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Abstract. The safety band of Antarctica consisting of floating glacier tongues and ice shelves buttresses ice discharge of the 

Antarctic Ice Sheet. Recent disintegration events of ice shelves and glacier retreat indicate a weakening of this important 

safety band. Predicting calving front retreat is a real challenge due to complex ice dynamics in a data-scarce environment 10 

being unique for each ice shelf and glacier. We explore to what extent easy to access remote sensing and modelling data can 

help to define environmental conditions leading to calving front retreat. For the first time, we present a circum-Antarctic 

record of glacier and ice shelf front retreat over the last two decades in combination with environmental variables such as air 

temperature, sea ice days, snowmelt, sea surface temperature and wind direction. We find that the Antarctic ice sheet area 

shrank 29,618±29 km
2
 in extent between 1997-2008 and gained an area of 7,108±144.4 km

2
 between 2009 and 2018. Retreat 15 

concentrated along the Antarctic Peninsula and West Antarctica including the biggest ice shelves Ross and Ronne. Glacier 

and ice shelf retreat comes along with one or several changes in environmental variables. Decreasing sea ice days, intense 

snow melt, weakening easterlies and relative changes in sea surface temperature were identified as enabling factors for 

retreat. In contrast, relative increases in air temperature did not correlate with calving front retreat. To better understand 

drivers of glacier and ice shelf retreat it is of high importance to analyse the magnitude of basal melt through the intrusion of 20 

warm Circumpolar Deep Water (CDW) driven by strengthening westerlies and to further assess surface hydrology processes 

such as meltwater ponding, runoff and lake drainage. 

1 Introduction 

A safety band of floating ice shelves and glacier tongues fringes the Antarctic ice sheet (Fürst et al., 2016). Large glaciers 

and ice shelves create buttressing effects decreasing ice flow velocities and ice discharge (De Rydt et al., 2015; Gagliardini 25 

et al., 2010; Royston and Gudmundsson, 2016). The recent large-scale retreat of ice shelfs and glacier fronts along the 

Antarctic Peninsula (AP) and the West Antarctic Ice Sheet (WAIS) indicates a weakening of this safety band (Cook and 

Vaughan, 2010; Friedl et al., 2018; Rankl et al., 2017; Rott et al., 2011). The glacier or ice shelf front is defined as the border 

between the ice sheet and the ocean whereby ice shelves and glaciers are the floating extensions of the ice sheet (Nicholls et 

al., 2009). Calving front retreat (including both, glacier and ice shelf front retreat) increases ice discharge and the 30 
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contribution to global sea level rise. The current contribution of the Antarctic ice sheet to global sea level rise is 7.6± 3.9 mm 

(1992-2017) but over the last decades a strong trend of mass loss acceleration was observed for the WAIS after ice shelves 

and glaciers retreated and thinned (IMBIE, 2018). In contrast, there is no clear trend in the mass balance of the East 

Antarctic Ice Sheet (EAIS) as since the 1990s Altimetry measurements show very small gain (but with high uncertainties) 

for the EAIS with 5±46 Gt/yr (1992-2017) (IMBIE, 2018). However, calculated with the mass budget method a strong mass 35 

loss trend exists with -47±13 Gt/yr (1989-2017) (Rignot et al., 2019). Glacier terminus positions along the EAIS experienced 

a phase of retreat between 1974 and 1990 followed by a phase of advance until 2012. The single exception at East Antarctica 

is Wilkes Land with retreating glacier fronts (Miles et al., 2016).  

Glacier and ice shelves are in direct interaction with atmosphere and ocean and hence sensitive to changes in environmental 

conditions (Domack et al., 2005; Kim et al., 2001; Vaughan and Doake, 1996; Wouters et al., 2015). Nevertheless, changes 40 

in glacier and ice shelf extent can be independent from environmental forcing as glaciers experience a natural cycle of decay 

and growth (De Rydt et al., 2019; Hogg and Gudmundsson, 2017). Therefore, the identification of driving forces for 

fluctuations in ice shelf and glacier extent is challenging and has been subject of many discussions in the past. Glacier retreat 

along the Antarctic Peninsula was first only associated to atmospheric warming (Cook et al., 2016; Mercer, 1978), until more 

recent studies identified ocean forcing as the main driver (Cook et al., 2016; Wouters et al., 2015). Additionally, the 45 

formation of melt ponds on the ice shelf surface has been discussed as an enhancing factor for calving. Meltwater can initiate 

crevasse propagation resulting in hydrofracture and ice shelf retreat (Scambos et al 2000, Scambos 2017). The poleward shift 

of the west wind drift causes upwelling Circumpolar Deep Water (CDW). This increases ocean temperatures at the bottom of 

ice shelves inducing basal melt and ice shelf thinning which was observed in the Bellingshausen and Amundsen Sea 

(Dutrieux et al., 2014; Thoma et al., 2008; Wouters et al., 2015). Especially in combination with a retrograde bed (Hughes, 50 

1981; Scheuchl et al., 2016), the basal melt causes a retreat of the grounding line followed by increased ice discharge 

(Konrad et al., 2018; Rignot et al., 2013). In contrast, the retreat of calving fronts along Wilkes Land (EAIS) was associated 

with a reduction of sea ice days (Miles et al., 2016). The drivers of ice shelf and glacier retreat and advance can be manifold 

depending on studied variables, time periods and regions. So far, there has not been a comprehensive analysis comparing 

circum-Antarctic glacier terminus change on a continental scale within uniform time scales (Baumhoer et al., 2018). In this 55 

paper, we explore Antarctic calving front change over the last two decades by analysing Antarctic coastal change (see Figure 

1) and assess the connection to changing boundary conditions. We compare changes in  Antarctic calving fronts in two 

decadal time steps (1997-2008 and 2009-2018) to minimize the effect of short-term glacier front fluctuations. To identify 

potential links between calving front retreat and recent changes in the Antarctic environmental conditions, we correlated two 

decades of glacier change with climate data including air and sea surface temperature as well as changes in wind direction, 60 

snowmelt and sea ice cover.  
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Figure 1 Coastal change of Antarctica between 1997 and 2018 with enlarged views (counter-clockwise) for Larsen C Ice Shelf, Pine 

Island Bay, Oates Land, Wilkes Land, Shackleton Ice Shelf, Shirase Bay and Dronning Maud Land. Colours indicate the timing of 65 
retreat and advance. The pie chart visualizes losses and gains in the area of the Antarctic ice sheet with regard to the indicated 

year. Background: LIMA Landsat Mosaic. 
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2 Processed and Analysed Data Sets 

2.1 Coastlines 

To calculate the decadal retreat and advance of Antarctic glaciers and ice shelves, we use calving front positions of three 70 

Antarctic coastline products from 1997, 2009 and 2018. The Antarctic coastline is the border between the Antarctic ice sheet 

and the ocean and hence includes ice shelf and glacier front positions (Baumhoer et al., 2018). Coastal change not only 

includes changes in floating calving fronts but also of grounded ice walls. Timewise, we refer to first (1997-2008) and 

second (2009-2018) decade even though the time periods are 11 and 9 years, respectively, limited by the availability of 

coastline products. The first coastline product was automatically extracted from the high-resolution Radarsat-1 mosaic by 75 

adaptive thresholding and finalized by manual correction (Liu and Jezek, 2004). The Radarsat-1 mosaic imagery was 

acquired between September and October 1997 with a spatial resolution of 25 m. The entire dataset is freely available at the 

National Snow and Ice Data Center (NSIDC) (1997). Glacier and ice shelf fronts for the year 2009 were manually delineated 

from the MOA 2009 Surface Morphology Image Map acquired during austral summer 2008/2009 (Nov-Feb) with a spatial 

resolution of 125 m (Scambos et al., 2007). This dataset is also freely available at NSIDC (2009). The coastline for 2018 was 80 

automatically extracted via a fully convolutional network from Sentinel-1 mid resolution (40 m) dual-pol imagery (see 

methods section).  

