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Abstract. The spatial distribution of snow in the mountains is significantly influenced through interactions of topography with

wind, precipitation, shortwave and longwave radiation, and avalanches that may relocate the accumulated snow. One of the most

crucial model parameters for various applications such as weather forecasts, climate predictions and in hydrological modeling

is the fraction of the ground surface that is covered by snow, also called fractional snow-covered area (fSCA). While previous

subgrid parameterizations for the spatial snow depth distribution and fSCA work well, performances were scale-dependent.5

Here, we were able to confirm a previously established empirical relationship of the peak of winter parameterization for

the standard deviation of snow depth σHS by evaluating it on 11 spatial snow depth data sets from 7 different geographic

regions and snow climates with resolutions ranging from 0.1 m to 3 m. Enhanced performance (mean percentage errors (MPE)

decreased by 25 %) across all spatial scales ≥ 200 m was achieved by recalibrating and introducing a scale-dependency in the

dominant scaling variables. Scale-dependent MPEs vary between -7 % and 3 % for σHS and between 0 % and 1 % for fSCA.10

A scale- as well as region-dependent evaluation revealed that for the majority of the regions the MPEs mostly lie between ±10

% for σHS and between -1 % and 1.5 % for fSCA. This suggests that the new parameterizations perform similarly well in

most geographical regions.

1 Introduction

Whenever there is snow on the ground, there will be large spatial variability in snow depth. In mountainous terrain, this spatial15

distribution of snow is significantly influenced by topography due to corresponding spatial variations in wind, precipitation,

shortwave and longwave radiation, and in steep terrain by avalanches that may relocate the accumulated snow. As a result,

the snow-covered landscape can consist of a complex mix of snow-free and snow-covered areas, especially in steep terrain or

during snow melt. A parameter which describes how much of the ground is covered by snow is the fractional snow-covered

area (fSCA). Most of the time fSCA is tightly linked to snow depth (HS) and in particular to its spatial distribution. fSCA20

is able to bridge between the spatial mean HS and the actual observed snow coverage. Sound fSCA models are therefore
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crucial, since for the same mean HS in early winter and in late spring the associated fSCA can be completely different (e.g.

Luce et al., 1999; Niu and Yang, 2007; Magand et al., 2014).

fSCA plays a key role in modelling physical processes for various applications such as weather forecasts (e.g. Douville

et al., 1995; Doms et al., 2011), climate simulations (e.g. Roesch et al., 2001; Mudryk et al., 2020) and avalanche forecasting25

(Bellaire and Jamieson, 2013; Horton and Jamieson, 2016; Vionnet et al., 2016). As climate warms, fSCA is an highly relevant

indicator for spatial snow cover changes in climate projections (e.g. Mudryk et al., 2020). A decrease in spatial snow extent

prominently changes surface characteristics such as albedo in mountain landscapes, leading to changes in surface radiation, a

primary component of the surface energy balance. fSCA is also parameter in hydrological models to scale water discharges

in the different model grid cells managing in this way appropriately basins water supply (e.g. Luce et al., 1999; Thirel et al.,30

2013; Magnusson et al., 2014; Griessinger et al., 2016). Errors in fSCA estimates directly translate into errors of snow melt

rates and melt water discharge (Magand et al., 2014). Thus, accurately describing fSCA is of key importance for multiple

model applications in mountainous terrain where highly variable spatial snow distributions occur.

fSCA can be obtained from satellite remote sensing products using optical imagery with varying spatiotemporal resolution.

For instance, Sentinel-2 gathers data at a spatial resolution of 10 to 20 m at frequent global revisit intervals (<5 days, cloud-35

permitting) (Drusch et al., 2012; Gascoin et al., 2019). The availability of satellite-derived fSCA remains however inconsistent

due to time gaps between satellite revisits, data delivery and the frequent presence of clouds, which obscure the ground,

especially in winter in mountainous terrain reducing the availability of images drastically (e.g. Parajka and Blöschl, 2006;

Gascoin et al., 2015). Satellite-derived fSCA can also not be used directly for forecasting. Alternatively, fSCA can be

obtained from spatially averaging by using snow models at subgrid scales. While such snow cover models are available (e.g.40

Tarboton et al., 1996; Marks et al., 1999; Lehning et al., 2006; Essery et al., 2013; Vionnet et al., 2016), up until now they

cannot be used in very high spatial resolutions over very large regions, in part due to a lack of detailed input data, such as

fine-scale surface wind speed and precipitation, as well as due to high computational cost. Often they are limited by model

parameters and structure requiring calibration. Integrating data assimilation algorithms in snow models is able to mitigate

some of these limitations which led for instance to improvements in runoff simulations (e.g. Andreadis and Lettenmaier,45

2006; Nagler et al., 2008; Thirel et al., 2013; Griessinger et al., 2016; Huang et al., 2017; Griessinger et al., 2019). However,

uncertainties inherently present in the input or assimilation data still remain, which are generally accentuated over snow-

covered catchments (Raleigh et al., 2015). Today, fSCA parameterizations describing the subgrid snow depth variability

therefore remain unavoidable for complex model systems and to complement assimilation of satellite-retrieved fSCA products

especially over mountainous terrain.50

A parameterization of fSCA describes the relationship between fSCA and grid cell-averaged HS or snow water equiv-

alent (SWE) by a so-called snow-cover depletion (SCD) curve. SCD curves were originally introduced in models without

taking into account subgrid topography or vegetation. In principle, there are two commonly applied forms: so-called closed

functional forms and parametric probabilistic SCD curve formulations (Essery and Pomeroy, 2004). Parametric SCD curves

have disadvantages for practical applications such as numerical stability, computational efficiency and assuming an unimodal55

distribution which might be less appropriate for large grid cells covering heterogeneous surface such as mountainous terrain
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(e.g. Essery and Pomeroy, 2004; Swenson and Lawrence, 2012). Various closed functional forms for fSCA are therefore

applied in land surface and climate models (e.g. Douville et al., 1995; Roesch et al., 2001; Yang et al., 1997; Niu and Yang,

