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Abstract. 

Multi-frequency acoustic profiling is critically examined to estimate accuracies currently attainable in characterizing 

frazil suspensions: with primary interests focused on measuring fractional ice volume, a key factor in river ice 

growth models. The central issue is the adequacy of representations of backscatter cross sections of disk shaped 

frazil particles in a well-established theory of elastic spherical targets.  An initial investigation established criteria 10 
for the existence of three-frequency solutions capable of providing lognormal statistical descriptions in terms of 

effective radii. These criteria restricted analyses of available field data with such models to inputs at two-frequencies 

limiting outputs to: a common effective radius, particle number density and frazil volume. Additional frazil cross 

section information is shown to be required to more fully exploit the full capability of multi-frequency profiling. An 

approximate relationship between cross sections and the product of acoustic wavenumbers and particle effective 15 
radii (k1ae) is developed from laboratory polystyrene disk and sphere data and transformed into the natural ice 

environment.   Field data within the transformed range is transposed to higher frequencies in order to allow testing at 

still larger field values of k1ae.  Two-frequency analyses utilizing the resulting “pseudo-frazil” relationship 

confirmed a close match with the field data and increased compatibility with existence criteria for three-frequency 

solutions.  The results showed that, within transducer calibration limits, the originally tested spherical backscattering 20 
extractions consistently under-estimate frazil ice volume concentrations by 25% confirming its continued use for 

accurate estimates in conjunction with a constant scaling factor of about 1.25. 

 

1. Introduction. 

Further development of numerical models for managing flow in a freezing river offers considerable 25 
potential benefits for public safety, hydroelectric production and proper functioning of cooling and 

drinking water intakes. However, accumulating evidence for simultaneous presences of multiple ice 

forms, such as suspended frazil, surface ice and in situ-grown anchor ice (Kempema and Ettema.2015, 

Jasek et al., 2015; Marko et al., 2015), is suggestive of serious, unaddressed, obstacles to model 

improvement.  Progress has been constrained by a dearth of quantitative field data, particularly on sub-30 
surface ice constituents. This situation was apparent in the recent work of Makkonen and Tikanmati 

(2018) which relied, almost exclusively, on laboratory results in calling attention to the practical 

importance of in situ anchor ice growth and needs for modelling it in the presence of other ice forms.   

Data deficiencies are particularly evident in the frazil ice constituent. Its presence in the water column is 

critically relevant to understanding the thermodynamics of overall ice production. Manual techniques for 35 
sampling frazil content, although widely employed in small streams (Dube et al., 2013), are impractical in 

large rivers.  Similarly, field applications of imaging at fixed points, developed for use in laboratory 

flumes and test tanks (Clark and Doering, 2006; McFarlane et al., 2015), have been restricted to shallow 

river edge locations (McFarlane et al., 2017). This technique is also intrinsically limited by reliance on 2-

dimensional data to quantify 3-dimensional objects. Most applications have ignored unquantified volumes 40 
of irregularly-shaped particles: relying, instead, on probability statistics for diameters of particles deduced 
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by interpreting frazil images as projections of idealized circular disks. While contributing insights into 

frazil morphology, this approach has yielded little quantitative data on frazil volume, due to low data 

acquisition rates and the lack of capabilities for disk thickness measurements. 

More recently, acoustic backscattering at multiple frequencies has been used (Marko et al., 2015) to study 

frazil in rivers during periods of ice growth and change. This methodology offers full depth seasonal 5 
monitoring of frazil production in large rivers at 1s or longer intervals: utilizing the fact that acoustic 

backscattering by frazil is largely a function of individual ice particle volumes and numbers. This 

sensitivity makes the technique ideally suited for measuring frazil fractional volume a key parameter in 

modelling the thermodynamics of ice growth. The multi-frequency technique is well established as a 

principal tool in quantitative particle suspension studies. Specific applications such as zooplankton 10 
monitoring (Chu et al., 1992), fish detection (Stanton and Chu, 2010), and sediment transport (Hay and 

Burling, 1982; Hay and Schaafsma, 1989) have been developed to high levels for research and monitoring 

purposes. Local measurements can be made simultaneously at high repetition rates throughout the water 

column from both self-contained and vessel-deployed instruments. Processing of detected acoustic signals 

is guided by the physical nature of the targets, and the information of interest.   15 

Frazil studies have much in common with sediment transport monitoring. In both cases, extended time 

series are used to quantify volume fractions and suspended particle population statistics. Two important 

differences are that sediment particles are often, roughly, spherical in shape, with negative buoyancy 

(specific gravity 2.5), while frazil crystals (specific gravity 0.91) are slightly positively buoyant and, at 

low concentrations, predominantly disk-shaped.  In modelling applications, where ice volume is of 20 
primary interest, the acoustic technique offers obvious advantages since near-neutral buoyancy renders 

the acoustic returns relatively insensitive to shape.  Notwithstanding this feature, the extreme deviations 

of disk geometry from the spherical form, originally considered by Rayleigh (1897), have engendered 

some scepticism as to the accuracies attainable in interpreting the detected acoustic returns, particularly 

when the results strongly deviate from expectations. Key uncertainties reflect the inherent difficulties of 25 
verifying or calibrating scattering measurements on suspensions of otherwise “uncountable” numbers of 

fracturing, irregularly-shaped, melting and growing ice particles. Prior attempts to do this (Ghobrial et al., 

2012, 2013) on laboratory frazil populations have not been successful (Marko and Topham, 2017).  

Addressing this situation begins in the following section with an outline of backscattering measurement 

methodology which highlights features of the technology specifically relevant to calibration and 30 
verification. Three different approaches are taken in the subsequent evaluations. These include: 

examining the sensitivity of basic Rayleigh scattering theory to particle orientation and deviations from 

sphericity (Section 3); detailed laboratory comparisons of the scattering properties of disk- and 

spherically-shaped ice-surrogates (Section 4.1); and the use of field data to assess and improve internal 

consistency and interpretations of frazil backscattering at different acoustic frequencies (Section 4.2). The 35 
field data analyses draw upon and extend the laboratory-validated theoretical relationship tested in 

Section 4.1. A summary and conclusions are presented in Section 5. 

2. Basic elements of acoustic profiling methodology 

Extraction of information from particle suspensions by acoustic profiling requires detection of sound 

pulses backscattered by individual particles toward their original transceiver (transmitting and receiving) 40 
source.  An essential element of extraction is that the detected fluxes of acoustic energy can be assumed 

to represent the arithmetic sums of fluxes arriving from all individual scattering particles: i.e. that the total 

cross section of all insonified particles is the sum of their individual cross sections.  Modern 

instrumentation converts the received pulses into volume backscattering coefficients, sV(νi), defined as the 
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scattered fraction of acoustic power at frequency, νi, incident upon a unit volume of suspension which is 

detected by the transceiver. Knowledge of these coefficients at two or more acoustic frequencies allows 

quantitative descriptions of frazil in terms of particle population parameters. Doing this requires a valid 

theoretical relationship linking sV(νi) to such parameters. 

In general terms, the required relationship can be written for each of n different frequency channels as: 5 

 
 

, (1) 

 

where: N denotes the number of particles per unit volume;  σBS(ae,νi)  is the theoretical backscattering 

cross section at an acoustic frequency, νi , for a particle with an  “effective radius” (defined below), ae. 

The quantity g(ae), denotes a probability distribution for ae satisfying: 

 
 

. (1) 

 10 

There are good theoretical reasons, confirmed by laboratory data (Clark and Doering, 2006; McFarlane et 

al., 2015)), for assuming that frazil sizes satisfy a two parameter lognormal distribution: 

  g ae,am,b =  2π 0.5bae 
-1
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. (3) 

The descriptive population parameters in this expression include the mean effective radius, am, and b, the 

standard deviation of the natural logarithm of ae which describes the “spread” in effective radius values. 

Documenting a frazil population in such detail requires access to sV data measured at, at least, three 15 
frequencies. Estimates of N, am, and b are obtained by minimizing a residual or quality parameter, q, 

defined as the sum over all channels of squared differences between measured and theoretical values of 

logarithmic backscattering coefficients:  

   q=     S v
meas(vi)-Sv

theo
(vi) 

2
i=n

i=1

 

 

. (4) 

The numbers of particles/unit volume within a range of effective radius, dae, written as: 

 
 dN ae =Ng ae,am,b dae 

 

. (5) 

allow fractional ice volumes, F, to be expressed in terms of optimized parameters as: 20 

 
 F=N  (

4π

3
)  a e

3
∞

0

g ae,am,b dae 

 

. (6) 

The particle number density N, and the backscatter cross section, σBS(ae,νi)  are critical determinants of the 

accuracy of the derived physical properties; requiring both satisfaction of the independent scattering 

assumption and the availability of an appropriate backscattering model for use in Eq. 1.  To simplify 

theoretical representations, disk-shaped particles, usually associated with frazil, are described in terms of 

“effective spheres”, characterized by an effective radius ae, such that their volumes equal those of 25 
individual ice particles (Ashton, 1983). This simplification is facilitated the near neutral density of ice in 

fresh water.  Measurements of sV(νi)  in, at least, three different frequency channels are required to derive 

the parameters N,  am and b  to describe the suspension.  Given that quality acoustic field data essential for 
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the present work were confined to three frequency channels of the available data set, discussions are 

limited to considerations of two- and three-frequency extraction methods. 

