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Abstract. A theory of vein impurity transport conceived two decades ago predicts that signals in the bulk concentration of 

soluble ions in ice migrate under a temperature gradient. If valid, it would mean that some palaeoclimatic signals deep in ice 

cores (signals from vein impurities as opposed to matrix/grain-boundary impurities) suffer displacements that upset their dating 10 

and alignment with other proxies. We revisit the vein physical interactions to find that a strong diffusion acts on such signals. 

It arises because the Gibbs–Thomson effect, which the original theory neglected, perturbs the impurity concentration of the 

vein water wherever the bulk impurity concentration carries a signal. Thus, any migrating vein signals will not survive into 

deep ice where their displacement matters, and the palaeoclimatic concern posed by the original theory no longer stands. 

Simulations with signal peaks introduced in shallow ice at the GRIP and EPICA Dome C ice-core sites, ignoring spatial 15 

fluctuations of the ice grain size, confirm that rapid damping and broadening eradicates the peaks by two-thirds way down the 

ice column. Artificially reducing the solute diffusivity in water (to mimic partially-connected veins) by 103 times or more is 

necessary for signals to penetrate into the lowest several hundred metres with minimal amplitude loss. Simulations incor-

porating grain-size fluctuations on the decimetre scale show that these can cause the formation of new, non-migrating solute 

peaks. The deep solute peaks observed in ice cores can only be explained by widespread vein disconnection or a dominance 20 

of matrix/grain-boundary impurities at depth (including their recent transfer to veins) or signal formation induced by grain-

size fluctuations; in all cases, the deep peaks would not have displaced far. Disentangling the different signal contributions – 

from veins, the ice matrix, grain boundaries and grain-size fluctuations – will aid robust reconstruction from ion records. 

1    Introduction 

Chemical impurity concentrations in ice cores yield diverse palaeoclimatic information (e.g. Legrand and Mayewski, 1997; 25 

Wolff et al., 2006). As with other ice-core proxies, such as stable water isotopes, it is generally hoped that post-depositional 

modification of signals in such records, which may hamper their interpretation, is minimal. For signals of abrupt or discrete 

(e.g., volcanic) events, of interest is whether their position and shape record their timing and magnitude faithfully. If, for 

instance, signals diffuse in the ice, neighbouring peaks may merge as they descend towards the ice-sheet base. Conceivably, a 

range of physico-chemical processes may distort signals, limiting the resolution and accuracy of the retrievable information. 30 
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In a landmark paper, Rempel et al. (2001) proposed a theory to show that signals in the bulk concentration of dissolved 

ionic impurities – major ions such as SO4
2–, Cl– and  Na+ – in the water veins at polycrystalline grain junctions (Nye, 1989; 

Mader, 1992a, b) migrate relative to the ice when a temperature gradient is present. Driven by what they term “anomalous 

diffusion”, migration occurs in the direction of rising temperature and displaces signals with minimal distortion, so their 

apparent age deviates from their true age. Rempel et al. (2001) calculated cumulative signal displacements of ~ 0.1–1 m in the 35 

lowest kilometre of the GRIP ice core. Their mechanism could decouple the ion records from other ice-core proxies and cause 

significant age errors in palaeoclimatic histories, especially in deep ice where temperature increases markedly towards the bed. 

This has prompted evaluation for signs of anomalous diffusion in some ice-core records (e.g. Tison et al., 2015), and simulation 

of the migration of specific species (e.g. methane sulphonic acid in firn; Osman et al., 2017). Note that it is non-trivial to infer 

the absence or amount of migration by comparing the records of signal peaks from different cores, due to uncertainty in depth-40 

age scales, a lack of rigorous independent control of where individual peaks should lie, and spatial inhomogeneity in the 

atmospheric dispersal and deposition of impurities by environmental events. Some studies contend that signal migration may 

be limited – and thus the ion records dependable, because solute transport is hindered by disconnections in the vein network 

(Barnes et al., 2003; Barnes and Wolff, 2004) or because most ionic impurities are located at grain boundaries (Barnes and 

Wolff, 2004) or in salt micro-inclusions within ice crystals (Ohno et al., 2005), instead of in veins. How extensively ice-core 45 

chemical records have been altered by anomalous diffusion is unresolved, despite the relevance of this question to the 

synchronisation of ice-core age scales (e.g. Severi et al., 2007; Fujita et al., 2015) and dating of palaeoclimatic events. 

Here we re-examine “Rempel’s theory” of vein impurity transport (i.e. Rempel et al., 2001), discovering missing elements 

in it that change the predicted signal evolution. We find that the relevant processes cause diffusion of signals at rates that 

threaten their survival in ice cores, whether or not a temperature gradient drives their migration. Hence the theory’s 50 

implications are radically revised. Our purpose is not to develop the theory of migrating signals to show how it can match 

observed ion records or be used in reconstructions, but to highlight the contrary: it struggles to explain the presence of distinct 

ionic peaks in deep ice. Figure 1 exemplifies such peaks in ice cores from Antarctica and Greenland. Much of our analytical 

and numerical work (Sects. 2 & 3) is spent on understanding the origin of the strong diffusion and showing its operation. We 

also correct the signal migration speed, and show that grain-size fluctuations can cause new impurity signals to form. At the 55 

end (Sect. 4) we discuss what the revised theory means for the provenance of the deep ionic peaks in ice-core records. 

Following Rempel’s framework, we model processes below the firn-ice transition, and one ion species only (SO4
2– is 

used in our calculations). We let cB denote its bulk concentration, using the unit mol/L or M to refer to the amount of impurity 

in a unit volume of ice. Note that cB accounts only for impurities dissolved in the water veins and excludes impurities at grain 

boundaries and in the ice matrix (inside grains), which are not modelled. Chemical alteration of signals via cation–anion 60 

associations (e.g. Iizuka et al., 2004; Traversi et al., 2009), reaction of vein impurities with dust (Barnes and Wolff, 2004), the 

segregation of impurities to locations outside the veins and thermodynamic coupling between multiple ion species (Rempel et 

al., 2002; Rempel and Wettlaufer, 2003), are ignored.  
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Before plunging into mathematics, we first outline our main finding; see Fig. 2a–d, where z denotes depth. In Rempel’s 

theory, a centimetre/decimetre-scale peak in the bulk solute concentration cB, representing a climate signal, is mirrored by 65 

variations in the porosity  (Fig. 2c, d), which represents the volume fraction of veins in the ice. With cB encapsulating vein 

impurities, the relation cB = c holds1, where c, the solute concentration of the vein water, is determined by temperature T 

through the liquidus. A background temperature gradient in the ice sets up a gentle gradient in c, driving downward solute 

diffusion through the vein network (Fig. 2a). Interestingly, the porosity modulates the solute diffusion flux so that on the 

trailing (upper) edge of the signal peak, d/dz > 0 increases this flux with distance to draw down cB, whereas on the leading 70 

(lower) edge of the peak, d/dz < 0 reduces the flux with distance to bump up cB. Thus the peak signal in cB translates (the 

same translation applies to trough signals). This mechanism is “anomalous” because solute diffusion causes the signal to move 

without signal diffusion, i.e., without changing its shape. In their calculations, Rempel et al. (2001) neglected the small effect 

of the vein-face curvature on the melting point (the Gibbs–Thomson effect), and a detailed justification of why this interfacial 

effect is small is given in their companion papers (Rempel et al., 2002; Rempel and Wettlaufer, 2003). Then c depends on T 75 

only, not on cB. However, we find that when this seemingly reasonable approximation is not made, the cB signal causes a 

perturbation on c(z) that drives non-negligible solute diffusion away from the peak (Fig. 2b), owing to the short length scale 

of the signal. Consequently, the cB peak experiences pronounced broadening and amplitude reduction. In an ice core, these 

conspire with vertical compression to regulate the evolving peak shape. 

Besides Rempel et al. (2001), Barnes et al. (2003) have modelled vein-mediated evolution of dissolved ion signals below 80 

the firn-ice transition. Their main interest was to explain the signal diffusion found in the top 350 m of the EPICA Dome C ice 

core (EPICA community members, 2004), which they inferred from observed trends of peak broadening and damping in the 

sulphate and chloride records with age. To explain the signal diffusivities estimated for these ions – respectively, 4.7 × 10–8 

m2 yr–1 and 2 × 10–7 m2 yr–1, they conceived two models of vein solute transport driven by grain growth, motivated by the fact 

that the mean grain size in their stretch of the core increases with depth. One model invokes local gradients in c induced by 85 

porosity change during spatially non-uniform normal grain growth; this mechanism requires the presence of grain-size 

variations at the length scale of the cB signals. The other, an analogue model, uses a cell-based simulation to demonstrate how 

the disconnection of veins by grain growth (modelled as random removal of cells, and relocation of their impurity to 

neighbouring cells) causes diffusion even when the vein network is only partially connected. Both models predict no diffusion 

of cB unless there is net grain growth.  90 

We do not incorporate the Barnes et al. (2003) mechanisms into our model here, as the “Gibbs–Thomson diffusion” is 

much faster than their diffusion (by an order of magnitude at least), and adding the latter strengthens our conclusions. Our 

                                                           
1 Rempel et al. (2001) formulated their model with  as a mass fraction (instead of volume fraction) and used a correspondingly 

different unit for cB, but the interactions are the same. 
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mechanism is independent of grain growth and occurs in the absence of grain-size variations. We do, however, account for the 

continual motion of veins during grain boundary migration, which causes a slow “residual diffusion” on cB. This mechanism 

does not require a temperature gradient or grain-size variations to operate, and is unaffected by vein disconnection. 95 

 