2.2 ERA 5 

We use ERA5-Land monthly averaged atmospheric re-analysis data for air temperature and snowmelt information. It is the 

most state-of-the-art reanalysis product from the European Centre for Medium-Range Weather Forecasts (ECMWF) 85 

replacing the former ERA-Interim product. Data is available from 1981/82 to today at a 9 km spatial resolution. As ground-

based meteorological observations are scarce over the Antarctic continent we decided to use the reanalysis data even though 

modelled data is less accurate compared to in-situ measurements. Studies comparing in situ observations to modelled data 

prove that ERA5 surface air temperature (2 m temperature) outperforms the former ERA-Interim product. ERA5 temperature 

data has the ability to capture annual variability and magnitude of temperature change over the Antarctic Ice Sheet (Gossart 90 

et al., 2019; Tetzner et al., 2019). The mean absolute error is 2.0° C with higher accuracies in the coastal areas and less 

accurate results in the interior of the ice sheet (Gossart et al., 2019). Tetzner (2019) report much higher accuracies for the 

Antarctic Peninsula with a mean absolute error of -0.13° C. Compared to the mean, the variability of temperature is captured 

with high accuracy at a mean Pearson correlation coefficient of 0.98 (Gossart et al., 2019; Tetzner et al., 2019). We divided 

temperature measurements into the cooler half (“winter” Apr-Sep) of the year and warmer half (“summer” Oct-Mar) to 95 

separate the environmental forcing for different seasons.  

Snowmelt data should be handled with care as accuracy assessments for the ERA5 Land snowmelt product were not yet 

performed. Surface mass balance (SMB) data including modelled snowmelt data was found to slightly underestimate the 
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SMB (Gossart et al., 2019). Snowmelt is calculated within the summer months December, January and February where most 

melt occurs. The amount of snow melt is calculated in mm water equivalent (mm w. eq) per day. 100 

For zonal (West to East) wind speed estimations we use ERA5 monthly averaged data at 10 m above the surface with a 

resolution of approx. 31 km. ERA-5 captures the spatial variability of near-surface wind speed but underestimates strong 

winds and coastal winds whereas the wind speed over the interior is captured very accurately especially during summer. 

Over the ocean, ERA5 annual mean zonal wind speed is considerably underestimated compared to ASCAT (Advanced 

Scatterometer) observations (Belmonte Rivas and Stoffelen, 2019). Overall, the mean absolute error over the continent is 2.8 105 

m/s with high variance in space and time but an accurate representation of the annual variability (Gossart et al., 2019). ERA5 

data is freely available at the Copernicus Climate Change Service Climate Data Store (CDS) (C3S, 2017). Zonal Wind was 

calculated for the summer months (DJF) because especially easterly winds show a weakening trend during summer but not 

throughout the entire year (Hazel and Stewart, 2019). 

2.3 Sea Ice Days 110 

The most recent Global Sea Ice Concentration Climate Data Record (Version 2) (Lavergne et al., 2019) was downloaded 

from the Ocean and Sea Ice Satellite Application Facility (Osisaf, 2020). We used the daily product (OSI-450, OSI-430-b) 

during sea ice months April through October. The product covers the time period 1982 to 2018 and is derived from passive 

microwave data by Nimbus 7 and DMSP satellites. The final sea ice concentration is computed by the passive microwave 

data in combination with ERA-Interim data. The standard deviation of mismatch between OSI products and ice chart 115 

analysis on sea ice concentration is 8 % for ice and open water during winter (JJA). The trend in sea ice extent is very similar 

between OSI and ice chart products (Brandt-Kreiner et al., 2019) which allows the assumption of a very accurate data set. 

The product has a resolution of 25 km x 25 km. In order to calculate actual sea ice days we count each pixel per day with a 

sea ice concentration higher 15 % as suggested by previous studies (Miles et al 2016, Massom et al 2013). Especially in the 

early acquisition years data gaps occur and second-daily acquisitions exist until mid of 1987. In this case, we multiplied the 120 

monthly available sea ice days by the proportional amount of missing days. We decided not to use data for the year 1986 as 

data for entire months were missing and mean sea ice days per year could not be calculated accurately.  

2.4 Sea Surface Temperature 

Sea surface temperature measured by satellite sensors is also provided by the CDS (C3S, 2017). The most up-to-date product 

Level 4 (Version 2) consists of multiple satellite observations from NOAA, ERS, Envisat and Sentinel-3 satellites with a 125 

0.05 ° gridded resolution (approx. 5.5 km). We calculated surface temperatures only for months with little to no sea ice cover 

(Oct-Mar). This reduces errors over sea ice where the thickness and concertation of sea ice can account for large 

measurement errors (Kwok and Comiso, 2002). Uncertainties of Level 4 data vary depending on the year of acquisition and 

latitude of measurement. The median difference compared to in-situ drifter measurements is up to -0.4 K for low latitudes 

during the early acquisition years before 1996. Afterwards the accuracy increases to better than -0.1 K for low latitudes. A 130 

https://doi.org/10.5194/tc-2020-224
Preprint. Discussion started: 21 September 2020
c© Author(s) 2020. CC BY 4.0 License.



6 

 

stability assessment of the Level 4 product calculated a maximum trend of 0.01 K per year (Embury, 2019). A summary of 

all processed climate variables is given in Table 1. 

Table 1 Summary of processed climate variable data sets. 

Climate Variable Time Span Season 
Spatial 

Resolution 
Accuracy Data 

Data 

Store 

Air Temperature 1982-2018 
Summer (Oct-Mar) 

Winter (Apr-Sep) 
9 km 0.13 – 2.0 °C modelled CDS 

Snow Melt 1982-2018 Dec-Feb 9 km - modelled CDS 

Zonal Wind 1982-2018 Dec-Feb 31 km 2.8 m/s modelled CDS 

Sea Ice Days 
1982-2018 

(not 1986) 
Apr-Oct 25 km 8 % std to ice chart 

modelled + 

satellite 
Osisaf 

Sea Surface 

Temperature 
1982-2018 Oct-Mar ~5.5 km -0.1 to -0.4°C 

multiple 

satellites 
CDS 

 

3 Method 135 

3.1 Extraction of Sentinel-1 Coastline  

We use a modified version of the automatic coastline extraction approach published by Baumhoer et al. (2019) to extract the 

Antarctic coastline for 2018. To cover the entire Antarctic coastline, 158 dual-pol and 17 single-pol medium resolution 

Sentinel-1 scenes were processed. Dual polarized scenes contain radar backscatter values for the polarizations HH and HV 

whereas single polarized scenes only include the HH polarization. The coastline was split into 18 zones based on ice flow 140 

divides, defining major ice sheet basins after Rignot et al. (2011). For each zone all available scenes acquired during winter 

months (June, July, August) in 2018 were selected. Depending on the scene availability, each zone was covered at least by 

one Sentinel-1 scene and in the best case by three scenes. In case no dual-pol scenes were available single-pol data was 

selected. First, each scene was pre-processed (thermal correction, calibration, terrain correction), masked with a coastline 

buffer of 100 km and tiled into 780x780 pixel tiles. The convolutional neural network (CNN) U-Net was used to segment 145 

each tile into the class ocean and the class land ice. We trained the U-Net on 15 different Antarctic coastal regions during 

various seasons with 40,036 image tiles from 75 Sentinel-1 scenes. For single-pol scenes we re-trained our network for HH 

polarized images only. This decreased the accuracy slightly as only one polarization limits the information on surface 

backscatter characteristics. In the post-processing step the mean of all segmented tiles within one zone was calculated and 

then thresholded by a prediction probability of 50 % for the class land ice. In case of multi-coverage by several satellite 150 

scenes more robust results were obtained by merging the prediction probabilities. Morphological filtering and the exclusion 

of higher ice sheet areas by integrating elevation information from the TanDEM-X Polar DEM 90 reduced further errors. 