The less informative, but more easily applicable, two-frequency approach, previously used by Marko and 

Jasek (2010), limits the characterization of frazil suspensions to two parameters. In this case, Eq. (1) is 

replaced by: 5 

  sV (νi)    = N*σbs(a*,νi)  
 

, (7) 

 

where N* represents per unit volume numbers of uniformly-sized spheres of radius, a*, This 

representation is, of course, not realistically descriptive of a frazil suspension, but, instead, offers a 

convenient route to relatively robust estimates of a fractional volume parameter, F* , expressed as:  

 
 F*=  

4π

3
 N*a* 3 

 

. (8) 

In general a* and am differ, with a* exceeding am ; a consequence of, overall, cross sections  increasing 10 
with particle size, which dictates that more than 50% of the scattering by a lognormal frazil population 

involves larger than average particles. Representing such scattering levels in terms of a uniformly-sized 

population requires particles sizes larger than corresponding lognormal population means.   

An unreliable data channel in the available 2011-2012 Peace River field program data limited analyses to 

three of the four frequency channels. While applications of Eq. 4 still support extraction of optimal sets of 15 
frazil parameters (N, am and b) and (N*, a*) from, respectively, the remaining three- and two-channel-

based analysis, they represent exact solutions of the relevant equations. Solution can be simplified by 

expressing these equations in terms of ratios to eliminate the common factor of the particle number 

density N, (N*). This step provides a set of equations which equates the ratios of the theoretical volume 

backscatter coefficients in Eq.1 to their corresponding measured counterparts 20 

 
Theomeas jiGjiG ),(),( = for i, j = 1, 2, 3 with j not equal i . (9) 

 

The terms in Eq. 9 are defined as: 

 
 

.  

 

The values of a* obtained in the two-channel solutions, and the values of am and b produced for three 

channels, are then substituted into Eqs. 7 and 1, respectively, providing two- and three-channel estimates 25 
of N* and N.  The frazil fractional volumes, F and F* are then calculated from Eq. 6 for or Eq. 8 for the 

respective three- and two-frequency extractions 

For two frequencies this approach reduces the problem to solutions of a single equation in a*.  Three- 

frequency extraction necessitates simultaneous solution of two equations in am and b, with the option of 

three equivalent pairings of (i, j).  All equations are solved numerically, re-casting Eq.9 in the least 30 
squares form of Eq. 4, to locate the zero of a residual, Q. This approach offers an advantage in that, in the 

event that no solution exists, a value of am, coupled with a vanishingly small value of b, is returned 

corresponding to a three-frequency-based optimization which closely approximates the mean value of the 

two-frequency solutions. This circumstance, indicated by (1,3,4)b=o is utilized further in Section 4. 
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The  spherical target cross section relationships σBS(ae,νi) required for these calculations are derived from 

updated (Anderson,1950: Faran,1951, Hickling, 1962) versions of the Rayleigh Theory of scattering by 

spherical targets (Rayleigh,1897). These relationships incorporate the elastic properties of the ice target 

material and, for brevity, will be referenced to their origins by the acronym “FEST”, denoting Faran 

Effective Sphere Theory. The modern treatment of the algorithm is publically available as implemented 5 
by Dezhang Chu of the Northwest Fisheries Science Center (https://bitbucket.org/gjm/calibration-

code/wiki/Home). Required inputs include: target radius, ae ; the ratios of  target to fluid density (ρ2/ρ1);  

and wave speed ratios c2s/c1  and c2L/c1 (where c2s and c2L  denote the shear and longitudinal sound speeds 

in the target (ice) and c1 is the speed of sound in the fluid). The accuracy of this algorithm has been 

estimated (Dezhang Chu, personal comm.) to be +/- 0.001 dB or better for k1a < 50 where k1 = 2π/λ1 and 10 
λ1 = c1/νi. This formulation is routinely used in calibrating precision sonar equipment with machined 

sphere targets.  

Selected examples of the G(i,j) ratio functions are shown in Figure 1 which maps the solutions in a 

graphical form for specific pairings of the measurement channels (i, j). It provides context for the 

following methodological descriptions. The frequencies are identified by data-specific channel numbers 15 
relevant to the field data of section 4.2.1, where the notation lists channels in descending order of acoustic 

frequency.  In the figure, acoustic input data in the form of sV ratios, G(i,j)meas  are denoted by channel 

pair alone: i.e. (i,j). 

 

 20 

 

 

 

 

 25 

 

 

 

 

 30 

 

Figure 1. Illustration of relationships between two- frequency solutions in channels (4,3) and (3,1) to a 

three-frequency solution in channels (4,3,1).  

The G(i,j)theo  ratio for each pair is represented by a family of roughly parallel curves calculated  by FEST 

as a function of radius, am, for the frequencies νi  and νj, with individual curves identified by the value of 35 
the lognormal distribution width parameter b. The minima in these curves define upper and lower 

branches for each plotted function.  Each family is intersected by a straight horizontal line representing 

the corresponding G(i,j)meas  ratio, specifically adjusted here to match the FEST model.  The intersections 
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of this input data with the bold-lined b = 0 curves, taken individually, identify the two-channel solutions; 

the upper and lower branches of which provide a separate pair of valid a* and N* parameters.  Resolution 

of this ambiguity requires information derived from conditions necessary for corresponding three-

frequency solutions.  The only requirement for the existence of the two-frequency solutions is that the 

input data lies within the bounds of the individual G(i,j)Theo  curves.   5 

The more complex three-frequency solutions require corresponding G(i,j)Theo curves in each of the two 

families to intersect their corresponding G(i,j)meas  lines at identical values of am and b. This necessity 

defines the appropriate branch of each function.  In the example of Fig. 1, the G(4,3)Theo and G(3,1)Theo 

functions are paired through ,respectively, their upper and lower branches.  As indicated above, the input 

data of G(3,1)meas = 58.0 and G(4,3)meas = 2.3, were pre-calculated with the FEST model to provide a 10 
known exact illustrative solution.  The paired function intersection points of the solution, am = 0.32 mm 

and b = 0.11, are marked by open circular symbols.  The narrow sloping lines define the search area for 

the solution; the upper bound on b is imposed by the ability of G(4,3)meas to intersect G(4,3)theo . The 

lower boundary of search regions is established by the b = 0 G(i,j)theo curves. These limiting curves define 

initial input pairings of am and b which lead to a valid solution; indicated on Fig 2b by the dotted line 15 
marked “initial value line”.  The radius am is further constrained by the requirement that, for a given b, it 

not exceed the value associated with the intersection of the corresponding G(i,j) curves, at which point the 

relative positions of the functions are interchanged, leading to a spurious solution. 

The necessary condition for the existence of a three-frequency solution defines a limiting relationship 

between the paired G(i,j) input values.  For a given (3,1) data input, the am value of the intersection with 20 
the G(3,1)Theo

b=0 curve defines the point on the G(4,3)Theo
b=0 curve corresponding to an exact solution, 

marked by a bold dashed vertical line. This point defines the minimum G(4,3)meas that can sustain a three-

frequency solution for a given (3,1) channel pair. Lower values lie beyond the G(4,3)theo
b=0 curve 

boundary, and therefore cannot match the am value of the (3,1) pair.  Satisfaction of this criterion to assure 

the existence of exact three-channel solutions can be established for a particular input data set prior to 25 
initiation of a search sequence. A mapping of the region associated with acceptable pairings of G(i,j)meas is 

included in Figure 2a.  A further condition on the solutions is set by the upper bound on b, whereby the 

value of the G(4,3)meas input must exceed the minimum of G(4,3)Theo
b. This requirement determines the 

maximum value of b that can be accommodated by a specific value of am: i.e. the (am, b) values of the 

exact solutions must lie within the shaded area of Figure 2b.  To realize exact solutions, the initial (am, b) 30 
input values must be below the dashed initial value 

limit line.  
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Figure 2.  (a) FEST existence limit line for three-frequency solutions.  (b) Values (am, b) consistent with 

exact FEST-based solutions. 

For input data positioned below the existence limit line of Fig 2a, searches for three-frequency solutions 

progress to points on the G(i,j)b=0  curves.  The corresponding residual Q for such solutions reflects the 

proximity of the input G(i,j) values to the existence limit line of Fig 2a. It will be demonstrated in Section 5 
4.2.1 that this condition, denoted, by (1,3,4)b=0, in the figure, yield estimates of fractional volumes  which 

closely approoximate for the corresponding average of the (3,1), (4,3) and (4,1) two frequency fractional 

volume estimates.The branch pairing of the three-frequency solutions as b approaches zero necessarily 

defines the branch pairing for two-channel solutions: resolving the previously noted solution ambiguity. 

 Table 1.  Branch pair combinations for 3-channel b = 0 and 2-channel solutions. 10 

Channel pair and branch combinations 

(4,1) Upper (4,3) Upper 

(3,1) Lower (4,3) Upper 

(3,1) Lower (4,1) Upper 

 

The residual Q of the two and three-frequency exact solutions provides a measure of errors intrinsic to the 

least squares formulation, evaluated in the present work using a standard software package.  For the two-

frequency case, the residual for any identified solution is vanishingly small.  For the more complex, three-

frequency case, two outcomes are possible. These outcomes include the exact solution with vanishingly 15 
small residuals or, in the absence of such a solution, a (1,3,4)b=0 result is returned with a larger (Q on the 

order of 1) residual, which is, roughly, inversely proportional to the proximity of G(i,j)meas values to the 

existence limit line of Fig 2a. The small Q value of an exact solution only signifies that it satisfies the set 

of existence conditions specified in Fig.2a with respect to input acoustic data.  In this work, the bulk of 

the assessment process is based upon comparisons of estimates derived from measurements utilizing 20 
independent pairwise combinations of the three acoustic frequencies. The individual combinations span 

distinctly different portions of the range of the k1sa* parameter which is the principal determinant in the 

critical cross section relationship. Differences in the obtained estimates signify the degree of mismatch 

between the acoustic model and data. Evidence supporting absolute validation of this relationship over a 

significant portion its range of variability is presented in Section 4.   25 

3. Physical interpretations of acoustic backscattering by frazil suspensions 

The foundations for practical applications of acoustic scattering were laid in Rayleigh’s mathematical 

formulation of wave scattering by spherical targets. This work (Rayleigh, 1897) evolved into the Faran 

treatment of scattering by spherical elastic targets of radius a.  For wavelengths long compared to 

characteristic body dimensions (i.e. for k1a << 1), Rayleigh’s treatment reduces to two leading terms of 30 
comparable magnitude: a monopole response to direct pressure changes; and a dipole contribution driven 

by changes in fluid velocity relative to the target.  Both terms respond strongly to the volume of fluid 

displaced by the body which, in turn, experiences a reactive force in response to the acoustic wave.  At 

this level of approximation, knowledge of the material properties and the inertia coefficient of the body 

are sufficient to define acoustic scattering properties.  The long wavelength approximation provides 35 
useful representations of acoustic backscattering for k1a < 0.45. 