2007; Su et al., 2008; Swenson and Lawrence, 2012). Most of these parameterizations use simple relationships between fSCA

and HS or SWE. Since topography strongly determines the spatial HS or SWE distribution (Clark et al., 2011), in the past,60

terrain characteristics were mostly heuristically introduced in closed form curves to account for subgrid terrain influences on

fSCA (e.g. Douville et al., 1995; Roesch et al., 2001; Swenson and Lawrence, 2012). To verify the commonly applied closed

forms of fSCA, Essery and Pomeroy (2004) integrated over log-normal SWE distributions and fitted the parametric SCD

curves. The best obtained fit resulted for a function proportional to tanh which is a previously derived closed form from Yang

et al. (1997). By using a normal probability density function (pdf) Helbig et al. (2015) obtained the same form fit for fSCA65

as Essery and Pomeroy (2004). The functional form for fSCA from Yang et al. (1997) could thus be inferred from integrating

normal as well as log-normal HS distributions with subsequent fitting of the parametric SCD curves. The main difference

between the form of Yang et al. (1997) and Essery and Pomeroy (2004) is the variable in the denominator. Yang et al. (1997)

used the aerodynamic roughness length whereas Essery and Pomeroy (2004) obtained the standard deviation of snow depth

(σHS) at peak of winter in the denominator. The advantage of introducing σHS in the fSCA parameterization is that subgrid70

terrain characteristics, contributing to shape the dominant spatial snow depth distribution, can be used to parameterize σHS

(Helbig et al., 2015).

Until recently, it was not possible to derive an empirical parameterization for σHS based on high-resolution HS data due

to the lack of high-resolution spatial HS data. New measurement methods such as terrestrial laser scanning (TLS), airborne

laser scanning (ALS) and airborne digital photogrammetry (ADP) nowadays provide a wealth of spatial HS data at fine-75

scale horizontal resolutions. Since recently, digital photogrammetry can also be applied to high-resolution optical satellite

imagery (Marti et al., 2016; Deschamps-Berger et al., 2020; Eberhard et al., 2020; Shaw et al., 2020). HS data at these high

resolutions now allow to statistically analyze spatial snow depth patterns for various purposes (e.g. Melvold and Skaugen,

2013; Grünewald et al., 2013; Kirchner et al., 2014; Grünewald et al., 2014; Revuelto et al., 2014; Helbig et al., 2015; Voegeli

et al., 2016; López-Moreno et al., 2017; Helbig and van Herwijnen, 2017; Skaugen and Melvold, 2019). Based on spatial80

snow depth data sets, σHS could be related to terrain parameters. For instance, Helbig et al. (2015) parameterized σHS at

peak of winter using spatial mean HS and subgrid terrain parameters, namely a squared slope related parameter and terrain

correlation length, and Skaugen and Melvold (2019) parameterized σHS for the accumulation season using current spatial

mean HS and stratifications according to landscape classes and standard deviations of squared slope. Though both approaches

are promising and also somehow similar, e.g. both use the squared slope as significant scale variable, they also differ, e.g. in85

the considered horizontal scale lengths at the development of the parameterization. While the parameterization of Helbig et al.

(2015) was developed for squared grid cell sizes from 50 m to 3 km, Skaugen and Melvold (2019) presented parameterizations

for 0.5 km x 1 km grid cells. Helbig et al. (2015) observed improved performances for larger scales (> 1000 m), Skaugen and

Melvold (2019) observed the same performances when validating it for 0.5 km x 10.25 km grid cells. This can be explained

by the physical processes shaping the complex mountain snow cover predominantly interacting at different length scales with90

topography e.g. precipitation, wind and radiation (Liston, 2004). A multi-scale behaviour has been found in various studies
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using different spatial coverages and measurement platforms (e.g. Deems et al., 2006; Trujillo et al., 2007; Schirmer et al.,

2011; Mendoza et al., 2020), but a thorough analysis of spatial autocorrelations using many spatial snow depth data sets up to

several kilometers in horizontal resolutions far below the first estimated scale break of about 10 to 20 m has not been presented

so far. Such an analysis could reveal a scale range from which the spatial snow distribution in mountainous terrain can be95

parameterized with consistent accuracy. Using the newly available wealth of spatial HS data we now have the opportunity to

better understand the differences in previous empirically developed closed-form fSCA parameterizations by adding variability

in evaluation data sets, i.e. by using data from different geographic regions, as well as by taking into account the spatial scale

in scaling parameters.

This article presents a new peak of winter fSCA parameterization for mountainous terrain for various snow model applica-100

tions. Since snow model applications operate at different spatial scales a fSCA parameterization should work across spatial

scales as well as for various snow climates. Two important points were therefore tackled compared to a previous peak of winter

fSCA parameterization: 1) We derived the empirical parameterization for σHS on a large pool of spatial snow depth data

sets from various geographic sites and validated it scale- as well as region-dependent. 2) Based on a spatial scale analysis

we introduced scale-dependent parameters in the parameterization of Helbig et al. (2015) for σHS such that the new fSCA105

parameterization is scale-independent for grid cell sizes starting at 200 m up to 5 km.

2 Data

We compiled the large quantity of 11 spatial snow depth data sets from seven different geographic sites in mountainous regions

of Switzerland, France and the US, i.e. from two continents (Figure 1). These data sets have horizontal grid cell resolutions ∆x

between 0.1 m and 3 m and cover areas from 0.14 km2 to 280 km2. In addition to that, the snow depth data sets were acquired110

by five different remote sensing methods, i.e. using different platforms. The diversity of the data sets can be seen in Figure 2

showing the pdfs for snow depth, elevation and the squared slope related parameter µ (Helbig et al., 2015) which is described

in Section 3.3. All snow depth data was gathered at the local approximate point in time when snow accumulations had reached

their annual maximum. Except for the two snow depth data sets shown in Figure 3, the data sets have been published before or

the geographic location is described elsewhere. In the following all snow depth data sets are listed, grouped according to their115

mountain range.

2.1 Eastern Swiss Alps

We used snow depth data sets acquired by three different platforms above four different alpine sites in the eastern Swiss Alps.