Finally, from the binary segmentation results the border between both classes was extracted as the final coastline.  
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3.2 Derivation of Calving Front Change 

Calving front change was estimated by calculating the change in area between the coastlines in 1997, 2009 and 2018 over 155 

the area of glaciers and ice shelves. As coastline extraction and delineation is a very subjective task and all coastlines 

originated from different sources and resolutions deviations in many areas occurred. Especially areas of fast ice, mélange 

and icebergs trapped in sea ice were error sources. For the automatically extracted coastline 2018, errors existed along the 

western Antarctic Peninsula and in areas where only single-pol imagery was available. The MODIS derived coastline often 

included snow covered sea ice which is difficult to distinguish from glacier ice in optical imagery. To minimize errors and 160 

mismatches all three coastlines were manually corrected and adjusted. Each coastline product was corrected based on the 

satellite imagery from which they were originally created. After manual correction any change in area between the coastline 

products could be attributed to glacier front change. From each coastline a raster (resolution 40 x 40 m) was created with a 

unique value over the ice covered area. All three raster layers were stacked and summed up, so each raster value pixel is 

associated with retreat or advance of the specific year. The area change was calculated for each major floating ice shelf and 165 

glacier wider than 3 km based on a 40 m resolution raster in Polar Stereographic Projection. To account for inaccuracies in 

the manual adjustment of all coastlines, we measured the accuracy as the area change over 30 randomly picked stable 

coastline areas. Any change over those regions can be attributed to errors in manual delineation, imagery resolution 

differences and errors in orthorectification of the different satellite image mosaics. The error is calculated per km of the 

coastline and calculated in proportion to the actually measured front length. On average, the coastlines deviated ±1.2 pixels 170 

per kilometre per year. Broken down for each coastline product, the error between 1997-2009 was 0.4 pixels per km per 

year, 2.3 pixels between 2009-2018 per km per year and 0.9 pixels between 1997 -2018 per km per year.  

3.3 Climate Data Correlation 

In order to assess the influence of climate variables (such as air temperature, sea ice days, sea surface temperature, snowmelt 

and zonal wind) on glacier and ice shelf retreat, we spatially correlated the percentage of advance and retreat for each minor 175 

glacier basin (as defined by Mouginot (2017)) with the decadal mean value of each climate variable. Means were calculated 

from 37-years of climate data for the time periods 1997-2008, 2009-2018 and 1982-1996. Hence, the inputs of the 

correlation covered the two time spans 1997-2008 and 2009-2018 for which also the glacier retreat was calculated. To also 

assess relative changes in the variables to previous times we subtracted the long-term mean (1982-1996). Zonal wind, sea ice 

coverage and sea surface temperature means were calculated within a 100 km seawards buffer along the coastline. Mean air 180 

temperature and snowmelt was calculated within a 100 km buffer landwards from the coastline covering the surface of ice 

shelves. Again also relative values were calculated by subtracting the long-term mean 1982-1996. To remove the effect of 

different basin sizes and different amounts of ice discharge we took the percentage of advance and retreat within each basin 

instead of the absolute value for the correlation. Input data for the Pearson correlation were the mean of all assessed climate 

variables (absolute and relative averages) as well as the percentage of retreat and advance. This created 14 different variables 185 
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which were correlated with each other based on 188 observations (N=188). The number of observations composes from 94 

assessed glacier basins with variable averages for two different decades (1997-2008 and 2009-2018). 

4 Results 

4.1 Advance and Retreat of Antarctic Glaciers and Ice Shelves  

Circum-Antarctic glacier and ice shelf front changes were assessed by comparing  Antarctic coastline products during 1997-190 

2008 and 2009-2018. The results are visualized in Figure 2. Between 1997 and 2008 ice shelf and glacier extents decreased 

by -29,618±29 km
2 

where 69 % of the total area retreated and 31 % advanced (see Table 2 for all change rates). In contrast, 

during the period 2009 to 2018 a slight area increase of 7,108±144.4 km
2
 could be observed with 44 % of the total area 

retreating and 56 % advancing. The locations of area change are almost similar for both observation periods. Ice shelves 

along the Antarctic Peninsula retreated over the entire observation period (1997-2018). The only exception was the advance 195 

of the Larsen D Ice Shelf which is located close to the Ronne Ice Shelf in the Weddell Sea (see Figure 2). Especially 

between 1997 and 2008 huge disintegration events of the Larsen B, Wilkins and Wordie Ice Shelf resulted in a 37 % higher 

calving amount at the Antarctic Peninsula as during 2009-2018. During the second decade the breakup of iceberg A-68 from 

the Larsen C Ice Shelf and the further disintegration of the Wilkins Ice Shelf were hotspots of strong area loss. In total, the 

rate of retreat along the Antarctic Peninsula was 5-6 times higher than glacier advance over the last 20 years.  200 

Table 2 Retreat and advance rates of Antarctic glaciers and ice shelves for each basin between 1997 and 2018 (upper table). Total 

lost and gained ice shelf/glacier area per decade (lower table). For basin abbreviations see Figure 2. 

    1997-2008 2009-2018 1997-2018 

 

RATES 
advance 
(km

2
/yr) 

retreat 
(km

2
/yr) 

advance 
(km

2
/yr) 

retreat 
(km

2
/yr) 

advance 
(km

2
/yr) 

retreat 
(km

2
/yr) 

E
A

IS
 

A-Ap 249±2.5 164±2.5 295±14.5 112±14.5 215±5.4 85±5.4 

Ap-B 62±0.8 89±0.8 80±4.7 53±4.7 34±1.7 36±1.7 

B-C 187±0.3 4±0.3 186±1.8 20±1.8 179±0.7 4±0.7 

C-Cp 380±1.3 167±1.3 363±7.5 153±7.5 323±2.8 111±2.8 

Cp-D 49±0.8 58±0.8 45±4.5 97±4.5 23±1.7 51±1.7 

D-Dp 154±0.8 64±0.8 156±4.8 317±4.8 85±1.8 111±1.8 

Dp-E 68±1.6 58±1.6 74±9.2 81±9.2 34±3.4 32±3.4 

E-Ep 6±0.5 411±0.5 156±2.9 8±2.9 5±1.1 154±1.1 

Jpp-K 163±0.3 2±0.3 252±2 2±2 203±0.7 1±0.7 

K-A 306±1.3 23±1.3 285±7.5 82±7.5 270±2.8 24±2.8 

 
EAIS 1626±10.3 1040±10.3 1894±59.4 926±59.4 1370±22 607±22 

A
P

 Hp-I 20±0.8 328±0.8 25±4.4 305±4.4 11±1.6 306±1.6 

I-Ipp 87±0.7 938±0.7 59±3.8 592±3.8 12±1.4 715±1.4 

Ipp-J 91±0.8 67±0.8 118±4.4 75±4.4 71±1.6 38±1.6 

 AP 198±2.2 1333±2.2 202±12.6 972±12.6 94±4.7 1060±4.7 

W
A

IS
 

Ep-F 160±1.3 868±1.3 452±7.4 74±7.4 136±2.8 341±2.8 

F-G 103±0.9 101±0.9 73±5.1 106±5.1 59±1.9 73±1.9 

G-H 40±0.6 371±0.6 49±3.5 369±3.5 14±1.3 340±1.3 

H-Hp 26±0.6 35±0.6 6±3.6 97±3.6 3±1.3 51±1.3 

J-Jpp 29±1 1127±1 643±5.6 26±5.6 13±2.1 317±2.1 

 