3.1 Single particle scattering.  

The backscatter cross section, σBS, of a stationary obstacle of general shape can be expressed as a sum of 

monopole and dipole terms, constituting the Rayleigh long wave approximation, plus the sum of 
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remaining higher order terms represented by the symbol On.  This explicit separation of the higher order 

terms is exploited in Section 4.2.2 to investigate their importance in the context of frazil ice suspensions. 

The full backscatter cross section expression can be written as: 

 

 
. (10) 

 

where V0 is the volume of the obstacle; k1 the incident wavenumber; and K1 and K2, respectively, represent 5 
the bulk moduli of the target and the fluid. Γ is the inertia coefficient of the body, representing the rate of 

change in the kinetic energy of the velocity field associated with acceleration of the obstacle relative to 

the fluid. The characteristic length scale for the inertia coefficient is determined by the geometry of the 

induced flow field, rather than by the obstacle itself.  For spheres, for example, the region of perturbed 

fluid is closely associated with the target boundary and the characteristic length is the sphere radius. On 10 
the other hand, for a disk normal to the flow, the perturbed fluid occupies a roughly spherical region 

surrounding the disk, and the characteristic length is the disk radius. For a freely suspended obstacle, the 

dipole term is modified by the motion of the object in response to the reactive force of the acoustic wave. 

The momentum balance can be expressed in terms of the ratios:  

 

U2-U1

U2

=
ρ

1
-ρ

2

ρ
1
+ρ

2
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. (11) 

where U2 and U1 are the velocity of the body and the fluid, respectively, and ρ2 and ρ1 represent 15 
corresponding densities. The dipole term of Eq. 10 can then be modified to give Rayleigh solution for a 

freely suspended particle. 

  σBS=  
k1

2
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4π
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. (12) 

The influence of the momentum balance on the dipole takes two distinct forms. The density difference 

between the fluid and the obstacle acts directly, while a more subtle interaction takes place between the 

added inertia terms in the dipole itself. This feedback constrains the dipole within well-defined limits with 20 
magnitudes controlled by density differences.  

 

Figure 3. (a) Acoustic backscatter cross section for a freely suspended oblate ellipsoid relative to an 

equivalent volume sphere; (b) Effect of disk orientation on acoustic backscattering.  

To chart the evolution of acoustic backscatter with changes in target shape, a freely suspended oblate 25 
ellipsoid of fixed volume was examined in the long wavelength limit as its geometry varies between the 
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spherical and thin disk limits of the dimension along the symmetry axis. Our analyses were based upon a 

modified form of Rayleigh’s treatment of the ellipsoid (Rayleigh 1897), to allow for free particle 

suspension. It can be shown that the backscatter cross section continues to scale directly with the 

parameter (k1
2 V0/4π) through to the thin disk limit. The functional relationship itself depends on target 

geometry through the dipole term, but the overall scaling based on the “effective sphere” assumption 5 
continues to hold.  For near-neutral density ice suspended in fresh water, the relationship remains very 

close to that of the sphere.  Fig. 3a compares the scattering strength of an oblate spheroid of ice suspended 

in freshwater with that of a corresponding equivalent volume sphere as the length of the spheroid’s axis of 

rotational symmetry is progressively reduced to the thin disk limit, with thickness defined to be that of a 

flat disk of the same volume.  The insensitivity of the backscattering to shape details is evident.  10 

3.2 Disk orientation. 

For the disk, the strength of the dipole term varies as cosϑ, where ϑ is the angle of the wave vector with 

respect to the plane of the disk. Since the dipole term is negative, the overall scattering decreases as the 

angle of inclination ϑ increases.  Figure 3b shows the effect of orientation on a freely suspended disk 

compared to the sphere.  For cosϑ = 0, waves impinging the disk edge on, the dipole contributions vanish 15 
and the scattering is solely due to the monopole, increasing cross sections by about 30%. Such increases 

fall to about 2% as the disk becomes perpendicular to the wave vector.  For a randomly oriented ensemble 

of disks, average backscattering strength exceeds that of the equivalent ensemble of spheres by about 

12%, again through suppression of negative dipolar contributions from obliquely orientated disks.  

The effective sphere concept as derived from the foregoing Rayleigh limit analysis encompasses two 20 
distinct concepts. Firstly, the “weak” effective sphere assumption offers an overall scaling parameter for 

the acoustic backscatter expressed as an “effective” spherical volume where, in general, the functional 

dependence of the backscatter is specific to the target geometry. The more restrictive, “strong” form of 

the assumption equates both the scaling parameter and the functional dependence of the scattering with 

those of spherical targets.  In the case of the oblate ellipsoid, the volume-based scaling parameter remains 25 
valid over the full range of the transition from sphere to disk.  The degree to which the strong form of the 

assumption is satisfied is determined by target and fluid density differences.  For frazil ice in fresh water, 

near-neutral buoyancy suppresses geometrical effects, and the strong effective sphere requirement is 

almost fully satisfied in the Rayleigh regime.  

Although the Rayleigh limit solutions are the dominant contribution to the scattering function at lower 30 
k1ae values, higher order terms, represented by On in Eq. (10), become increasingly important above k1ae = 

0.45. The contributions of the latter terms for disk-like frazil targets are critical to the present 

investigation where both the strong and weak equivalent sphere assumptions play a central role in the 

interpretation of field data (Section 4). 

4. Calibration and Verification 35 

Validation of multi-frequency backscattering as a tool for characterizing frazil suspensions requires 

determining the degree to which its key assumptions of independent scattering and the effective sphere 

concept are satisfied in typical measurement environments. In prior applications to targets such as fish, 

zooplankton and sediments, validations frequently have been carried out on suspensions of surrogate 

target particles of known size, shape and volume concentration. The surrogates (acrylic and glass beads, 40 
polystyrene spheres, graphite- and stainless steel fluid-illed- shells (Stanton, 1988; Hay, 1991)), have, 

generally, differed in composition and detail from the targets of interest. Consequently, efforts tended to 

focus on verifying the quantitative relationships which link scattering cross sections to measurable 

physical properties of individual targets. For frazil particles, an alternative, more direct, approach, 

https://doi.org/10.5194/tc-2020-213
Preprint. Discussion started: 13 September 2020
c© Author(s) 2020. CC BY 4.0 License.



 

10 
 

utilizing scattering measurements on ice particle suspensions in a laboratory tank (Ghobrial et al., 2012, 

2013), was frustrated by uncontrolled ice growth and the absence of credible independent validation 

methods (Marko and Topham, 2017). The present work takes a two–step approach which begins by 

reviewing and further interpreting laboratory surrogate data originally reported by Marko and Topham 

(2015) as a basis for the subsequent step in which surrogate backscatter cross sections are transformed to 5 
the frazil environment and tested for consistency against field data. 

The laboratory work, discussed in Section 4.1, used backscattering measurements at four different 

acoustic frequencies to quantify the relationship between backscattered returns and the compositions of 

particle suspensions in terms of numbers of individual particles and their physical and dimensional 

properties. This critical step focused on establishing the accuracy of the weak effective sphere assumption 10 
for disk target suspensions, with k1ae being the principal scaling parameter. It allows us to establish the 

degrees of error attributable to the limitations of FEST, enabling linkages of individual particle acoustic 

cross sections to key particle and measurement parameters over a limited, “validated”, k1ae range. This 

relationship provides the core of a methodology for using sv measurements in the ice/water system to 

quantitatively characterize frazil populations. Section 4.2 progressively tests and refines this methodology 15 
on Peace River frazil data, utilizing the two- and three-channel processing approaches outlined in Section 

2 to provide credible estimates of accuracies currently attainable in quantifying frazil content in natural 

river environments. 

4.1 Laboratory measurements 

The availability of precision-cut hexagonal polystyrene disks of a common thickness, and with a range of 20 
relevant diameters and effective radii allowed, Marko and Topham (2015) to calibrate mean individual 

cross sections in populations of identical surrogate targets with dimensions approximately duplicating 

those of circular disk-shaped frazil particles. Their results are briefly outlined, specifically, with respect to 

their relevance in supporting development of an equivalently well-founded relationship applicable to 

measurements in the lower portion of the k1ae range associated with typical river frazil measurements. 25 
Readers are referred to the original publication for fuller descriptions of methodology and less 

immediately relevant results.   

Complications arose from polystyrene’s major shortcoming as a frazil surrogate, which was that its 

characteristic shear wave speed is exceeded by the speed of sound in the host fluid (brine).  This enables 

polystyrene targets to sustain surface waves which are not accommodated by the Faran elastic sphere 30 
model, thereby introducing resonant transmission and scattering anomalies (Hay and Schaafsma,1989; 

Hefner and Marston, 2000, 2001) in polystyrene sphere and disk measurements.  

Table 2.  Polystyrene disk properties. 

