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Abstract. The spatial distribution of snow in the mountains is significantly influenced through interactions of topography with

wind, precipitation, shortwave and longwave radiation, and avalanches that may relocate the accumulated snow. One of the most

crucial model parameters for various applications such as weather forecasts, climate predictions and in hydrological modeling

is the fraction of the ground surface that is covered by snow, also called fractional snow-covered area (fSCA). While previous

subgrid parameterizations for the spatial snow depth distribution and fSCA work well, performances were scale-dependent.5

Here, we were able to confirm a previously established empirical relationship of the peak of winter parameterization for

the standard deviation of snow depth σHS by evaluating it on 11 spatial snow depth data sets from 7 different geographic

regions and snow climates with resolutions ranging from 0.1 m to 3 m. Enhanced performance (mean percentage errors (MPE)

decreased by 25 %) across all spatial scales ≥ 200 m was achieved by recalibrating and introducing a scale-dependency in the

dominant scaling variables. Scale-dependent MPEs vary between -7 % and 3 % for σHS and between 0 % and 1 % for fSCA.10

We performed a scale- as well as region-dependent evaluation of the parameterizations to assess the potential performances on

independent data sets. This evaluation revealed that for the majority of the regions the MPEs mostly lie between ±10 % for

σHS and between -1 % and 1.5 % for fSCA. This suggests that the new parameterizations perform similarly well in most

geographical regions.

1 Introduction15

Whenever there is snow on the ground, there will be large spatial variability in snow depth. In mountainous terrain, this spatial

distribution of snow is significantly influenced by topography due to corresponding spatial variations in wind, precipitation,

shortwave and longwave radiation, and in steep terrain by avalanches that may relocate the accumulated snow. As a result,

the snow-covered landscape can consist of a complex mix of snow-free and snow-covered areas, especially in steep terrain or

during snow melt. A parameter which describes how much of the ground is covered by snow is the fractional snow-covered20

area (fSCA). Most of the time fSCA is tightly linked to snow depth (HS) and in particular to its spatial distribution. fSCA
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is able to bridge between the spatial mean HS and the actual observed snow coverage. Sound fSCA models are therefore

crucial, since for the same spatial meanHS in early winter and in late spring the associated fSCA can be completely different

(e.g. Luce et al., 1999; Niu and Yang, 2007; Magand et al., 2014).

fSCA plays a key role in modelling physical processes for various applications such as weather forecasts (e.g. Douville25

et al., 1995; Doms et al., 2011), climate simulations (e.g. Roesch et al., 2001; Mudryk et al., 2020) and avalanche forecasting

(Bellaire and Jamieson, 2013; Horton and Jamieson, 2016; Vionnet et al., 2016). As climate warms, fSCA is an highly relevant

indicator for spatial snow cover changes in climate projections (e.g. Mudryk et al., 2020). A decrease in spatial snow extent

prominently changes surface characteristics such as albedo in mountain landscapes, leading to changes in surface radiation, a

primary component of the surface energy balance. fSCA is also parameter in hydrological models to scale water discharges30

in the different model grid cells managing in this way appropriately basins water supply (e.g. Luce et al., 1999; Thirel et al.,

2013; Magnusson et al., 2014; Griessinger et al., 2016). Errors in fSCA estimates directly translate into errors of snow melt

rates and melt water discharge (Magand et al., 2014). Thus, accurately describing fSCA is of key importance for multiple

model applications in mountainous terrain where highly variable spatial snow distributions occur.

fSCA can be obtained from satellite remote sensing products using optical imagery with varying spatiotemporal resolution.35

For instance, Sentinel-2 gathers data at a spatial resolution of 10 to 20 m at frequent global revisit intervals (<5 days, cloud-

permitting) (Drusch et al., 2012; Gascoin et al., 2019). The availability of satellite-derived fSCA remains however inconsistent

due to time gaps between satellite revisits, data delivery and the frequent presence of clouds, which obscure the ground,

especially in winter in mountainous terrain reducing the availability of images drastically (e.g. Parajka and Blöschl, 2006;

Gascoin et al., 2015). Satellite-derived fSCA can also not be used directly for forecasting. Alternatively, fSCA can be40

obtained from spatially averaging by using snow models at subgrid scales. While such snow cover models are available (e.g.

Tarboton et al., 1996; Marks et al., 1999; Lehning et al., 2006; Essery et al., 2013; Vionnet et al., 2016), up until now they

cannot be used in very high spatial resolutions over very large regions, in part due to a lack of detailed input data, such as

fine-scale surface wind speed and precipitation, as well as due to high computational cost. Often they are limited by model

parameters and structure requiring calibration. Integrating data assimilation algorithms in snow models is able to mitigate45

some of these limitations which led for instance to improvements in runoff simulations (e.g. Andreadis and Lettenmaier,

2006; Nagler et al., 2008; Thirel et al., 2013; Griessinger et al., 2016; Huang et al., 2017; Griessinger et al., 2019). However,

uncertainties inherently present in the input or assimilation data still remain, which are generally accentuated over snow-

covered catchments (Raleigh et al., 2015). Today, fSCA parameterizations describing the subgrid snow depth variability

therefore remain unavoidable for complex model systems and to complement assimilation of satellite-retrieved fSCA products50

especially over mountainous terrain.

A parameterization of fSCA describes the relationship between fSCA and grid cell-averaged HS or snow water equiv-

alent (SWE) by a so-called snow-cover depletion (SCD) curve. SCD curves were originally introduced in models without

taking into account subgrid topography or vegetation. In principle, there are two commonly applied forms: so-called closed

functional forms and parametric probabilistic SCD curve formulations (Essery and Pomeroy, 2004). Parametric SCD curves55

have disadvantages for practical applications such as numerical stability, computational efficiency and assuming an unimodal

2



distribution which might be less appropriate for large grid cells covering heterogeneous surface such as mountainous terrain

(e.g. Essery and Pomeroy, 2004; Swenson and Lawrence, 2012). Various closed functional forms for fSCA are therefore ap-

plied in land surface and climate models (e.g. Douville et al., 1995; Roesch et al., 2001; Yang et al., 1997; Niu and Yang, 2007;

Su et al., 2008; Swenson and Lawrence, 2012). Most of these parameterizations use simple relationships between fSCA and60

spatial mean HS or SWE. Since topography strongly determines the spatial snow depth or snow water equivalent distribution