The first platform was airborne digital scanning (ADS) using an opto-electronic line scanner on an airplane. Data was

acquired from the Wannengrat and Dischma area near Davos in the eastern Swiss Alps (Bühler et al., 2015). ADS-derived120

snow depth data sets were used from 20 March 2012 (’ads-CH2’) and 9 March 2016 (’ads-CH1’) together with summer digital

elevation models (DEM) (Marty et al., 2019). The data set covers about 150 km2 in 2 m resolution. Bühler et al. (2015)
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Figure 1. The map shows the approximate location of the eleven spatial snow depth data sets. The colors of the trays indicate the region,

measurement platform or acquisition date as presented in Figure 2.
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Figure 2. Probability density functions for (a) snow depth HS, (b) elevation z and (c) squared slope related parameter µ per data set in its

original horizontal resolution, i.e. between 0.1 m and 3 m. All densities were normalized with the maximum of all data sets. Note that for

elevation (b) the y-axis was cut for better visibility. Colors represent the different geographic regions, measurement platform or acquisition

dates (number) of the compiled data set as indicated in Section 2.1 to 2.4.
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validated the 2 m ADS-derived snow depth data among others with TLS data. They obtained a root mean square error (RMSE)

of 33 cm and a normalized median absolute deviation (NMAD) of the residuals (Höhle and Höhle, 2009) of 26 cm.

The second platform was an unmanned aerial system (UAS) recording optical imagery with real time kinematik (RTK)125

positioning of the image acquisition points of the snow cover by a standard camera over two different smaller regions near

Davos in the eastern Swiss Alps (Bühler et al., 2016; Eberhard et al., 2020). These images were photogrammetrically processed

into a digital surface model DSM. By subtracting the snow free DSM from the summer flight, the HS values were obtained

(Bühler et al., 2017). An UAS-derived snow depth data set was used from 7 April 2018 (’uav-CH9’) from Schürlialp together

with a UAS-acquired summer DEM (Eberhard et al., 2020). The Schürlialp data set covers about 3.2 km2 which we used in130

30 cm resolution. A second UAS-derived snow depth data set was used from 29 March 2019 (’uav-CH8’) from Gaudergrat

together with a UAS-acquired summer DEM. The Gaudergrat data set covers about 0.8 km2 in 10 cm resolution (Figure 3b).

Compared to snow depth data from snow probing, Eberhard et al. (2020) obtained a RMSE of 16 cm and a NAMD of 11 cm

for UAS-derived snow depth data at 9 cm horizontal resolution from Schürlialp.

The third platform was airborne laser scanning (ALS) above the Dischma region near Davos in the eastern Swiss Alps135

(Figure 3a). This acquisition was a Swiss partner mission of the Airborne Snow Observatory (ASO) (Painter et al., 2016). For

consistency reasons, the same lidar setup was used and similar processing standards than for the ASO campaigns in California

were applied (Section 2.2). ALS-derived snow depth data was used from 20 March 2017 (’als-CH3’) together with a summer

DEM from 2017. The ALS data set from Switzerland used here covers about 260 km2 in 3 m resolution. Details on the

derivation of the ALS data can be found in Mazzotti et al. (2019) though this study focused on three 0.5 km2 forested sub data140

sets. Validation of 1 m ALS-derived snow depth grids from 20 March 2017 against data from snow probing within forest but

outside canopy (i.e. not below a tree) resulted in a RMSE of 13 cm and a bias of -5 cm.

2.2 Sierra Nevada, CA, US

We used data sets acquired by two different platforms above Tuolumne basin in the Sierra Nevada (California) in the US.

The first platform was ALS performed by ASO (Painter et al., 2016). ALS-derived snow depth data was used from 26145

March 2016 (’als-US7’) and 2 May 2017 (’als-US6’) together with a summer DEM (Painter, 2018). The second platform was

a Pléiades product from 1 May 2017 (’plei-US6’). A detailed data description of the Pléiades data set derivation is given in

Deschamps-Berger et al. (2020).

We used the ASO summer DEM for the Pléiades as well as the ALS snow depth data sets. Given that the extent of the

Pléiades snow depth data set was much smaller than the ALS domain, we cropped the ALS data sets to the Pléiades data set150

extension resulting in a coverage of about 280 km2. The horizontal resolution used here was 3 m for both data sets. Compared

to snow probe measurements in relatively flat areas ALS snow depth data at 3 m horizontal resolution was found unbiased with

a RMSE of 8 cm (Painter et al., 2016). Pléiades-derived snow depth data was recently validated with ASO data over 137 km2

at 3 m resolution above Tuolumne basin (Deschamps-Berger et al., 2020). A RMSE of 80 cm, a NMAD of 69 cm and a mean

bias of 8 cm was obtained for the Pléiades data set.155
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Figure 3. Snow depth maps of the eastern Swiss Alps: (a) in the Dischma region (ALS data) and (b) at Gaudergrat (UAS data) at peak of

winter. The red dot in the inset map for Switzerland shows the location of the two sites. Pixmap © 2020 Swisstopo (5704000000), reproduced

by permission of Swisstopo (JA100118).
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2.3 Eastern French Pyreenes

A Pléiades product was acquired over the Bassiès basin in the northeastern French Pyreenes. Pléiades-derived snow depth data

was used from 15 March 2017 (’plei-FR4’) together with a summer DEM (Marti et al., 2016). The data set we used, covers

about 113 km2 in 3 m resolution. Marti et al. (2016) derived a median of the bias between 2 m Pléiades data and snow probe

measurements of -16 cm and with UAS measurements of -14 cm. They further obtained a NMAD of 45 cm with snow probe160

measurements and a NMAD of 78 cm with UAS measurements.