Width   (w) 

mm.

Thickness   

(t) mm.

Aspect Ratio 

(w/t)

Volume 

mm
3

ae                  

mm.

0.38 0.125 3.05 0.016 0.155

0.5 0.125 4.06 0.028 0.188

0.81 0.125 6.5 0.072 0.258

1 0.125 7.92 0.106 0.294

1.6 0.125 12.8 0.277 0.405

2.39 0.125 19.1 0.617 0.528

3.18 0.125 25.4 1.091 0.639
6.35 0.125 50.8 4.365 1.014
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The material properties of ice and freshwater preclude appearances of trapped surface waves in river 

frazil suspensions.  Nevertheless, this phenomenon significantly affected development of methods for 

quantitatively interpreting frazil scattering data through its impacts on laboratory polystyrene in brine 

verifications. Specifically, avoidance of anomalies similar to those previously reported (Hay and 

Schaafsma, 1989; Hefner and Marston, 2000, 2001) required restricting laboratory measurements to 5 
situations where k1ae ≤ 0.58. This restriction limited applications to, roughly, the lower half of the k1ae 

range characteristic of natural frazil particle populations as typically studied at acoustic frequencies 

between 0.1 and 1.0 MHz. Compensating for this limitation in the following Section requires use of actual 

frazil field data but draws, critically, upon the validated portion of the laboratory results.  

Those data were obtained from backscattering measurements made near-simultaneously at four different 10 
frequencies (125 kHz, 200 kHz, 455 kHz and 769 kHz) in a nearly cubic tank containing approximately 1 

m3 of brine titrated to assure neutral buoyancy for eight tested  polystyrene (ρ = 1056 kgm-3) disk species 

(Table 2)  and a single species of  microbead polystyrene spheres.  The spheres were characterized by 

radius values, 0.295 mm, such that the volumes of the spheres closely matched those of  the 1mm wide 

(effectively, the disk diameter) hexagonal disks: allowing direct testing of the effective sphere assumption 15 
as a function of acoustic frequency. This arrangement provided relatively stable, neutrally buoyant, 

suspensions with hourly concentration decay rates (due to settling and surface capture) low enough 

(between 5% and 8%) to allow averaging over 20 to 40 minute measurement intervals. The acoustic 

measurements utilized an ASL Environmental Acoustic Zooplankton Fish Profiler (AZFP) which was an 

updated, more efficient, version of the instrument utilized in the field studies discussed below.   20 

To facilitate cross section estimates, two types of disk measurements were made: single species 

suspensions of progressively increased concentrations of identical particles; and mixed species tests.  The 

procedures followed in these two cases differed in that single species concentrations were determined, as 

in the case of the microbead spheres, by suction sampling immediately before and after acoustic 

measurements, whilst, for practical reasons, mixture compositions were calculated from the weights of 25 
each added species, with each suspensions left undisturbed after an initial stirring.  The results of single 

species tests for both disks and microbeads are shown in Figure 4 as normalized backscatter cross sections 

plotted vs. k1ae.   

The microbead measurements provided an overall check on the experimental procedure and reference 

points for disk measurements. Comparisons with FEST calculations supported calibrations based upon 30 
polystyrene shear and longitudinal wave speeds of 1100 ms-1 and 2380 ms-1, respectively, chosen to 

optimally match measured and theoretical cross sections. These speeds differed only by 4% and 2%, 

respectively, from corresponding speeds calculated by Hay and Schaafsma (1989) from published elastic 

constants.  The agreement achieved at the three highest frequencies, evident in the diamond–shaped data 

points, confirmed the basic reliability of the measurement technique and the applicability of FEST 35 
relationship with its predicted sharp local minimum at, k1a = 0.87. Differences between the theoretical 

curve and values measured at the lowest, 125 kHz, frequency, denoted by the open diamond marker, were 

unexpected, given FEST robustness at low values of k1a. These differences were suggestive of systematic 

measurement errors at 125 kHz.  It was notable that the k1a values in the microbead measurements were 

well below the k1a ≈ 1 threshold identified by Hay and Schaafsma, (1989) for problematic surface wave 40 
resonances in polystyrene spheres.   

All estimates of backscattering cross sections were limited to sv data showing the linear dependences upon 

concentration anticipated in Eq. 1.  Linearity was restricted by discontinuities in slope for both disk and 

microbead species, marking the limit for the valid independent scattering assumption at a volume 

concentration of 0.07% identified by Marko and Topham (2015). 45 
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Figure 4.  Summary of single species polystyrene disk and microbead normalized cross section results vs. 

k1ae.  Disks and microbeads are denoted by circles and diamonds, respectively while; open markers 

correspond to data acquired at 125 kHz.  5 

Results of measurements on the hexagonal disks characterized in Table 2  included in Fig. 4 are restricted 

to values of k1ae < 0.58 to preclude surface wave generation. The 125 kHz results, including the 

microbeads, are denoted by open symbols and can be seen to be systematically elevated above the 

theoretical curve. This positioning is, again, in conflict with expectations that deviations from FEST curve 

are negligible at very low k1ae values and suggests that all 125 kHz data points shared a common 10 
measurement error.  The remaining 200 kHz, 455 kHz and 769 kHz disk results (solid symbols) follow 

the theory but appeared to fall slightly below the corresponding curve beginning at k1ae = 0.4.  

A second important part of the laboratory work was the mixed species testing which was designed to 

further quantify the independent scattering assumption in terms of the additivity of scattering 

contributions from multiple individual target species. Inadvertently, these tests also provided definitive 15 
evidence for the systematic overestimation of single species 125 kHz cross sections. Mixture acoustic 

results were compared against two different expectations: firstly, from the sum of individual contributions 

as determined from the individual target backscattering coefficients measured in single species testing, 

and secondly, relative to a similar sum of contributions calculated using FEST theoretical cross sections.  

The results fell into two groups distinguished by the response of the 125 kHz data relative to the 20 
alternative sets of expectations.  For mixtures containing 0.38, 0.5, 0.8 and 1 mm width disks, and total 

fractional volumes rising progressively from 0.05 to 0.07, expectations based upon the single species 

measurements strongly overestimated mixture scattering, whereas FEST-based results, with the exception 

of mixture 1, achieved close agreement. This result mirrored the anomalously high 125 kHz scattering 

levels identified in the single species tests depicted in Fig. 4. Observations later revealed long-lived 25 
turbulence structures introduced by the manual suction sampling, as the most likely source of these 

inconsistencies (see Marko and Topham (2015) for a fuller discussion of these errors).  For mixtures with 

higher concentrations containing a small proportion of 1.6 mm particles, the overall concentrations rose to 

0.15, considerably exceeding the non-linearity threshold of 0.06 obtained from the single species tests. 
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Primary interests in the present work are in the single species tests of the equal volume microbeads and 1 

mm disks. These tests play a central role in the transfer of the measured backscatter cross sections into the 

natural frazil environment.   The difference between the two cross section measurements can be used to 

eliminate the effects of measurement errors common to both target types such as cross overestimation at 

125 kHz and transducer calibration uncertainties.  When combined with allowances for the effects of 5 
neutral buoyancy, the differencing step facilitates the separation of the higher order terms of the disk 

response which is essential for transferring laboratory cross section information into the frazil 

environment.  

Table 3.  Comparisons between FEST and measured microbead and 1mm disk cross sections. 

Frequency 

kHz
k1ae

sbs/pa
2
 Measured  

microbead

sbs/pae
2
 Measured 

1mm disk

sbs/pa
2                 

Faran theory  

microbead

Difference 

microbead-disk

125 0.149 3.39E-06 3.21E-06 2.21E-06 1.82E-07

200 0.238 1.36E-05 1.18E-05 1.33E-05 1.88E-06

455 0.542 1.75E-04 1.02E-04 1.74E-04 7.29E-05  10 

In summary, a very limited reworking of earlier work has identified abundant laboratory evidence that 

acoustic backscattering by polystyrene disk suspensions can be closely approximated for k1ae values < 

0.58 in terms of scattering by volume equivalent spheres. Overestimation at the upper end of the 

allowable k1ae range was estimated to be on the order of 60% (2 dB). No correlations with disk aspect 

ratio were detectable within this range. The upper bound on k1ae was solely an artifact of the properties of 15 
the utilized surrogate material and host fluid: imposing no constraints on the accessibility of cross section 

information in the restricted k1ae range by other methods. Within the laboratory-validated k1ae range, a 

volume concentration limit of about 0.07% was established to avoid the breakdown of the independent 

scattering assumption at higher concentrations.  This limitation also appeared to apply closely in mixtures 

of disk species, implying the existence of similar limits on frazil measurements.  20 

4.2 Verification by Field Data. 

Section 4.1 offers strong evidence that FEST quantitatively represents backscattering by polystyrene disk 

suspensions in terms of effective spheres when k1ae values are less than 0.58 and volume concentrations 

do not exceed 0.07%.  The limitation on k1ae was specific to the polystyrene/brine system and its 

capability to support surface wave generation. Such waves, although excluded from FEST, introduce 25 
discontinuities into the acoustic results at above-threshold k1ae values.  No similar limitations were 

anticipated in frazil measurements.  Moreover, the results of Section 3 showed that, in the long 

wavelength Rayleigh limit, scattering by thin disks suspended in freshwater can be closely represented in 

terms of the effective sphere concept and spherical scattering theory.  At the k1ae = 0.58 limit of 

laboratory validations, however, polystyrene disk cross-sections were roughly 2 dB below those measured 30 
for spherical particles of equal volume. This change was attributed to differences between the higher 

order terms (in k1ae) of spherical scattering theory and their equivalents for disk-shaped targets.  