(Clark et al., 2011), in the past, terrain characteristics were mostly heuristically introduced in closed form curves to account for

subgrid terrain influences on fSCA (e.g. Douville et al., 1995; Roesch et al., 2001; Swenson and Lawrence, 2012). To verify

the commonly applied closed forms of fSCA, Essery and Pomeroy (2004) integrated over log-normal SWE distributions

and fitted the parametric SCD curves. The best obtained fit resulted for a function proportional to tanh which is a previously65

derived closed form from Yang et al. (1997). By using a normal probability density function (pdf) Helbig et al. (2015) obtained

the same form fit for fSCA as Essery and Pomeroy (2004). The functional form for fSCA from Yang et al. (1997) could thus

be inferred from integrating normal as well as log-normal snow depth distributions with subsequent fitting of the parametric

SCD curves. The main difference between the form of Yang et al. (1997) and Essery and Pomeroy (2004) is the variable in

the denominator. Yang et al. (1997) used the aerodynamic roughness length whereas Essery and Pomeroy (2004) obtained the70

standard deviation of snow depth (σHS) at peak of winter in the denominator. The advantage of introducing σHS in the closed

form for fSCA is that subgrid terrain characteristics, contributing to shape the dominant spatial snow depth distribution, can

be used to parameterize σHS and thus to extend the fSCA parameterization of Essery and Pomeroy (2004) for mountainous

terrain (Helbig et al., 2015).

Until recently, it was not possible to derive an empirical parameterization for σHS based on high-resolution snow depth75

data due to the lack of such high-resolution spatial data. New measurement methods such as terrestrial laser scanning (TLS),

airborne laser scanning (ALS) and airborne digital photogrammetry (ADP) nowadays provide a wealth of spatial snow data at

fine-scale horizontal resolutions. Since recently, digital photogrammetry can also be applied to high-resolution optical satellite

imagery (Marti et al., 2016; Deschamps-Berger et al., 2020; Eberhard et al., 2020; Shaw et al., 2020). Snow depth data at

these high resolutions now allow to statistically analyze spatial snow depth patterns for various purposes (e.g. Melvold and80

Skaugen, 2013; Grünewald et al., 2013; Kirchner et al., 2014; Grünewald et al., 2014; Revuelto et al., 2014; Helbig et al.,

2015; Voegeli et al., 2016; López-Moreno et al., 2017; Helbig and van Herwijnen, 2017; Skaugen and Melvold, 2019). Based

on spatial snow depth data sets, σHS could be related to terrain parameters. For instance, Helbig et al. (2015) parameterized

σHS at peak of winter using spatial mean HS and subgrid terrain parameters, namely a squared slope related parameter and

terrain correlation length, and Skaugen and Melvold (2019) parameterized σHS for the accumulation season using current85

spatial mean HS and stratifications according to landscape classes and standard deviations of squared slope. Though both

approaches are promising and also somehow similar, e.g. both use the squared slope as significant scale variable, they also

differ, e.g. in the considered horizontal scale lengths at the development of the parameterization. While the parameterization

of Helbig et al. (2015) was developed for squared grid cell sizes from 50 m to 3 km, Skaugen and Melvold (2019) presented

parameterizations for 0.5 km x 1 km grid cells. Helbig et al. (2015) observed improved performances for larger scales (> 100090

m), Skaugen and Melvold (2019) observed the same performances when validating it for 0.5 km x 10.25 km grid cells. This
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can be explained by the physical processes shaping the complex mountain snow cover predominantly interacting at different

length scales with topography e.g. precipitation, wind and radiation (Liston, 2004). A multi-scale behaviour has been found

in various studies using different spatial coverages and measurement platforms (e.g. Deems et al., 2006; Trujillo et al., 2007;

Schirmer et al., 2011; Mendoza et al., 2020), but a thorough analysis of spatial autocorrelations using many spatial snow depth95

data sets up to several kilometers in horizontal resolutions far below the first estimated scale break of about 10 to 20 m has

not been presented so far. Such an analysis could reveal a scale range from which the spatial snow distribution in mountainous

terrain can be parameterized with consistent accuracy. Using the newly available wealth of spatial snow data we now have the

opportunity to better understand the differences in previous empirically developed closed-form fSCA parameterizations by

adding variability in evaluation data sets, i.e. by using data from different geographic regions, as well as by taking into account100

the spatial scale in scaling parameters.

This article presents a new fSCA parameterization for mountainous terrain for various snow model applications. Since

snow model applications operate at different spatial scales a fSCA parameterization should work across spatial scales as well

as for various snow climates. Two important points were therefore tackled compared to a previous fSCA parameterization:

1) We derived the empirical parameterization for σHS on a large pool of spatial snow depth data sets at peak of winter from105

various geographic sites and validated it scale- as well as region-dependent. 2) Based on a spatial scale analysis we introduced

scale-dependent parameters in the peak of winter parameterization of Helbig et al. (2015) for σHS such that the new fSCA

parameterization can be reliably applied for grid cell sizes starting at 200 m up to 5 km.

2 Data

We compiled 11 spatial snow depth data sets from seven different geographic sites in mountainous regions of Switzerland,110

France and the US, i.e. from two continents (Figure 1). These data sets have horizontal grid cell resolutions ∆x between 0.1

m and 3 m and cover areas from 0.14 km2 to 280 km2. In addition to that, the snow depth data sets were acquired by five

different remote sensing methods, i.e. using different platforms. The diversity of the data sets can be seen in Figure 2 showing

the pdfs for snow depth, elevation and the squared slope related parameter µ (Helbig et al., 2015) which is described in Section

3.3. All snow depth data was gathered at the local approximate point in time when snow accumulations had reached their115

annual maximum. Except for the two snow depth data sets shown in Figure 3, the data sets have been published before or

the geographic location is described elsewhere. In the following all snow depth data sets are listed, grouped according to their

mountain range.

2.1 Eastern Swiss Alps

We used snow depth data sets acquired by three different platforms above four different alpine sites in the eastern Swiss Alps.120

The first platform was airborne digital scanning (ADS) using an opto-electronic line scanner on an airplane. Data was

acquired from the Wannengrat and Dischma area near Davos in the eastern Swiss Alps (Bühler et al., 2015). ADS-derived

snow depth data sets were used from 20 March 2012 (’ads-CH2’) and 9 March 2016 (’ads-CH1’) together with summer digital
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Figure 1. The map shows the approximate location of the eleven spatial snow depth data sets. The colors of the trays indicate the region,

measurement platform or acquisition date as presented in Figure 2.
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Figure 2. Probability density functions for fine-scale (a) snow depth, (b) elevation and (c) squared slope related parameter per observation

data set in its original horizontal resolution, i.e. between 0.1 m and 3 m. Densities were normalized with the corresponding maximum

density of all data sets. Note that for elevation (b) the y-axis was cut for better visibility. Colors represent the different geographic regions,

measurement platform or acquisition dates (number) of the compiled data set as indicated in Section 2.1 to 2.4.
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elevation models (DEM) (Marty et al., 2019). The data set covers about 150 km2 in 2 m resolution. Bühler et al. (2015)

validated the 2 m ADS-derived snow depth data among others with TLS data. They obtained a root mean square error (RMSE)125

of 33 cm and a normalized median absolute deviation (NMAD) of the residuals (Höhle and Höhle, 2009) of 26 cm.