2.4 Southeastern French Alps

TLS-derived snow depth data was acquired at two alpine mountain passes in the southeastern French Alps. One snow depth

data set was acquired over Col du Lac Blanc at 9 March 2015 (’tls-FR10’) (Revuelto et al., 2020). A site and data description

can be found in Naaim-Bouvet et al. (2010); Vionnet et al. (2014); Schön et al. (2015, 2018). We used a UAS-acquired summer165

DEM (Guyomarc’h et al., 2019). The data set covers about 0.6 km2 in 1 m resolution. The second TLS-derived snow depth

data set was acquired over Col du Lautaret at 27 March 2018 (’tls-FR5’) (Revuelto et al., 2020, under review). We used a

TLS-acquired summer DEM. The data set covers about 0.14 km2 in 1 m resolution. Previously, mean biases between 4 and 10

cm for TLS laser target distances up to 500 m were obtained between TLS-derived and reference tachymetry measurements

(Prokop, 2008; Prokop et al., 2008; Grünewald et al., 2010).170

2.5 Preprocessing

In all data sets grid cells ∆x with forest, rivers, glaciers or buildings were masked out. In order to avoid introducing any biases

we consistently neglected snow depth values in all data sets that were lower zero or above 15 m. We used a HS threshold of

zero to decide whether or not a grid cell was snow-covered.

3 Methods175

Following the approach of Helbig et al. (2015), we parameterize the standard deviation of snow depth σHS to reassess the

validity of the fSCA parameterization for complex topography of Helbig et al. (2015) for a range of spatial scales, in particular

for sub-kilometer spatial scales.

3.1 Aggregating and pooling of data sets

Pooling all snow depth data sets yields a data pool with a vast variety in snow climates, topographic characteristics and thus180

snow depth distributions. We first aggregated all snow depth data in squared so-called domain sizes L in regular grids between

3 m to 5 km. Our choice of the smallest applicable L in a data set was defined by a large enough L/∆x ratio (here ≥ 20) to

minimize the influence of grid cell resolutions when spatially averaging (Helbig et al., 2009). When aggregating, we required

at least 70 % valid data in a domain size which was the maximum threshold to obtain a sufficient number of domains for the
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Figure 5. Probability density functions for mean HS, σHS and squared slope related parameter µ per domain size L after preprocessing and

pooling all data sets.

largest domain sizes L of 3 to 5 km. In addition to that we excluded L with spatial mean slope angles larger than 60 ◦ and185

spatial mean snow depth HS lower than 5 cm. By applying these limitations and since horizontal resolutions ∆x as well as

the overall extent of the data sets vary, the full range of L was not represented by each data set. Overall this resulted in a pool

of 367’643 domain with L between 3 m and 5 km. We obtain a decreasing number of domains for increasing L with a range

between 59’376 for L = 90 m and 17 for L = 5000 m (Figure 4). The diversity of the remaining L is shown by means of the

pdfs for HS, σHS and the squared slope related parameter µ in Figure 5. Spatial averages and standard deviations were built190

for each L. In the following, overbars are neglected for spatial averages.
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(number) of the compiled data set as indicated in Section 2.1 to 2.4.

3.2 Autocovariances for scale breaks

The spatial autocovariance allows finding spatial scale breaks up to which snow depth values are highly correlated, i.e. up to

which length scale the snow depth distribution is strongly dictated by local topographic interactions of the snow cover with

wind, precipitation and radiation. Below this scale break process models should ideally explicitly resolve these interactions to195

reliably describe the spatial snow depth distribution. Above this scale break we assume that dominant wind or precipitation

patterns due to larger scale topography impacts dictate spatial snow depth distributions. At this scale range the normalized

standard deviations of snow depth σHS start levelling out (Figure 6a) as well as the normalized variability of σHS among

similar sized L (Figure 6b).

We calculated spatial autocovariances for snow depth data sets with the “Fast Fourier Transform” (FFT), which allows200

computing spatial autocovariances up to large distances by keeping the fine grid cell resolutions. We used the R function fft()

of the ’stats’ package (see R Core Team, 2020).

3.3 Fractional snow-covered area parameterization (Helbig et al., 2015)

Helbig et al. (2015) derived a fSCA parameterization by integrating a normal pdf assuming spatially homogeneous melt.

Subsequent fitting over a range of coefficients of variation CV (standard deviation divided by its mean) between 0.06 and 1.00205

resulted in a similar closed form fit for fSCA as Essery and Pomeroy (2004) obtained by integrating a lognormal pdf:

fSCA = tanh(1.3
HS

σHS
) , (1)
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using current HS and standard deviation of previous maximum snow depth or peak of winter. The standard deviation of snow

depth at peak of winter was derived by relating peak of winter high-resolution spatial snow depth data from Switzerland and

Spain to underlying summer terrain parameters (Helbig et al., 2015)210

σHS = HSaµb exp[−(ξ/L)2] (2)

with a = 0.549, b = 0.309 and HS and terrain correlation length ξ in meters. ξ and µ are summer terrain parameters, where

µ is related to the mean squared slope via µ =
{

[(∂xz)2 + (∂yz)2]/2
}1/2

using partial derivatives of subgrid terrain elevations

z, i.e. from a DEM. The correlation length ξ or typical width of topographic features in a domain size L was derived via

ξ =
√

2σz/µwith the standard deviation of elevations σz . TheL/ξ ratio indicates how many characteristic topographic features215

of length scale ξ are included in each L. Similar to Helbig et al. (2015), we linearly detrended the summer DEM before

deriving the terrain parameters to unveil the correct terrain characteristics associated with the shaping process of the snow

depth distribution at the corresponding scale. Using Eq. (1), fSCA can thus be derived with grid cell mean snow depth from

a snow model and grid cell mean subgrid terrain parameters derived from a fine-scale summer DEM.

3.4 Deriving a new scale-independent fractional snow-covered area parameterization220

Helbig et al. (2015) showed that fSCA performances increased with spatial scale and yielded best performance for spa-

tial scales larger than 1000 m. Since the fSCA parameterization was empirically developed on snow depth data from two

geographic regions, here we reevaluated the scaling variables for the spatial variability of snow depth σHS as well as the

functional form of the parameterization using the large compiled HS data set of this study. Various scaling variables were

previously employed to capture σHS in mountainous terrain. Helbig et al. (2015) selected snow depth HS, the squared slope225

related parameter µ and the L/ξ ratio (Eq. (2)), Skaugen and Melvold (2019) used HS and standard deviation of the squared

slope, others used σz as terrain parameter (e.g. Roesch et al., 2001). Here, we were interested in finding dominant scaling vari-

ables that correlate consistently across scales with σHS . We therefore analyzed the pearson correlation coefficient r between

various candidate parameters and σHS as a function of spatial scale, i.e. domain size L.