2    The model 

2.1    Key relationships 

We treat polycrystalline ice in a continuum description with variables as functions of position x = (x, y, z) and time t. Ice with 

the mean grain size dg (grain diameter) has the vein length density 100 

2

3

g

l
d

;           (1) 

we adopt equality in this expression herein. If the vein faces have the radius of curvature rv (Fig. 2e; Nye, 1989), then the ice 

porosity  is  

2

vr l ,           (2) 

where  = 0.0725 is a geometrical factor (Nye, 1991; Mader, 1992a, b). Recalling the relation between the bulk solute 105 

concentration and the solute concentration of the vein water, 

Bc c ,           (3) 

and using (1) and (2), leads to 

2

B 2

3

g

v

d c
cr .           (4) 

For ice at a temperature T below the reference temperature T0, thermodynamic equilibrium between ice and vein water 110 

means that the liquidus relation is satisfied: 

0

0 c p

i v

T
T T

Lr
.          (5) 

This equation features in earlier studies of the subject (Nye, 1991; Mader, 1992b; Rempel et al., 2001, 2002; Rempel and 

Wettlaufer, 2003; Barnes et al., 2003; Dani et al., 2012). The three terms on its right-hand side describe the temperature 

depressions due to (i) solute, (ii) interfacial curvature (the Gibbs–Thomson effect) and (iii) pressure, respectively; i is ice 115 

density, L is latent heat, and  is the interfacial energy. Table 1 lists the constants used in this paper, and Table 2 lists our 



5 

 

model variables. For the first term in (5), a linear approximation θc = Γc is valid at temperatures not far below the melting 

point, e.g. Γ = 4.53 K M–1 for SO4
2–. The third term is typically small and may be absorbed into T0 by accounting for glaciostatic 

overburden. Accordingly, the version of (5) that we use for the present analysis is 

0

0

i v

T
T T c

Lr
,          (6) 120 

but our simulations in Sect. 3 for specific ice-core sites will use (5), together with detailed nonlinear empirical formulas for θc 

and θp (Appendix A). 

Given dg, T and cB, (4) and (6) can be solved for rv and c (e.g. Barnes et al., 2003). Figure 2f illustrates the solution as the 

intersection point of two curves. In their theory, Rempel et al. (2001) employed the liquidus relation without including the 

Gibbs–Thomson term, and Rempel et al. (2002) and Rempel and Wettlaufer (2003) argued that under glaciological conditions, 125 

a large rv makes the Gibbs–Thomson term negligible so that Γc  T0 – T; then c(z) is dictated by the ice temperature profile 

(Fig. 2a). This approximation amounts to taking the intersection point in Fig. 2f to lie on the dashed line. However, as shown 

by Fig. 2f, the exact solution for c does depend on cB – albeit weakly – for fixed T and dg. This dependence lies at the heart of 

our “Gibbs–Thomson diffusion”. Specifically, when T0/iLrv  Γc, a first-order approximate solution of (4) and (6) is 

0

0( )
i v

T
c T T

Lr
 ,      where      

2

B

03 ( )

g

v

c d
r

T T
,      (7) 130 

or 

1/20 0

0 B2

3 ( )1
( )

i g

T T T
c T T c

L d
 .        (8) 

This differs from Rempel’s approximation by the  (Gibbs–Thomson) term, which causes ∂c/∂cB > 0 and a perturbation to 

appear on c(z) where cB(z) exhibits a signal (Fig. 2b, d). The rate of signal diffusion stemming from this minute perturbation 

will be quantified later. The result in (8) also shows that fluctuations in dg and T could perturb c(z) to drive solute transport 135 

and influence cB. We will explore the potential effect of grain-size fluctuations (Sect. 3.4), but not temperature fluctuations, as 

these decay quickly in ice. 

If, instead of (6), the full liquidus relation (5) is analysed, with θc = f(c) being a mildly nonlinear function, then the above 

findings are qualitatively unchanged, and (8) would read c  f –1([ ]) with [ ] as given in (8) except that f –1(T0 – T) replaces 

(T0 – T)/Γ in the square root. 140 
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2.2    Porosity, water and solute conservation 

The rest of the model is now formulated, for ice deforming with velocity u = (u, v, w). As the porosity is very small,   10–6 

<< 1, the incompressibility condition .u = 0 holds. The total transport flux of porosity is u – . The first term here 

describes advection by ice. The second (Fickian) term describes a net transport of porosity due to the random, unceasing vein 145 

motion that accompanies grain boundary migration. We detail its physical derivation in Appendix B. The diffusivity  is given 

by 

1

( )

3

K T

c
,           (9) 

where K = K0exp(–Q/RT) is the temperature-dependent grain growth rate, R is the gas constant, Q is activation energy, and c1 

 2 to 3 (we use 2.5 in our simulations). 150 

Accordingly, porosity conservation is described by   

.( )u
i

m

t
 ,          (10) 

where the melt rate m accounts for phase change occurring at the interfacial boundaries of the veins; m is the rate of mass 

melted per unit volume of ice. This result can also be derived from ice mass conservation.  

If q is the water flux percolating through the vein network, then water mass conservation requires 155 

.( )q uw m
t

,         (11) 

and we deduce from this together with (10) that 

. (1 )q
i

m
r  ,          (12) 

where r = i /w  0.92 is the ratio of ice density to water density. 

The local solute transport flux is ucB + qc – Dc – cB. This describes the summed effects of advection by ice and 160 

water flow, molecular diffusion in vein water, and random vein motion (as that driving porosity diffusion; Appendix B); D is 

the diffusion coefficient for the ionic impurity in water, and the diffusivity  was defined in (9). The corresponding solute 

conservation equation is 

B

B B.( ) .( )u q
c

c c D c c
t

.        (13) 
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Following Rempel’s theory, we define the “anomalous velocity”  165 

cu
c

D
c

           (14) 

and use cB = c to rewrite the D-contribution in (13) to derive 

B

c B B.[( ) ] .( )u u q
c

c c c
t

.        (15) 

If both water flux q and the -term (“residual diffusion” due to vein motion) are ignored, this simplifies, after using the 

incompressibility condition .u = 0, to the Rempel et al. (2001) equation: 170 

B

c B c B( ). ( . )u u u
c

c c
t

.         (16) 

As is well rehearsed in their theory, the advection term here predicts migration of chemical signals at the velocity uc relative 

to the ice, with uc controlled by the temperature profile via the liquidus and (14). Our analyses are to reveal departures from 

these predictions. 

 175 

2.3    One-dimensional model 

For an ice core beneath a flow divide or summit, where the ice motion is downward (u = (0, 0, w)) and horizontal variations 

in  and cB are negligible, (10) and (15) become (on using .u = 0 again) 

i

m
w

t z z z
 ,         (17) 

cB B B

c B( ) ( )
wc c c

w w qc c
t z z z z z

 ,       (18) 180 

where wc = –(D/c)∂c/∂z is the anomalous velocity downward. (18) tracks the evolution of the bulk impurity profile cB(z, t) and 

its signals, but the water flux q needs to be found via  

(1 )
i

q m
r

z
,           (19) 

with m calculated from (17). This problem is supplemented by (4) and (5) (or (6)), which give the instantaneous distributions 

of c and  from the depth profiles of cB, T and dg. There are five equations ((4), (5), (17)–(19)) for the five unknowns cB, c, , 185 

q and m. 
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2.4    Correction to the signal migration velocity 

Here we explain the first departure from Rempel’s original predictions: the migration speed will be faster than wc, because of 

water percolation induced by the migration. To see this, we need to put all advective parts of (18) (notably ∂(qc)/∂z) in terms 190 

of cB. Let c(z) be time-invariant as in Rempel’s theory, and ignore the -term (vein motion), to write (18) as 

cB

c B( )
wcq c

c w w c q
t z z z z

 . 

Substituting for ∂q/∂z from (19), using (17) for m, converts this to 

cB B B

c B (1 )
wc c c c c

r w w c q r w
t z z z z z

 .      (20) 

The z-derivatives on the left-hand side describe signal advection by ice flow and anomalous diffusion, respectively. Following 195 

the scaling argument in the Supplementary Information of Rempel et al. (2001), all terms on the right, based on the background 

gradient in c (Fig. 2a), are negligible on the length scale of climatic signals (≲ 10–1 m). In (20), the prefactor r of the time 

derivative means that the migration speed is wc/r, which exceeds wc by  9%. 

What causes this correction? As introduced in Sect. 1, a migrating cB peak is mirrored by a moving variation in porosity. 

This evolution implies freezing and melting on the peak’s trailing edge and leading edge (Fig. 2c), causing water to be expelled 200 

from and absorbed into these regions, respectively, owing to the density change during phase change (see (19)). Hence a water 

flow localised about the peak transports solute in the same direction to speed up its migration. Although modest in size, the 

correction applies at all depths and also in the three-dimensional model.  

 

2.5    Diffusion of impurity signals 205 

The second (more crucial) departure from Rempel’s predictions is that signals in cB will diffuse, as we emphasised at the 

outset. In Rempel’s theory, cB signals suffer no distortion as they migrate under anomalous diffusion except for a slight 

amplitude change due to the right-hand side of (16). But as anticipated in Sect. 2.1, they will perturb c(z) to drive solute 

diffusion (Fig. 2). The consequence can be studied via a stripped-down version of (15) (or (16)) where ice flow, water flow 

and vein motion (residual diffusion) are ignored: 210 

B

c B.( ) 0u
c

c
t

.          (21) 
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For the anomalous velocity, substituting for c from (8) into (14) yields, after some algebra, 

3/20 0

c B B2

0

3 ( )
  

( ) 2
u

i g

T T Tc D
D T c c

c T T L d
.      (22) 

Note that this result assumes that dg varies slowly. If grain size fluctuates strongly over short distances (e.g. decimetres), the 215 

evaluation of c would introduce another term involving dg (Sect. 3.4). With the present result in (22), (21) becomes 

1/2

0B

B 2

0 0

3
. .