WAIS 358±4.4 2502±4.4 1222±25.3 672±25.3 225±9.4 1121±9.4 
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        1997-2008 2009-2018 1997-2018 

  
TOTAL 

advance 
(km

2
) 

retreat  
(km

2
) 

advance 
(km

2
) 

retreat 
(km

2
) 

advance 
(km

2
) 

retreat  
(km

2
) 

WAIS 3942±7 27525±10 11612±48 6382±48 4617±38 22970±38 
AP 2178±8 14660±8 1920±40 9232±40 1929±32 21722±32 

EAIS 17886±11 11439±11 17990±56 8801±56 28089±45 12453±45 

AIS 24006±29 53624±29 31522±144 24414±144 34636±116 57146±116 

total -29618±29 7108±144 -22510±116 

 

The West Antarctic Ice Sheet (WAIS) lost more than three-times as much calving area in the first decade (1997-2008) 

compared to 2009-2018. 75 % of West Antarctic glacier and ice shelf retreat were caused by Ronne and Ross West Ice Shelf 205 

during the first decade. The retreat at WAIS was significantly lower in the second decade whereas Ross and Ronne Ice Shelf 

started to advance again. A different pattern occurs when considering West Antarctic calving front change without Ronne 

and Ross Ice Shelf. Then the glacier and ice shelf retreat during both observation periods is predominant. Pine Island and 

Thwaites glacier retreated over the entire observation period (1997-2018). Getz and Abbot Ice Shelf had stable front 

positions within the first decade but started to retreat since 2009. Only Crosson Ice Shelf showed a contradicting pattern with 210 

retreat in the first and re-advance in the second decade. 

The glaciers and ice shelves of the EAIS showed an overall stable advancing tendency with similar rates for both decades 

with slightly more retreat during the first and slightly more advance during the second decade. Strongest advance was 

observed for Amery and Filchner Ice Shelf as well as at the shelves at Dronning Maud Land and Queen Mary Land. During 

1997-2008, clear retreat appeared for Ross East Ice Shelf and along Enderby Land especially at Shirase Bay. Wilkes Land as 215 

well as Victoria Land had an almost equal share of retreat and advance. Between 2009 and 2018 Ross Ice Shelf and Enderby 

Land entered a phase of advance whereas Wilkes Land, George V and Adélie Land started to retreat predominately.  
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Figure 2 Glacier and ice shelf extent changes for major glaciers and ice shelves over the last two decades. Circles indicate the rate 

of retreat or advance. Major ice sheet basins as defined by Rignot et al. (2011). 220 

 

4.2 Air Temperature 

The mean Antarctic air temperature was equal for both decades during winter but in summer +0.6 °C higher in the second 

decade (2009-2018). But the overall mean does not reflect the strong regional differences in air temperature changes as 

shown in Figure 3. During summer and winter the Antarctic Peninsula and the adjoining coast along Bellingshausen and 225 

Amundsen Sea as well as Queen Mary Land were cooler between 2009-2018 whereas the interior of the ice sheet warmed 

during this period. Compared to the long-term mean (1982-1996) summer temperatures between 1997-2008 were cooler 
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except for the Peninsula, Queen Mary Land, Ross West and Filchner Ice Sheet. In the second decade this changed in sign 

where the Antarctic Peninsula started to cool down and the interior increased in temperature. For the winter months almost 

over the entire Antarctica continent a warming tendency was observed compared to the long-term mean. Only exceptions 230 

were Victoria, Oates and George V Land. Additionally, over Getz Ice Shelf cooler temperatures of 1°C occurred in 2009-

2018 compared to the long-term mean. For Dronning Maud Land a strong change was observed as the ice shelf surfaces 

warmed up to 1.8°C in the second decade.  

 

Figure 3 Absolute long-term air temperature and relative changes compared to the long-term mean. Additionally the difference 235 
between the first and second decade is illustrated. 

4.3 Sea Ice Days 

A decrease or increase in sea ice days refers to the difference in the number of sea ice days per year (during the sea ice 

season April to October) compared to the long-term mean. The strongest decrease in sea ice days could be observed at the 

northern tip of the Antarctic Peninsula with a shorter sea ice cover per year of up to 40 days during the first decade compared 240 

to the long-term mean. During 1997 and 2008 a decrease in sea ice days was observed along the Bellingshausen Sea with up 

to 20 days less and in the Amundsen Sea with up to 5-10 days less. Compared to the first decade, the mean sea ice cover 

persisted longer in the second decade along the Antarctic Peninsula and the Bellingshausen Sea whereas in the Amundsen 
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Sea the sea ice days decreased up to 10 days further compared to the first decade. Along the EAIS, sea ice coverage 

increased 10 days on average except for Dronning Maud Land with a slight decrease of up to 5 days. When comparing the 245 

two decades more sea ice days occurred during 2009 to 2018 along the EAIS and the northernmost Antarctic Peninsula 

whereas the decrease along West Antarctica continues. Changes in sea ice days were less extreme along East Antarctica with 

±10 days in difference compared to 1982-1996. Between 1997-2008 the duration of sea ice cover was up to 5 days shorter 

along Dronning Maud and Wilkes Land compared to the long-term mean. In the second decade sea ice days along the entire 

EAIS increased with a highest increase along Wilkes Land with up to 10 days (compared to 1982-1996). The described 250 

changes in sea ice days are visualized in Figure 4. 

 

Figure 4 Difference in the number of sea ice days per year (during the sea ice season April to October) compared to the long-term 

mean (1982-1996) and the difference in sea ice cover duration between both decades. 

4.4 Sea Surface Temperature 255 

The changes in sea surface temperature during months with little sea ice cover (October to March) relative to the long-term 

mean are shown in Figure 5. Sea surface temperatures of the southern ocean cooled (~ -0.5°) along the EAIS and warmed 

along WAIS and the western Antarctic Peninsula (~ +0.5°C) within the last two decades compared to 1982-1996 which is 

above the data uncertainty of 0.1 to 0.4 K. The warming was less strong in the first decade and intensified within the second 

decade especially in the Bellingshausen Sea with maxima at George VI north (+0.65°C) and Pine Island Bay (+0.35°) with a 260 

slightly weaker increase along the Amundsen Sea (+0.15°C). The cooling along the East Antarctic was less strong in the 

second decade. Along East Antarctica for Amery Ice Shelf (+0.35°C), West Ice Shelf (+0.2°C) and Shackleton Ice Shelf 

(+0.25°) warming was observed compared to the first decade.  
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Figure 5 Mean sea surface temperature changes (October to March) compared to 1982-1996 and the difference in sea surface 265 
temperatures between both decades. 

4.5 Snowmelt 

Snowmelt over the Antarctic Peninsula was more extensive during the long-term mean compared to the recent two decades. 