3.5 Performance measures230

The performance in this article is evaluated by the following measures: the root mean square error (RMSE), normalized

root mean square error (NRMSE, normalized by the range of measured data (max-min) or the mean of the measurements

for fSCA), mean absolute error (MAE), the mean absolute percentage error (MAPE, absolute bias with measured minus

parameterized and normalized with measurements), the mean percentage error (MPE, bias with measured minus parameterized

and normalized with measurements) and the pearson correlation coefficient r as a measure for correlation. We also evaluate235

the performances by deriving the two-sample Kolmogorov-Smirnov test (K-S test) statistic values D (Yakir, 2013) for the

pdfs and by computing the NRMSE for Quantile-Quantile plots (NRMSEquant, normalized by the range of measured quantiles

(max-min)) for probabilities with values in [0.1,0.9].
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Figure 7. FFT derived autocovariances for spatial snow depth. Individual ranges, mean range and mean autocovariance zero crossing are

shown.

4 Results

4.1 Spatial correlation range from snow depth data240

We derived 40 autocovariances for domain sizes of 3 km with grid cell sizes ∆x of 2 or 3 m. By determining the corresponding

inflection points for each domain size L using R (R Core Team, 2020) we obtained scale breaks between 183 and 681 m with

a mean of 284 m (±σ 86 m) (Figure 7). The zero crossings for each L were between 402 m and 1815 m with a mean of 1011

m (±σ 402 m). For the mean autocovariance we obtained a scale break at about 279 m and a zero crossing at about 1212 m.

Based on the observed scale breaks we selected a minimum length scale of 200 m for deriving a new scale-dependent fSCA245

parameterization for all larger scales. In the following all results are therefore restricted to L≥ 200 m leaving a pool of 41’249

domain sizes L with L between 200 m and 5 km for the development of the parameterization.

4.2 Scaling variables for σHS

Correlation coefficients varied differently across spatial scales (Figure 8a). For all scales, we obtained the largest correlation

coefficients for HS ranging from 0.48 to 0.98 with a mean of 0.79. From correlations with the various subgrid terrain parame-250

ters, the largest correlations across all scales were reached for the squared slope related parameter µ ranging from 0.22 to 0.61

with a mean of 0.36. Similar consistent correlation coefficients across scales but slightly smaller for L≤ 1800 m resulted for

the squared slope sqS with an overall mean of 0.33 (sqS is derived here from 2µ2; cf. Section 3.3). The correlation coefficients

for the standard deviation of sqS (σsqS) and σz were much less consistent across scales than for µ and sqS and were overall

lower. The mean correlation for σsqS is 0.15, for L/ξ 0.21 and for σz 0.01. Though the mean correlation between σHS and L/ξ255
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Figure 8. (a) Correlation coefficients between σHS and various parameters as a function of domain size L. (b) Standard deviation of snow

depth σHS as a function of snow depth HS and slope parameter µ.

is rather low, correlation remains more consistent across scales up to about 2500 m and increases for larger scales considerably

up to 0.67 (cf. Figure 8a).

We selected HS, µ and L/ξ as main scaling parameters for σHS across spatial scales from 200 m to 5 km (Figure 8b).

4.3 Scale-independent fractional snow-covered area parameterization

The correlation analysis across scales revealed the same dominant correlation parameters than in Helbig et al. (2015). We260

therefore kept the functional form for σHS at peak of winter suggested by Helbig et al. (2015) using the three scaling variables

HS, µ and L/ξ. The new σHS parameterization at peak of winter thus has the same functional form than the one suggested

by Helbig et al. (2015) which was presented in Eq. (2). However, the fit parameters a and b therein are replaced by new

parameters c and d which we specify below. To derive the new parameters c,d we fitted nonlinear regression models by robust

M-estimators using iterated reweighed least squares (see R (R Core Team, 2020) and its robustbase version 0.93-6 package265

(Maechler et al., 2020)).

Fit parameters c,d were derived by randomly taking 500 sub-samples (80 %) from the snow depth data set. We derived c,d

scale-dependent for sample data starting with L≥200 m step wise up to L≥5 km (cf. individual colored lines in Figure 9).

Scatter for the resulting c,d increased with increasing L. Since the standard deviation among c,d for L≥200 m was extremely

low with 0.001 for c as well as for d we first fitted constant parameters c,d for the entire data pool and L≥200 m. We obtain270

constant fit parameters of c = 0.6589 (±0.0037) and d = 0.5638 (±0.0043) with the 90 % confidence intervals of the fit
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Figure 9. Fit parameters for Eq. (2) as a function of domain sizes L to scale variables (a) HS and (b) µ. Colored lines show the fit

parameters derived by taking 500 random 80 % samples from the compiled snow depth data set. The dark blue dots depict the ensemble

median. Previously obtained constant parameters of Helbig et al. (2015) (light blue dots) and newly fitted constant (red dots) as well as newly

fitted scale-dependent (pink circles) parameters are shown.
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parameters given in parentheses. These ’new’ constant parameters c,d are larger than the previously derived constants a,b in

Eq. (2) (cf. Figure 9). Given that the values of c,d clearly increase with spatial scale L (Figure 10) we introduced L in c,d to

improve the application of Eq. (2) across scales. By fitting the ensemble median of the 500 random sub samples (dark blue

dots in Figure 9) we obtained scale-dependent parameters c(L) and d(L). We started at the scale length of 200 m, defined275

by the scale break which we derived before from spatial snow depth autocovariances. Fitting over samples larger than the

corresponding L instead of over samples at a specific L should allow describing the combined larger scale topography-wind-

precipitation impacts on the spatial snow depth distribution in mountainous terrain acting at scales larger than the observed

scale break of about 200 m. Thus, Eq. (2) using the following scale-dependent parameters c(L) and d(L) assembles our new

σHS parameterization for L≥ 200 m:280

c(L) = 0.5330 L0.0389

d(L) = 0.3193L0.1034
(3)

with the 90 % confidence intervals of ±0.0097, ±0.0026 and ±0.0183, ±0.0079 in the order of introduced constants in Eq.

