickness c.28m; (c) ERT17-3 -ice thickness c.23m. For (b) and (c) - ice thickness exceeded the depth of

870 ERT penetration.

- 871
- 872
- 873

875 Figure 10: Interpreted minimum ice thicknesses based on electrical resistivity tomography (ERT) data

876 (for estimation approach see Fig. 9) in the proglacial area of Pasterze Glacier for (a) 30.09.2015, (b)

877 13.09.2016, (c) 19.06.2017, (d) 13.09.2018, and (e) 09.09.2019 as well as 10.09.2019. "Minimum" means

in this case that the base of the ice core was commonly below the depth of ERT penetration.

- 879
- 880

881

882 Figure 11: Lake bathymetry based on echo sounding data acquired in 2019 and its relationship to the

883 ERT data from 2017: glacier extent and lake bathymetry in September 2019 (5 m grid resolution); the

extent of the proglacial basin as defined for September 2019 is drawn in the map for orientation.

885

887

Figure 12: Conceptual model of the evolution of the glacial-proglacial transition zone at Pasterze Glacier
since 1998 behind a bedrock threshold: panels (a) to (f) depict changes along a longitudinal profile at the
east side (supraglacial debris-poor) of the glacier tongue; panels (g) to (k) visualize lateral changes and
related processes.