Supplement of

Brief Communication:

New evidence further constraining Tibetan ice core chronologies to the Holocene

5 Shugui Hou et al.

l

Correspondence to: Shugui Hou (shugui@nju.edu.cn)

- Figures S1 to S6.
- Tables S1 and S2.

Fig. S1. (a) Satellite image of the ZK glacier with location of the ice-core drilling site (black dot). Elevation contour lines were superimposed on the image of the ice cap. The satellite imagery map is available at: https://www.mapsofworld.com/satellite-maps/world.html. The elevation contour data were extracted using the Shuttle Radar Topography Mission (SRTM) 90m DEM digital elevation database, available at

2

15

http://srtm.csi.cgiar.org/.

Fig. S2. Satellite image of the SLNS glacier with location of the ice-core drilling sites

20 (black dots). Elevation contour lines were superimposed on the image of the glacier. The satellite imagery map is available at: https://www.mapsofworld.com/satellitemaps/world.html. The elevation contour data were extracted using the Shuttle Radar Topography Mission (SRTM) 90m DEM digital elevation database, available at http://srtm.csi.cgiar.org/.

25

30

Fig. S3. The ¹⁴C cal age probability distributions of the ZK ice core samples, as derived in OxCal v4.3.2 using the IntCal 13 radiocarbon calibration curve (Ramsey and Lee, 2013; Reimer et al., 2013). Probability distributions of calibrated ages are indicated as grey area with the mean age (μ) shown as dot together with the 1 σ range.

The lines below the probability distribution areas indicate the 2σ range.

3

Fig. S4. The alternative age-depth relations of the ZK ice core derived without ZK-1
(S5a) or ZK-2 (S5b) based on 2000 Monte Carlo simulations fitting the absolute dated age horizons. For each chart, the solid black line indicates the mean values and dotted lines indicate the 1σ confidence interval. The red cross stands for the reference layer of β-activity peak in 1963 (An et al., 2016). Blue dots show the ages derived with the WIOC ¹⁴C results, and the error bars represent the 1σ range. The two models gave the bottom age estimates of 8.90±^{0.56}_{0.57} ka BP (excluding ZK-1) or 8.91±^{0.57}_{0.59} ka BP

(excluding ZK-2) respectively.

l

4

Fig. S5. The ¹⁴C cal age probability distributions of the SNLS ice core samples, as

derived in OxCal v4.3.2 using the IntCal 13 radiocarbon calibration curve (Ramsey and Lee, 2013; Reimer et al., 2013). Probability distributions of calibrated ages are indicated as grey area with the mean age (μ) shown as dot together with the 1σ range. The lines below the probability distribution area indicates the 2σ range.

Fig. S6. The depth - age relationship of the 50.86 m Guliya2015 summit ice core based on the two ages at the depths of 41.10 - 41.84 m and 49.51 - 49.90 m from Zhong et al. (2018) (S7a) and revised ages from Zhong et al., 2020 (S7b) using a twoparameter (2p) flow model. Confidence interval of the 2p model fit cannot be

55 calculated due to a lack of data. More details about the model can be found in Hou et al. (2019).