2

B B

i g

Tc c cD T
c D

t T T L d T T
 .       (23) 

This partial differential equation implies not only signal migration driven by T, but also signal diffusion, due to the right-

hand (Gibbs–Thomson) term, which encapsulates the c-perturbation. The diffusion is nonlinear and independent of T. Both 

the diffusion and advection terms in (23) are controlled by D because they originate from the molecular diffusion of solute in 220 

vein water. Setting  → 0 (which forces Γc ≡ T0 – T) recovers Rempel’s theory. 

How fast do signals diffuse? One way to gauge their rate of broadening and damping versus migration is by taking the 

magnitude ratio of the two terms in the square bracket in (22): 

B3/20 0

B2

3 ( )

2 i g

cT T T
c

L Td
.         (24) 

The dimensionless number , which also sizes diffusion against advection in (23), resembles the inverse of the Péclet number 225 

in fluid mechanics. But the context here is unique as our model concerns the transport of bulk concentration signals, and the 

underlying physics involve the geometry of the vein network and two-phase (solute–ice) thermodynamic equilibrium. 

As an example, taking T0 – T  25 K, T  20 K/km = 0.02 K m–1, dg  5 mm, cB  1 M and 
Bc  1 M/10 cm 

= 10–5 M m–1 (a decimetre-scale signal), which roughly approximate conditions in the lower third of the GRIP and EPICA ice 

cores, gives   1.7. The effective diffusivity in the right-hand term of (23) is then 2.1 × 10–6 m2 yr–1, which is much higher 230 

than the diffusivities reported by Barnes et al. (2003) (Sect. 1). Although these ballpark estimates depend on the chosen values 

(including the signal magnitude) and will change if we consider elsewhere in the ice column, they show that diffusion can 

pervasively modify signals, whose short length scales play a key role in amplifying the perturbations on c to cause diffusion 

at a rate rivalling migration. We confirm this by numerical simulation next.  

 235 
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3    Ice-core numerical experiments 

Using the model above, which revises and extends Rempel’s theory, we proceed to simulate the distortion of impurity signals 

in ice cores in both Greenlandic and Antarctic settings, by doping shallow ice with chemical peaks and seeing how they evolve. 

Most experiments explore predictions with a fully-connected vein network, but we include some that simulate partial 

disconnections (“blocked veins”) by decreasing the molecular diffusivity D. 240 

 

3.1    Material reference frame and set-up 

A general simulation of (4), (5) and (17)–(19) would couple them to time-varying velocity, temperature and grain-size 

distributions in the ice column. But while the corresponding ice flow and thermal calculations are well established (e.g. Cuffey 

and Paterson, 2010), reliable grain-size modelling remains out of reach, especially for deep ice, where the way in which the 245 

mean grain size dg is governed by strain-induced recrystallisation processes is poorly understood (Faria et al., 2014; Ng and 

Jacka, 2014). Consequently, we prescribe time-invariant “background” profiles of w(z), T(z) and dg(z) in most of our 

experiments. In our final experiments in Sect. 3.4, we impose short-scale fluctuations on dg to see what could happen to the 

impurity evolution, in a simple way without modelling recrystallisation processes.   

We track signals in a reference frame moving with the ice, because their length scale (λ ≲ 10–1 m) is much shorter than 250 

the core (ice thickness H 103 m). The computational burden of modelling a short ice section rather than the whole core is 

also substantially less. To measure the separation distance of signals from ice material that was deposited on the surface at t = 

0 and now lies at depth at time t (so t represents age), we use the displacement variable z′ = z – g(t), where g(t) is the core’s 

depth-age scale, defined by 

1

0
( )

( )

dz
t g

w z
.          (25) 255 

The change of variable from z to z′ involves ∂/∂z → ∂/∂z′ and ∂/∂t → ∂/∂t – g′(t)∂/∂z′, with g′(t) ≡ w(g(t)), so (17) and (18) 

become 

i

m
w

t z' z' z'
 ,         (26) 

cB B B

B( )
wc c c

w qc c
t z' z' z' z' z'

,       (27) 

with the ice velocity in the new reference frame w  given by 260 

( , ) ( ( ) ) ( ( ))w z' t w g t z' w g t .         (28) 

This is the velocity field at time t seen from the (moving) ice material at depth g(t). Figure 3 depicts characteristic curves 

representing material trajectories on the z–t and z′–t plots under the typical compressive flow at a divide, where –dw/dz is the 
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vertical strain rate. As a signal descends, layer-thinning causes it to narrow, but this is countered by our newly-discovered 

Gibbs–Thomson diffusion and residual diffusion, while anomalous (Rempel) diffusion displaces it from the ice if the 265 

temperature gradient is non-zero. 

To derive a self-contained evolution equation for cB, we combine (27), (26) and (19) by using the same substitutions as 

those leading to (20), finding 

cB B B B

c B (1 )
wc c c c c c c

r w w c q r w c
t z' z' z' z' z' z' t z' z' z'

.  (29) 

The terms on the right-hand side here involving c and  are negligible, as scaling shows that they are  λ(1–r)/H 10–5 times 270 

of those terms on the left. This is verified numerically in all of our experiments. Therefore we approximate (29) as 

cB B B

c B( )
wc c c

r rw w c
t z' z' z' z'

 .        (30) 

In our simulations, (30) is solved by the explicit finite-difference method, with the anomalous velocity computed from wc = –

(D/c)∂c/∂z (Appendix A details the solution for c from (4) and (5)), the diffusivity  calculated from (9), and ∂cB/∂z = 0 

prescribed at the z′-domain boundaries (this leads to no evolution there), far from the signal of interest. The doped signal is 275 

introduced at a depth near the firn-ice transition ( 100 m), in ice whose age t corresponds to that depth. The subsidiary 

variables , rv, m and q are also calculated from c and cB at each time step. Rempel et al. (2001) argued that cB(∂wc/∂z)  

wc(∂cB/∂z), but we do not ignore the term –cB(∂wc/∂z′) on the right-hand side of (30), because the full flux divergence 

∂(wccB)/∂z′ is needed for solute conservation, i.e., no leakage.  

We experiment with two sets of background profiles (Fig. 4), based on the glaciological conditions at the GRIP ice core 280 

site in central Greenland and the EPICA Dome C core site in Antarctica. In the GRIP runs, we use the depth-age scale t(z) and 

velocity w(z) from a Dansgaard-Johnsen model with the ice thickness H = 3029 m, the kink at 1000 m above the bed, and 

surface accumulation rate a = 0.23 m yr–1 ice equivalent. In the EPICA runs, we use t(z) and w(z) from the model w = mbase + 

(a – mbase)[(H – z)/H)]n (Ritz, 1992) with H = 3275 m, n = 1.7, a = 0.023 m a–1 and the basal melt rate mbase = 0.0008 m yr–1, 

which yields a depth-age scale approximating the one published by Parrenin et al. (2007). Smoothed versions of T(z) and dg(z) 285 

measured at the ice-core sites are used (Fig. 4c–d, 4g–h). The prescribed profiles are exemplative only. In reality, ice at different 

depths has experienced different glaciological conditions due to changing accumulation, ice-sheet elevation and climatic 

temperature over interglacial–glacial time scales. Our interest is not in reconstructing the histories of these conditions. 
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3.2    Results: single-peak experiments 

Figure 5a presents snapshots from a GRIP run of the evolution of a decimetre-scale signal doped as a Gaussian peak (grey 

curve: cB = 1 + 5 exp[–(z′/Δ)2], with Δ = 0.08 m) in ice 500 years old (z = 112.4 m). Initially the peak, centred at z′ = 0, has a 

“full width at half maximum” (FWHM) of 0.13 m. Its set amplitude, 5 M, is based on the size of commonly observed peaks 

in ice-core records (e.g. 600 g L–1 for SO4
2–; 150 g L–1 for Cl–; 80 g L–1 for Na+). The peak decays rapidly in the 295 

first 20 kyr (upper 2 km at the GRIP site) with negligible migration, and migrates into z′ > 0 more noticeably afterwards, as 

the ice section descends deeper where the temperature gradient increases (Fig. 4c). Movie S1 shows the full evolution of this 

control run. Strong diffusion of the signal is evident not just from the peak’s decay, but also its broadening, which overcomes 

the effect of vertical compression. Recall that in the material reference frame, compression shortens the section continually, 

so ice enters the simulation domain at both ends. Figs. 5b and c exemplify the perturbation on c (caused by the cB peak) and 300 

the resulting large wiggle on the velocity wc, which represents the -contribution in (22) and is what causes the Gibbs–Thomson 

diffusion. As in Rempel’s theory, the signals on  and rv are collocated with the cB peak throughout the evolution. 