The second platform was an unmanned aerial system (UAS) recording optical imagery with real time kinematik (RTK)

positioning of the image acquisition points of the snow cover by a standard camera over two different smaller regions near

Davos in the eastern Swiss Alps (Bühler et al., 2016; Eberhard et al., 2020). These images were photogrammetrically processed

into a digital surface model DSM. By subtracting the snow free DSM from the summer flight, the HS values were obtained130

(Bühler et al., 2017). An UAS-derived snow depth data set was used from 7 April 2018 (’uav-CH9’) from Schürlialp together

with a UAS-acquired summer DEM (Eberhard et al., 2020). The Schürlialp data set covers about 3.2 km2 which we used in

30 cm resolution. A second UAS-derived snow depth data set was used from 29 March 2019 (’uav-CH8’) from Gaudergrat

together with a UAS-acquired summer DEM. The Gaudergrat data set covers about 0.8 km2 in 10 cm resolution (Figure 3b).

Compared to snow depth data from snow probing, Eberhard et al. (2020) obtained a RMSE of 16 cm and a NMAD of 11 cm135

for UAS-derived snow depth data at 9 cm horizontal resolution from Schürlialp.

The third platform was airborne laser scanning (ALS) above the Dischma region near Davos in the eastern Swiss Alps

(Figure 3a). This acquisition was a Swiss partner mission of the Airborne Snow Observatory (ASO) (Painter et al., 2016). For

consistency reasons, the same lidar setup was used and similar processing standards to the ASO campaigns in California were

applied (Section 2.2). ALS-derived snow depth data was used from 20 March 2017 (’als-CH3’) together with a summer DEM140

from 2017. The ALS data set from Switzerland used here covers about 260 km2 in 3 m resolution. Details on the derivation

of the ALS data can be found in Mazzotti et al. (2019) though this study focused on three 0.5 km2 forested sub data sets.

Validation of 1 m ALS-derived snow depth grids from 20 March 2017 against data from snow probing within forest but outside

canopy (i.e. not below a tree) resulted in a RMSE of 13 cm and a bias of -5 cm.

2.2 Sierra Nevada, CA, US145

We used data sets acquired by two different platforms above Tuolumne basin in the Sierra Nevada (California) in the US.

The first platform was ALS performed by ASO (Painter et al., 2016). ALS-derived snow depth data was used from 26

March 2016 (’als-US7’) and 2 May 2017 (’als-US6’) together with a summer DEM (Painter, 2018). The second platform was

a Pléiades product from 1 May 2017 (’plei-US6’). A detailed data description of the Pléiades data set derivation is given in

Deschamps-Berger et al. (2020).150

We used the ASO summer DEM for the Pléiades as well as the ALS snow depth data sets. Given that the extent of the

Pléiades snow depth data set was much smaller than the ALS domain, we cropped the ALS data sets to the Pléiades data set

extension resulting in a coverage of about 280 km2. The horizontal resolution used here was 3 m for both data sets. Compared

to snow probe measurements in relatively flat areas ALS snow depth data at 3 m horizontal resolution was found unbiased with

a RMSE of 8 cm (Painter et al., 2016). Pléiades-derived snow depth data was recently validated with ASO data over 137 km2155

at 3 m resolution above Tuolumne basin (Deschamps-Berger et al., 2020). A RMSE of 80 cm, a NMAD of 69 cm and a mean

bias of 8 cm was obtained for the Pléiades data set.
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Figure 3. Snow depth maps of the eastern Swiss Alps: (a) in the Dischma region (ALS data) and (b) at Gaudergrat (UAS data) at peak of

winter. The red dot in the inset map for Switzerland shows the location of the two sites. Pixmap © 2020 Swisstopo (5704000000), reproduced

by permission of Swisstopo (JA100118).

7



2.3 Eastern French Pyreenes

A Pléiades product was acquired over the Bassiès basin in the northeastern French Pyreenes. Pléiades-derived snow depth data

was used from 15 March 2017 (’plei-FR4’) together with a summer DEM (Marti et al., 2016). The data set we used, covers160

about 113 km2 in 3 m resolution. Marti et al. (2016) derived a median of the bias between 2 m Pléiades data and snow probe

measurements of -16 cm and with UAS measurements of -14 cm. They further obtained a NMAD of 45 cm with snow probe

measurements and a NMAD of 78 cm with UAS measurements.

2.4 Southeastern French Alps

TLS-derived snow depth data was acquired at two alpine mountain passes in the southeastern French Alps. One snow depth165

data set was acquired over Col du Lac Blanc at 9 March 2015 (’tls-FR10’) (Revuelto et al., 2020). A site and data description

can be found in Naaim-Bouvet et al. (2010); Vionnet et al. (2014); Schön et al. (2015, 2018). We used a UAS-acquired summer

DEM (Guyomarc’h et al., 2019). The data set covers about 0.6 km2 in 1 m resolution. The second TLS-derived snow depth

data set was acquired over Col du Lautaret at 27 March 2018 (’tls-FR5’) (Revuelto et al., 2020, under review). We used a

TLS-acquired summer DEM. The data set covers about 0.14 km2 in 1 m resolution. Previously, mean biases between 4 and 10170

cm for TLS laser target distances up to 500 m were obtained between TLS-derived and reference tachymetry measurements

(Prokop, 2008; Prokop et al., 2008; Grünewald et al., 2010).

2.5 Preprocessing

In all data sets grid cells ∆x with forest, rivers, glaciers or buildings were masked out. In order to avoid introducing any biases

we consistently neglected fine-scale snow depth values in all data sets that were lower than 0 m or larger than 15 m. We used a175

snow depth threshold of 0 m to decide whether or not a fine-scale grid cell was snow-covered.

3 Methods

We parameterize the standard deviation of snow depth σHS to reassess the validity of the fSCA parameterization for complex

topography of Helbig et al. (2015) for a range of spatial scales, in particular for sub-kilometer spatial scales.

