
AUTHOR RESPONSES TO EDITOR COMMENTARY ON TUTTON AND WAY 

MANUSCRIPT 

 

Line 11: remove ‘in this study’ – it’s not necessary since the rest of the sentence is in the first 

person 

 

[T&W response] We thank the editor for these minor revisions and have removed ‘in this 

study’. 

 

Line 63-65: ‘The current generation of the SCLT-based snow thickness estimation relies most on 

light measurements but SCLT’s dual sensor configuration will enable future use of multivariate 

statistical techniques to improve snow estimation’ – could you define what aspect of ‘snow 

estimation’ – depth, water, temperature? 

 

[T&W response] We agree with this comment and have specified ‘snow-depth estimation’ 

for clarity. 

 

SUMMARY OF CHANGES: 

[1] Removed unnecessary wording from line 11 

[2] Specified type of snow estimation (depth) on line 64 

[3] Replaced Figure 1 with a new map that include latitudinal and longitudinal suffixes and 

included (a), (b), etc, notation for simple reference and adjusted caption considering this 

change 

[4] In Figure 2 changed text within the image from “Snow Pack” to “Snowpack” 

[5] Replaced “;” with “,” in the caption for Figure 3 for consistency with the rest of the 

captions 
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Abstract. The lack of spatially distributed snow depth measurements in natural environments is a challenge worldwide. These 

data gaps are of particular relevance in northern regions such as coastal Labrador where changes to snow conditions directly 

impact indigenous livelihoods, local vegetation, permafrost distribution and wildlife habitat. This problem is exacerbated by 

the lack of cost-efficient and reliable snow observation methods available to researchers studying cryosphere-vegetation 10 

interactions in remote regions. In this study, weWe propose a new method termed snow characterization with light and 

temperature (SCLT) for estimating snow depth using vertically arranged multivariate (light and temperature) data loggers. To 

test this new approach, six snow stakes outfitted with SCLT loggers were installed in forested and tundra ecotypes in Arctic 

and Subarctic Labrador. The results from one year of field measurement indicate that daily maximum light intensity (lux) at 

snow covered sensors is diminished by more than an order of magnitude compared to uncovered sensors. This contrast enables 15 

differentiation between snow coverage at different sensor heights and allows for robust determination of daily snow heights 

throughout the year. Further validation of SCLT and the inclusion of temperature determinants is needed to resolve ambiguities 

with thresholds for snow detection and to elucidate the impacts of snow density on retrieved light and temperature profiles. 

However, the results presented in this study suggest that the proposed technique represents a significant improvement over 

prior methods for snow depth characterization at remote field sites in terms of practicality, simplicity, and versatility. 20 

1 Introduction 

 Snow cover and snow depth are among the Global Climate Observing System’s (GCOS) essential climate variables 

(Bojinski et al., 2014) and are critical components of global and regional energy balances (Olsen et al., 2011; Pulliainen et al., 

2020). The global snow albedo effect influences all humans, but consequences of changing snow conditions for those living 

in cold climate and alpine regions are especially pronounced (Ford et al., 2019; Lemke et al., 2007). Accurate characterization 25 

of snow depth is important for hydroelectric operations, freshwater and land resource availability to communities and 

prediction of climate change impacts (Hovelsrud et al., 2011; Mortimer et al., 2020; Sturm et al., 2005;  Thackeray et al., 2019; 

Wolf et al., 2013). Changes to snow depth and snow cover duration in Arctic and alpine tundra caused by enhanced shrub and 

tree growth can result in warmer ground temperatures, permafrost thaw and further vegetation expansion (Callaghan et al., 

2011; Wilcox et al., 2019). Unlike rainfall, snowfall is hard to catch, melts differentially (Archer, 1998) and is structurally, 30 
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mechanically and thermally anisotropic (Leinss et al., 2016). Our ability to monitor in situ snow conditions has historically 

been limited to open areas near larger communities and airfields where large meteorological apparatus are established 

(Goodison, 2006). As such, standardized measurement of snow remains a challenge in remote regions where existing stations 

cannot represent the diversity of snow conditions across topography, vegetation and snow wind-scouring (Brown et al., 2012, 

2003; Derksen et al., 2014). 35 

 Satellite remote sensing platforms are unable to directly measure snow depth and thermal properties in most 

environments (Boelman et al., 2019; Kinar & Pomeroy, 2015; Sturm, 2015) and depend on a very limited network of surface 

validation sites located in open areas (Trujillo and Lehning, 2015). Further, acquisition, establishment and maintenance of 

stationary weather instrumentation used by government and industry services is costly outside of regional centres, and this 

infrastructure is not designed to represent forest conditions (Goodison, 2006). This leads to data-sparse areas at high latitudes 40 

and in mountainous regions, and spatially biased representation of snow characteristics in research and modelling which reduce 

our ability to predict impacts of climate change on snow and ground conditions (Domine et al., 2019; Pulliainen et al., 2020). 