To check this diagnosis for the origin of signal diffusion, another run is conducted (Fig. 5d–f; Movie S1) with everything 

unchanged except that the Gibbs–Thomson term in (5) is turned off by setting  = 0. As expected, the strong diffusion in the 

control run disappears, as no perturbation now arises on c and wc, but there is still residual diffusion from vein motion. The 305 

peak narrows under vertical compression without much amplitude reduction until t  20 kyr. It subsequently decays because 

strong cB gradients on its steepening sides amplify the residual diffusion, despite  being small  (10–8 m2 yr–1; Fig. B2). The 

peak’s migration trajectory in this run is identical to that in the control run because migration is independent of the peak shape 

and the diffusion mechanisms. By t  100 kyr ( 2800 m depth) it has displaced from the ice by  0.6 m. A further experiment 

with  =  = 0 (not shown) reproduces the “Rempel limit” of a migrating peak with no diffusion, as far as its diminishing width 310 

can be resolved by our z′-grid spacing, 0.0025 m. This implies that the simulated signal behaviour in the experiments is not 

due to numerical diffusion in our finite-difference scheme. Finally, repeating the control run with  = 0 modifies the results in 

Fig. 5a only slightly, confirming that residual diffusion becomes important only when a signal becomes very narrow. 

Figure 6a–c and Movie S2 present the control run for EPICA, where ice 4 kyr old (z = 89.9 m) is doped with the same 

peak. The simulated behaviour is similar to that in the GRIP run, but occurs on a much longer time scale due to the low 315 

accumulation rate at the EPICA site. The peak migrates from the start because a sizeable temperature gradient spans the ice 

column (Fig. 4g). Low compressive strain rate, coupled with slow ice submergence and long time for diffusion, yields a wider 
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peak at all depths than in the GRIP run that has a vastly increased “age span” (i.e., the peak’s width in the age domain; discussed 

later in Fig. 8c, f) compared to the doped signal. Again, comparison against a run with  = 0 (Fig. 6d–f; Movie S2) confirms 

the Gibbs–Thomson perturbation as the cause of signal damping and broadening, and illustrates the weaker residual diffusion. 320 

The rapidity of signal widening versus migration in distorting the peak in both control runs (Figs. 5a and 6a) is anticipated 

by the non-small dimensionless number  in Sect. 2.5. According to (24), near-constant temperature in the top half of the 

GRIP column (Fig. 4c) preconditions a large  there. Indeed, signal diffusion dominates that part of the GRIP control run, 

confirming also its independent operation from migration. Deeper in both cores, migration becomes more significant as  is 

reduced by higher T and higher dT/dz. In theory, larger grain sizes near the bed (Fig. 4d, h) also slow the rate of the simulated 325 

signal decay, but the peaks in our control runs have long dissipated before reaching such depths. 

These initial runs demonstrate the signal migration of Rempel’s theory, but paradoxically highlight that signals may not 

survive deep into the ice where it predicts their displacement to become so large to be palaeoclimatically important. More 

precisely, some remnant signals always survive, but with such small amplitudes and such large age spans compared to the 

original signals that all essential palaeoclimatic information has been lost. There is an apparent problem to resolve, as distinct 330 

deep ionic peaks are found in many ice cores (Fig. 1) (e.g. Röthlisberger et al., 2008; Traversi et al., 2009; Svensson et al., 

2013; Tison et al., 2015; Schüpbach et al., 2018), although they may be due to impurities outside veins.  

Sticking with the vein model for now, can peaks with a different shape survive damping and broadening to reach deep 

ice? We study this by changing the width of the doped peaks, as this alters their flank gradient, which is a key control of their 

diffusion rate. Sensitivity experiments are conducted by varying the width parameter Δ of the Gaussian function between 0.02 335 

and 0.32 m (with the control run parameters unchanged), and by tracking the amplitude, FWHM (full width at half maximum) 

and age span of the peak in each simulation. The age span is found by dividing the FWHM by the local ice velocity w.   

Figures 7 and 8 plot – for GRIP and EPICA, respectively – the evolving peak morphometry in these “Δ experiments” 

(grey curves). The control runs (black) and the runs where the Gibbs–Thomson effect has been turned off (orange) are included 

for comparison. As shown by the grey curves, doping a narrower initial peak hampers its survival, as its steep sides cause 340 

strong diffusional draw-down of amplitude; broader peaks retain amplitude for longer but meet the same fate as they narrow 

under vertical compression. We observe an interesting feedback between width and amplitude evolution. Compression 

steepens the flanks of signals to accelerate their damping, whereas amplitude reduction makes them shallower and less prone 

to damping and broadening. Thus the compressive strain rate is a key driver of signal diffusion. The balance of compression 

and broadening causes different peaks to end on similar width trajectories at depth (panels b & e, Figs. 7 and 8). Accordingly, 345 

peaks with different initial time durations acquire near-equal age spans increasing down core (panels c & f, Figs. 7 and 8), 

which define the minimum time resolution for deep climate signals. These interactions are absent from the study of Rempel et 

al. (2001), who did not simulate signal shape evolution. Their companion papers (Rempel et al., 2002; Rempel and Wettlaufer, 

2003) did so but excluded layer-thinning and diffusion. 
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So, can single peaks survive into deep ice? The Δ experiments show that peaks at decimetre/centimetre scale struggle to 350 

do so. Even for initially wide peaks (e.g. Δ = 0.32 m) near the firn-ice transition, the Gibbs–Thomson diffusion has reduced 

their amplitude four-fold by the time they reach z  2300 m at GRIP (where the age is  25 ka), and 2000 m at EPICA ( 

175 ka). Setting  = 0 prolongs the signals’ survival (Figs. 5–8), but residual diffusion still prevents them from reaching the 

lowest several hundred metres with a sizeable fraction of their original amplitude, not to mention that ignoring the Gibbs–

Thomson effect is unphysical. 355 

In the present theoretical framework, is there any way for signals to reach deep ice without losing integrity (amplitude, 

narrowness)? One possibility is the suppression of solute transport by partial vein blockage/disconnection, which we simulate 

here in a crude manner by artificially decreasing the molecular diffusivity D – this cannot capture heterogeneous vein transport 

at the grain scale. In Figs. 7 and 8, the blue curves plot the results of simulations with D suppressed by different factors. The 

same doped peak and parameters of the control runs are used otherwise. A suppression factor of 0.001–0.01 postpones signal 360 

decay to a similar extent as turning off the Gibbs–Thomson effect. The lesser factor (0.001) allows the peak to reach 2750 m 

with half its original amplitude. Even with such strong suppression, however, peak survival is hindered in deeper ice because 

the low strain rate there (Fig. 4b, f) provides ample time for signal diffusion to occur, and because rising temperature near the 

bed increases . Note that in Figs. 7 and 8, a perfectly-preserved peak signal that does not diffuse would have constant 

amplitude and age span, and its FWHM would decrease towards the bed as a result of vertical compression.  365 

The simulated displacement, age offset and age span of the peaks are of potential palaeoclimatological interest. Figure 9 

shows that in the control runs the peaks displace by  1 m or more in deep ice, causing their apparent age to exceed their true 

age by hundreds of years in ice  100 ka at GRIP, and by several thousand years in ice  500 ka at EPICA. Since the migration 

rate is independent of the signal shape, the Δ experiments yield the same displacements and offsets as the control experiments. 

For both sets of experiments, Figures 7 and 8 (c & f) show that peaks arriving in deep ice have age spans of several hundred 370 

years at GRIP and several thousand years at EPICA (approaching the precession time scale in ice 700–800 kyr old); however, 

we caution against using these results to evaluate deep climatic histories retrieved from ice cores, because these sets of 

experiments predict near-zero signal amplitude at such depths. In contrast, decreasing D suppresses both signal migration and 

diffusion (see (23)), so the corresponding peaks remain much narrower during their evolution (Figs. 7 and 8, b & e) and migrate 

much less than in the control/Δ runs (Fig. 9, numbered curves). A suppression factor of 0.001–0.01 enables a peak with FWHM 375 

< 0.2 m, age span < 200 yr, and potentially detectable amplitude to reach  2900 m depth, with an age offset of < 50 yr at 

GRIP and < 300 yr at EPICA. These numerical findings are illustrative, as they depend on the depth-age scale assumed for 

each site (notably its precise behaviour at depth) and are limited by the fact that we are not solving the inverse problem with 

time-varying palaeoclimatic forcing. Using them to interpret specific details of the ice-core records is not advisable at this 

stage also because how much matrix/grain-boundary impurities contribute to those records is unknown (Sect. 4). 380 
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For completeness, all of the above experiments have been repeated with doped peaks with twice amplitude (10 M), to 

cater for some especially high (rarer) peaks in the observed records, which may have more chance to survive. Although the 

corresponding remnant signals retain greater bulk concentrations at all depths than before, their pattern of decay relative to the 

initial amplitude and the FWHM and age span results are only marginally altered (Figs. S1 and S2 – see Supplement; cf. Figs. 

7 and 8). Our single-peak experiments thus confirm the difficulty for palaeoclimate information to be preserved at depth. 385 

3.3    Results: multiple-peak experiments 

The diffusion of cB means that neighbouring peaks can merge as they descend the ice column. This process is illustrated in 

Figure 10 and Movie S3 by a simulation with two peaks. Their merging begins at  7 kyr; the deeper peak moves towards z′ 

= 0 due to vertical ice compression; a bimodal signal ceases at  12 kyr. Such merging suggests a second explanation for why 

distinct peaks can feature in deep ice even with strong damping: instead of deriving from a single peak high up in the column, 390 

a deep peak might form by the agglomeration of multiple signals/peaks as these merge under compression. This signal-forming 

mechanism may not be evident from the cB profile measured from ice cores, which gives an instantaneous record of the signals. 

To test this idea, in the next experiments we simulate the evolution of multiple signals doped in shallow ice stretches 20 

m long at GRIP and 80 m long at EPICA. Three runs are made for each site, one with the control-case parameters and two 

with D suppressed by 0.1 and 0.03 (to simulate vein blockage), with both the Gibbs–Thomson effect and residual diffusion 395 

included, and using an initial cB profile formed by adding many Gaussian peaks (numbering 300 at GRIP and 1200 at EPICA) 

of random amplitudes, widths and positions onto a 1 M base level (Fig. 11a). Movies S4 and S5 document these runs.  