(3). The new σHS parameterization using c(L) and d(L) (Eq. (2) with Eq. (3)) is applied in the previously derived fSCA

parameterization (Eq. (1)). To demonstrate the resulting differences when using scale-dependent versus scale-independent fit

parameters in parameterized σHS (Eq. (2) we will also validate the performance using constant c,d in the previously derived285

fSCA parameterization as well as in the σHS parameterization.

4.4 Evaluation

4.4.1 Evaluation for σHS and fSCA for all L

Parameterized σHS and fSCA perform well for all domain sizes, i.e. for L≥200 m of the entire data pool. Very similar

performance measures are obtained for the parameterizations using the newly derived constant fit parameters c,d and the290

parameterizations using the scale-dependent parameters c(L),d(L) (cf. Table 1 and I(a) and II(a)). We obtain a slightly better

MPE for σHS when using scale-dependent fit parameters (-4 % versus -5 %) however for fSCA MPEs are the same (0.2 %).

The same rather low NRMSEs result for σHS (8 %) and for fSCA (2 %).

4.4.2 Scale-dependent evaluation for σHS and fSCA

While mean performance measures of the σHS and fSCA parameterization are almost uninfluenced to using constant or295

scale-dependent fit parameters (cf. Table 1 and I(a) and II(a)) we found diverging performances when analyzing performance

measures as a function of scale (Figure 10). Across scales, improved or similar performances were achieved when using

scale-dependent fit parameters in parameterized σHS especially for larger scales. Maximum performance improvements of 4

% occurred for L of 2500 m, respectively for fSCA of 0.7 % when using scale-dependent fit parameters. Thus, introducing

scale-dependent fit parameters enhanced the σHS parameterization for application across scales.300
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Table 1. Performance measures for all L between measurement and parameterization of (I) standard deviation of snow depth σHS with (a)

Eq. (2) and constant or L dependent fit parameters c,d (Eq. (3)) and (b) σHS as in Helbig et al. (2015); Skaugen and Melvold (2019) and of

(II) fSCA with (a) Eq. (1) and (Ia) and (b) fSCA as in Helbig et al. (2015) and Skaugen and Melvold (2019) using Eq. (1).

NRMSE RMSE MPE MAPE MAE r K-S NRMSEquant

[%] [cm] [%] [%] [cm] [%]

I σHS

(a) Eq. (2) with

constant c,d parameter 7.9 26.6 -5.3 22.6 19.7 0.83 0.05 5.3

c(L),d(L) (Eq. (3)) 7.9 26.7 -4.1 22.4 19.6 0.83 0.05 5.5

(b) previous parameterizations from

Helbig et al. (2015) 9.3 31.1 -29.5 36.7 25.3 0.82 0.22 14.6

Skaugen and Melvold (2019) 20.4 68.5 -77.9 82.8 57.9 0.68 0.48 37.6

NRMSE RMSE MPE MAPE MAE r K-S NRMSEquant

[%] [%] [%] [%]

II fSCA

(a) Eq. (1) with

Eq. (2) and constant c,d parameter 2.4 0.02 0.22 1.11 0.01 0.64 0.37 0.5

Eq. (2) and c(L),d(L) (Eq. (3)) 2.4 0.02 0.16 1.09 0.01 0.63 0.37 0.4

(b) previous parameterizations from

Helbig et al. (2015) 3.2 0.03 1.45 1.8 0.02 0.74 0.47 1.6

Skaugen and Melvold (2019) using Eq. (1) 6.2 0.06 3.87 4.8 0.05 -0.04 0.75 4.4

4.4.3 Scale- and region-dependent evaluation for σHS and fSCA

A large data set from various geographic regions allows us to develop a more reliable empirical parameterization than being

limited to the characteristics by a few data sets. Here, we not only compiled data sets from various geographic regions but the

data sets were also acquired by different measurement platforms coming with a range in inaccuracies between below 10 cm to

80 cm. As a consequence larger scatter in performances appear when performance measures are depicted not only as a function305

of spatial scale but also region wise, including platform wise. While most of the MPEs are still between -20 % and 10 % some

regions strike out because they have much larger MPEs when binned scale as well as region wise (Figure 11). For instance a

MPE of up to 60 % for σHS was obtained for TLS data from the southeastern French Alps and overall larger MPEs, though

consistent across scales, for the Pléiades data from the northeastern French Pyreenes. MPEs for fSCA on the other hand do

not show a similar large spread among the regions and are low between -1 % to 2 % (Figure 11b).310
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Skaugen and Melvolds σHS parameterization applied in the fSCA parameterization of Helbig et al. (2015) (Eq. (1).

4.4.4 Evaluation of previous closed form parameterizations

To increase our understanding of the performances achieved with the new parameterizations, we also tested two previously

derived empirical parameterizations. Specifically we investigated how parameterized σHS using Eq. (2) (Helbig et al., 2015)

and using the recently published formulation of Skaugen and Melvold (2019) compare to observed σHS of our compiled data

set (Figure 12a). We further tested both σHS parameterizations in the fSCA parameterization (Eq. (1); Figure 12b). The315

parameterization of Helbig et al. (2015) works well. The performance measures for all L are only slightly worse compared

to the new parameterizations using both constant as well as scale-dependent fit parameters (Table 1). However, compared to

the performance measures for the parameterization of Skaugen and Melvold (2019) the performances of Helbig et al. (2015)

are clearly improved. Though MPEs of both previous σHS parameterizations are scale-dependent, the MPEs of Skaugen

and Melvold (2019) reveal a larger scale-dependence of the performances compared to Helbig et al. (2015) (Figure 12a). In320

particular, individual MPEs vary a lot from MPEs for all L given in Table 1.
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5 Discussion