Cost-efficient snow measurement also facilitates better representation of spatial variability of key snow characteristics such as 

snow water equivalent across a basin or region of interest. 

 To compensate for the lack of automated, spatio-temporal measurements, field researchers in ecological, hydrological 45 

and cryospheric domains have made use of low-cost methods such as vertically arranged temperature loggers (de Pablo et al., 

2017; Gilbert et al., 2017; Reusser and Zehe, 2011; Throop et al., 2012) and trail cameras with marked stakes (Bongio et al., 

2019; Dickerson‐Lange et al., 2017; Farinotti et al., 2010; Fortin et al., 2015). These options are relatively low-cost ($250 

CAD [trail camera] to $700 CAD [10 iButtons] per stake) (Table S1) but have clear disadvantages. For example, iButton 

temperature loggers can have a low precision (±0.5°C) and sampling frequency (4-h sampling rate for less than a year of data) 50 

(Lewkowicz, 2008), experience frequent clock slippage and require specific modifications due to imperfect waterproofing. 

Trail camera setups often require extensive manual processing, depend on weather conditions (interpretable images, camera 

battery life) and do not allow determination of other snow characteristics beyond snow heights (Farinotti et  al., 2010; 

Garvelmann et al., 2013).  

In this study, we present results from a novel low-cost technique for snow depth estimation that can be efficiently 55 

applied at remote field sites. With a similar per site cost (Table S1), the method alleviates some of the challenges associated 

with other low-cost methods while offering a direct method of estimating snow characteristics in natural conditions. Building 

on the practice of using temperature loggers (Danby and Hik, 2007; Lewkowicz, 2008), we propose the snow characterization 

with light and temperature (SCLT) technique which uses vertically arranged dual light & temperature data loggers together to 

produce reliable estimates of snow characteristics with minimal analysis across ecotones. The current generation of SCLT-60 

based snow thickness estimation relies most on light measurements but SCLT’s dual sensor configuration will enable future 

use of multivariate statistical techniques to improve snow depth estimation.. We tested the SCLT method for one year at six 

field sites located in forested and shrub-tundra locations in Subarctic and Arctic Labrador, north-eastern Canada. Our results 

show sufficient promise that we believe there is significant benefit to sharing first results with the broader snow science 
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community. Adoption of this method will facilitate a more prolific network of snow measurements in real-world conditions 65 

and will inform modelling and climate change adaptation measures while enhancing core understanding of cryospheric 

processes. 

2 Study Area 

 The snow characterization with light and temperature (SCLT) method was tested at six field sites located in Subarctic 

and Arctic Labrador (northeast Canada). Field sites were within regions governed or managed by the Nunatsiavut Government, 70 

NunatuKavut Community Council and/or Innu Nation. The overall region has a strong coastal-continental gradient in air 

temperature, with higher snowfall amounts and colder temperatures than similar western Canadian latitudes due to the 

Labrador Current (Banfield and Jacobs, 1998; Brown et al., 2012; Maxwell, 1981; Way et al., 2017). Mean annual air 

temperature ranges from around -8°C (Torngat Mountains Ecodistrict) to 2°C (L’Anse Amour Ecodistrict) and regional total 

precipitation ranges from 546 mm (Cape Chidley Ecodistrict) to 1248 mm (Mealy Mountain Ecodistrict) (Riley et al., 2013). 75 

On average, regional snow and ice cover is present from November to May (Brown et al., 2012); however, snow cover duration 

has rapidly declined in northern Labrador and climate models predict further reductions in snow cover duration in the future 

(Barrette et al., 2020; Brown et al., 2012). The six SCLT field testing sites (Table 1) cover a latitudinal range of 52.7°N to 