These differences are explored below by applications of two complementary approaches to data acquired 

in the same Peace River field program which provided the basis for the original Marko et al. (2015) frazil 

analyses.  The first approach, described in 4.2.1, involves direct applications of the strong effective sphere 35 
assumption embodied in FEST. It evaluates the consistency of frazil fractional volumes estimated using 

different combinations of acoustic frequencies. The weak equivalent sphere assumption is invoked in 

Section 4.2.2 to adapt and apply laboratory polystyrene disk results to the frazil environment. This work 

establishes the extent to which the assumed k1ae dependences of frazil disk cross sections are compatible 
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with the foregoing sensitivity results and the full body of multifrequency acoustic field data. In both 

cases, the accuracies of frazil characterization, particularly in terms of fractional volume, require transfers 

of understandings between two different target and host fluid systems. The details of this process and, 

specifically, its implications for the accuracies of multifrequency frazil fractional volume estimates are 

discussed. All results draw upon the flexibility and redundancy offered by multifrequency measurements. 5 

Field measurements utilized a four frequency Shallow Water Ice Profiling Sonar (SWIPS) unit 

(manufactured by ASL Environmental Sciences Inc.) operating at 125 kHz, 235 kHz, 455 kHz and 774 

kHz. The transducers for three channels (channels 1 (125 kHz), 3 (455 kHz) and 4 (774 kHz)) were 

mounted in a common moulded head and integrated into a pressure case separated by 30 cm from an 

isolated 235 kHz (channel 2) transducer. All instruments, including an ADCP (Acoustic Doppler Current 10 
Profiler) were mounted in a weighted instrument package deployed on the riverbed about 25 m from the 

riverbank in 5 to 6 m water depths.  Electric heating discouraged acoustic beam blockage by anchor ice 

accretion.  

Frazil characterization parameters were extracted with customized RUNSWIPS software based upon the 

strong scattering assumption and FEST. This software included capbilities for limited testing of 15 
deviations from a fully FEST-based treatment of backscattering using the multiple two-channel 

processing procedures outlined in Section 2. In principle, the extractions could have utilized four different 

combinations of three frequencies and six combinations of two frequencies. However, problematic 

instabilities in the 235 kHz channel 2 output (likely from debris accumulation) precluded its use. This 

difficulty limited analyses to data acquired with three combinations of two channels (channels 3,1; 4,1 20 
and 4,3) and a single triplet of frequencies (4,3,1) (Marko et al., 2015, 2017; Marko  and Topham 

(companion paper), 2020). 

4.2.1 Sensitivities of FEST-based interpretations of frazil data to k1ae  

Analyses were carried on 2-minute averaged sv data acquired from levels 2.6 m above the SWIPS 

instrument during a representative 8-hour Mar. 20 Peace River freezing interval selected to be associated 25 
with a stable and representative body of frazil-related acoustic returns. This work quantified the 

sensitivities of frazil characterizations to measurements which included k1ae values exceeding the 0.58 

limit of laboratory validations. These comparisons assumed full FEST applicability, temporarily ignoring 

the small overestimates of cross sections at the upper end of the laboratory-validated k1ae e range. Focus 

was given, to the sensitivities of F(t) and other outputs to the k1ae parameter. Evidence was sought for 30 
major inconsistencies potentially introduced by FEST in applications to non-spherical particles. Similar 

analyses of a Mar. 22 interval yielded nearly identical results which are not presented here.  

Initial analysis drew upon results obtained from data acquired simultaneously in two different frequency 

channels, enabling direct comparisons of measurements made in different ranges of the k1ae parameter. 

Time series of F*, N* and a* (two-channel- equivalents of F, N. b and am) for the three available channel 35 
pairings: (3,1), (4,1) and ((4,3) were calculated for each averaging interval. Plots of F*(t) in Fig. 5a-c 

showed very similar time dependences. Initial quantitative comparisons focused on results contemporary 

with peak fractional volumes as estimated at times centered around 100 minutes into the interval. Key 

results and relevant parameters deduced for this period are summarized in the first three rows of Table 4 

for all channel pairings. The entries in the first column denote pair composition and the relevant branch 40 
(Table 1) of the corresponding G(i,j) curve required for a valid set of frazil parameters.  The subsequent 

columns in each row present outputs for a*, F*, and N*, together with ratios of peak F* values relative to 

the mean of the three alternative two-channel estimates. The final two columns in the Table list values of 

k1a* corresponding to the lowest and highest acoustic frequency associated with each extraction. The 
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final Table row includes the means of the three two-channel results. The full mean two-channel F*(t) time 

series is compared in Fig. 5d with a curve representing the outputs of three-channel, (1,3,4)b=0, 

extractions. The latter comparison reinforces the conclusion, cited in Section 2, that such extractions, 

consequences of failed attempts to identify true lognormal size distributions, effectively represent the 

averages of all available two-channel extraction estimates.  5 

Overall, the estimates of a* from the three different pairings of channel data are grouped closely around a 

mean value of 0.36 mm. More significant deviations from the mean are apparent in the N* results and in 

the, closely related, fractional volume estimates.  From the compilation in Table 4, differences between 

peak F*(t) values estimated using, alternatively, the (3,1) and (4,3) inputs are approximately 10%. This 

agreement was surprisingly good given that, on the basis of the k1ae limits listed in the last two columns 10 
of Table 4,  approximately 75% and 25% of the, k1ae ranges spanned by, respectively, the (3,1) and (4,3) 

measurements  were within the validated portion of the k1ae regime. In other words, measurements in the 

two pairs of channels were, respectively, well- and poorly-validated. On the other hand, the factor of 1.55 

discrepancy between the mean of these two estimates and those obtained with the (4,1) pair was 

worrisome. While inconsequential relative to the nearly two orders of magnitude differences separating 15 
modelled and measured frazil contents (Marko et al.,2015), the observed difference was suggestive of 

unexplained channel sensitivities. Given the character and generally high quality of the available data, the 

possible presence of such sensitivities justified further analyses to identify their origins and, more 

generally, to further enhance the accuracy of multi-frequency profiling. . 

Table 4. Results of three different two-channel extractions applied to sv data at the peaks of the F*(t) and  20 
F(t) curves plotted in Fig. 9a-d.  

Channels Peak a* Peak F*(t) Peak N*(t) F*(t)/*FMean 

Lowest 

utilized value 

of k1a*e or 

k1am 

Highest 

utilized value 

of k1a*e or 

k1am 

3,1 (lower) 0.404 3.51 x 10-5 1.27 x 105 0.888 0.227 0.826 

4,3 (upper) 0.363 3.08 x 10-5 1.54 x 105 0.781 0.770 1.309 

4,1 (upper) 0.350 5.29 x 10-5 2.96 x 105 1.331 0.196 1.217 

Means 0.373 3.96 x 10-5 1.92 x 105 1.000 0.212 1.310 

 

One obvious objective for such analyses would be to assess the impacts of the, roughly, 2 dB differences 

between FEST- and laboratory measured-cross sections at the upper end of the validated k1ae regime.  It 

was recognized that this and other analytical efforts were hindered by the fact that sV data inputs 25 
consistently failed to satisfy the existence criteria identified in Section 2 for obtaining three-frequency 

solutions based upon the FEST cross section relationship.  Consequently, at least initial assessments had 

to be confined to two-frequency analyses with F* as the primary output. Ultimately, improvements in the 

utilized cross section relationship are needed to allow optimal fitting of three-channel sv data to produce 

realistic logarithmic effective radius distributions capable of raising levels of confidence in two-frequency 30 
produced F*(t) outputs. 

To assess the likelihood of such improvements, it is instructive to examine the effects of changes in b, the 

width of the particle size distribution, on fractional volumes and mean effective radii extracted with the 

three-channel approach. This effort involved runs of the RUNSWIPS processing algorithm for 

progressively larger, fixed, values of b on sV input data corresponding to both the peak and flat sections of 35 
the Mar. 20 F*(t) curves plotted in Fig. 5a-c.  Very similar values of am and F/Fb=0 were obtained 
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throughout the frazil interval. Values of these quantities, plotted in Fig. 6a, corresponding to the peak 

portions of the test interval, show am decreasing and F/Fb=0 rising smoothly from unity as b increases 

from zero. The third curve in the Figure depicts the sensitivities of corresponding q values as calculated 

from Eq. (4).  Effective radius distributions corresponding to the configurations: b = 0, am = 0.36 mm and 

b = 0.18, am = 0.28 mm, compatible with these curves, are included in Fig. 6b as representative of, 5 
respectively, uniformly-sized and lognormal frazil distributions which differ in fractional volume by 

roughly 30%.The lognormal parameters b and am in the latter case are, roughly, compatible with recently 

reported field-estimates (McFarlane et al., 2017), of equivalent frazil disk diameter distributions, 

assuming the 15:1 disk diameter to thickness ratio suggested by flume data (Clark and Doering, 

2006). The factor of two elevation in the q values for the selected lognormal parameter configuration 10 
relative to the b = 0 distribution is within the range of uncertainties introduced by the utilized FEST cross 

section relationship.  These results support the conclusion that the absence of optimal three-channel 

solutions for non-zero b values was a likely consequence of small errors in the assumed FEST cross 

section relationship. In principle, this absence can be addressed by improving the cross section 

relationship and, possibly, by increasing the accuracies of sV measurements. 15 

The data points in Fig. 6a were derived from limited numbers of measurements made in the (Marko et al., 

2015) study during a highly dynamic January 14 interval. The underlying sV data, in this case, were 

distinguished by being compatible with the existence criteria identified in Section 2 for three-channel 

solutions. The extracted results were indicative of relatively low b values and comparatively large mean 

effective radii. The accompanying fractional volume estimates can be seen to have been scaled up from 20 
their corresponding uniform-size values in accord with the curve developed from the Mar. 20 data. The 

close match of their absolute am values to the simulated increases is largely coincidental and indicative of 

the small range of variation in the entire Peace River frazil data set (Marko et al, 2015).  Nevertheless, 

these results further raise prospects for using improved representations of the scattering process  to 

narrow current extraction uncertainties beyond those inferred from two-channel analyzed results.  This 25 
work, described in Section 4.2.2, is focused upon expanding the validated range of the σBS(k1ae) cross 

section relationship. 
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Figure 5.  Comparisons of the March 20 frazil fractional volume as derived with the channel 

combinations: (a) (4,3);(b) (3,1);. (c) (4,1) and (d) comparison of means of three-channel results as 

derived with all channels (i.e. (4,3,1) assuming b =0) 
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Figure 6. a) Plots of mean effective radius, am , and q  as derived using three-channel (4,3,1) extraction a 

function of b ; and b) Plots of relative effective radius probability for:   =0, a*=0.36 mm; b = 0.18  and am 5 
= 0.26 mm .  