We focus our analysis on the EPICA runs (Fig. 11; Movie S5), as the GRIP findings are qualitatively similar (although 

things occur faster there). In the control run (black curves), strong damping and merging smooth the signals rapidly, so cB(z′) 

retains long-scale variations only – and no peaks – at depth. This outcome is consistent with what we learned from the single-400 

peak experiments. When D is reduced (blue and red curves), compressional shortening, with the now slower diffusion, causes 

bundle of peaks to merge into new signals that subsume their solute content. This process operates continuously on all signals, 

with stretches having a high density of peaks turning into peaks, and stretches having a low density into troughs. The vertical 

compression is crucial in helping signals maintain their integrity against diffusion.  

When D is suppressed by 0.03 (Fig. 11, red curves), we see distinct peaks persisting in deep ice, many traceable back in 405 

time to predecessor groups of peaks, rather than a single peak (e.g. dashed boxes). The balance of diffusion and shortening 

here is such that the deep peaks have similar widths as their shallow counterparts ( dm), despite an overall reduction of signal 

amplitude with depth. The ice in Fig. 11d has shortened by approximately ten times since the start of the run, so each peak 

there encapsulates the signals and solute of an original interval some ten times longer. Signal survival here is aided by the 

enhanced survival of single peaks due to decreased molecular diffusivity (Sect. 3.2), but also involves the lumping of solute 410 
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from neighbouring peaks. We find in further experiments (not shown) that when D is reduced even more (suppression factor 

≲ 0.001), the peaks continue to narrow into the cm range at depth. Fig. 11 shows an effect already known from the single-

peak experiments: a decrease in D reduces signal displacement as well as broadening.  

The foregoing experiments demonstrate how long-scale averages on cB at shallow depths – reflecting long-term 

background levels of impurity input at an ice-core site – evolve to become meaningful variations at depth, as signals are 415 

compressed and their fine details filtered out by diffusion. In Fig. 11, the mean level of the 3,600-year long signal sequence is 

preserved at depth as a bump (of the same duration) about 7 M above the surrounding ice. Ice-core analyses of the major ions 

frequently interpret deep features of this kind as reflecting real palaeoclimatic variations on time scales of 101–102 kyr (e.g. 

Mayewski et al., 1997, Wolff et al., 2006; Schupbach et al., 2018); it is understood that fewer high-frequency palaeoclimatic 

details are retrievable from deeper ice, due to the finite resolution of ice-core sampling, alongside layer thinning, which causes 420 

more time to be encapsulated in a given ice thickness. Our simulations highlight the Gibbs–Thomson effect in vein impurity 

transport as a further cause of low-pass filtering. Moreover, they show that long-scale signals will migrate under Rempel’s 

anomalous diffusion mechanism unless the vein network is partially disconnected (see the bump’s locations in Fig. 11e). 

3.4    Grain-size fluctuations, and how they create cB signals 

Our experiments have used smooth dg profiles so far, as the lack of a robust model of grain-size evolution precludes intimate 425 

study of how this process intercouples with vein impurity transport. Ice-core records exhibit grain-size fluctuations (e.g. Fig. 

4d, h), although continuous measurements of dg at a high (e.g. decimetre) resolution over long core sections remain rare. How 

might rapid fluctuations in dg impact cB? We study this topic with more analysis and a few tentative simulations, discovering 

a mechanism by which new impurity signals can form post-depositionally as a result of grain-size fluctuations. 

In this connection, it was raised during the Interactive Discussions of our manuscript (see TCD document RC2 and 430 

ensuring thread in RC3 & AC2–4) that Rempel et al. (2001) neglected the Gibbs–Thomson effect from the liquidus relation 

by assuming the vein radii rv to be spatially uniform – the justification for this being an anticorrelation between mean grain 

size and impurity loading, which has been observed in ice-core records (see Thorsteinsson et al. (1995), Alley and Woods 

(1996) and Thorsteinsson et al. (1997) for evidence related to soluble ions). As explained in RC2, the concept is that grain 

recrystallisation processes cause dg to respond to cB signals (at decimetre/centimetre scale) to prevent variations in rv. Thus, 435 

whereas Rempel et al. (2002) and Rempel and Wettlaufer (2003) ignored the interfacial effect by invoking smallness of the 

Gibbs–Thomson term, the alternative assumption addressed here invokes its constancy. Equations (7) and (8) in our model 

(and their general form based on (5)) show that this assumption holds if dg
2cB = constant. It is suggested in RC2 that the 

processes in glacier ice might ensure this inverse-square coupling (dg
  ∝ cB

–1/2) through the ice column, so that signals migrate 

by anomalous diffusion, as conceived in Rempel’s theory, without the strong (Gibbs–Thomson) diffusion found in our study.  440 

While such theory is difficult to prove or disprove until firm quantitative modelling has been offered to explain the causal 

mechanisms in ice linking grain size to impurities, some obstacles for it are apparent: (i) For diffusion to vanish, dg
2cB = 
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constant needs to be obeyed identically. Anticorrelation between dg and cB does not generally imply suppression of diffusion, 

since the analysis of Sect. 2.5, repeated with dg
  ∝ cB

–β (β > 0, ≠ 1/2), shows that a diffusion term still arises in (23), just with 

a different form (and with either higher or lower rate) than before. (ii) Whether dg and cB are anticorrelated in ice cores is in 445 

fact unknown, because the observed anticorrelation used to support the theory concerns their total impurity loading, which 

includes an unknown contribution of matrix and grain-boundary impurities: it is the vein impurity component, not the total, 

that must satisfy dg
2cB = constant. (iii) Existing glaciological theories on how soluble ions affect the mean grain size consider 

the effect of such impurities at grain boundaries, through drag production to limit grain-boundary mobility (e.g. Alley et al., 

1986a, 1986b), not the effect of impurities in the veins. Also, as rv is uniform in the RC2 proposition, the solute concentration 450 

of the vein water (c) will be uniform even where cB has a signal; see (7). Hence it is elusive how cB can influence grain-

boundary motion to control dg. It is also unclear how dg
2cB = constant is to be maintained despite other grain-size controls, 

e.g., microparticle abundance, stored strain energy (Faria et al., 2014; Ng and Jacka, 2014). In the light of these considerations, 

the idea of signal migration with diffusion eliminated by a highly-specific coupling between dg and cB seems problematic. 

The general question about the impact of grain-size fluctuations on cB is still of interest. Partial insights into this can be 455 

gained with our model. In the diffusion analysis of Sect. 2.5, if dg varies on short distances, then the anomalous velocity found 

by substituting for c from (8) into (14) (using the chain rule when differentiating dg
–1cB

–1/2) has a longer form 
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(cf. (22)), and the signal evolution equation in (21) becomes 
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Here, the extra term involving dg (cf. (23)) means that grain-size fluctuations will generate signals even if cB has no initial 

signals. This source term balances with the diffusion and advection terms at large t to cause a steady-state signal locked to the 

dg fluctuation. The Gibbs–Thomson diffusion still operates, although in the presence of the source term it does not damp the 

signal completely. If T = 0, steady state is achieved with dg
2cB = constant (so cB mirrors the dg fluctuation). But this is the 

outcome of the evolution, not the external process coupling that is prerequisite for signal migration without diffusion (discussed 465 

above), because T = 0 implies zero advection. If T ≠ 0, the steady-state signal will not satisfy dg
2cB = constant. 

To verify these expectations, we perform modified GRIP and EPICA control runs, using the same simulation model and 

background profiles as before (Sect. 3.1), without doping an initial signal on cB. For dg, we impose a constant background of 

4 mm for simplicity, with a fluctuation Δdg = ±3 exp[–(z′/0.1)2] superposed on top (Fig. 12a, c, e). Simulations are made with 

Δdg negative or positive – representing, respectively, grain fining or coarsening in a decimetre-wide band – and with Δdg 470 
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having a fixed width or narrowing under compression (the cB signal is always vertically compressed). Thus four runs are made 

for each site. They are artificial as our dg prescriptions are not physically based or necessarily realistic.  

Figure 12 and Movie S6 show the GRIP results. In the two runs with negative Δdg (Fig. 12a–d), a w-shaped signal in cB 

emerges in the first few kyr and then grows more slowly to a height of 10 M. Its form evolves over the kilometre depth 

scale, and does not reach steady state due to continued compression and temperature changes at depth. Its peak is narrower 475 

than the dg fluctuation at all times. Compression of the grain-size fluctuation creates a narrower signal and accelerates signal 

growth (Fig. 12c, d), by causing high spatial gradients in dg in the source term in (32). In the two runs with positive Δdg, a 

much smaller S-shaped signal of 1 M forms (Fig. 12e, f; Movie S6). The EPICA runs show similar evolution over a longer 

time (Fig. S3; Movie S7). Note that the Rempel et al. (2001) equations cannot uncover these findings because they do not 

contain grain size as a variable, and all signals simulated here are localised by the grain-size fluctuation and do not migrate 480 

relative to the ice, despite non-zero advection. Furthermore, (32) indicates that vein blockage/disconnection (suppression of 

D) would slow the growth of signals. 

In the mechanism found here, grain fining creates large peaks in cB, whereas grain coarsening creates small signals, so 

an anticorrelation between cB and dg is expected for signals with this origin. This property – demonstrated for signals that do 

not migrate by anomalous diffusion – gives another reason why anticorrelation between cB and dg does not guarantee signal 485 

migration without damping. The cB signals here can begin to form at any depth, wherever recrystallisation (e.g. strain-induced) 

processes perturb dg at a short scale; signals where dg varies slowly still decay by Gibbs–Thomson diffusion. The associated 

concern that ice-core records may contain some signals unrelated to palaeoclimatic events is considered in the next section.  