58.5°N and are mostly located in forested ecodistricts (high Boreal forest, low Subarctic forest and mid Subarctic forest) where 

the dominant vegetation types are Black Spruce, White Spruce, Balsam Fir and Eastern Larch (Roberts et al. 2006; Riley et 80 

al., 2013) (Fig. 1; Table 1). One site (BaseSnow) is located in low-Arctic shrub-tundra (Torngat Mountains Ecodistrict) where 

dominant upright shrub species are Alder and Dwarf birch (Riley et al., 2013). The forested sites (Amet11, Amet12, Amet17, 

Amet28 and Amet19) are at a lower latitude and receive at minimum 7.6 hours of daylight while the higher latitude shrub-

tundra site (BaseSnow) receives at minimum 6.3 hours of daylight (Bird and Hulstrom, 1981). 

 85 
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Table 1: Site specifications for the six SCLT sites including site name, latitude, longitude, elevation, ecotype and SCLT data collection 

period. 

Site ID Full site name Latitude 

(°N) 

Longitude (°E) Elevation (m) Vegetation 

ecotype 

SCLT data 

collection 

period 

Amet11 Mealy South 

Lower 

52.83 -60.10 265 Taiga forest 2018-09-13 to 

2019-07-24 

Amet12 Mealy South 

Upper 

52.79 -60.03 467 Taiga forest 2018-09-13 to 

2019-07-24 

Amet17 Goose Bay 

Upper 

53.30 -60.54 271 Boreal forest 2018-10-14 to 

2019-08-05 

Amet28 Aliant Tower 

Lower 

53.09 -61.80 390 Taiga forest 2018-09-03 to 

2019-08-12 

Amet29 Aliant Tower 

Upper 

53.11 -61.80 526 Taiga forest 2018-09-03 to 

2019-08-12 

BaseSnow Torngat 

Basecamp 

58.45 -62.80 3 Shrub tundra 2018-08-07 to 

2019-08-19 
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 90 

Figure 1: (a) Geographic distribution of light and temperature snow stake sites, with detailed topographic depictions of: (b) 

BaseSnow in Torngat Mountains National Park, (c) Amet17 close to the municipality of Happy Valley-Goose Bay (HVGB), (d) 

Amet28 and Amet29 along the Trans-Labrador Highway between Churchill Falls and HVGB, and (e) Amet11 and Amet12 along 

the Trans-Labrador Highway south-east of HVGB.Geographic distribution of light and temperature snow stake sites (left) with 

detailed topographic depictions of each site (right). 95 
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3 Methods 

 3.1 Theoretical Approach 

 The snow characterization with light and temperature (SCLT) method is based on prior research demonstrating that 

light transmission is inhibited by snow cover, and that overlying snow layer characteristics impact the magnitude and rate of  

light transmission through the snowpack (Fig. 2) (Libois et al., 2013; Perovich, 2007). The SCLT method is an evolution of a 100 

low-cost method, first described by Danby and Hik (2007) and Lewkowicz (2008), that uses vertically arranged temperature 

measurements and diurnal temperature fluctuations to estimate the date of snow cover at a given height (Lewkowicz, 2008). 

SCLT uses simultaneous measurements of light intensity and temperature together to characterize snowpack characteristics. 
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Figure 2: Conceptual diagram of the snow characterization with light and temperature (SCLT) method as implemented in this study. 

It is hypothesized that increases in snow depth will lead to sudden drops in light intensity measured by data loggers due to scattering 

and reflection in the snowpack (Perovich, 2007). A snow-covered logger is assumed to have mean values which are lower than 

ambient light intensity while temperature is assumed to remain at or just below freezing. Increased snow depth is assumed to result 110 
in less light penetration and decreasing diurnal temperature variation at lower logger heights. Impacts of snow aging and densit y 

variations are expected to impact these processes but are not explored in the present analysis. 

3.2 Field Implementation of SCLT method 

 Wooden stakes (1.8 m) were outfitted with vertically arranged HOBO MX2202 Pendant Wireless Temperature/Light 

Data Loggers (Onset Computer Corporation, 2020) anchored to 1.0 m metal poles driven into the ground (Table S1). Loggers 115 

were positioned at heights of 10, 20, 30, 40, 50, 60, 80, 100, 120 and 160 cm above the ground surface and thus characterize 

near-surface snow layers at a higher resolution than upper layers (Fig. 2; Fig. 3). The specific heights used for loggers’ positions 

were set to maintain continuity with prior snow estimates made at these sites with iButton techniques (e.g. Way and 

Lewkowicz, 2018) but other configurations (e.g. 10 cm intervals) may be preferred for other non-permafrost applications. 