 

4.2.2 Frazil cross section validation at k1ae values above the laboratory-validated range 

The laboratory studies of scattering by polystyrene disks and spheres outlined in Section 4.1 showed disk 

backscattering cross sections departing measureably from  FEST expectations as k1ae values rose beyond 10 
0.4. These differences, attributed to higher order terms, were approximately, -2.4 dB at k1ae = 0.58, the 

limit of valid measurements on polystyrene disks.  While allowing frazil fractional volume estimates with, 

roughly, +/-50% accuracies in the lower half of the typical range of k1ae, variability, field data suggested 

significant limitations were introduced by full reliance on an elastic sphere model. Further advances 

require both additional transfers of limited laboratory verification results into the freshwater frazil 15 
environment and corresponding extensions to higher k1ae values. These steps required quantifying the role 

of higher order scattering contributions and their sensitivity to target shape.  

Work to that end was initiated with explorations of the general characteristics of the higher order terms in 

existing spherical target scattering models.  It was found to be convenient to represent normalized cross-

sections in the generalized format of Eq. 13, which assumes effective sphere scaling in which M and D 20 
and On respectively, represent monopole, dipole and higher order term contributions.  

  
 

. (13) 

The effect of the higher order terms is to reduce the Rayleigh scattering. (The negative sign of On is 

introduced in Eq. 13 to facilitate logarithmic presentation.) The long wavelength Rayleigh contribution 

(introduced in Eq. 10 of Section 3) can be written in the same format as:     

 
 

σ
BS

πae
2
 

Ry

1/2

=
 k1ae 

2

3 π
  M+D   

 

. (14) 

This allows the higher order terms to be isolated and expressed as:  25 

 
 

. (15) 
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The terms on the right hand side of Eq. (15) can be determined from routine backscatter cross section 

calculations which apply FEST to a neutral buoyancy polystyrene sphere in brine, and an ice sphere in 

freshwater. Additionally, to illustrate behaviour in the absence of shear forces, the Anderson (1950) 

model was applied to liquid spheres with bulk moduli and densities equal to those of ice, The normalized 

theoretical backscatter cross sections, σBS/pae
2, for each of these possibilities are plotted in Fig.7a as 5 

functions of k1ae.   

The most prominent features of the two elastic sphere cross section curves (A and B)  are the distinctive 

local minima in the vicinity of k1ae = 1, which vary dramatically in depth and width, reflecting differences 

in host fluid and target material properties. The critical parameter distinguishing the plotted curves was 

the ratio of shear wave speed in the target material to the speed of sound in the host fluid. For 10 
polystyrene/brine, characterized by the most pronounced minimum, this ratio is less than unity (which, as 

noted previously, restricted the applicability of laboratory data). In the ice/freshwater case the shear wave 

ratio exceeds unity, giving rise to a correspondingly less prominent curve minimum.  The shear-free 

“liquid ice” sphere curve, did not exhibit a minimum.  

The corresponding sums of higher order terms,  are plotted in Fig. 7b, where 15 
the ordinates of the ice and liquid ice sphere curves are shifted upwards by  multiplication by factors of 10 

and 100, respectively, to facilitate viewing individual curves.  The higher order terms are remarkably 

similar for all three sphere models and, to a large extent, obey simple power laws (bold solid lines), For 

the two elastic sphere models, these power laws extend beyond k1ae values associated with the peaks of 

the cross-section curves (denoted, in Fig.7b, by adjacent arrows).  Additional calculations (not shown) for 20 
ice spheres in neutral density suspensions showed the effects of density differences to be largely confined 

to the dipole terms, leaving higher order terms unaffected. 

Interpretation of multi-frequency frazil data rests critically on the laboratory cross section results reported 

in Section 4.1 for the matched volume, 0.295 mm radius, polystyrene spheres and 1mm wide hexagonal 

disks. These data provided a direct test of the effective sphere assumption. The matched volumes ensure 25 
the equality of corresponding monopole terms, and, since the neutral density of the suspensions 

eliminates dipolar contributions, comparisons of the two sets of scattering data give direct measures of 

higher order term differences.  Subtraction of this difference (Table 3, Section 4.1) from the matching 

Faran solutions then provides error-corrected backscatter cross sections for disks at k1ae values of 0.149, 

0.238 and 0.542, plotted in Fig. 7a.  Use of Eq. (15) with these data points then provides estimates of the 30 
higher order terms of the corrected disk cross sections, which also follow a simple power law, depicted by 

the dotted line in Fig.7b. Combined with Eq.13, this power law can represent the 1 mm polystyrene disk 

backscatter cross section relationship as denoted by the dotted line curve (D) in Fig. 7a.  
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Figure 7. (a) Backscattering cross section of relevant varieties of spherical and disk-shaped polystyrene 

and ice targets.  (b). Higher order terms extracted from these cross sections, as described in text. Origins 

of curves 2 and 3 are shifted by multiplication by factors of 10 and 100 for clarity purposes: Arrows 

denote the positions of corresponding peaks in (a).  5 

To apply these results to frazil ice disks, cross sections deduced from the polystyrene/brine measurements 

must be transformed into equivalent quantities in the ice/freshwater environment. The near equality of the 

slopes of polystyrene/brine and ice/water higher order terms Fig.7b, suggests the feasibility of replacing 

the sum of higher order terms in the FEST ice/freshwater solution by an appropriately-scaled multiple of 

the corresponding polystyrene disk sum. To confirm this equivalence, the transformation was first applied 10 
to the ice and polystyrene sphere solutions using power law approximations which, as indicated in Figure 

7b, remain valid for k1ae values approaching the peaks of corresponding cross section curves.  The 

polystyrene/brine Rayleigh components translate directly into ice/water equivalents upon insertion of 

appropriate material parameters. The higher order ice/freshwater terms represented by On are replaced by 

the polystyrene/brine power law after multiplication by a factor of 1.37 to align the frazil peak with the 15 
peak of the ice/freshwater sphere. The transformed curve, marked by the dotted line B is almost 

indistinguishable from the original sphere solution at below-peak k1ae values. 

To transform randomly oriented, neutrally buoyant, polystyrene disks, the Rayleigh solution is replaced 

by the equivalent oblate spheroid solution for randomly oriented ice disks (Section 3), together with 

higher order ice disk terms derived from the corresponding polystyrene disk power law after 20 
multiplication by same 1.37 factor applied to the spherical case. The original (A) and transformed (C) 

disk solutions are represented by the short dash-line curves in Fig. 8.  The peaks beyond the validation 

limits are a natural consequence of summing the Rayleigh 4th order power law and the power law 

approximation of the higher order terms. Although such peaks are observed in the original sphere model, 

in the absence of experimental confirmation, their presence in disk suspensions is speculative but not 25 
unexpected. The 2.4 dB difference between cross sections of equal volume polystyrene spheres and disks 

in neutral density brine (A) near the peak in Fig. 8 is attributed the higher order terms. This difference 

translates into a 1.4 dB difference in the frazil disk case (C); where random orientation reduces the 

negative dipolar contributions of buoyant disks.  

Transferring the validation limit on polystyrene disks to frazil applications is unavoidably subjective in 30 
the absence of a fixed relationship between “equivalent” k1ae values in the two measurement 
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environments.  Taking the peaks of the extrapolated disk curves as a reference, a linear transfer of k1ae 

values associated with the polystyrene/brine validation limit to the frazil disk curve places the equivalent 

frazil validation boundary near k1ae = 0.7.  For convenience, the transformed disk curve will henceforth 

be referred to as the “pseudo-frazil” backscatter cross section curve. The possible existence of a peak 

suggests that frazil disk cross sections may be relatively insensitive to small extensions beyond the 5 
validated region.   

 

 

 

 10 

 

 

 

 

 15 

 

 

 

 

Figure 8. Modifications of FEST cross section vs k1ae relationships to accommodate laboratory 20 
polystyrene disk in brine results and the scaled transfer of higher order dependences between polystyrene 

/brine and ice/freshwater systems. The short dashed curves, in each case, represent the best available 

estimates of the validated measurement regimes on disk shaped targets. In each case, arrows denote the 

confirmed upper bound of validated measurements.  

The data in Table 4 show field data being acquired at k1ae e values > 1.0, well outside the validated range. 25 
Moreover, the inferred relatively flat, or slightly down-trending shape of the frazil disk curve immediately 

beyond the validation limit, offers little guidance on cross sections in the higher k1ae regime.  

Consequently, additional information was required to realize even a coarse extension of the pseudo-frazil 

curve.  