3.1 Aggregating and pooling of data sets180

Pooling all snow depth data sets yields a data pool with a vast variety in snow climates, topographic characteristics and thus

snow depth distributions. We first aggregated all snow data in squared so-called domain sizes L in regular grids between 3 m

to 5 km covering each geographic site. Our choice of the smallest applicable L in a data set was defined by a large enough

L/∆x ratio (here≥ 20) to minimize the influence of grid cell resolutions when spatially averaging (Helbig et al., 2009). When

aggregating, we required at least 70 % valid data in a domain size which was the maximum threshold to obtain a sufficient185

number of domains for the largest domain sizes L of 3 m to 5 km. In addition to that, we excluded L with spatial mean slope
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Figure 4. Total number of valid domain sizes L per domain size L in log-log scale.

angles larger than 60 ◦ and spatial mean snow depth HS lower than 5 cm. By applying these limitations and since horizontal

resolutions ∆x as well as the overall extent of the data sets vary, the full range of L, consisting of 41 different L values, was

not represented by each data set. Overall, this resulted in a pool of 367’643 domains with L between 3 m and 5 km. We obtain

a decreasing number of domains for increasing L with a range between 59’376 for L = 90 m and 17 for L = 5000 m (Figure190

4). Spatial averages and standard deviations were built for each L. The resulting pooled data set shows a large variability in

summer terrain characteristics. Spatial average slope angles range from 4° to 60° (µ from 0.05 to 1.22; Figure 5c), terrain

correlation lengths ξ from 6 m to 775 m and L/ξ-ratios from 3 to 40. Thus, typical summer terrain characteristics captured

by coarse climate model grid cells are well represented. The diversity of the remaining domains with regards to snow depth is

shown by means of the pdfs for spatial mean HS and σHS as a function of domain size L in Figure 5a and b. Since the data195

pool also covers a broad range in spatial mean HS (from 5 cm to 12.4 m) and spatial variability of snow depth σHS (from 1

cm to 4.6 m) (Figure 5a and 5b), we assume interannual snow depth variability is well described. In the following, overbars are

neglected for spatial averages, i.e. for instance HS represents spatial mean snow depth exclusively.

3.2 Autocovariances for scale breaks

The spatial autocovariance allows finding spatial scale breaks up to which snow depth values are highly correlated, i.e. up to200

which length scale the snow depth distribution is strongly dictated by local topographic interactions of the snow cover with

wind, precipitation and radiation. Below this scale break process models should ideally explicitly resolve these interactions to

reliably describe the spatial snow depth distribution. Above this scale break we assume that dominant wind or precipitation

patterns due to larger scale topography impacts dictate spatial snow depth distributions. At this scale range the normalized

standard deviations of snow depth σHS start levelling out (Figure 6a) as well as the normalized variability of σHS among205

similar sized L (Figure 6b).
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We calculated spatial autocovariances for snow depth data sets with the “Fast Fourier Transform” (FFT), which allows

computing spatial autocovariances up to large distances by keeping the fine grid cell resolutions. We used the R function fft()

of the ’stats’ package (see R Core Team, 2020). For each autocovariance we then determine scale breaks using the R function

uik() of the ’inflection’ package (R Core Team, 2020).210

3.3 Fractional snow-covered area parameterization (Helbig et al., 2015)

Helbig et al. (2015) derived a fSCA parameterization by integrating a normal pdf assuming spatially homogeneous melt.

Subsequent fitting over a range of coefficients of variation CV (standard deviation divided by its mean) between 0.06 and 1.00

resulted in a similar closed form fit for fSCA as Essery and Pomeroy (2004) obtained by integrating a lognormal pdf:

fSCA = tanh(1.3
HS

σHS
) , (1)215

using current HS and standard deviation of previous maximum snow depth or peak of winter. The standard deviation of snow

depth at peak of winter was derived by relating peak of winter high-resolution spatial snow depth data from Switzerland and

Spain to underlying summer terrain parameters (Helbig et al., 2015)

σHS = HSaµb exp[−(ξ/L)2] (2)

with a = 0.549, b = 0.309 and HS and terrain correlation length ξ in meters. ξ and µ are summer terrain parameters, where220

µ is related to the mean squared slope via µ =
{

[(∂xz)2 + (∂yz)2]/2
}1/2

using partial derivatives of subgrid terrain elevations

z, i.e. from a DEM. The correlation length ξ or typical width of topographic features in a domain size L was derived via ξ =
√

2σz/µ with the standard deviation of elevations σz . The L/ξ ratio indicates how many characteristic topographic features of

length scale ξ are included in each L. Figure 2 in Helbig et al. (2009) shows a transect of a topography indicating the described

characteristic length scales. Similar to Helbig et al. (2015), we linearly detrended the summer DEM before deriving the terrain225

parameters to unveil the correct terrain characteristics associated with the shaping process of the snow depth distribution at

the corresponding scale. Using Eq. (1), fSCA can thus be derived with grid cell mean snow depth from a snow model and

grid cell mean subgrid terrain parameters derived from a fine-scale summer DEM. With the σHS formulation shown in Eq. (2),

Helbig et al. (2015) extended the fSCA parameterization (Eq. (1)) for mountainous terrain.

3.4 Deriving a new scale-independent fractional snow-covered area parameterization230

Helbig et al. (2015) showed that fSCA performances increased with spatial scale and yielded best performance for spatial

scales larger than 1000 m. Since the fSCA parameterization was empirically developed on snow depth data from two geo-

graphic regions, here we reevaluated the scaling variables for the spatial variability of snow depth σHS as well as the functional

form of the parameterization using the much larger compiled HS data set of this study. Various scaling variables were previ-

ously employed to capture σHS in mountainous terrain. Helbig et al. (2015) selectedHS, the squared slope related parameter µ235

and the L/ξ ratio (Eq. (2)). Skaugen and Melvold (2019) used HS and standard deviation of the squared slope with sqS being

derived using sqS = tan2ζ, where ζ is the slope angle in radians. Since tan2ζ is the same than 2µ2 (e.g. Löwe and Helbig,
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2012), we here derive sqS from 2µ2. Several other studies used σz as terrain parameter (e.g. Roesch et al., 2001). Here, we

were interested in finding dominant scaling variables that correlate consistently across scales with σHS . We therefore analyzed

the Pearson correlation coefficient r between various candidate parameters and σHS as a function of spatial scale, i.e. domain240

size L. Based on the results of previous studies, we selected the following candidate parameters: HS, µ, sqS, σsqS , L/ξ and

σz .