Visible light intensity and temperature was recorded at intervals of 2 hours (even intervals) and data was downloaded in the 120 
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field via the HOBOmobile app (Onset, 2017). At each site, ground surface temperature, ground temperature (approximately 1 

m depth) and air temperature were also collected following Way and Lewkowicz (2018). Initial testing of the SCLT method 

covered the period of September 2018 to August 2019. 

 

 125 
Figure 3: Field photos of all SCLT measurement sites for 2018-2019 and (g) a close up of logger installation onto stake. These 

include: (a) Amet11,; (b) Amet12,; (c) Amet17,; (d) Amet28,; (e) Amet29, ; and (f) BaseSnow. 

3.3 Data Processing and Analysis 

 We calculated SCLT-derived snow surface heights using SCLT with three unique but conceptually similar 

approaches. All analyses assume that snow cover at a given height occurs when daily maximum light intensity or daily 130 

temperature standard deviation drops below an empirical threshold. The first approach applied changepoint analysis to raw 

light intensity measurements with the assumption that sudden changes in light intensity recorded at a logger are indicative o f 

complete or partial snow coverage. The position of changepoint segments was determined using the Pruned Exact Linear Time 

(PELT) test method, a cost minimisation function as described by Killick et al. (2011), using a asymptotic penalty of 0.1 

(resulting in 90% confidence) (Killick et al, 2011). By removing non-optimal solution paths, this method provides moderate 135 
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sensitivity (Aminikhanghahi and Cook, 2017) and fast processing time (Beaulieu et al., 2012; Wambui et al., 2015). A logger 

is deemed snow covered if a drop in light intensity causes changepoint segments to fall below a threshold derived empirically.  

Snow cover thresholds were defined as the minimum of the daily maximum light intensities during no-snow 

conditions at a data logger. No-snow conditions were considered days where the daily maximum temperature recorded at a 

given logger was above 0.5°C. This approach resulted in thresholds and ranges of daily maximum light intensities that varied 140 

from logger-to-logger (Fig. 4; Fig. S1). Application of changepoint analysis with the empirical thresholds enabled detection 

of stepwise increases (or decreases) in snow surface heights relative to a logger’s position (Fig. 5). Estimated snow depth was 

floored to the closest logger height which, when using raw data, resulted in uncertainties of ± 10 cm at lower positions and up 

to ± 40 cm for the top position. 

The second approach applied to SCLT data uses similar logic as the first method but takes advantage of the high 145 

correlation between loggers at different heights through interpolation (Table S2). Daily maximum light intensity data was 

interpolated through time and vertical height using a modified thin plate spline interpolation designed for spatial processes 

from the fields R package (Nychka et al., 2017). Mean Absolute Error (MAE) of daily maximum interpolations ranged from 

0.089 - 0.398 lux (logarithmic) for light and 0.099 - 2.01°C for temperature (Table S2). Snow cover was estimated from 

interpolated SCLT data with two different techniques: (1) standard changepoint analysis (PELT method, asymptotic penalty 150 

of 10%) using the mean threshold using pooled data for all loggers at a given stake; and (2) using the minimum, mean and 

maximum of the empirical snow cover thresholds from all loggers across a stake (contour method) (Fig. S1). 

A third approach based entirely on temperature (Fig. S2) was used for comparison with the light intensity-based 

methods presented above. Estimation of snow depth with only temperature data is widespread in the ecological and permafrost 

literature and relies on measuring attenuation of diurnal variability in the snowpack (Danby and Hik, 2007; Lewkowicz, 2008). 155 

We apply changepoint analysis (PELT method, asymptotic penalty of 10%) to daily temperature standard deviations measured 

at each logger using the minimum standard deviation measured during no snow conditions (Tmax > 0.5°C) for each height as 



12 

 

an empirical threshold. A second condition was added where minimum temperature on a given day must be less than or equal 

to 0.5°C for snow cover to be present. 