4    Discussion and conclusions 

For two decades, Rempel’s theory has raised concerns that palaeoclimatic signals in the soluble ion records of ice cores may 490 

have displaced by anomalous diffusion and suffer large age discrepancies, especially in the older, deeper parts of the records. 

Objections to signal migration invoke impeded or insignificant solute transport through veins – that the veins are partially 

disconnected (blocked by solid impurities and bubbles) or that most chemical signals reside outside veins, in the ice matrix or 

at grain boundaries. 

A more fundamental issue with Rempel’s theory is explained herein. While signals on cB (the bulk concentration of an 495 

ion species in the veins) unrelated to grain-size fluctuations can migrate in a connected vein system, a strong Gibbs–Thomson 

diffusion damps them, preventing those signals at decimetre or shorter scale from penetrating into deep ice. Only much longer 

background variations in cB can survive the diffusion to exhibit migration, and signals created by grain-size fluctuations do 

not migrate (not unless these move relative to the ice by extraneous mechanisms). As the physics predicts that no/few migrating 

short signals survive into deep ice where their displacement matters, the original concerns are no longer valid. In our revised 500 

theory, signal damping is aided by a weaker residual diffusion due to stochastic vein motion. Modifying the derivation of this 
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residual diffusion (Appendix B) to include accelerated grain-boundary motion during migration recrystallisation (Duval and 

Castelnau, 1995) or grain-growth driven diffusion (Barnes et al., 2003) strengthens our primary conclusion. 

The conclusion is unaffected if we consider multiple solute species interacting via the liquidus (Rempel et al., 2002; 

Rempel and Wettlaufer, 2003). These authors showed that the cB signals of different species would line up as they evolve, with 505 

periodic signals becoming in phase, and peaks in each species inducing collocated “sympathetic peaks” in other species; these 

adjustments occur in a time of λ2/D 1–10 yr for short signals (λ 10–1 m). Extending our theory for multiple species would 

thus add to the outcome an initial fast alignment of signals, before they evolve by the mechanisms studied herein. 

What do our findings mean for the integrity and interpretation of ion records from ice cores? What explains the occurrence 

of well-defined signal peaks deep in those records? To ponder these, it is useful to start with two end-member scenarios: 510 

Scenario 1: Vein-dissolved ionic impurities (cB) comprise the main contribution to an observed ice-core record, with 

matrix/grain-boundary impurity contributions negligible. In this scenario, observed deep peaks can only be explained 

by (i) widespread vein disconnection (which we modelled by reducing the molecular diffusivity D; Sect. 3.2) and/or 

(ii) signal formation induced by grain-size fluctuations (Sect. 3.4). The GRIP and EPICA simulations show that in (i), 

the suppression factor on D needs to be ≲0.001 for shallow single peaks to survive into depth, but weaker suppression 515 

(0.01) allows some deep peaks to persist via compression-diffusion merging of signals. Figs. 7–9 suggest the 

possibility of determining the suppression factor from the width, amplitude and position of the deep peaks, and then 

finding their age offset. In practice, the unknown initial peak size/shape will introduce uncertainty to this estimation. 

This scenario spells good news for a key aspect of ice-core palaeoclimatic interpretation. Because reduced vein 

transport limits signal migration (Fig. 9) and because signals created by grain-size fluctuations are “localised” by them 520 

(Fig. 12), the deep peaks would not have displaced far – or at all – to accrue large age offsets. However, diffusional 

merging means that some signals may be a distorted, lumped signature of multiple climate events. The Gibbs–

Thomson diffusion can smooth details more than the low-pass filtering caused by finite resolution of the impurity 

measurements – typically, 10 cm in traditional ice-core sampling, and  1 cm or less if using Continuous Flow 

Analysis (Kaufmann et al., 2008; Bigler et al., 2011). At the model ice-core sites, the highest time resolution of climatic 525 

information retrievable from cB is quantified approximately by the depth-dependent age spans in Figs. 7 and 8.  

Our modelling reveals a new issue in Scenario 1: some observed peaks may have formed as a result of grain-size 

fluctuations (on short length scales) instigated by glaciological processes during or after deposition. This process, 

which could impact multiple ion species at the same positions down-core, arises from the effect of grain size on vein 

equilibrium thermodynamics. It may be misleading to read such signals for palaeoclimate information in the usual 530 

way for a given ion, although the grain-size fluctuations generating the signals may have a palaeoclimatic origin.  
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Scenario 2: Impurities in the ice matrix (e.g. in salt micro-inclusions) and/or at grain boundaries dominate the ice-

core record, and their relative immobility explains the presence at all depths of prominent peaks, which experience 

vertical compression but do not diffuse or migrate by our mechanisms (they may be modified by slow diffusion 

through ice or along grain boundaries). In this scenario, signals on the minor vein component (cB) still evolve if the 535 

veins are connected – where grain size does not fluctuate rapidly – to migrate, decay, broaden and merge into long-

scale variations. 

The reality may be a mixture of these scenarios, with vein and matrix/grain-boundary impurities responsible for different 

signals on an ion record; their contributions may vary down-core, and between cores. Thus generally a record may be the sum 

of an evolved (e.g. diffused, migrated) component and a largely unmodified component. Shallow signals could source from 540 

both components, as firn metamorphism apportions impurities to crystal grains and the premelted liquid. Matrix impurities 

may dominate deeper, as vein signals decay where the grain size varies slowly. If grain growth and recrystallisation relocates 

some matrix impurities to grain boundaries and hence to the veins, the signals in cB could be continually refreshed (at any 

depth). Such impurity transfer has been suggested (Glen et al., 1977; Mulvaney et al., 1988; Rempel et al., 2001), but also 

debated (Ohno et al., 2005; Eichler et al., 2019), while it is understood that the apportioning and transfer depend on the ion 545 

species (Wolff et al., 1988). The creation of new signals by grain-size fluctuations complicates the vein impurity contribution, 

as part of the signal evolution becomes coupled to recrystallisation processes that determine historical changes of the ice 

texture. These considerations caution against interpreting all observed ionic signals directly for palaeoclimatic events and 

variations: some signals may be distorted in form and duration, and some peaks may be caused by local grain fining (this may 

result from recrystallisation processes (Faria et al., 2014) or high levels of dust/microparticles in the ice (Alley et al., 1986a)). 550 

Disentangling the vein and matrix/grain-boundary impurity components of a record and their post-depositional evolution 

histories, and comparing the record with grain-size profiles to discern peaks with a potential “grain-size induced” origin, may 

be necessary for robust reconstruction. Note that our ideas do not oppose the view that most/much ionic impurity occurs in the 

matrix (Ohno et al., 2005), which does not strictly rule out the presence of any vein impurities. 

Based on these considerations, we conclude that distinct deep peaks seen on a record may indicate (i) matrix impurities 555 

dominating the record, or (ii) relevance of both matrix and vein impurity signals, with the latter damped out at depth or 

preserved by vein disconnection, or (iii) a dominance of vein impurities in a disconnected vein network, or (iv) a dominance 

of vein impurities in connected veins that receive recent/sporadic impurity input from the matrix and/or where grain-size 

fluctuations create and maintain impurity peaks. In each case, the observed peaks would not have migrated or migrated far, 

although some diffusional merging of signals may occur. Unless many peaks owe their origin to grain-size fluctuations, the 560 

limited distortion of peaks inferred for all four cases here is consistent with the signal replicability observed between nearby 

ice cores (Wolff et al., 2005; Gautier et al., 2016), and supports the use of major ion records for synchronising ice-core age 

scales. But we expect the glaciological conditions at different ice-core sites to cause contrasting distortion of signals and 

different patterns of grain-size induced peaks. Even if two sites receive identical peak signals at the firn-ice transition (there 
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are no differences in atmospheric transport and deposition of the species and in its modification in firn), variations between 565 

their records – for the same ion – will result from differences in strain rate, ice temperature, and dust content/bubble density 

(which affects the level of vein blockage and recrystallisation processes). Some peaks in one record may be absent or more 

damped in the other; a group of peaks in one record may appear as a single merged peak in the other record. These variations, 

which are well known in ice-core studies, impact the identification and matching of peaks and peak sequences. The potential 

corruption of some records by abundant “grain-size induced” signals is an emergent problem that should be studied further. 570 

As we have modelled vein impurity transport only, it is beyond our scope in this paper to disentangle the vein, matrix 

and grain-boundary components of any specific (observed) ion records. Also, our analysis is not aimed at resolving where 

ionic impurities reside in glacier ice. Recent investigations of ice-core samples using Raman spectroscopy (Barletta et al., 

2012; Eichler et al., 2019) have yielded a varied picture regarding the distribution of vein vs. matrix impurities in ice, with the 

former authors finding abundant sulphate and nitrate, but the latter inferring a lack of ionic impurities, at triple junctions (i.e. 575 

veins). With an extended literature reporting different results on the subject (see Barnes and Wolff (2004) and the review parts 

of the two papers cited above), this state of knowledge suggests that one should not generalise any particular distribution to all 

ice. Striving to understand the range of processes of impurity movement and segregation and their controls, and how they can 

cause different impurity distributions, is more important.  