3.5 Performance measures

The performance in this article is evaluated by the following measures: the root mean square error (RMSE), normalized

root mean square error (NRMSE, normalized by the range of measured data (max-min) or the mean of the measurements245

for fSCA), mean absolute error (MAE), the mean absolute percentage error (MAPE, absolute bias with measured minus

parameterized and normalized with measurements), the mean percentage error (MPE, bias with measured minus parameterized

and normalized with measurements) and the Pearson correlation coefficient r as a measure for correlation. We also evaluate

the performances by deriving the two-sample Kolmogorov-Smirnov test (K-S test) statistic values D (Yakir, 2013) for the

pdfs and by computing the NRMSE for Quantile-Quantile plots (NRMSEquant, normalized by the range of measured quantiles250

(max-min)) for probabilities with values in [0.1,0.9].

4 Results

4.1 Spatial correlation range from snow depth data

We derived a total of 40 autocovariances for the available domain sizes L of 3 km with grid cell sizes ∆x of 2 or 3 m.

We obtained scale breaks between 183 and 681 m with a mean of 284 m (±σ 86 m) (Figure 7). The zero crossings for each255

autocovariance were between 402 m and 1815 m with a mean of 1011 m (±σ 402 m). For the mean autocovariance we obtained

a scale break at about 279 m and a zero crossing at about 1212 m. Based on the observed scale breaks we selected a minimum

length scale of 200 m for deriving a new scale-dependent fSCA parameterization for all larger scales. In the following all

results are therefore restricted to L≥ 200 m leaving a pool of 41’249 domain sizes L with L between 200 m and 5 km for the

development of the parameterization.260

4.2 Scaling variables for σHS

Correlation coefficients varied differently across spatial scales (Figure 8a). For all scales, we obtained the largest correlation

coefficients for HS ranging from 0.48 to 0.98 with a mean of 0.79. From correlations with the various subgrid terrain param-

eters, the largest correlations across all scales were reached for the squared slope related parameter µ ranging from 0.22 to

0.61 with a mean of 0.36. Similar consistent correlation coefficients across scales but slightly smaller for L≤ 1800 m resulted265

for the squared slope sqS with an overall mean of 0.33. The correlation coefficients for the standard deviation of sqS (σsqS)

and σz were much less consistent across scales than for µ and sqS and were overall lower. The mean correlation for σsqS is
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Figure 9. Fit parameters for Eq. (2) as a function of domain sizes L to scale variables (a)HS and (b) µ. Colored lines show the fit parameters

derived for each of the 500 random 80 % samples of each of the 25 sub data pools. The dark blue dots depict the ensemble median per L.

Previously obtained constant parameters of Helbig et al. (2015) (light blue dots) and newly fitted constant (red dots) as well as newly fitted

scale-dependent (pink circles) parameters are shown.
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0.15, for L/ξ 0.21 and for σz 0.01. Though the mean correlation between σHS and L/ξ is rather low, correlation remains more

consistent across scales up to about 2500 m and increases for larger scales considerably up to 0.67 (cf. Figure 8a).

We selected HS, µ and L/ξ as main scaling parameters for σHS across spatial scales from 200 m to 5 km (Figure 8b).270

4.3 Scale-independent fSCA parameterization

The correlation analysis across scales revealed the same dominant correlation parameters than in Helbig et al. (2015). We

therefore kept the functional form for σHS at peak of winter suggested by Helbig et al. (2015) using the three scaling variables

HS, µ and L/ξ. The new σHS parameterization at peak of winter thus has the same functional form than the one suggested

by Helbig et al. (2015) which was presented in Eq. (2). However, the fit parameters a and b therein are replaced by new275

parameters c and d which we specify below. To derive the new parameters c,d we fitted nonlinear regression models by robust

M-estimators using iterated reweighed least squares (see R (R Core Team, 2020) and its robustbase package version 0.93-6

(Maechler et al., 2020)). We started at the scale length of 200 m, defined by the scale break which we derived before from

spatial snow depth autocovariances.

Fit parameters were first derived for the entire data pool and L≥200 m yielding c = 0.6589 (±0.0037) and d = 0.5638280

(±0.0043) with the 90 % confidence intervals of the fit parameters given in parentheses. These ’new’ constant parameters c,d

are larger than the previously derived constants a,b in Eq. (2) (cf. Figure 9).

In addition to fitting over the entire data pool and L≥200 m, we split the entire data pool into 25 sub data pools for any

available domain size between 200 m to 5 km (cf. Figure 4). Thereby, each sub data pool comprised all domains larger or equal

to the corresponding domain size, i.e. L≥200 m, L≥240 m etc. Fitting over such a sub data pool should allow describing285

the combined larger scale topography-wind-precipitation impacts on the spatial snow depth distribution in mountainous terrain

acting at scales larger than the observed scale break of about 200 m. From each of the 25 created sub data pools, we randomly

took 500 sub samples where each sub sample was restricted to 80 % data of the sub data pool. Each of the 500 sub samples per

sub data pool was unique. Scale-dependent parameter values were derived for each of the 500 sub samples drawn from each of

the 25 sub data pools (cf. individual colored lines in Figure 9). Given that the values of c,d clearly increase with spatial scale290

L (Figure 9) we introduced L in c,d to improve the application of Eq. (2) across scales. By fitting the ensemble medians of all

scale-dependent fit parameters (dark blue dots in Figure 9) across all domain sizes between 200 m to 5 km, we obtained scale-

dependent parameters c(L) and d(L). Thus, Eq. (2) using the following scale-dependent parameters c(L) and d(L) assembles

our new σHS parameterization for L≥ 200 m:

c(L) = 0.5330 L0.0389

d(L) = 0.3193L0.1034
(3)295

with the 90 % confidence intervals of ±0.0097, ±0.0026 and ±0.0183, ±0.0079 in the order of introduced constants in Eq.

(3).

The new σHS parameterization using c(L) and d(L) (Eq. (2) with Eq. (3)) is applied in the previously derived fSCA

parameterization (Eq. (1)). To demonstrate the resulting differences when using scale-dependent versus scale-independent fit
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Table 1. Performance measures for all L between measurement and parameterization of (I) standard deviation of snow depth σHS with (a)

Eq. (2) and constant or L dependent fit parameters c,d (Eq. (3)) and (b) σHS as in Helbig et al. (2015); Skaugen and Melvold (2019) and of

(II) fSCA with (a) Eq. (1) and (Ia) and (b) fSCA as in Helbig et al. (2015) and Skaugen and Melvold (2019) using Eq. (1).