 160 
Figure 4: Violin plot (rotated kernel density) showing the probability density and distribution of daily maximum light intensities 

(logarithmic scale) when the daily maximum temperature is above 0.5°C at: (a) Amet11, (b) Amet12, (c) Amet17, (d) Amet28, (e)  

Amet29 and (f) BaseSnow. Minimum values were used as the individual logger thresholds for the changepoint analysis and pooled 

thresholds were used for the range of thresholds used in the interpolated analysis. 
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 165 
Figure 5: Changepoint analysis applied to (a) 20, (b) 40, (c) 60 and (d) 100 cm height loggers along Amet11. The red line sho ws 

changepoint segment means and the blue line shows the no-snow light intensity threshold for each logger. Snow cover occurs at a 

given logger when the changepoint segment drops below the no-snow threshold. 

4 Results 

4.1 Estimating snow depth using lux measurements 170 

 We used the SCLT method to estimate snow depth through the winter for 2018-2019 at six remote sites across 

Labrador. The first analysis method derives the snow depth using a changepoint analysis of the raw daily aggregates and the 

second uses interpolated light intensity data. A third method is entirely based on temperature and is presented for a comparison 

to data analysis methods used in prior studies.  
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4.2 Changepoint analysis with raw light intensity measurements 175 

 At forested sites (Amet11, Amet12, Amet17, Amet28, Amet29), snow accumulated stepwise beginning in mid-

October with a maximum depth reached between March and April followed by rapid snow melt in early-to-mid May (Fig. 6). 

At the shrub-tundra site (BaseSnow), snow cover was generally thin over much of the winter with smaller periods of 

accumulation in the late-fall and early-winter. At BaseSnow, maximum snow thickness was reached in mid-March to mid-

April and a complete melt occurred by early-May. Across all sites the snow cover duration ranged from 174 days (BaseSnow) 180 

to 229 days (Amet12) with an average duration of 215 days (Table 2). Mean January snow depth was also lowest at BaseSnow 

(~11 cm) and highest at Amet12 (~103 cm). In 2018-2019, all SCLT sites except for BaseSnow had a snowpack taller than the 

uppermost data logger (160 cm; 120 cm at Amet11 due to a logger failure) for anywhere between 8 days (Amet28) to 84 days 

(Amet11) (Table 2).  

 185 

 

Figure 6: Snow depth over 2018-2019 derived using changepoint analysis of raw lux values from loggers at each SCLT measurement 

site including: (a) Amet11, (b) Amet12, (c) Amet17, (d) Amet28, (e) Amet29 and (f) BaseSnow. Top logger positions ranged from 120 

cm (Amet11 and BaseSnow) to 160 cm (Amet12, Amet17, Amet28, Amet29) and cannot detect snow depths above this height. 

Table 2: Snow cover duration, maximum snow depth, duration at maximum depth and mean January snow depth for each SCLT 190 
site for 2018-2019 using the changepoint method with raw lux values. 

Site Snow cover duration Maximum snow depth Duration at max depth Mean January snow depth 
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Amet11 212 days > 120 cm 84 days 87.1 cm 

Amet12 229 days > 160 cm 80 days 103.2 cm 

Amet17 228 days > 160 cm 81 days 100.6 cm 

Amet28 220 days > 160 cm 8 days 101.3 cm 

Amet29 226 days > 160 cm 27 days 98.7 cm 

BaseSnow 174 days 40 cm 9 days 10.6 cm 

4.3 Snow depth estimation with interpolated light intensity measurements 

 Light intensity was interpolated through time and height and two analysis techniques were applied to the interpolated 

data (Fig. 7). The first, which used changepoint analysis, accumulated snow from late-October to late-January for Amet11, 

Amet12 and Amet17 with snow cover above the top logger (greater than 120cm for Amet11 and 160cm for Amet12 and 195 

Amet17) until spring snowmelt in late-April to early-May. With the interpolated changepoint method, Amet28 accumulated 

snow until April when it reached a maximum snow depth of 133 cm on March 21, 2019 and melted from late April until mid-

May. At Amet29 snow depth exceeded the top logger (160 cm) from mid-to-late April and melted throughout May (Fig. 7). 

BaseSnow showed a thinner snow cover with short periods of accumulation in the late-fall (November), late-December and 

February with a maximum snow depth of 31 cm in late-January. The interpolated changepoint analysis resulted in snow cover 200 

durations ranging from 177 days (BaseSnow) to 234 days (Amet12) and mean January snow depth ranging from 17 cm 

(BaseSnow) to 120 cm (Amet17). 