Access to such information was available through additional utilization of the multi-frequency character 30 
of the Peace River field data with the aid of a simple “bootstrap” technique. This approach uses frazil 

population parameters, as derived within the validated region, to impose constraints allowing sv data, 

simultaneously acquired in still higher frequency channels, to provide estimates of σBS at k1ae values, 

which, because of the higher frequency, were outside of the validated regime.  These estimates serve a 

function similar to the laboratory experiments of Section 4.1, in which backscattering data acquired on 35 
suspensions of identical, well characterized, targets of known concentration, provided estimates of mean 

individual target cross sections. In this case, two-channel processing is used to derive values of N* and a* 
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from data acquired at the two frequencies compatible with k1ae values in the validated regime. The 

resulting value of N* is used in Eq. 16:  

  sV (νi)    = N*σBS(a*,νi)  
 

. (16) 

to estimate σBS at k1ae = k1a* with k1
‘representing a higher acoustic frequency associated with sv 

measurements outside of the validated regime. Similar extensions can be obtained from all unique 

pairings of channels within the validated k1ae regime. The acquired quantities, σBS(k1a*), are cross 5 
sections associated with a population of uniformly-sized frazil particles, characterized by an effective 

radius a*. Except, perhaps, for extremely broad distributions of particle sizes (b > 0.3) this procedure 

yields cross section estimates compatible with those derived from  laboratory measurements on single 

species sphere and disk populations.  In the absence of channel 2 in the Peace River data set,  the only 

feasible bootstrap option in our study employed two-channel extractions from channels 1 and 3 data, 10 
followed by use of Eq. (15), in conjunction with contemporary channel 4 sv data.  The Mar. 20 frazil 

interval, again, provided stable, smoothly changing, sV values, indicative of a set of relatively time 

independent a* values.  Given the restriction to three frequencies, bootstrap transfer of information was 

confined to a very small range of k1ae values compatible with stable sV values over typical, few minute-

long, averaging periods. In short, the FEST based analysis showed a narrow range of a* values to be 15 
characteristic of the entire data set: indicating that the k1ae range spanned by bootstrap outputs tends to be 

largely determined by strategic choices of channel numbers and frequencies. This is evident in Fig. 9a 

where the added estimates of normalized cross sections occupy a narrow range of k1ae near k1ae ≈ 1.2: 

falling, roughly, 2dB below expectations indicated by the FEST theoretical curve. Cross section points at 

the upper end of validated region, and as derived from the channel 4 bootstrap procedure are included in 20 
Fig. 9a in normalized form.  

The pseudo-frazil curve of Fig.8 has been extended in Fig.9a to include the “bootstrap”-derived cross 

section estimates by a simple polynomial, empirically adjusted such that the resulting channel sBS 

difference ratios G(i,j) enclose the corresponding sV ratios indicated by the field data. This requirement, 

graphically represented in Fig. 9b by shaded rectangles marking the maxima and minima of the respective 25 
sV ratios, ensures the existence of, at least, 2-frequency solutions for this data set. The range of validated 

2-frequency solutions is limited to values of a* below about 0.5 mm by the k1a* ≈ 1.3 limit associated 

with the bootstrap-generated points in Fig 9a.  
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Figure 9. (a) Extended pseudo-frazil normalized cross section (A), compared to FEST values as 

calculated for spherical ice particles (B). (b) Plots of viable G(i,j) ratios, the height of the shaded 

rectangles demarcate the ranges of compatible the ratios of sv values observed in corresponding 

constituent channels during the Mar. 20 interval. 

Within the limitations of available field data, the extended pseudo-frazil curve in Fig. 9a offers an initial 5 
step toward a reliable model for interpreting backscatter from natural frazil suspensions.  The principal 

differences between this model (A), and the FEST based relationship (B), are the 1-2 dB overestimates 

introduced in the latter case for k1ae values between 0.6 and 1.25. These differences, for typical Peace 

River frazil particle sizes, primarily impact upon channel 3 and channel 4 measurements and are likely 

sources of inconsistency in the two-channel FEST-processed F*(t) results listed in Table 4. Clearly, given 10 
the paucity of in-hand data currently available for comparisons, full replacement of the FEST cross 

section relationship and, ultimately, reliable extraction of all parameters descriptive of a lognormally 

distributed frazil population, must remain an aspirational objective: requiring additional acoustic 

measurements. On the other hand, as suggested in Section 4.2.1, limited cross section adjustments such as 

those effected by the pseudo-frazil curve, could have prospects for raising capabilities for estimating, at 15 
least, the critical fractional volume parameter to levels compatible with needs for supporting model 

refinements and understanding physical processes.  Some encouragement for this optimistic view was 

detected in the fact that a significant proportion of input data from the tested Mar. 20 interval satisfied 

solution existence criteria for pseudo-frazil-based three-frequency processing.  

To explore such possibilities, the data underlying the two-channel FEST-based results of Table 4 were 20 
reprocessed with the pseudo-frazil curve of Fig. 9a. The results, listed In Table 5, showed that pair to pair 

differences in estimates of a* tended to be compensated by corresponding, opposing sign, changes in N* 

which maintained frazil content close to a common level. This robustness of F* with respect to the 

utilized range k1ae values is, again, evidence of the fundamental role played by ice volume in determining 

the strength of acoustic scattering.  Importantly, the individual pair estimates of F* all fell within 15% of 25 
their mean value, considerably improving upon the 30% spread of the corresponding FEST-processed 

results of Table 4. The enhanced consistency increases confidence in the more refined measurement 

technique which also raised peak Mar. 20 F*(t) values about 30% above FEST-based estimates.  

Table 5.  Average channel differences from data points at elapsed times of 88, 94 and 110 min into mar. 

20 interval as processed with alternative combinations of two- channels and assuming cross sections 30 
given by the pseudo-frazil curve in Fig. 9a. 

Channels Peak a* F*(t) N*(t) F*/F*Mean 
Lowest utilized 

value of k1a*  

Highest utilized 

value of k1a*  

3,1 (lower) 0.359 4.84 x 10-05 7.49 x 105 1.040 0.584 0.732 

4,3 (upper) 0.372 5.12 x 10-05 7.16 x 105 1.100 0.758 1.290 

4,1 (upper) 0.388 4.00 x 10-05 5.03 x 105 0.860 0.476 1.346 

Mean 0.373 4.65 x 10-05 6.56 x 105 1.000 0.560 1.294 

 

The presence of significant scatter in the (4,1)-derived  F*(t) data (Fig, 5b) at times close to the peak in 

the  Mar. 20 frazil content record necessitated some efforts at quality control underlying analyses leading 

to  the results presented in Tables 4 and 5 These efforts limited extractions to just three 2 minute averaged 35 
points corresponding to times 88, 94, and 110 minutes after the start of studied frazil interval. All these 

points satisfied the criteria, outlined in Section 2, for extraction of optimal three-frequency frazil 

characterizations based upon, in this case, the extended pseudo-frazil cross section relationship. Similar 
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F*(t) values were obtained at all three points with each processing approach, in spite of the widths b of 

the corresponding lognormal distributions varying between 0.05 and 0.17, The individual ratios of the 

pseudo-frazil- to FEST-based  F*(t) estimates varied by less than 1% from an average values of 1.17. 

Focusing on data compatible with optimal three-channel pseudo-frazil-based extractions allowed more 

detailed and broader examination of F* sensitivities to the assumed cross section relationship. 5 
Specifically, alternative two-channel analyses methods were applied  to two small sets of data selected to 

be associated with contrasting  b and F* values: with each set comprised  of just two similar time series 

points. The first set, with mean values of b and F* of 0.029 and 2.0 x 10-5 respectively, from about 390 

minutes into the time series, provides a strong contrast with the second; selected from the peak region 

with values of b = 0.15 and F* = 4. x 10-5. The resulting FEST- and pseudo-frazil-based estimates of F* 10 
are listed in Table 6 as the mean estimates in each (b, F*) category after averaging all three two-channel 

pairing possibilities  

Table 6. Comparisons fractional volume results from two selected Mar. 20 2-minute averaging periods 

associated distinctly different values and processed, alternatively, with the pseudo-frazil and FEST cross 

section relationships. 15 

Processing b F*Mean 
F*/F*Mean 

Pair (3,1) 

F*/F*Mean 

Pair (4,3) 

F*/F* Mean    

Pair (4,1) 
a*Mean 

FEST        

Correction 

ratio 

pseudo-frazil 0.029 1.86 x 10-5 1.005 1.010 0.985 0.360 1.19 

“ 0.150 4.45 x 10-5 1.055 1.132 0.813 0.369 1.18 

FEST 0.029 1.56 x 10-5 0.870 0.762 1.368 0.369  

“ 0.150 3.76 x 10-5 0.906 0.821 1.273 0.370  

 

The values of b played no part in the analyses other than to test the extent to which the uniform particle 

assumption, intrinsic to the two-frequency approach, alters F* estimates. For the narrow distribution 

associated with b = 0.029, the two-frequency analysis provides a realistic description of the suspension, 

and the comparison between the two processing methods largely reflects the differences in the cross 20 
sections assumption. The low b pseudo-frazil analysis showed channel pair differences below 2%, 

suggestive of the absence of significant differences in the pseudo-frazil curve of Fig. 9a and the actual 

cross section relationship. Corresponding FEST results, with channel pair differences approaching 40%, 

were consistent with the presence of significant errors in the assumed cross section as discussed above.  

At the higher values of b, the effective radius output of pseudo-frazil analysis rose slightly, as did the 25 
accompanying channel pair differences:  consistent with the limitations of two-frequency analysis.  The 

FEST results, on the other hand, are more erratic, showing the largest channel pair differences at the 

lowest b value. 