This is the reason why relative snowmelt in 1997-2008 and 2009-2018 was mostly negative with up to -0.3 mm w. eq. per 

day (see Figure 6). Nevertheless, strong snowmelt occurred also during the recent two decades but more selective over 270 

Wilkins and Larsen B Ice Shelf as well as at the northern tip of the Antarctic Peninsula. During the long-term mean, 

snowmelt concentrated on the Antarctic Peninsula, Ronne, Abbot, Shackleton and Amery Ice Shelf as well as Shirase Bay. 

In the first decade snowmelt expanded to Pine Island Bay, Getz Ice and Ross Ice Shelf as well as along Wilkes, George V 

and Dronning Maud Land. In all cases, the increase in melt was small with 0.1 mm w. eq. per day.  Within the most recent 

decade melt got more extensive (+0.1 mm w. eq. per day) over George V, Oates and parts of Wilkes Land as well as over 275 

Getz and Sulzberger Ice Shelf. Melt peaks in Pine Island Bay and Dronning Maud Land could only be observed during the 

first decade. 

4.6 Zonal Wind 

The Antarctic continent is circled by weak and irregular easterly winds driven by high pressure areas over the interior of the 

Antarctic continent created by cold and dry air. In case of a positive Southern Annular Mode (SAM) the easterlies weaken 280 

and the west wind drift shifts poleward. A positive SAM occurs when air pressure over the Antarctic Ice Sheet lowers but 

rises over the subtropical ocean. In the first decade, weakening easterlies (~ +0.5 m/s) were observed along the Antarctic 

Peninsula, Bellingshausen and Amundsen Sea as well as in East Antarctica in the area of Shackleton Ice Shelf. Stronger 

easterlies occurred only at George V and Dronning Maud Land. Within the second decade the strengthening westerlies along 

East Antarctica expanded from Amery Ice Shelf to Victoria Land with up to + 1m/s. Also the westerlies strengthened at 285 

Bellingshausen Sea but weakened in the Amundsen Sea (see Figure 7). Strong dominating easterlies occurred along 

Dronning Maud Land with up to -0.75 m/s within the second decade. 
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 290 

Figure 6 Mean snowmelt over Antarctica with enlarged views of the Antarctic Peninsula. Snowmelt is given in mm water 

equivalent per day. 
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Figure 7 Zonal Wind (West to East) around the Antarctic continent in m/s for 1997-2008 and 2009-2018 compared to the long-295 
term mean. Additionally, the difference in wind speed between both decades is illustrated. Positive shifts in zonal wind indicate 

stronger westerlies with the potential to cause upwelling of warm Circum Polar Deep Water (CDW). 

4.7 Correlation between Climate Variables and Calving Front Retreat 

Potential drivers of calving front retreat were identified by correlating the analysed climate variables with the percentage of 

retreat/advance within each glacier/ice shelf basin. The results of the Pearson correlation are displayed in Figure 8. Dark blue 300 

colors indicate a strong positive, dark red color a strong negative correlation. Stars indicate a significant Pearson correlation 

with stars for p=0.05 (*), 0.01 (**) and 0.001(***). Correlations for retreat and advance are counterparts, hence correlations 

are of the same magnitude for each climate variable but with reversed sign. Overall, weak to moderate correlations with 

significance occur for relative summer sea surface temperature, absolute air temperature, snowmelt, relative zonal wind 

speed and sea ice days. The strongest positive linear relationship (r=0.44) exists between calving front retreat and relative sea 305 

surface temperature. Slightly weaker is the positive correlation between glacier and ice shelf front retreat and absolute air 

temperature on the ice shelf surface (rsummer=0.18, rwinter=0.23). A relatively more positive zonal wind (hence strengthening 

westerlies) correlates positively with calving front retreat (r=0.30) but the absolute strength of zonal winds does not. 

Decreases in sea ice days correlate positively with calving front retreat (rabs=0.33, rrel=0.27). The mean daily amount of 

snowmelt correlates weakly but significant with glacier and ice shelf front retreat (r=0.17). The correlation of the climate 310 

variables among each other reflects that they are closely linked to each other. Higher air (rsummer=-0.26, rwinter=-0.36) and sea 

surface temperatures (r=0.44) have a negative relationship to an increase in sea ice days. An increase in sea ice days 

negatively correlated with an increase in zonal winds (r=0.31). Stronger snowmelt correlates positively with warmer summer 

(r=0.46) and winter (r=0.37) air temperatures. An increase of zonal winds was positively related to decreasing summer air 

temperatures (rsummer=-0.31).  315 
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Figure 8 Correlation between glacier and ice shelf change and the analysed climate variables winter/summer air temperature, 

snowmelt, sea ice days, summer sea surface temperatures and zonal wind speed. Colour and circle size indicate the correlation 

coefficient. Stars indicate significance levels for p=0.05 (*), 0.01 (**) and 0.001(***).  S: summer, W:  winter, rel: relative to 1982-

1996, DJF: Dec-Feb. 320 

5 Discussion 

The results section presented changes in ice shelf and glacier front extent over the last two decades in combination with 

environmental change. The correlation between glacier retreat and climate variables identified strengthening westerlies, 

higher air temperatures, intense snowmelt, a decrease in sea ice cover and rising sea surface temperature as potential drivers 

for calving front retreat. But a significant correlation between calving front retreat/advance and climate variables cannot 325 

alone provide conclusive evidence of a causal link. One very obvious example would be the significant correlation between 

calving front retreat and air temperature. This means that in coastal sectors with warmer air temperatures glacier and ice 

shelf retreat prevails. But from that, we cannot conclude that warmer air temperatures cause glacier retreat. It just reflects the 

given fact that air temperatures over the Antarctic Peninsula and West Antarctica are higher than at the EAIS but still calving 

front retreat along the cooler EAIS exists (see Figure 3). If rising air temperatures were able to force calving front retreat also 330 

relative changes in air temperature would have correlated with calving front retreat. As this was not the case we conclude 

that other drivers than air temperature forced glacier retreat over the last two decades. To find solid evidence for drivers of 
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glacier and ice shelf retreat we will discuss observed glacier/ice shelf retreat in combination with measured changes in 

climate variables and scientific publications. 

 335 

 

Figure 9 Southern Annular Mode (SAM) since 1960. Values are given for the annual SAM (blue), SAM during summer (orange) 

and a 5-year moving average for the annual SAM (black). The dashed grey lines indicate the investigated periods 1997/08 and 

2009/18 as delimited by the available coastline data. For SAM during summer (Dec-Feb), the beginning of austral summer (hence 

December) indicates the year of the peak. Data: Marshall et al. (2003). 340 

5.1 Antarctic Peninsula 

Along the Antarctic Peninsula a decrease in ice shelf extent resulted mainly by the disintegration and retreat of Larsen B, 

Larsen C, Wilkins and Wordie Ice Shelf.  For the major calving event of Wordie between 1997 and 2008, we observed 

stronger zonal winds compared to the reference period (+0.62 m/s) and the most recent decade (+ 0.28 m/s) (2009-2018). 

This means that during the break up event the eastern wind direction weakened towards a more westerly direction. This 345 

change in wind-direction causes upwelling of warm CDW and enhances basal melt. A change in wind direction towards 

westerlies is linked to positive SAM years (Marshall 2007). Figure 9 shows the strengthening of the SAM since the 1960s to 

better assess the link between positive phases of SAM and the observed disintegration events. The highest peak of SAM 

occurred during summer 98/99. This coincides with a major calving event of Wordie Ice Shelf reported by Friedl et al. 