The second approach applied to interpolated data used the minimum, mean and maximum stake-wide pooled 

thresholds to produce a range of contours showing potential snow depths for each day. The SCLT snow depth using mean 

thresholds showed a similar pattern to the changepoint analysis described above with accumulation from late-October to late-205 

January, with the notable exception that snow cover at Amet28 exceeded the top logger with this method (Fig. 7). BaseSnow 

showed dispersed accumulations between the late-fall and early-spring with rapid melt occurring in mid-April and a maximum 

snow depth of 43 cm on December 23, 2018. Snow cover duration ranged from 178 days (BaseSnow) to 200 days (Amet17) 

and mean January snow depth ranged from 23.0 cm (BaseSnow) to 120 cm (Amet17) (Fig. 7). Applying the contour approach 

to 2018-2019 winter SCLT data leads to mean time-varying snow depth uncertainty ranges from 3 ± 3 cm (Amet17) to 15 ± 6 210 

cm (Amet28). 
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Figure 7: Interpolated lux measurements presented as an x-y-z plot on a log-scale for each SCLT measurement site including: (a) 

Amet11, (b) Amet12, (c) Amet17, (d) Amet28, (e) Amet29 and (f) BaseSnow. Estimated snow depths are presented for changepoint 215 
analysis (black) and the mean of the no-snow thresholds (contour-method; dotted). 

4.4 Comparison of SCLT lux methods 

 Raw and interpolated light intensity-based methods showed similar periods of snow onset with gradual snow 

accumulation from October to May for the Amet sites but the raw changepoint analysis resulted in a shorter duration of snow 

cover compared to the interpolated data at all sites (Fig. 7). Generally, the raw changepoint method showed larger single day-220 

increases in estimated snow depth, while the same method applied to interpolated data resulted in smaller, more frequent 

accumulations. Application of the contour method (using minimum, mean and maximum thresholds) resulted in smooth 

periods of accumulation and transport or melt but were mostly similar to the changepoint-based estimates (Fig. 7). Changepoint 

analysis and contours using interpolated data resulted in similar mean January snow depths for all stations with a mean 

difference of 3 ± 2 cm (Table 3). The mean January snow depth was significantly lower using the changepoint method on the 225 

raw data at all stations, with differences ranging from 10.2 cm (Amet28) to 18.4 cm (Amet17) (Table 3). 
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Comparison of a forested (Amet12) and shrub-tundra site (BaseSnow) showed earlier snowmelt with the raw 

changepoint analysis at the former site but no clear differences in melt at the latter site (Fig. 8). The raw changepoint method 

also showed a period of snow removal or melt in the early-to-mid winter at the forested site though this was not evident in the 

interpolated data (Fig. 8). All three light-based methods showed a consistently low snowpack at the shrub-tundra site 230 

(BaseSnow) with greater overall variability in the raw changepoint analysis (Fig. 8). 

 

 

 

Figure 8: Comparison of snow depths derived with light-based methods for: (a) a forested site (Amet12) and (b) a shrub-tundra site 235 
(BaseSnow). Snow depth estimates are provided for raw changepoint analysis (dashed lines), interpolated changepoint analysis 

(black line) and interpolated contours using minimum and maximum snow cover thresholds (grey shading). 

4.5 Estimating snow depth using temperature measurements 

 Application of the temperature-based changepoint analysis resulted in forested stations (all Amets) showing snow 

accumulation starting in mid-to-late October but not until late-December at the shrub tundra site (BaseSnow). All temperature-240 
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based snow depth estimates showed a drop in snow depth in late-December (Fig. 9). Amet11 reached a maximum snow depth 

of 100 cm in February but periodically dropped to 50 cm throughout the winter with a rapid decline in late-April to early-May 

(Fig. 9). Amet12 and Amet17 exceeded the top logger in February but had sudden drops in snow depth throughout the winter 

into early-spring. Amet28 and Amet29 both accumulated snow gradually until early-April with peak snow depths of greater 

than 120 cm and 160 cm, respectively. Melt is inferred to have occurred at all SCLT sites excluding BaseSnow between late-245 

April and late-May. At BaseSnow, spikes in snow cover up to 30 cm occurred in late-December and late-March to early-April. 

Excluding these peaks, snow cover at BaseSnow remained at 0 cm throughout much of the snow season (Fig. 9). With the 

univariate temperature analysis, snow cover duration ranged from 104 days (BaseSnow) to 227 days (Amet12 and Amet17) 

and mean January snow depth ranged from 0 cm (BaseSnow) to 101 cm (Amet12). 