NRMSE RMSE MPE MAPE MAE r K-S NRMSEquant

[%] [cm] [%] [%] [cm] [%]

I σHS

(a) Eq. (2) with

constant c,d parameter 7.9 26.6 -5.3 22.6 19.7 0.83 0.05 5.3

c(L),d(L) (Eq. (3)) 7.9 26.7 -4.1 22.4 19.6 0.83 0.05 5.5

(b) previous parameterizations from

Helbig et al. (2015) 9.3 31.1 -29.5 36.7 25.3 0.82 0.22 14.6

Skaugen and Melvold (2019) 20.4 68.5 -77.9 82.8 57.9 0.68 0.48 37.6

NRMSE RMSE MPE MAPE MAE r K-S NRMSEquant

[%] [%] [%] [%]

II fSCA

(a) Eq. (1) with

Eq. (2) and constant c,d parameter 2.4 0.02 0.22 1.11 0.01 0.64 0.37 0.5

Eq. (2) and c(L),d(L) (Eq. (3)) 2.4 0.02 0.16 1.09 0.01 0.63 0.37 0.4

(b) previous parameterizations from

Helbig et al. (2015) 3.2 0.03 1.45 1.8 0.02 0.74 0.47 1.6

Skaugen and Melvold (2019) using Eq. (1) 6.2 0.06 3.87 4.8 0.05 -0.04 0.75 4.4

parameters in parameterized σHS (Eq. (2) we will also validate the performance using constant c,d in the previously derived300

fSCA parameterization as well as in the σHS parameterization.

4.4 Evaluation

4.4.1 Evaluation for σHS and fSCA for all L

Parameterized σHS and fSCA perform well for all domain sizes, i.e. for L≥200 m of the entire data pool. Very similar

performance measures are obtained for the parameterizations using the newly derived constant fit parameters c,d and the305

parameterizations using the scale-dependent parameters c(L),d(L) (cf. Table 1 and I(a) and II(a)). We obtain a slightly better

MPE for σHS when using scale-dependent fit parameters (-4 % versus -5 %) however for fSCA MPEs are the same (0.2 %).

The same rather low NRMSEs result for σHS (8 %) and for fSCA (2 %).
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Figure 10. Mean percentage error (MPE) as a function of L for (a) σHS and (b) fSCA. MPEs are shown for the σHS and fSCA param-

eterizations using Eq. (1) to (3) with scale-dependent c(L),d(L) as well as for constant c,d. The second y-axis shows the number of valid

domains per L on a logarithmic scale.

4.4.2 Scale-dependent evaluation for σHS and fSCA

While mean performance measures of the σHS and fSCA parameterization are almost uninfluenced to using constant or310

scale-dependent fit parameters (cf. Table 1 and I(a) and II(a)) we found diverging performances when analyzing performance

measures as a function of scale (Figure 10). Across scales, improved or similar performances were achieved when using

scale-dependent fit parameters in parameterized σHS especially for larger scales. Maximum performance improvements of 4

% occurred for L of 2500 m, respectively for fSCA of 0.7 % when using scale-dependent fit parameters. Thus, introducing

scale-dependent fit parameters enhanced the σHS parameterization for application across scales.315

4.4.3 Scale- and region-dependent evaluation for σHS and fSCA

A large data set from various geographic regions allows us to develop a more reliable empirical parameterization than being

limited to the characteristics by a few data sets. Here, we not only compiled data sets from various geographic regions but the

data sets were also acquired by different measurement platforms coming with a range in inaccuracies between below 10 cm to

80 cm. As a consequence larger scatter in performances appear when performance measures are depicted not only as a function320

of spatial scale but also region wise, including platform wise. While most of the MPEs are still between -20 % and 10 % some

regions stand out because they have much larger MPEs when binned scale as well as region wise (Figure 11). For instance a

MPE of up to 60 % for σHS was obtained for TLS data from the southeastern French Alps and overall larger MPEs, though
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Figure 11. Mean percentage error (MPE) as a function of L for the compiled data set for (a) σHS and (b) fSCA using Eq. (1) to (3) with

scale-dependent c(L),d(L). Colors represent the different geographic regions, measurement platform or acquisition dates (number) of the

compiled data set as indicated in Section 2.1 to 2.4.

consistent across scales, for the Pléiades data from the northeastern French Pyreenes. MPEs for fSCA on the other hand do

not show a similar large spread among the regions and are low between -1 % to 2 % (Figure 11b).325

4.4.4 Evaluation of previous closed form parameterizations

To increase our understanding of the performances achieved with the new parameterizations, we also tested two previously

derived empirical parameterizations. Specifically we investigated how parameterized σHS using Eq. (2) (Helbig et al., 2015)

and using the recently published formulation of Skaugen and Melvold (2019) compare to observed σHS of our compiled data

set (Figure 12a). We further tested both σHS parameterizations in the fSCA parameterization (Eq. (1); Figure 12b). The330

parameterization of Helbig et al. (2015) works well. The performance measures for all L are only slightly worse compared

to the new parameterizations using both constant as well as scale-dependent fit parameters (Table 1). However, compared to

the performance measures for the parameterization of Skaugen and Melvold (2019) the performances of Helbig et al. (2015)

are clearly improved. Though MPEs of both previous σHS parameterizations are scale-dependent, the MPEs of Skaugen

and Melvold (2019) reveal a larger scale-dependence of the performances compared to Helbig et al. (2015) (Figure 12a). In335

particular, individual MPEs vary a lot from MPEs for all L given in Table 1.
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Skaugen and Melvolds σHS parameterization applied in the fSCA parameterization of Helbig et al. (2015) (Eq. (1).

5 Discussion

5.1 Spatial correlation range

While multi-scale behaviour for spatial snow depth data has been found in various studies, observed scale breaks depend on

the extent and horizontal resolution of the investigated snow depth data sets. A first scale break of spatial snow depth data340

in treeless, alpine terrain has been observed between 10 to 20 m (e.g. Deems et al., 2006; Trujillo et al., 2007; Schweizer

et al., 2008; Schirmer and Lehning, 2011; Helfricht et al., 2014; Mendoza et al., 2020) and a second scale break has been

observed at around 60 m (Trujillo et al., 2009). By computing spatial autocovariances starting with domain sizes L of 200

m in 0.1 m to 1 m resolution up to 3 km in 2 to 3 m resolution we also detected the two previously found scale breaks [not

shown]. However, by additionally covering larger spatial extents than previously have been investigated, we also detected a345

third scale break with a mean at about 280 m (Figure 7). Similar long-range scale breaks between 185 m and 300 m were

very recently reported from analyzing 24 TLS-derived snow depth data sets acquired during six snow seasons in a subalpine

catchment in the Spanish Pyrenees (Mendoza et al., 2020). Furthermore, a similar scale break at around 200 m was recently