(2018) for the same year. A later calving event was also associated with upwelling of warm CDW which was especially 350 

strong in the years 2008 to 2011 due to an exceptionally positive SAM (Walker and Gardner, 2017). The strong basal melt at 

Wordie Ice Shelf was also reported by Rignot et al. (2013) and Depoorter et al. (2013). In addition, to the continuous 

thinning by basal melt, it should be pointed out that the retrograde bed in a subglacial deep trough destabilized the Wordie 

Ice Shelf and led to grounding line retreat in 2010/2011 (Friedl et al., 2018). So far, the decreasing sea ice coverage (-14 

days compared to the long-term mean) at Wordie Bay has not been discussed. We suggest that the decreased sea ice cover 355 
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additionally destabilized the floating ice tongues. Similarly, also for the Wilkins disintegration during the first decade we 

observed similar enhanced summer zonal winds with a 0.47 m/s higher mean than compared to the reference period. 

Additional factors include a decrease in sea ice days (-9 days) and 0.13°C warmer sea surface temperatures and a slight 

increase in snowmelt by 0.06 mm w. eq. per day in the first decade compared to 1982-1996. Wilkins also experienced a 

calving event in 1998 (Cook and Vaughan, 2010) which overlaps with a positive SAM peak. The enhanced westerly winds 360 

suggest that also Wilkins Ice Shelf has weakened due to upwelling CWD. For a second break up event in 2008, snow melt 

was found to be the cause for retreat (Scambos et al., 2009). We observed only a very slight increase in snowmelt, weaker 

than the other described forcing factors. Either the ERA5 melt data is too inaccurate and coarse in resolution for assessing 

melt on single ice shelves or peak events in snowmelt have strong forcing effects on ice shelf retreat which are not well 

reflected on a decadal-mean basis. It is more likely that a combination of processes has caused the disintegration of Wilkins 365 

Ice Shelf. For example, a second calving event in 2009 during winter could not be attributed to melt. Rather bending stresses 

through variable ice thickness (Braun et al., 2009) and strong winds (Humbert et al., 2010) are likely candidates.  

During the disintegration of Larsen B in 2002, zonal winds were +0.33 m/s stronger compared to the long-term mean and 

melt rates were high with up to 5 mm w. eq. per day but in most areas lower than during 1982-1996. Again, during the 

disintegration period a substantial positive SAM anomaly was recorded in summer. Positive SAM years with stronger 370 

westerlies are not associated with upwelling at the Larsen Ice Shelfs but with warm air temperatures in combination with 

warm winds and surface melt (Rack and Rott, 2004). Recent studies found out that increases in foehn days in a series of 

years related to positive SAM phases significantly increase melt (Cape et al., 2015; Leeson et al., 2017). This increases 

supraglacial lake formation and lake drainage which was indeed observed before the disintegration of Larsen B. But whether 

lake drainage is a cause or effect of ice shelf break up remains unclear (Leeson et al., 2020).  375 

In the period of Larsen C break up, we observe lower amounts of melt (-0.2 mm w. eq. per day) compared to 1982-1996. 

Zonal winds were slightly more positive with +0.1 m/s compared to the reference time period but still lower than between 

1997-2008 (+0.54 m/s). This might strengthen the hypothesis of a natural calving event (Hogg and Gudmundsson, 2017). 

Nevertheless,  slight negative thickness changes were observed by Paolo et al. (2015) between 1994 and 2012, possibly 

indicating a future weakening of the Larsen C Ice Shelf. Larsen D forms the only exception of the strong retreating trend 380 

along the Antarctic Peninsula. This ice shelf neither experienced melt nor positive trends in zonal winds. Positive thickness 

changes indicate so far no potential weakening through basal melt (Paolo et al., 2015). The mass balance of Larsen D-G is, 

depending on the study, positive (Gardner et al., 2018) to slight negative but still much smaller than the huge negative mass 

balance of the rest of the Antarctic Peninsula (Rignot et al., 2019). Geroge VI and Stange Ice Shelf were relatively stable 

during 1997 to 2008 and started to retreat in 2009-2018. Slightly strengthening westerlies (+0.25 m/s) but almost no melt 385 

(0.02 mm w. eq. per day) occurred. Summer sea surface temperatures increased by +0.62°C and +0.38°C for George VI 

south and Stange ice shelves in the second decade compared to the reference period. Both ice shelves started to double the 

retreat rate during the second decade compared to the first. George VI is not believed to disintegrate rapidly (Holt et al., 
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2013). But recent developments might require to reconsider this assumption because calving front retreat, recently detected 

supraglacial lakes on the ice shelf surface (Dirscherl et al., 2020) and moderate basal melt (Paolo et al., 2015)  occurred. 390 

 

5.2 WAIS 

Glacier and ice shelf front retreat of the WAIS is clearly dominated at Pine Island Bay and at the biggest ice shelves Ross 

West and Ronne Ice Shelf lost the biggest amount through calving with -732±0.73 km
2
/yr and 1,098±0.91 km

2
/yr between 

1997 and 2008, respectively. But compared to the sheer size of the ice shelves the amount is not exceptional. The Ross West 395 

Ice Shelf already experienced such a calving event before 1962, where the front had about the position of 2004 after the 

maximum extent around 1997 (Ferrigno et al., 2007). Also the maximum extent of the Ronne Ice Shelf was in 1997 and its 

minimum extents occurred in 1974 and 2004 (Ferrigno et al., 2005). We could neither observe a reduction of sea ice nor 

increases in sea surface temperature (0.02 °C) and zonal winds (-0.15 m/s). Only strong melt (0.5 mm w. eq. per day) 

occurred on the calving area on Ronne Ice Shelf but even higher melt occurred between 1982 and 1996 in the same area. 400 

These observations suggest a calving event within the natural calving cycle instead of a long-term forced retreat. 

Nevertheless, recent studies predict that the Ronne-Filchner Ice Shelf will be affected by increasing basal melt through 

changing sea ice conditions and wind direction  in the future (Darelius et al., 2016).  

Pine Island and Thwaites Glacier showed strong retreat rates with 40±0.15 km
2
/yr and 288±0.77km

2
/yr between 1997 and 

2018. During summer both experienced strengthening westerlies with +0.28 m/s in 1997/2008 and +0.25 m/s in 2009/2018 405 

compared to the long term reference. The only indicator Pine Islands retreat rate tripled from 97/08 to 09/18 but Thwaites 

Glacier retreated at the same rate is an increase in sea surface temperature. Summer sea surface temperatures raised by 

0.28°C at the front of Pine Island but only 0.11°C at Thwaites Glacier form the first to the second decade. It should be 

mentioned that besides differences in sea surface temperature both glaciers have different bed topographies and glacier 

morphologies which influence their sensitivity to basal melt, land fast ice persistency and hydrofracture (Miles et al., 2020; 410 

Milillo et al., 2019; Seroussi et al., 2017; Yu et al., 2017). 