Hopefully, with better understanding in this direction, research will be able to develop the theory further by coupling our 580 

solute and porosity evolution equations for the veins with equations for the formation, transport and modification of matrix 

impurity sites – going beyond a static partitioning of the vein and matrix impurities (Rempel et al., 2002; Rempel and 

Wettlaufer, 2003). Another direction alluded to before is coupling with grain-size evolution. An extended theory could help 

palaeoclimatic studies more directly, in terms of quantifying post-depositional changes of measured records, revealing their 

artefacts, and developing refined palaeoclimatic inversions. We know too little at this stage to envision the details, but such 585 

theory will need to address a multi-directional transfer of ionic impurities between matrix, grain boundaries and veins. Other 

foreseeable complications include chemical reactions and grain-boundary motion influenced by impurities. Work that aids this 

development includes (i) a systematic study of solute signals in ice cores that quantifies their depth-varying spectral content, 

peak density and peak size-/width-frequency statistics and compares the signals to high-resolution grain-size measurements, 

and (ii) controlled laboratory experiments on ice samples to recreate evolving signals for testing the theory.   590 

Finally, our model may be used to quantify the degradation of vein ionic signals during ice-core storage. The rates of 

residual diffusion, Gibbs–Thomson diffusion and signal migration (if storage imparts non-zero temperature gradient through 

a sample) are all minimised at low temperatures (Fig. B2 and (23)). Model runs (Movie S8) show that in ice with a mean grain 

size of 5 mm and containing a 10 M high,  10 cm wide signal in cB, the total diffusion would in 100 years reduce the signal 

amplitude by only 5% and 16% (with negligible broadening) if the sample is stored at –15 C and –5 C, respectively. These 595 

upper-bound reductions assume no vein blockage, and the signal diffusion time scale is still several kyr (Movie S8).  
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Appendix A: solving for vein conditions 

From Dani et al. (2012), relevant empirical formulas for the temperature depressions θc and θp in (5) (in Kelvin) are 600 

2 3 2

1 2 3 1 2    and     c pk c k c k c a p a p ,       (A1) 

where c is measured in M, pressure p is in Pa, and the constants are k1 = 4.7971, k2 = –1.188, k3 = 0.685, a1 = 7.61 × 10–8, a2 = 

1.32 × 10–16. At a depth z, we calculate the overburden pressure as p = ρigz without correcting for firn density. Then combining 

(4) and (5) yields 

2 3 0

0 1 2 3 2

3
( ) 0p

i B g

T c
f T T k c k c k c

L c d
.      (A2) 605 

This equation has one positive real root for c. We calculate it numerically with Newton’s method, choosing c = (T0 – T – θp) / 

k1 as the initial guess. 

 

Appendix B: residual diffusion of cB and  

Consider, in polycrystalline ice, a three-dimensional network of veins with random orientations, which, as the grain boundaries 610 

migrate, move in random directions (Fig. B1). Here we show that this can cause diffusion of the bulk solute concentration cB 

and porosity . For simplicity, we assume the vein motion to be isotropic. 

As each vein segment migrates, its motion takes along pore space and solute (we ignore vein water flow, ice deformation, 

and other processes considered in the main model; Sect. 2.2). Transport arises from vein segments moving in myriad directions. 

Segments with the same size and solute content moving in opposite directions cancel in terms of contribution. A statistical 615 

description is needed to calculate the net effect. Suppose their migration velocities v = (vx, vy, vz) across a given plane (Fig. 

B1) follow the probability density function f, so that the proportion of vein segments with velocity near v (in an incremental 

box dvx–dvy–dvz) is  

2( , , ) ( ) sin  x y z x y zf v v v dv dv dv F v v d d dv .       (B1) 

The right-hand side puts dv in spherical coordinates (we dashed the symbols of the polar angle and azimuth to distinguish 620 

them from  and θ). Under isotropic migration, F is a function of speed v =v, independent of direction, and one may suppose 

F decays to 0 as v → ∞. This formulation resembles the kinetic theory of gases, where F is the Maxwell-Boltzmann distribution 

(Chapman and Cowling, 1953).  
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Regardless of the exact form of F for veins, their mean migration speed is 

2
3 3

0 0 0 0
( ) sin  4 ( ) v F v v d d dv v F v dv .      (B2) 625 

 

We expect v̅  to be similar to the speed of grain boundaries. An estimate for the latter can be found from the normal grain 

growth law (Gow, 1969; Duval, 1985; Cuffey and Paterson, 2010), 

2( )gd d
K

dt
,           (B3) 

where K has been defined in Sect. 2.2. Specifically, following to the results of Hillert (1965) and Ng (2016), we let 630 

1 g

K
v

c d
,           (B4) 

where c1 ≈ 2 to 3. The assumption of normal grain growth gives a low-end estimate for v̅, because strain-induced dynamic 

recrystallisation can accelerate grain boundary migration (Duval and Castelnau, 1995). On the other hand, impurities and 

bubbles may reduce grain-boundary mobility (Alley, 1986a; 1986b). In the present formulation, we exclude these 

complications, as well as anisotropic vein motion resulting from recrystallisation processes. We ignore any influence on K by 635 

the solute concentration c, because c refers to impurities dissolved in vein water, rather than impurities at grain boundaries.  

Next we calculate the transport fluxes. Imagine a region of uniform porosity and uniform mean grain size where the vein 

network continually evolves. The incremental flux of porosity (vein space) crossing an area dA in the direction perpendicular 

to the plane is 

2 cos  ( ) sin  dJ v F v v d d dvdA .        (B5) 640 

Integrating this over v  [0, ∞],  [0, 2π] and  [0, π/2] (for unidirectional flux; Fig. B1) yields the porosity flux density 

3

0

1
( )  

4

dJ
j F v v dv v

dA
.        (B6) 

The same method applied to the bulk solute content cB = c gives its flux density as 

B

1

4
cj vc .           (B7) 

Given how these macroscopic fluxes originate from microscopic interactions, they are valid on time scales longer than the 645 

time scale of vein-crossing events,  dg/v̅.  
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In a uniform region, the fluxes through dA in opposite directions cancel. But if  (or cB) varies spatially, a differential 

flux occurs; diffusion then arises from the vein motion. The net diffusion rate across a plane, say, at elevation z = z0, is found 

by subtracting the opposite fluxes at a distance dz on either side, j+ at z0 – dz and j– at z0 – dz, where dz locates the planes for 

evaluating the fluxes from continuum properties. We determine dz by using an argument similar to that in the kinetic theory. 650 

Moving vein segments merge and reconfigure on distances on the order of the mean grain size, so vein segments arriving at 

the plane typically come from a distance  dg since their last “collision”, which caused them to switch direction and gain or 

lose solute; dg is akin to the particle mean free path in the kinetic theory. Accordingly, we choose dz to be the flux-averaged 

value of the perpendicular distance cosgd : 

2 /2 /2
3 2

0 0 0 0

2 /2 /2
3

0 0 0 0

cos ( ) cos sin  cos sin  2

3( ) cos sin  cos sin  

g g

g

d F v v d d dv d d
dz d

F v v d d dv d

.  (B8) 655 

It follows that the net diffusive transport across the plane is  

0 0

0

2 /3 2 /3

41 1
    

4 4 3

g

net z D z D
z

d
j j j v v

z
 

0

                       .
3

g

z

vd

z
         (B9) 

Combining this result with (B4) gives the diffusivity  =  v̅dg/3 = K(T)/3c1, as given in (9) in the text. Figure B2 plots  against 

temperature. Interestingly,  is independent of dg because smaller grains lead to faster grain boundary migration, but 660 

proportionally shorter mean free path for the vein motion. 
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Table 1: Constants used in this study. 830 

 

Symbol Value Parameter 

  0.0725 Geometric constant 

 c1 2.5 Geometric constant 

 D *5 × 10–10 m2 s–1  Solute diffusivity in vein water   

  0.034 J m–2 Interfacial energy (Gibbs–Thomson coefficient) 

 Γ 4.53 K M–1 Slope of water–SO4
2– liquidus curve, ≈ 0 C (Dani et al., 2012)   

 g 9.81 m s–2 Gravitational acceleration 

 K0 **1.68 × 107 mm2 yr–1  Grain growth rate constant     

 L 333.5 × 103 J kg–1 Latent heat of melting 

 ρi 917 kg m–3 Ice density 

 ρw 1000 kg m–3 Water density 

 Q 42.4 kJ mol–1 Grain growth activation energy 

 R 8.314 J K–1 mol–1 Gas constant 

 T0 273.15 K (0 C) Reference temperature (melting point at 1 bar)     

 

* One-third of the molecular diffusivity in water; see Rempel et al. (2001). 

** Value derived from Table 3.1 of Cuffey and Paterson (2010), after multiplying by 6/π to correct for sectioning and stereological effects 

(Ng and Jacka, 2014) 835 
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Table 2: Variables in our mathematical model and their units.  