 250 

 

Figure 9: Snow depth over winter 2018-2019 derived from changepoint analysis applied to standard deviations of daily temperature 

for each SCLT measurement site including: (a) Amet11, (b) Amet12, (c) Amet17, (d) Amet28, (e) Amet29 and (f) BaseSnow. Top 

logger positions for SCLT sites ranged from 120 cm (Amet11 and BaseSnow) to 160 cm (Amet12, Amet17, Amet28, Amet29) and 

cannot detect snow depths above this height. 255 

4.6 Comparison of light and univariate temperature methods 

 Estimated snow depth using temperature showed large drops in the late-Fall and mid-Winter at most sites that were 

not evident in the light intensity-based methods. Temperature-based snow depths consistently produced shorter snow durations 

and less snow accumulation at all sites (Fig. 9; Table 3). For the forested sites (Amets), the differences in mean January snow 
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depth between the temperature changepoint and the raw SCLT changepoint ranged from 2 cm (Amet12) to 22 cm (Amet17) 260 

(Table 3) though an even greater difference was found when comparing interpolated data (mean difference of 27 ± 11 cm). At 

BaseSnow (shrub-tundra), the temperature method estimated a snow depth of 0 cm in January while the light-based methods 

estimated mean snow depths between 10 cm and 23 cm (Table 3). 

 

Table 3: Mean January snow depth for all six stations using all methods. 265 

Field site Raw light 

changepoint 

Interpolated light 

changepoint 

Interpolated light threshold 

contours (mean) 

Raw temperature 

changepoint 

Amet11 87.1 cm 100.7 cm 98.2 cm 69.0 cm 

Amet12 103.2 cm 117.8 cm 120.7 cm 101.2 cm 

Amet17 100.6 cm 120.1 cm 119.0 cm 78.7 cm 

Amet28 101.3 cm 107.6 cm 111.5 cm 96.8 cm 

Amet29 98.7 cm 115.2 cm 114.0 cm 81.9 cm 

BaseSnow 10.6 cm 17.3 cm 23.0 cm 0 cm 

 

Temporal variability in snow depths was examined using Pearson correlation coefficients calculated across sites and 

methods between December and January (avoiding snow depths exceeding maximum logger heights). Amongst the four 

methods examined, snow depths derived using light-based methods were highly correlated with one another (r = 0.7 to r = 

0.98) but were much less correlated with the temperature-based snow depths (Fig. 10). Raw changepoint analysis using light 270 

provided the highest mean correlation with the temperature-based snow depths across sites (r = 0.85). Overall, cross-method 

correlations were highest for Amet29 and lowest for BaseSnow reflecting the highly variable snow conditions at the latter site 

(Fig. S3). 

 Formatted: Indent: First line:  0 cm
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 275 

Figure 10: Pearson correlation coefficients (r) comparing estimated snow depths from December 2019 and January 2020, between 

methods for each site. 

5 Discussion 

5.1 Evaluation of SCLT performance 

 Evaluation of the snow characterization with light and temperature (SCLT) method in Subarctic and Arctic Labrador 280 

over winter 2018-2019 showed that the technique can reliably and consistently determine snow depth in both forested and 

shrub-tundra environments. The raw changepoint requires minimal processing time and is easiest to implement, but by ignoring 

the inter-associations between measurements at different heights it will inherently floor snow depth to the closest logger leading 

to larger errors than with interpolated data. Interpolation of SCLT data was also able to compensate for logger failures, 

particularly post-snow coverage, by using the high correlation between loggers within the snowpack to estimate missing data 285 

(Table S2). The univariate temperature analysis applied to our sites underperformed relative to the light-based methods with 

the divergence between approaches most evident at the shrub-tundra site (BaseSnow) (Fig. 10). The snowpack at this site was 

inferred to be dense due to wind packing and thus would experience greater diurnal temperature variability because of a higher 

thermal conductivity compared to a forest site (Domine et al., 2016; Sturm et al. 1999). The high light intensities outside of 

the snowpack induced by the albedo effect provided a fairly unambiguous contrast with the lower light intensities within the 290 

snowpack (Fig. 7), allowing for depth determination of a snowpack that is typically difficult to characterize (Domine et al., 

2019).  

As elucidated by Sturm et al. (2001), snow cover is sensitive to local micro-climate, vegetation cover and topography. 