5.1 Spatial correlation range

While multi-scale behaviour for spatial snow depth data has been found in various studies, observed scale breaks depend on

the extent and horizontal resolution of the investigated snow depth data sets. A first scale break of spatial snow depth data in325

treeless, alpine terrain has been observed between 10 to 20 m (e.g. Deems et al., 2006; Trujillo et al., 2007; Schweizer et al.,

2008; Schirmer and Lehning, 2011; Mendoza et al., 2020) and a second scale break has been observed at around 60 m (Trujillo

et al., 2009). By computing spatial autocovariances starting with domain sizes L of 200 m in 0.1 m to 1 m resolution up to

3 km in 2 to 3 m resolution we also detected the two previously found scale breaks [not shown]. However, by additionally

covering larger spatial extents than previously have been investigated, we also detected a third scale break with a mean at about330

280 m (Figure 7). A similar scale break at around 200 m was recently found by analyzing performance decreases of distributed

snow modelling in various grid cell sizes together with semivariogram analysis of subgrid summer terrain slope angles in the

same catchment in the High Atlas (Baba et al., 2019). While for other application studies, such as in avalanche forecasting the

smaller scale breaks are decisive for explicitly describing the relevant snow cover processes, here we are more interested in the

largest detected scale break. At these scale lengths the longer range processes of precipitation, wind and radiation interactions335

with topography most dominantly influence the spatial snow distribution in mountainous terrain, which we assume can be

parameterized with sufficient accuracy at this length scale by a scale-independent parameterization.

5.2 Scaling parameter

We not only investigated dominant correlations between the spatial snow depth distribution and terrain parameters but we also

analyzed these correlations as a function of spatial scale. For some commonly applied scaling parameters this revealed large340

variations of correlations across scales such as for σz (Figure 8a). Similar to our results, Skaugen and Melvold (2019) also

obtained large correlations between σHS and mean squared slope sqS for spatial snow depth data sets acquired at peak of

winter in Norway though this was only analyzed for spatial scales of 0.5 km x 1 km. Nevertheless, this confirms our findings

since mean squared slope is related to the slope related parameter µ used here by sqS = 2µ2. However, Skaugen and Melvold

(2019) obtained slightly improved correlation for the standard deviation of squared slope and therefore selected this parameter345

to stratify the topography for parameterizing σHS . Across spatial scales as well as for all L we obtained lower correlations

between the standard deviation of squared slope and σHS though we observed cross-correlations between mean and standard

deviation of squared slope of 0.71 indicating that both parameters correlate well with σHS .

5.3 Scale-independent fSCA parameterization

The closed form fractional snow-covered area parameterization fSCA given in Eq. (1) got enhanced by recalibration and350

introducing scale-dependent fit parameters (Eq. (3)) to make the performance consistent across spatial scales.
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We developed the parameterization on a large snow depth data set. Large variability in the snow depth data set was gained

by compiling 11 individual data sets from varying geographic regions as well as various measurement platforms. While the

latter might explain remaining performance differences discussed below, the first led to large variability in summer terrain

characteristics and snow climates and consequently spatial snow depth distributions (cf. Figure 2). Though our presented355

parameterization for σHS was empirically derived it is reassuring that for a new empirical derivation on a much larger and more

diverse snow depth data set the same underlying functional form could be used. Furthermore, larger (about 17 % respectively

45 % larger) but overall consistent constant fit parameters were obtained compared to the derivation on the limited number of

two data sets in two geographic regions by Helbig et al. (2015) (cf. a,b in Eq. (2) and c,d presented in Section 4.3 or Figure 9).

In addition to deriving constant fit parameters across spatial scales we took 500 random sub samples from the compiled snow360

depth data set to which we fitted scale-dependent constants (Figure 9). Scale-dependent constants considerably increased with

increasing scale from L=200 m to L=5 km by at most 12 % respectively 38 % (Figure 9). This demonstrates that accounting

for scale-dependent constants in the fSCA parameterization (Eq. (1) with Eq. (2) and Eq. (3)) had to be performed. While

we did not split our data set in development and validation subset, fitting over the ensemble median of the 500 sub samples to

derive c(L),d(L) ensures confidence in the resulting fit parameters.365

An increase in scatter among all c(L) and d(L) with increasing domain scale L (Figure 9) can be most likely explained by

a concurrent decrease in available valid data in larger L. Though we required at least 70 % valid data per L when aggregating

HS data in domain sizes L, the maximum threshold of 70 % was more often required for the larger L than for smaller L.

5.4 Evaluation

5.4.1 Evaluation for σHS and fSCA370

Upon deriving performance measures on parameterized and observed σHS and fSCA for all L (i.e. the pooled performance)

we obtained very similar performances when using newly derived constant or scale-dependent fit parameters, i.e. c,d or

c(L),d(L) (Table 1). Despite considerable differences up to 12 % for c and up to 38 % for d between constant and scale-

dependent fit parameters (Figure 9) pooled performances for all L for σHS and fSCA were similar (Table 1). An explanation

for this is that the number of available domains is strongly decreasing with increasing L. For L≥3000 m we have only about375

0.33 % (137 in total) valid domains available compared to the total of 41’249 for L <3000 m (Figure 4). This emphasizes the

need for a scale-dependent evaluation.

5.4.2 Scale-dependent evaluation for σHS and fSCA

While the largest improvement in MPE for all L seem to origin from recalibration using the new compiled data set with a

reduction in MPE from -30 % to -5 % compared to a reduction from -5 % to -4 % when introducing scale-dependent fit380

parameters (Table 1), MPEs as a function of scale clearly demonstrated the improved behaviour when using scale-dependent

c(L),d(L) instead of constant fit parameters c,d in the σHS and fSCA parameterization (Figure 10). Given that constant c,d

were fitted over the entire data set as have been c(L),d(L), any performance improvement using c(L),d(L) instead of constant
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c,d for parameterized σHS and fSCA origins in introducing scale-dependent parameters. For the parameterizations using the

constant fit parameters c,d errors varied slightly more across scales than when using the scale-dependent c(L),d(L) version.385

Individual scale-dependent errors were in part larger than the MPEs for all L given in Table 1. Unequal numbers of valid

domains per L most likely also contributed to this.