l

							-
		(µg)	No.		(ka BP)	(ka cal BP)	(ka cal BP)
79.96-80.92	940	50	10075.1.1	0.872±0.013	1.100 ± 0.118	0.923-1.178	1.031±0.127
89.98-90.68	588	130	10084.1.1	0.874 ± 0.012	1.079 ± 0.110	0.917-1.174	1.013±0.123
99.89-100.59	566	55	10091.1.1	0.840±0.012	1.398 ± 0.115	1.181-1.475	1.317±0.122
110.77-111.39	590	60	10093.1.1	0.723±0.011	2.610 ± 0.125	2.491-2.854	2.673±0.166
116.58-117.33	852	128	10094.1.1	0.575±0.010	4.446 ± 0.146	4.879-5.286	5.095±0.197
122.57-123.27	614	89	10095.1.1	0.475±0.010	6.033 ± 0.168	6.634-7.154	6.901±0.204
124.54-125.15	548	200	10096.1.1	0.438±0.010	6.637 ± 0.182	7.329-7.674	7.517±0.166
127.18-127.78	558	113	10027.1.1	0.376±0.009	7.863 ± 0.205	8.481-8.983	8.750±0.250
1 1 1 1	89.98-90.68 99.89-100.59 10.77-111.39 16.58-117.33 22.57-123.27 24.54-125.15 27.18-127.78	89.98-90.68 588 99.89-100.59 566 110.77-111.39 590 16.58-117.33 852 22.57-123.27 614 24.54-125.15 548 27.18-127.78 558	89.98-90.6858813099.89-100.5956655110.77-111.395906016.58-117.3385212822.57-123.276148924.54-125.1554820027.18-127.78558113	89.98-90.6858813010084.1.199.89-100.595665510091.1.1110.77-111.395906010093.1.116.58-117.3385212810094.1.122.57-123.276148910095.1.124.54-125.1554820010096.1.127.18-127.7855811310027.1.1	89.98-90.68 588 130 10084.1.1 0.874±0.012 99.89-100.59 566 55 10091.1.1 0.840±0.012 110.77-111.39 590 60 10093.1.1 0.723±0.011 16.58-117.33 852 128 10094.1.1 0.575±0.010 22.57-123.27 614 89 10095.1.1 0.475±0.010 24.54-125.15 548 200 10096.1.1 0.438±0.010 27.18-127.78 558 113 10027.1.1 0.376±0.009	$89.98-90.68$ 588 130 $10084.1.1$ 0.874 ± 0.012 1.079 ± 0.110 $99.89-100.59$ 566 55 $10091.1.1$ 0.840 ± 0.012 1.398 ± 0.115 $110.77-111.39$ 590 60 $10093.1.1$ 0.723 ± 0.011 2.610 ± 0.125 $16.58-117.33$ 852 128 $10094.1.1$ 0.575 ± 0.010 4.446 ± 0.146 $22.57-123.27$ 614 89 $10095.1.1$ 0.475 ± 0.010 6.033 ± 0.168 $24.54-125.15$ 548 200 $10096.1.1$ 0.438 ± 0.010 6.637 ± 0.182 $27.18-127.78$ 558 113 $10027.1.1$ 0.376 ± 0.009 7.863 ± 0.205	89.98-90.6858813010084.1.1 0.874 ± 0.012 1.079 ± 0.110 $0.917-1.174$ 99.89-100.595665510091.1.1 0.840 ± 0.012 1.398 ± 0.115 $1.181-1.475$ 110.77-111.395906010093.1.1 0.723 ± 0.011 2.610 ± 0.125 $2.491-2.854$ 16.58-117.3385212810094.1.1 0.575 ± 0.010 4.446 ± 0.146 $4.879-5.286$ 22.57-123.276148910095.1.1 0.475 ± 0.010 6.033 ± 0.168 $6.634-7.154$ 24.54-125.1554820010096.1.1 0.438 ± 0.010 6.637 ± 0.182 $7.329-7.674$ 27.18-127.7855811310027.1.1 0.376 ± 0.009 7.863 ± 0.205 $8.481-8.983$

Table S1. The ¹⁴C ages of the 127.776 m ZK ice core. Absolute uncertainties are given as 1 σ range.

Sample	Depth (m)	Mass	WIOC	Bern AMS	F ¹⁴ C	¹⁴ C age	Cal. age	$\mu\pm\sigma$
#		(g)	(µg)	No.		(ka BP)	(ka cal BP)	(ka cal BP)
SLNS-1	56.79-57.49	420	42	12325.1.1	0.902 ± 0.047	0.829 ± 0.419	0.492-1.262	0.851±0.395
SLNS-2	64.66-65.36	426	45	12324.1.1	0.852 ± 0.046	1.287 ± 0.434	0.766-1.688	1.298±0.449
SLNS-3	68.88-69.69	425	59	12323.1.1	0.807 ± 0.046	1.723 ± 0.458	1.185-2.301	1.775±0.514
SLNS-4	71.84-72.50	483	51	12322.1.1	0.695 ± 0.046	2.923 ± 0.531	2.365-3.708	3.178±0.680
SLNS-5	76.75-77.46	374	51	12321.1.1	0.522 ± 0.046	5.222 ± 0.708	5.071-6.881	6.033±0.829
SLNS-6	78.90-79.63	485	61	12320.1.1	0.522 ± 0.045	5.222 ± 0.692	5.075-6.854	6.032±0.811
SLNS-7	80.30-81.02	413	62	12319.1.1	0.489 ± 0.046	5.747 ± 0.740	5.761-7.424	6.619±0.841

Table S2. The ¹⁴C age of the 81.05 m SLNS ice core. Absolute uncertainties are given as 1 σ range.