 

Symbol Physical meaning, unit 

 c Impurity concentration of the vein water, M 

 cB Bulk impurity concentration (vein-water component only), M 

 dg Mean grain size (diameter), m 

 g(t) Depth-age scale (i.e., depth of ice having the age t), m 

 H Ice thickness, m 

 K Grain growth rate, m2 yr–1 

 l Vein length density, m–2 

m Melt rate (mass rate per unit volume of ice), kg m–3 yr–1 

q Vectorial percolative water flux in ice (scalar, q), m yr–1 

rv Radius of curvature of vein faces, m   

t Time, yr (when referring to age in an ice core, a is used) 

T Temperature, K or C 

u Ice velocity vector, m yr–1  

uc Anomalous velocity vector (scalar, wc), m yr–1
    

w  Ice velocity in a reference frame following ice material, m yr–1 

x (= (x, y, z)) Cartesian coordinate in 3D, m (see next item for orientation) 

z Depth below ice-sheet surface, m 

z' Vertical displacement in a reference frame following ice material, m 

 Width parameter of Gaussian function, m     

θc (/θp)  Melting-point depression due to impurity (/pressure), K 

 Residual diffusivity due to random vein motion, m2 yr–1 

 Porosity, dimensionless 

 

 855 

 

 

 

 

 860 

 



32 

 

 

 

 

 865 

 

Figure 1: High-resolution records of dissolved ionic impurities in ice cores from Antarctica and Greenland, illustrating the occurrence and 

expressions of high peaks and signals at decimetre or shorter scale in deep ice. Vertical axes plot the total impurity concentration in bulk ice 

(this differs from our model variable cB, which refers only to impurities in the water-vein network); 1 ng g–1 is equivalent to 1 ppb or 1 g 

L–1. (a) The sulphate record from the EPICA Dome C core, Antarctica, measured by fast ion chromatography (Traversi et al., 2009); the 870 

arrow locates panel b. (b) Zoomed portion of (a) showing two sulphate peaks. (c) A piece of the sodium record from the NEEM ice core, 

Greenland (Schüpach et al., 2018) from continuous flow analysis (CFA) measurements, showing large fluctuations on a stretch with high 

base level in 2187–2190 m as well as isolated peaks. (d) A piece of the sulphate record from the NGRIP ice core, Greenland (Svensson et 

al., 2013) measured by CFA, showing successive sub-decimetre-scale spikes. Gaps in c and d reflect missing data. 
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Figure 2: Interactions that cause the signal migration mechanism of Rempel et al. (2001) and our signal diffusion mechanism, and variables 

studied in this paper. (a) Conceptualisation of the vertical profiles of vein impurity concentration c and ice temperature T in an ice core; z is 

depth below the surface. The gradients shown here typically occur over the kilometre length scale and are most pronounced towards the base 

of an ice sheet; see Fig. 4 for real examples of T(z). Panels b, c and d expand on the variations around a cB signal, which occur at a much 890 

shorter scale of decimetres or centimetres. (b) Vein impurity concentration c. (c) Porosity . (d) Bulk impurity concentration cB. (e) Vein 

cross-sectional geometry, showing the definition of the radius of curvature rv. (f) Equilibrium vein conditions as the solution of model 

equations. An increase in cB lifts the solution A to A’, causing a perturbation on c (see panel b) that drives cB diffusion. Neglect of the Gibbs–

Thomson effect in the theory of Rempel et al. (2001) causes the bold curve in (f) to collapse onto the vertical dash line; then no perturbation 

arises to diffuse the signal. 895 
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Figure 3: (a) Submergence velocity w(z) in an ice core and the corresponding (b, c) z–t and z′–t plots of material trajectories. The bold line 

in (b) is the depth-age relation. In (c), z′ is a depth coordinate that measures distance from ice located on the depth-age relation in (b). The 

z′-reference frame thus moves with that ice as it descends towards the bed, and material trajectories that do not start at the surface at t = 0 

converge towards z′ = 0 due to vertical compression. An impurity signal centred initially at z′ = 0 can migrate by anomalous diffusion into 905 

z′ > 0 (dashed curve) and diffuse, while it experiences vertical compression. The z′ coordinate system is used in the signal evolution 

experiments reported in Figs. 5 to 12. 
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Figure 4: Ice-core background fields used in our signal evolution experiments. GRIP ice core: a to d. (a) Age-depth scale and (b) ice velocity 925 

from a Dansgaard-Johnsen model. Dashed line in (a) shows the GICC05 modelext time scale (Seierstad et al., 2014; Rasmussen et al., 2014). 

(c) Ice temperature from Johnsen et al. (1995). (d) Grain-size data from Thorsteinsson et al. (1997) and spline fit used in our modelling. 

EPICA Dome C core: e to h. (e) Age-depth scale and (f) ice velocity from the model described in Sect. 3.1. (g) Borehole temperature from 

Pol et al. (2010). (h) Grain-size data from Durand et al. (2004) and spline fit used in our modelling. 
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Figure 5: Modelled evolution of a signal peak in (a–c) the GRIP control run and (d–f) an otherwise identical run where the Gibbs–Thomson 

effect is turned off ( = 0). Snapshots are shown in the material reference frame, with displacement z′ measuring how far the signal has 

moved from ice of the same age (which lies at z′ = 0). (a,d) bulk solute concentration cB; (b,e) vein solute concentration c at one time; (c,f) 

anomalous velocity wc, porosity , vein curvature rv at one time. Grey curves in (a) and (d) indicate the initial doped peak. Panel b illustrates 

the Gibbs–Thomson perturbation. See Movie S1 for the full simulations. 950 
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Figure 6: Modelled evolution of a signal peak in (a–c) the EPICA control run and (d–f) an otherwise identical run where the Gibbs–Thomson 

effect is turned off ( = 0). (a,d) bulk solute concentration cB; (b,e) vein solute concentration c at one time; (c,f) anomalous velocity wc, 965 

porosity , vein curvature rv at one time. Grey curves in (a) and (d) indicate the initial doped peak. Panel b illustrates the Gibbs–Thomson 

perturbation. See Movie S2 for the full simulations. 

 

 

 970 

 

 

 

 

 975 

 

 



38 

 

 

 

 980 

 

 

Figure 7: Changing morphometry of the signal peak – its amplitude, full width at half maximum (FWHM), age span – in the GRIP ice core 

for different model parameters, plotted against depth (a–c) and age of the ice (d–f). Black curves plot the control run of Fig. 5a, and orange 

curves the  = 0 run of Fig. 5d. Grey curves plot the results of altering the width parameter Δ of the doped peak from 0.08 (control) to four 985 

other values. Blue curves plot the outcomes of suppressing molecular diffusivity D in the control run by the multiplicative factors 0.1, 0.01 

and 0.001, to simulate vein blockage. Parameter labels use the same colours as the curves. Peak width becomes difficult to measure as 

amplitude diminishes, explaining the jittery appearance of some curves at depth. 
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Figure 8: Changing morphometry of the signal peak – its amplitude, full width at half maximum (FWHM), age span – in the EPICA ice 

core for different model parameters, plotted against depth (a–c) and age of the ice (d–f). Black curves plot the control run of Fig. 6a, and 

orange curves the  = 0 run of Fig. 6d. Grey and blue curves document the same sensitivity tests as conducted for the GRIP core (see Fig. 7 

caption for details). The FWHM and age-span axes are scaled to focus more on the blue and orange curves, rather than the deep ends of the 1005 

grey/black curves, as the corresponding signal amplitudes decay to near zero. 
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Figure 9: Modelled displacement z′pk and age offset Δtpk of signal peaks (from ice of the same age) at the (a,b) GRIP and (c,d) EPICA core 1020 

sites for different parameters, plotted against depth and age of the ice. “Control” labels the control runs in Figs. 5a and 6a; 0.1 and 0.01 label 

those runs in Figs. 7 and 8 where the molecular diffusivity D is suppressed by these factors to simulate vein blockage. The control curve in 

panel a is equivalent to the curve in Fig. 4 of Rempel et al. (2001), except these authors assumed a different age-depth scale from ours. 
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Figure 10: Snapshots (at four times) of the evolution of two neighbouring peaks in a GRIP run that uses the control parameters of the run 

in Fig. 5a. Diffusional spreading causes the peaks to merge as they approach each other under vertical compression. See Movie S3 for the 

full simulation. 
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Figure 11: Simulated evolution of a long sequence of doped signals at the EPICA site, in three experiments assuming the molecular 1065 

diffusivities D (Table 1), 0.1D and 0.03D. (a) Initial cB sequence. Used in all three runs and made from the superposition of 1200 decimetre-

scale Gaussian peaks, it is not meant to recreate the actual signals at EPICA. (b)–(e) Snapshots of cB at later times. Labels near the vertical 

line indicate the depth and age of the ice at z′ = 0. The dashed boxes trace a group of signals as they evolve into new signals through 

compression-diffusion merging (Sect. 3.3). As D is reduced, signal persistence into deep ice improves, and signal displacement decreases. 

The duration of the signal sequence is  3,600 yr in all panels. See Movie S5 for the full simulations. 1070 
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Figure 12: Four modified GRIP control runs, demonstrating how fluctuations in the mean grain size dg (a, c, e) at decimetre scale cause 

signals to form on the bulk concentration cB (b, d, f). All runs begin at t = 500 yr with cB  1 M without an initial impurity signal. Evolution 

snapshots are shown in the material reference frame. (a, b) Experiment imposing a negative dg fluctuation of a fixed width. (c, d) Experiment 1080 

imposing a negative dg fluctuation that has the same initial form as in (a), but which narrows due to vertical compression of the ice. (e, f) 

Two experiments with a positive dg fluctuation, set up as in the last two experiments. One run assumes that the fluctuation does not experience 

compression (black); the other run assumes that it does (grey). In those runs where the dg fluctuation is compressed, only results up to 30 

kyr are shown, because soon afterwards its width becomes too narrow to be resolved by the numerical grid spacing (0.0025 m). In all runs, 

the new signal in cB is localised by the grain-size fluctuation and does not displace into z′ > 0 by anomalous diffusion. See Movie S6 for the 1085 

full simulations. Fig. S3 and Movie S7 present the equivalent experiments for the EPICA core site. 
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Figure B1: Velocities v of different vein segments crossing a plane (outlined by bold rectangle), and their distribution in spherical 

coordinates (upper right). Only crossings in one direction are shown. In Appendix B, a statistical theory is used to calculate the net transport 

of porosity and vein impurity resulting from this motion. 
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Figure B2: Diffusivity  at different temperatures, calculated with (9) for c1 = 2.5. 
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