found by analyzing performance decreases of distributed snow modelling in various grid cell sizes together with semivariogram

analysis of subgrid summer terrain slope angles in the same catchment in the High Atlas (Baba et al., 2019). While for other350

application studies, such as in avalanche forecasting the smaller scale breaks are decisive for explicitly describing the relevant

snow cover processes, here we are more interested in the largest detected scale break. Above scale lengths of 200 m the longer
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range processes of precipitation, wind and radiation interactions with topography most dominantly influence the spatial snow

distribution in mountainous terrain, while we believe there are different physical processes which establish the smaller scale

breaks at around 10 to 20 m and 60 m. The results presented here indicate that the model described by Eq. (1) and (3) is355

reliably parameterizing the spatial snow distribution shaped by the longer range precipitation, wind and radiation interactions

with topography for spatial scales between 200 m and 5 km. Above the detected scale range of around 200 m not only the

spatial autocorrelations approach zero (Figure 7), but normalized σHS clearly start levelling out as well as the normalized

variability of σHS among similar sized L (Figure 6). Thus, even though we could not verify the fSCA parameterization for

length scales larger than 5 km, we believe that as long as grid cell mean slope angles are larger than zero, Eq. (1) and (3) might360

also hold for larger grid cell sizes than the 5 km.

5.2 Scaling parameter

We not only investigated dominant correlations between the spatial snow depth distribution and terrain parameters but we also

analyzed these correlations as a function of spatial scale. For some commonly applied scaling parameters this revealed large

variations of correlations across scales such as for σz (Figure 8a). Similar to our results, Skaugen and Melvold (2019) also365

obtained large correlations between σHS and mean squared slope sqS for spatial snow depth data sets acquired at peak of

winter in Norway though this was only analyzed for grid cells of 0.5 km2 (0.5 km x 1 km). Nevertheless, this confirms our

findings since mean squared slope is related to the slope related parameter µ used here by sqS = 2µ2. However, Skaugen

and Melvold (2019) obtained slightly improved correlation for the standard deviation of squared slope and therefore selected

this parameter to stratify the topography for parameterizing σHS . Across spatial scales as well as for all L we obtained lower370

correlations between the standard deviation of squared slope and σHS though we observed cross-correlations between mean

and standard deviation of squared slope of 0.71 indicating that both parameters correlate well with σHS .

5.3 Scale-independent fSCA parameterization

The closed form fractional snow-covered area parameterization fSCA given in Eq. (1) got enhanced by recalibration and

introducing scale-dependent fit parameters (Eq. (3)) to make the performance consistent across spatial scales.375

We developed the parameterization on a large snow depth data set. Large variability in the snow depth data set was gained

by compiling 11 individual data sets from varying geographic regions as well as various measurement platforms. While the

latter might explain remaining performance differences discussed below, the first led to large variability in summer terrain

characteristics and snow climates and consequently spatial snow depth distributions (cf. Figure 2). Though our presented

parameterization for σHS was empirically derived it is reassuring that for a new empirical derivation on a much larger and more380

diverse snow depth data set the same underlying functional form could be used. Furthermore, larger (about 17 % respectively

45 % larger) but overall consistent constant fit parameters were obtained compared to those from Helbig et al. (2015) based

on a more limited number of data sets and just two geographic regions (cf. a,b in Eq. (2) and c,d presented in Section 4.3 or

Figure 9).
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In addition to deriving constant fit parameters across spatial scales we took 500 random 80 % sub samples from each of385

the 25 sub data pools (Section 4.3). Scale-dependent constants considerably increased with increasing scale from L=200 m

to L=5 km by at most 12 % respectively 38 % (Figure 9). This demonstrates that accounting for scale-dependent constants

in the fSCA parameterization (Eq. (1) with Eq. (2) and Eq. (3)) had to be performed. While we did not split our data set in

development and validation subset, fitting over the ensemble median of all scale-dependent parameters to derive c(L),d(L)

ensures confidence in the resulting fit parameters.390

An increase in scatter among all c(L) and d(L) with increasing domain scale L (Figure 9) can be most likely explained by

a concurrent decrease in available valid data in larger L. Though we required at least 70 % valid data per L when aggregating

fine-scale snow depth data in domain sizes L, the maximum threshold of 70 % was more often required for the larger L than

for smaller L.

5.4 Evaluation395

5.4.1 Evaluation for σHS and fSCA

Upon deriving performance measures on parameterized and observed σHS and fSCA for all L (i.e. the pooled performance)

we obtained very similar performances when using newly derived constant or scale-dependent fit parameters, i.e. c,d or

c(L),d(L) (Table 1). Despite considerable differences up to 12 % for c and up to 38 % for d between constant and scale-

dependent fit parameters (Figure 9) pooled performances for all L for σHS and fSCA were similar (Table 1). An explanation400

for this is that the number of available domains is strongly decreasing with increasing L. For L≥3000 m we have only about

0.33 % (137 in total) valid domains available compared to the total of 41’249 for L <3000 m (Figure 4). This emphasizes the

need for a scale-dependent evaluation.

5.4.2 Scale-dependent evaluation for σHS and fSCA

The largest improvement in MPE for allL seem to originate from recalibration using the new compiled data set with a reduction405

in MPE from -30 % to -5 % compared to a reduction from -5 % to -4 % when introducing scale-dependent fit parameters (Table

1). However, MPEs as a function of scale clearly demonstrated the improved behaviour when using scale-dependent c(L),d(L)

instead of constant fit parameters c,d in the σHS and fSCA parameterization (Figure 10). Given that constant c,d were fitted

over the entire data set as have been c(L),d(L), any performance improvement using c(L),d(L) instead of constant c,d for

parameterized σHS and fSCA originates in introducing scale-dependent parameters. For the parameterizations using the410

constant fit parameters c,d errors varied slightly more across scales than when using the scale-dependent c(L),d(L) version.

Individual scale-dependent errors were in part larger than the MPEs for all L given in Table 1. Unequal numbers of valid

domains per L most likely also contributed to this.
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5.4.3 Scale- and region-dependent evaluation for σHS and fSCA

While we did not perform an evaluation using independent snow depth data sets, studying region-wise performances reveals the415

spread in errors we can expect when the new parameterizations are applied on an individual independent data set (Figure 11).