5.4.3 Scale- and region-dependent evaluation for σHS and fSCA

Studying region-wise performances reveals the spread in errors we can expect when the new parameterizations are applied

on an individual independent data set (Figure 11). We obtain much larger positive MPEs for σHS at lower spatial scales of390

L=200 m and L=300 m for the two TLS data sets in the southeastern French Alps and overall larger MPEs between 20 to

30 %, though consistent across scales, for the Pléiades data above the Bassiès basin in the northeastern French Pyrenees. It is

unclear if these larger MPEs origin in uncertainties of the data acquisition, i.e. are platform specific, or if they are linked to

spatial snow depth distributions which could not be captured by the proposed new parameterizations. RMSEs for the various

remote sensing platforms and data sets used here (Section 2) descend from 80 cm for Pléiades data from the Sierra Nevada,395

to 33 cm for the ADS, to 16 cm for UAS, to 13 cm for ALS data from Switzerland, to 8 cm for ALS data from the Sierra

Nevada and to 4 to 10 cm for TLS data in general. Given the rather low errors typically obtained for TLS data compared to

the other remote sensing platforms, the reason for the large deviations of the TLS data sets might not origin in inaccuracies

of the data acquisition. On the contrary, the observed bias in the Pléiades data from the northeastern French Pyrenees might

be attributable to platform connected rather large inaccuracies with NMADs of 45 cm to 78 cm (Marti et al., 2016). However,400

Pléiades data from the Sierra Nevada comes with a similar large NMAD of 69 cm but σHS can be parameterized very well with

MPEs lower ±3 % across spatial scales (Figure 11a). Observed σHS from the TLS as well as from the Pléiades data in France

was considerably larger than parameterized σHS but mean slope angles alone can also not explain this behaviour (between 6

and 23° for the TLS data and between 13 and 50° for the Pléiades data).

5.4.4 Evaluation of previous closed form parameterizations405

Though we developed a new peak of winter σHS parameterization (Eq. (3)), empirically derived parameterizations can only

describe the variability inherent in the data set used to derive the parameterization. In addition to the region-wise evaluation,

analyzing performances of previous empirically derived parameterizations may therefore allow estimating expected perfor-

mance sensibility to independent data sets. While both tested parameterizations of σHS (Helbig et al. (2015); Skaugen and

Melvold (2019)) showed worse performances than the new parameterizations and less consistency as a function of scale, the410

model performances of Helbig et al. (2015) were only slightly worse than the new parameterizations (Table 1). Since only

one out of the 11 data sets used in this study was previously used to develop the parameterization of Helbig et al. (2015), an

overall similar performance of Helbig et al. (2015) (Figure 12) with the large compiled data set of this study clearly confirms

the underlying functional form of σHS suggested by Helbig et al. (2015) which was reapplied here.
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6 Conclusions415

We presented an empirical peak of winter parameterization for the standard deviation of snow depth σHS for treeless, moun-

tainous terrain describing the spatial snow depth distribution in a grid cell for various model applications. The scaling variables

of the new parameterization of σHS and fSCA are the same than in Helbig et al. (2015) which are spatial mean snow depth,

a squared slope related parameter and a terrain correlation length. All subgrid terrain parameters can be easily derived from

fine-scale summer DEMs for each coarse grid cell.420

By introducing spatial scale dependencies in the variables of the formulation for σHS of Helbig et al. (2015), σHS can be

consistently parameterized across spatial scales starting at scales ≥200 m. The spatial snow depth variability or σHS is the

important variable to parameterize the fractional-snow covered area fSCA (Helbig et al., 2015). Performance improvements

across spatial scales of the σHS parameterization therefore directly enhanced the fSCA parameterization. Between length

scales of 200 m and 5 km mean percentage errors (MPE) were between -7 % and 3 % for σHS and between 0 % and 1 % for425

fSCA.

The subgrid parameterization of σHS was developed on a large pool of 11 spatial snow depth data sets from 7 different

geographic regions in high spatial resolutions between 0.1 m to 3 m and with spatial coverage between 0.14 to 280 km2. An

evaluation of two previously presented empirical σHS parameterizations confirmed the functional form of the parameterization

of Helbig et al. (2015) as well as the need to enhance its performance across scales. By analyzing data from the large pool430

of 11 spatial snow depth data sets, we were able to recalibrate the subgrid parameterization of σHS and achieved improved

performances using new constant fit parameters. Additionally introducing a scale-dependency in the dominant scaling variables

further improved the performance across spatial scales. Mean MPEs of σHS over all scales (i.e. pooled performance) reduced

from -30 % using Helbig et al. (2015) to -5 % after recalibration to -4 % after introducing scale-dependent fit parameters

(Table 1). Individual scale-dependent improvements in MPEs reached up to 4 % when using newly derived scale-dependent435

fit parameters compared to newly derived constant fit parameters for σHS on the large data pool. This shows the improvement

thanks to introducing scale-dependent parameters (Figure 10). Towards estimating the possible spread in performances when

applying empirically derived σHS and fSCA for independent geographic regions we validated the parameterizations region-

and scale-specific. While this clearly increased MPEs for three data sets, the majority of the region- and scale-dependent MPEs

were between ± 10 % for σHS and between -1 % and 1.5 % for fSCA indicating that the parameterizations perform similar440

well in most geographical regions.

A peak of winter parameterization of σHS describes the maximum spatial snow depth variability during a winter season

which is of interest for various model applications. A peak of winter parameterization can however not alone be used to describe

the seasonal fSCA evolution because a reliable model application of any fSCA parameterization requires an implementation

accounting for alternating snow accumulation and melt events during the season, i.e. to describe the SCD. Especially at445

lower elevations the separation of the SCD in only one accumulation period followed by a melting period is no longer valid

(Egli and Jonas, 2009). A description of an algorithm for a seasonal fSCA model implementation which uses the new scale-

independent peak of winter fSCA parameterization presented here is currently in preparation. Extending the empirical peak of
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winter fSCA parameterization to a broader range of scales and snow climates was thus a meaningful step towards accounting

for spatiotemporal variability in snow depth for multiple snow model applications.450
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