In contrast to the fast retreating glaciers at Pine Island Bay, the Abbot and Getz Ice Shelf did not experience increases in sea 

surface temperature between the two decades (+0.13°C). Abbot is also affected by increases of westerlies by 0.24 m/s from 

the first to the second decade whereas Getz is not (-0.41 m/s). Abbot Ice Shelf experienced little basal melt (1.5 m/decade) 

until 2012 whereas Getz Ice Shelf thinned at a maximum rate of 66.5 m/decade making it the largest contributor to Antarctic 415 

ice shelf volume loss through melt (Paolo et al., 2015). The still missing retreat could be attributed to the fact that both have 

several pinning points stabilizing the ice shelf, the glacier flow velocities are low (Mouginot et al., 2019), no forcing by 

increased sea surface temperatures occurred and the bed topography is very specific. The bed below Abbot Ice Shelf is 

situated around -200 m with only a small trough reaching below 500 m, while the Getz Ice Shelf’s bed lies like a barrier 

around 400 m before deepening closer to the grounding line up to 700 m. In comparison, the bed of Pine Island Glacier 420 

reaches depths around 700-1000 m (Fretwell et al., 2013).The higher beds may have protected the ice shelves more 
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effectively from upwelling CDW in combination with stabilizing ice rises as pinning points. But when environmental 

conditions will further force retreat also Getz and Abbot will retreat. First signs of destabilization already occurred as for 

both ice shelf grounding line retreat has been found since 2008 (Chuter et al., 2017). The most stable ice shelves along West 

Antarctica are Sulzberger and Nickerson Ice Shelf. They experience almost no basal melt because they already belong to the 425 

cooler Ross Sea (Rignot et al., 2013) and did not experience any identified drivers of calving front retreat. 

5.3 EAIS 

The EAIS was long believed to represent the invulnerable part of Antarctica with a positive mass balance and healthy 

glaciers. Recent mass balance estimations show that East Antarctica is losing mass since 1979 with an increasing loss since 

1999 (Rignot et al., 2019). This stands in contrast to altimeter measurements recording an almost stable mass balance for the 430 

EAIS since 1992 (IMBIE, 2018). This is in line with our ice shelf front changes along the EAIS, advance dominated over the 

last two decades with regional differences we will discuss in the following. In Victoria Land, we do not see any possible 

environmental forcing that could have caused glacier or ice shelf retreat. Retreat and advance is equally balanced within the 

entire observation period. Other authors also others found that glaciers along Victoria Land are stable (Fountain et al., 2017). 

Rather glacier type and topography are responsible for glacier change than climate forcing (Lovell et al., 2017). Although 435 

Oats and George V Land have experienced a negative mass balance since 1999 we cannot see a negative trend in glacier 

extent. The only big calving event occurred at Mertz glacier through iceberg collision (Tamura et al., 2012). During 2008-

2018, Wilkes Land is the only east Antarctic basin where simultaneously several glaciers disintegrated. Miles et al. (2016) 

linked less sea ice days to the exceptional retreat of glaciers between 2000 and 2012. During our observation period we 

cannot observe a connection between retreat and less sea ice days. This might be due to the fact that during 1997/08 sea ice 440 

days were only ~ 5 days less vs. ~34 days between 2000 and 2012, as reported by Miles et al. (2016). This suggests that only 

extreme reductions in sea ice can be related to glacier retreat, implying that sea ice alone cannot be the only explanation for 

retreat along Wilkes Land. We propose that upwelling CWD weakened the glaciers by basal melt as a very strong positive 

tendency in zonal wind with up to +0.44 m/s was observed in the second (but not in the first) decade compared to the long-

term mean. No forcing through enhanced snowmelt or increased sea surface temperatures exist. The strengthening westerlies 445 

also influenced Glenzer Glacier at the nearby Queen Mary Coast with an increase of 0.32 m/s and 1.23 m/s in the first and 

second decade, respectively. Glenzer Glacier retreated strongly in 2009-2018 and might continue to do so because one 

important pinning point got lost and an opening crevasse is visible at the ice shelf pressing against a pinning island. 

Interestingly, Shackleton and West Ice Shelf do not seem to be directly influenced by strengthening winds since 2009, 

compared to the long-term average with a plus of 0.97 m/s and 1.2 m/s, respectively. Even though, strengthening westerlies 450 

occurred in the second decade no frontal change was observed. Hence, we propose that the ice shelves started to weaken by 

basal melt but a longer-term forcing is necessary to show effects in frontal retreat for bigger ice shelves. Also melt occurred 

on the edges of both ice shelves. Strengthening zonal winds also occurred at the front of Amery Ice Shelf between 2009 and 

2018 with + 0.26 m/s. Also melt increased (+ 0.23 mm w. eq. per day) on the northern part of Amery over the last two 
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decades whereas in the southern part it decreased (- 0.1 mm w. eq. per day). The front constantly advanced but the part 455 

affected by increased melt broke off in 2019 even though Fricker et al. (2002) predicted a calving event earliest in 2025 

when the calving cycle of 65-70 years would have been reached.  

The area loss at Enderby Land is mostly attributed to the changes in Shirase Bay. Here, very contrasting changes appear 

where the Prince Harald Ice Shelf retreats and the Shirase Glacier advances and vice versa. This was already mentioned by 

Jezek (2002). The only forcing in this area occurred between 1997 and 2008 with an up to 1 mm w. e. melt per day over 460 

Prince Edward Ice Shelf compared to the reference period. For Shirase Glacier no increases in melt were observed. Rather 

the specific glacier morphology and bed topography influenced calving (Nakamura et al., 2007).  

Dronning Maud Land is dominated by advance over the entire study period. During 1997/08 we see higher area losses in the 

eastern part which is in line with less sea ice days (- 5 days). Air temperatures warmed up to 1.78°C during winter compared 

to the long-term reference periodover Dronning Maud Land, but did not lead to a calving front retreat. Historical records 465 

reveal that along Dronning Maud Land phases of retreat and advance are typical with bigger break up events between 1963 

and the 70s. Retreat continued until the 90s followed by a phase of advance (Kim et al., 2001; Miles et al., 2016). Also basal 

melt rate estimates confirm the relatively stable state of the ice shelves (Paolo et al., 2015; Rignot et al., 2013). 

5.4 A Circum-Antarctic Perspective 

These above examples illustrated the link between snowmelt, strengthening westerlies, decreasing sea ice days, increasing 470 

sea surface temperatures and calving front retreat. Glacier and ice shelf front retreat occurred when at least one of the 

mentioned drivers strengthened compared to the long-term mean. The only exceptions where drivers strengthened but no 

glacier/ice shelf front retreat occurred, was observed at West and Shackleton Ice Shelf. This either suggests that one decade 

of forcing by a single driver (in this case strengthening westerlies) does not immediately result in calving front retreat at 

previously healthy ice shelves. Or the forcing by zonal winds is less strong in areas where CDW upwelling is less efficient 475 

due to strong tidal forcing (Hazel and Stewart, 2019; Stewart et al., 2018) An assessment on the required length and of a 

driving force to cause calving front retreat would provide important insights for future break up events. Moreover, the 

combination of driving factors may play an important role. For example in Greenland, the combination of oceanic and 

atmospheric drivers had the greatest impact on calving front retreat rather than any single driver alone. Additionally, 

catchment wide melt and the resulting runoff had a higher impact on the retreat of Greenlandic glaciers than local air 480 

temperatures (Cowton et al., 2018). Howat et al. (2008) found that also peak events in air temperature and sea surface 

temperature can initialise glacier retreat and that a reversed bed slope allows more rapid retreat. In addition, the acceleration 

of glacier retreat in wide, overdeepened beds with a retrograde slope was also observed by Catania et al. (2018). 

The absolute amount of snowmelt correlated significantly with glacier and ice shelf retreat but not relative changes in 

snowmelt. The detailed comparison of snowmelt with calving front retreat revealed strong melt during the decade of the 485 

break up event. Nevertheless, snowmelt was often higher during the reference period than during the actual calving event 

which might indicate that longer phases of melt weaken the ice shelf over a longer time period. The low resolution of melt 
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data did not always match the actual calving front and only allowed rough estimates. Additionally no information on the 

accuracy of the snowmelt product is provided which makes the considered reanalysis data prone to potentially large biases. 