We obtain much larger positive MPEs for σHS at lower spatial scales of L=200 m and L=300 m for the two TLS data sets

in the southeastern French Alps and overall larger MPEs between 20 to 30 %, though consistent across scales, for the Pléiades

data above the Bassiès basin in the northeastern French Pyrenees. It is unclear if these larger MPEs originate in uncertainties

of the data acquisition, i.e. are platform specific, or if they are linked to spatial snow depth distributions which could not be420

captured by the proposed new parameterizations. RMSEs for the various remote sensing platforms and data sets used here

(Section 2) decrease from 80 cm for Pléiades data from the Sierra Nevada, to 33 cm for the ADS, to 16 cm for UAS, to 13

cm for ALS data from Switzerland, to 8 cm for ALS data from the Sierra Nevada and to 4 to 10 cm for TLS data in general.

Given the rather low errors typically obtained for TLS data compared to the other remote sensing platforms, the reason for the

large deviations of the TLS data sets might not originate in inaccuracies of the data acquisition. On the contrary, the observed425

bias in the Pléiades data from the northeastern French Pyrenees might indeed be attributed to the rather large inaccuracies of

the platform with NMADs of 45 cm to 78 cm (Marti et al., 2016). However, Pléiades data from the Sierra Nevada comes with

a similar large NMAD of 69 cm but σHS can be parameterized very well with MPEs lower ±3 % across spatial scales (Figure

11a). Observed σHS from the TLS as well as from the Pléiades data in France was considerably larger than parameterized σHS

but mean slope angles alone can also not explain this behaviour (between 6 and 23° for the TLS data and between 13 and 50°430

for the Pléiades data).

While we were not able to clearly relate some of the poorer region-wise performances to uncertainties related to the plat-

form, other studies entirely focused on performing extensive inter-comparisons between platforms for large-scale snow depth

mapping in alpine terrain (e.g. Bühler et al., 2015, 2016; Eberhard et al., 2020; Deschamps-Berger et al., 2020).

5.4.4 Evaluation of previous closed form parameterizations435

Though we developed a new σHS parameterization (Eq. (3)), empirically derived parameterizations can only describe the

variability inherent in the data set used to derive the parameterization. In addition to the region-wise evaluation, analyzing

performances of previous empirically derived parameterizations may therefore allow estimating expected performance sen-

sitivity to independent data sets. While both tested parameterizations of σHS (Helbig et al. (2015); Skaugen and Melvold

(2019)) showed worse performances than the new parameterizations and less consistency as a function of scale, the model440

performances of Helbig et al. (2015) were only slightly worse than the new parameterizations (Table 1). The parameterization

for σHS of Skaugen and Melvold (2019) was developed on mean domain sizes L of 750 m whereas Helbig et al. (2015) used

Ls between 50 m to 3 km. This difference might be one reason for the overall poorer performances of Skaugen and Melvold

(2019) compared to Helbig et al. (2015) across spatial scales. Since only one out of the 11 data sets used in this study was

previously used to develop the parameterization of Helbig et al. (2015), an overall similar performance of Helbig et al. (2015)445
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(Figure 12) with the large compiled data set of this study clearly confirms the underlying functional form of σHS suggested by

Helbig et al. (2015) which was reapplied here.

6 Conclusions

We presented an empirical peak of winter parameterization for the standard deviation of snow depth σHS for treeless, moun-

tainous terrain describing the spatial snow depth distribution in a grid cell for various model applications. The scaling variables450

of the new parameterization of σHS and fSCA are the same than in Helbig et al. (2015) which are spatial mean snow depth,

a squared slope related parameter and a terrain correlation length. All subgrid terrain parameters can be easily derived from

fine-scale summer DEMs for each coarse grid cell.

By introducing spatial scale dependencies in the variables of the formulation for σHS of Helbig et al. (2015), σHS can be

consistently parameterized across spatial scales starting at scales ≥200 m. The spatial snow depth variability or σHS is the455

important variable to parameterize the fractional-snow covered area fSCA (Helbig et al., 2015). Performance improvements

across spatial scales of the σHS parameterization therefore directly enhanced the fSCA parameterization. Between length

scales of 200 m and 5 km mean percentage errors (MPE) were between -7 % and 3 % for σHS and between 0 % and 1 % for

fSCA.

The subgrid parameterization of σHS was developed on 11 spatial snow depth data sets from 7 different geographic regions460

in high spatial resolutions between 0.1 m to 3 m and with spatial coverage between 0.14 to 280 km2. An evaluation of two

previously presented empirical σHS parameterizations confirmed the functional form of the parameterization of Helbig et al.

(2015) as well as the need to enhance its performance across scales. By analyzing data from the large pool of spatial snow

depth data sets, we were able to recalibrate the subgrid parameterization of σHS and achieved improved performances using

new constant fit parameters. Additionally introducing a scale-dependency in the dominant scaling variables further improved465

the performance across spatial scales. Mean MPEs of σHS over all scales (i.e. pooled performance) reduced from -30 % using

Helbig et al. (2015) to -5 % after recalibration to -4 % after introducing scale-dependent fit parameters (Table 1). Individual

scale-dependent improvements in MPEs reached up to 4 % when using newly derived scale-dependent fit parameters compared

to newly derived constant fit parameters for σHS on the large data pool. This shows the improvement thanks to introducing

scale-dependent parameters (Figure 10). Towards estimating the possible spread in performances when applying empirically470

derived σHS and fSCA for independent geographic regions we validated the parameterizations region- and scale-specific.

While this clearly increased MPEs for three data sets, the majority of the region- and scale-dependent MPEs were between

± 10 % for σHS and between -1 % and 1.5 % for fSCA indicating that the parameterizations perform similar well in most

geographical regions.

By parameterizing the peak of winter σHS in mountainous terrain, Helbig et al. (2015) extended the fSCA parameterization475

of Essery and Pomeroy (2004) for topography. Here, we extended the peak of winter σHS parameterization, and thus the fSCA

parameterization, to be applicable over a large range of snow climates and topographic characteristics as well as across spatial

scales. Since fSCA is an essential model parameter, a seasonal fSCA algorithm describing the variability throughout a winter
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season is of relevance for various model applications. A peak of winter parameterization of σHS that describes the maximum

spatial snow depth variability can however not alone be used to describe that seasonal fSCA evolution. A reliable model480

application of any fSCA parameterization requires an implementation accounting for alternating snow accumulation and melt

events during the season, i.e. to describe the SCD. Especially at lower elevations the separation of the SCD in only one

accumulation period followed by a melting period is no longer valid (Egli and Jonas, 2009). A description of an algorithm

for a seasonal fSCA model implementation which uses the new scale-independent peak of winter parameterization of σHS

in the fSCA parameterization presented here is currently in preparation. Extending the empirical peak of winter fSCA485

parameterization to a broader range of spatial scales and snow climates was thus a meaningful step towards accounting for

spatiotemporal variability in snow depth for multiple snow model applications.
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