Although the two samples chosen for analysis have very different particle distribution widths and mean 

volume concentrations, the values obtained with the pseudo-frazil processing exceeded FEST results by 30 
an almost constant ratio, in spite of the large differences in the consistency of corresponding individual 

channel pair estimates.  The resulting ratios of the two F* means, listed in the final column as “FEST 

correction ratios”, were almost identical to those associated with the data in Tables 4 and 5: again 

attesting to the internal consistency of the input data and interpretations 

These results, albeit deduced from a small set of samples, support adoption of the present pseudo-frazil 35 
cross section model as a basis for the more informative frazil characterizations available from three 

channel extractions. Accordingly, two-channel comparisons based upon this model were extended 
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without restriction to a cover the full durations of the Mar. 20 Interval.  These results along with an 

independent set of set of pseudo-frazil-based extractions are presented in Figs. 10a and 10b, respectively. 

The included data points encompass b values which decrease from a maximum of roughly 0.2 at the 

beginning of the frazil interval, falling close to a 0.06 minimum at the peak before rising again during the 

initial decay period. In both Figures, FEST two-channel means are represented by the 7 point weighted 5 
mean curve of Fig 5d.  Figure 10a compares the mean values of estimates derived from data collected by 

channel pairs (3,1), (4,3) and (4,1) subjected to, alternatively, FEST- and pseudo-frazil-based analyses. A 

companion set of exact 3-channel solutions is compared with the latter curve in Fig. 10b.  It is to be noted 

that the F*(t) and F(t)comparisons utilize different vertical scales for representations of, respectively, 

FEST- and pseudo-frazil-based results: specifically adjusted to maximize the visual correlation between 10 
the two time series.  

The scale adjustment factor of 1.2 of Fig. 14a for two-frequency processing matches results of Table 4 

and 5, together with the more selective data of Table 6. Any effects of particle distribution width are too 

small to be distinguished within the scatter of the data. The only discernable difference between the three-

channel results of Fig. 10b relative to Figure 10a was the presence of some evidence for a marginally 15 
larger scaling factor of 1.3. Statistically, the pseudo-frazil F*(t)) and F(t) results were essentially 

interchangeable. In summary, it appears that a simple scaling of FEST-based 2-channel analysis by a 

mean factor of about 1.25 largely reproduces F*(t) results obtained when the extended pseudo-frazil cross 

section relationship is used for two-channel processing. F(t) estimates are also feasible using the three-

channel processing methodology without additional scaling provided that a basic relationship linking 20 
cross sections to k1ae is available to allow he avaialble sV data to satisfy solution existence criteria.   

Confident and complete three-channel-derived descriptions of frazil populations in terms of volume 

particle number densities and lognormal distribution parameters, almost certainly require further field or 

laboratory measurements to extend and complete the currently interpolated section of the pseudo-frazil 

curve of Fig. 9a. Fractional volume estimates, on the other hand, are clearly currently obtainable from 25 
two-channel extractions based upon data acquired at three or more frequencies, and processed with either 

the pseudo-frazil cross section relationship, or FEST-based extractions upwardly scaled by a factor of 

1.25. In the latter case, it is convenient to take advantage of the effective equality, demonstrated in Fig.5d, 

between fractional volumes estimates as derived from the three-channel, (1,3,4)b=0, extractions and two-

channel estimates after averaging over all three possible pairings of measurement channels. In all cases, 30 
systematic uncertainties of +/- 30 %, normally associated with transducer calibrations, can be assumed to 

be built into otherwise unbiased, roughly +/15%, estimates of ice content.  
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Figure 10. Comparison of pseudo-frazil and FEST based processing: a) 2-channel pair means; b) FEST 2-5 
channel pair mean with 3-channel pseudo-frazil. The vertical scale of the pseudo-frazil data is adjusted to 

maximize the visual correlations.  

5. Summary and conclusions  

 

Building on basic theoretical concepts, new analyses of laboratory and field data assessed the accuracies 10 
currently attainable in characterizations of suspended frazil with multi-frequency acoustic backscattering 

techniques. Principal interests lay in quantifying the errors introduced into estimates of water column 

frazil content from use of the effective sphere approximation and an elastic sphere scattering theory to 

interpret acoustic data.  The approach examined the mathematical foundations of the utilized extraction 

procedures to clarify relationships between the two- and three-frequency-channel processing procedures 15 
used in earlier work. The results highlighted the sensitivity of the more detailed three-channel outputs to 

currently imperfect knowledge of theoretical backscatter cross sections and errors in sv measurements.  A 

Mar. 20, 2012 Peace River frazil interval provided a suitable data set for analysis and assessment. 

The validation procedures were critically anchored to earlier laboratory studies which established the 

quantitative accuracy of a spherical scattering model for frazil surrogate suspensions of polystyrene disks 20 
for k1ae parameters in the lower half of the range encountered in field measurements.  The 0.58 upper k1ae 

limit was imposed on the laboratory verifications by the properties of the surrogate material. At this limit, 

the utilized FEST (Faran Effective Sphere Theory) spherical scattering model over-estimated cross 

sections of disks by about 2 dB.  Initial evaluations of errors at larger k1ae values utilized comparisons of 

frazil fractional volume estimates derived with alternative pairings drawn from data collected in three 25 
functioning acoustic frequency channels. One of these pairings spanned almost the full laboratory-verified 

range, while the second and third pairings, encompassed the upper half and nearly the full entirety, 

respectively, of the field-encountered range. Agreement was achieved, to within, approximately, 10%, 

between estimates based upon, alternatively, the first and second of these pairings (corresponding, 

respectively, to the lower (verified) and upper (unverified) halves of the field data range). This result was 30 
taken as indicative of the absence of major errors in the utilized FEST-based approach. However, the, 

roughly, 50% larger  fractional volume estimates attained with the third measurement pair left open 

possibilities that measurement uncertainties could reach several tens of per cent. Consequently, additional 

work was undertaken to further reduce uncertainties in estimates of F*(t) and, eventually, to facilitate 

access to particle distribution statistics through extensions of the laboratory disk results to encompass a 35 
larger fraction of frazil field measurement conditions.   

To this end, higher order contributions to cross sections calculated from established spherical scattering 

models and equal volume spherical and disk-shaped frazil surrogates were merged and scaled to provide a 

validated k1ae range relevant to natural frazil environments.  This transformation produced a pseudo-frazil 

backscatter cross-section relationship which could be validated to k1ae values approaching 0.7. Bootstrap 40 
methods which combine two-channel extractions from the  two  lowest frequency channels  with sv data 

acquired in the highest frequency channel, provided  critical independent  cross section estimates in a 

narrow range near k1ae = 1.2.  When combined with the previously validated regime, the resulting 

https://doi.org/10.5194/tc-2020-213
Preprint. Discussion started: 13 September 2020
c© Author(s) 2020. CC BY 4.0 License.



 

27 
 

estimates allowed use of standard curve fitting techniques to produce an extended pseudo-frazil cross 

section curve as a credible, if still imperfect, alternative to the FEST relationship utilized in earlier two- 

and three-channel extractions. The modified relationship offered two immediate benefits.  Firstly, it 

brought all three different two-channel peak fractional volume estimates to within 10% of their mean 

value which was about 20% larger than the corresponding mean of the more erratic estimates obtained 5 
with FEST-based processing. Secondly, the altered cross section dependence on k1ae greatly increased the 

fraction of the two-minute-averaged time series sv data points satisfying requirements for valid three-

channel extraction. This change opened possibilities for more detailed extractions of additional 

parameters; potentially allowing full descriptions of frazil suspensions in terms of particles with 

lognormally distributed effective radii.  10 

The absence of a fourth frequency precluded fuller applications of the bootstrap extension process in the 

present study. Nevertheless, the results were sufficient to both demonstrate the utility of the extension 

technique and clearly established current capabilities for estimating frazil fractional volumes. In our view, 

the identified changes in the FEST σBS(k1ae) relationship were not sufficiently comprehensive to justify 

immediate replacement of the FEST-based automated RUNSWIPS processing algorithm. Such a step, 15 
while ultimately desirable, will require measurements at additional acoustic frequencies to obtain 

bootstrap cross section estimates in several other narrow ranges of the k1ae variable. One obvious option 

would be to add measurement capabilities at frequencies roughly in the middle of the gaps separating the 

three frequencies utilized in the present work. Data acquired at one such frequency, 235 kHz, were, in 

fact, acquired during the Peace River studies but were not of usable quality. A successful deployment at 20 
this frequency and in the vicinity of 600 kHz would contribute cross section estimates in three additional 

narrow k1ae ranges outside of the laboratory-validated regime. The additional channels would also allow 

multiple alternative modes of three-channel extraction: enabling direct comparisons of independent 

characterizations to further narrow the uncertainties in estimates of fractional volumes and other frazil 

population parameters.  25 

At present, however, the results strongly suggest that measures of fractional volumes to absolute 

accuracies approaching the +/-30% systematic limitation intrinsic to transducer calibrations are obtainable 

from FEST-based processing of multi-frequency data when used in conjunction a 1.25 multiplication 

factor. The quality of such estimates should be more than sufficient to resolve outstanding issues on the 

respective roles of frazil and anchor ice in river surface ice formation. One  of those issues, the impacts of 30 
in situ-grown anchor ice on frazil growth, first raised to explain the  Marko et al. (2015) resuIts, has been 

partially clarified by recent confirmations  (Kalke et al., 2015; Evans et al., 2017; McFarlane et al., 2017; 

Makkonen and Tikanmati, 2018) of significant anchor ice presence  in freezing rivers. Nevertheless the 

volumes of such ice, the circumstances governing its growth, and its connections to frazil ice content 

remain largely unquantified. The resulting uncertainties, which considerably inhibit effective modelling, 35 
are addressed in the following paper through analyses of SWIPS acoustic data acquired during early 

winter portions of the 2011-2012 Peace River study.  
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