We suggest a more detailed study on glacier and ice shelf front retreat in combination with accurate high resolution surface 490 

melt data (e.g. satellite-based surface melt estimates as published by Trusel et al. (2013)) to capture all necessary surface 

hydrology processes and an accurate metric for snowmelt. For example, not the amount of melt but much more the effect of 

ponding on the ice shelf influences its vulnerability (Joughin and Alley, 2011). Also surface hydrology processes such as 

lake drainage occurred prior to break up events (Leeson et al., 2020) and have to be investigated further.  

Relative changes in mean air temperature could not be identified as a direct driver for calving front retreat, even though 495 

increases of up to 2°C per decade were measured in some coastal areas (e.g. Dronning Maud Land, Victoria Land) which is 

far beyond the uncertainty of the ERA5 air temperature data. Nevertheless, the impact of air temperature cannot be entirely 

ignored as surface melt is closely linked to air temperature. The effect of air temperature peak events on the amount of 

surface melt could reveal an indirect effect of air temperature by inducing surface melt.  

Changes in zonal wind were a great proxy to identify upwelling warm CWD (Spence et al., 2014). But the magnitude is still 500 

difficult to quantify. In our analysis increases in zonal winds of only 0.25 m/s over one decade was enough to induce glacier 

and ice shelf front retreat (but in combination with high sea surface temperatures). But only a small increase in westerlies 

can be enough to increase basal melt considerably because basal melt has a nonlinear relationship with ocean temperature 

and can quadruple by only slight ocean warming (Jenkins et al., 2018). A quantification of a threshold of zonal wind speed to 

create forcing is difficult since ERA5 wind speed data underestimates wind speed in coastal areas and over the ocean 505 

(Belmonte Rivas and Stoffelen, 2019; Gossart et al., 2019). Hence, the zonal wind speed from weather station measurements 

is probably higher and may have a more apparent effect on ice shelves. Nevertheless, ERA5 data is very consistent and 

accurately captures the inter-annual variability of wind speed in the Antarctic environment (Gossart et al., 2019). Therefore, 

it can be assumed that the large-scale effect of atmospheric circulation is accurately represented.  

We also identified that the bed topography is an important factor for the strength of basal melt which is in line with the fact 510 

that grounding line retreat enhances at retrograde beds destabilizing ice shelves (Scheuchl et al., 2016). Decreasing sea ice 

days showed an effect on glacier/ice shelf retreat but only if the average reduction per year was on average over 10 days 

within the decade. This fact might become important in the future. Recently, the turning point of an increasing Antarctic sea 

ice extent was reached (Ludescher et al., 2019; Parkinson, 2019).  

For the first time, this study revealed the link between increased sea surface temperature and calving front retreat. The 515 

measured changes in sea surface temperature were between 0.15 to 0.6°C per year which is still below the trend uncertainty 

stability of 0.01 K per year (Embury, 2019). The influences of warmer sea surface temperatures are twofold. Warmer sea 

surface temperatures lead to the melt of fast ice which destabilizes glacier margins (Larour, 2004) and could result in retreat. 

Another explanation proposes that warm surface water increases melt at the waterline which creates an overhanging ice cliff 

that is more likely to collapse (Mosbeux et al., 2020). 520 
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The identified drivers of calving front retreat are closely connected to positive SAM years. A positive SAM increases sea 

surface temperatures and air temperatures along AP and WAIS. It also influences the sea ice cover, snowmelt and foehn 

effect and enhances westerly winds along the Antarctic coastline (Cape et al., 2015; Kwok and Comiso, 2002; Marshall, 

2007; Tedesco and Monaghan, 2009; Verdy et al., 2006). Extreme peaks in positive SAM could even trigger ice shelf 

disintegration as has been shown for Wordie Ice Shelf. To conclude, glacier and ice shelf retreat will be even more likely in 525 

the future as rising greenhouse gases and ozone depletion will cause more positive phases of SAM (Paeth and Pollinger, 

2010; Wang et al., 2014) and further strengthen driving forces of calving front retreat. 

6 Conclusion  

For the first time, we present a circum-Antarctic record of calving front changes over the last two decades. Overall, the 

extent of the Antarctic Ice Sheet decreased -29618±29 km
2
 between 1997 and 2008 gained an area of +7108±144.4 km

2
 530 

between 2009-2018. Glacier and ice shelf front retreat concentrated along the Antarctic Peninsula and West Antarctica. The 

only East Antarctic coastal sector experiencing simultaneous calving front retreat of several glaciers was Wilkes Land in 

2009-2018. The largest proportion of calving originated from Ross West and Ronne Ice Shelf being responsible for 75 % of 

the West Antarctic loss during 1997 and 2008 but was found to be in the range of their natural calving cycle. Decreasing sea 

ice days, strengthening westerlies, intense snowmelt and increasing sea surface temperatures were identified as driving 535 

forces for glacier and ice shelf front retreat along the Antarctic Peninsula, West Antarctica and Wilkes Land. In contrast, 

relative increases in mean air temperatures could not be linked to calving front retreat. Further studies should assess whether 

record high air temperatures can also trigger glacier/ice shelf retreat as it has been observed for Greenland. Snowmelt was 

found to be a strong driver of calving front retreat at the Antarctic Peninsula (up to 5 mm w. eq. per day) but more accurate 

data on surface melt and surface hydrology is needed to assess the influence of melt in more detail. Increased sea surface 540 

temperatures with up to 0.62°C were observed along the Bellingshausen and Amundsen Sea weakening the glacier margins. 

Between 1997 and 2018, sea ice days decreased most along the Western Antarctic Peninsula with up to -25 days, the 

Bellingshausen Sea (-10 days) and Amundsen Sea (-5 days). Strengthening westerlies affected ice shelves along the Western 

Antarctic Peninsula (up to +0.54 m/s) and West Antarctica (+0.28-0.41 m/s) but also East Antarctica at Wilkes (+ 0.44 m/s) 

and Queen Mary Land (up to 1.23 m/s) by causing upwelling of warm CWD and resulting basal melt. The magnitude of 545 

required forcing to immediately trigger calving front retreat was difficult to assess as the regional setting (e.g. bed 

topography, glacier morphology) as well as the combination and duration of driving forces are likewise important for 

assessing glacier and ice shelf front retreat. All identified drivers are closely connected to positive phases of SAM which 

occurred over the last two decades with local maxima forcing stronger retreat. Rising CO2-emissions and ozone depletion 

will further enhance positive phases of SAM putting additional pressure on glaciers and ice shelves. To better asses the 550 

vulnerability of glaciers and ice shelves in the future, it is essential to better understand melt, ponding and runoff processes 

on the ice shelf surface impacting calving front retreat to an unknown extent. Equally important is the understanding of 
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changing wind conditions and their impact on upwelling CWD and basal melt. Another interesting issue related to glacier 

and ice shelf changes across Antarctica pertains to their specific time scales and response times. A shortcoming of our 

analysis is the restriction to three snapshots of coastline data that has delimited the design of this study. Although our study 555 

has revealed that the Antarctic cryosphere is subject to tremendous changes in recent decades, it is conceivable that our 

results are at least partly biases by strong inter-annual variability of all considered climate and cryospheric variables. In 

addition, natural cycles and the effects of man-made global warming may prevail on longer time scales than the ones 

addressed in thus study – the ones that are also characterized by a reasonable data coverage. 

 560 
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