These variables are not broadly represented in current weather monitoring infrastructure deployed near urban centres or airports 

(Goodison, 2006). The lack of weather stations recording snow depth adjacent to our field sites makes it difficult to validate 295 

results from most SCLT sites. However, Amet17 is located approximately 5 km from Goose Bay Airport which has a weather 

station measuring snow depth though this site is found in an open clearing and at a site that is 200 m lower than Amet17 
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(Environment and Climate Change Canada, 2020). Comparing the two 2018-2019 snow depths from both sites shows high 

general agreement (r = 0.98 for daily snow depths from December to January [n=112]) but Amet17 showed a longer overall 

snow season and a significantly later snow melt than at Goose Bay Airport (Fig. 11). This difference is not unexpected as 300 

Brown et al (2003) showed a thicker peak snow depth and longer snow duration at forested versus open snow course sites 

(currently inactive) near Goose Bay. Later snow melt at Amet17 can also be inferred from a site visit to Amet17 in 2020 

(March 25) which showed a significantly thicker snowpack at Amet17 (95 ± 5 cm; Fig. S4) than contemporaneously measured 

at Goose Bay Airport (52 cm) (Environment and Climate Change Canada, 2020).  

 305 

 

Figure 11: Estimated snow depth at Amet17 site (black dotted line) using interpolated SCLT data overlaid with snow depth measured 

for winter 2018-2019 at Goose Bay Airport (black solid line). 

To further assess the SCLT approach, we compared estimated snow depths at our field sites to co-located estimates 

from the daily Canadian Meteorological Centre (CMC) snow depth product (Brown and Brasnett, 2010). CMC daily snow 310 

depths are derived using in-situ snow depth observations, statistical interpolation and a first-guess field from a snow 

accumulation and melt model (Brown et al., 2003; Brown and Brasnett, 2010) (Fig. 12).  The CMC product is generated at a 

24 km spatial resolution and has reduced performance in areas with sparse in-situ snow monitoring networks like Labrador. 

Our comparison shows that snow onset, melt and daily accumulations patterns are similar to the SCLT derived snow depth 

estimates (Fig. 12). MAE between December-January CMC snow depths and light-based SCLT snow depths were 19 cm, 2 315 

cm, 5 cm, 35 cm, 39 cm and 4 cm for Amet11, Amet12, Amet17, Amet28, Amet29 and BaseSnow, respectively. MAE between 
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snow duration was 27 days, 14 days, 2 days, 10 days, 4 days and 129 days for Amet11, Amet12, Amet17, Amet28, Amet29 

and BaseSnow, respectively. Both Amet11/Amet12 and Amet28/Amet29 shared respective grid cells thus the differences 

between these SCLT sites reflect influences of vegetation, elevation and potential snow drift. Unfortunately, due to the lack of 

snow measurement throughout northern Labrador (Mekis et al., 2018), the CMC dataset is unlikely to provide a useful 320 

validation against BaseSnow. 

 

 

Figure 12: Comparison of snow depths derived with light and temperature-based methods and Canadian Meteorological Centre 

(CMC) snow depth analysis data (Brown and Brasnett, 2003) for: (a) Amet 11, (b) Amet 12, (c) Amet17, (d) Amet28, (e) Amet29 and 325 
(f) BaseSnow. Snow depth estimates are provided for interpolated contours using minimum and maximum snow cover thresholds 

(grey shading), interpolated changepoint analysis (black line), raw changepoint analysis (dot-dashed line), temperature changepoint 

analysis (dotted line) and modelled CMC snow depth at the associated grid cell (red line). 

5.2 Limitations and Opportunities  

 The results in this study have provided a direct workflow for estimating snow depth from SCLT data though the 330 

proposed method will require further optimization and refinement. For example, our analysis did not directly evaluate the 

impacts of latitude, canopy cover, logger configuration and ground condition on SCLT results. Each of these factors and their 
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corresponding influence on light transmission under snow and no-snow conditions makes the universal application of particular 

light thresholds unlikely. The specific sensor arrangement of SCLT stakes may also require refinement and customization for 

indices studied. Winter 2018-2019 far exceeded normal snow depths in coastal Labrador (Fig. S5), resulting in data gaps mid-335 

winter. The configuration in this study was designed for investigations of ground thermal impacts of snow cover in 

discontinuous permafrost in Labrador which typically are largest when snow cover is shallower than 100 cm (Way and 

Lewkowicz, 2018). For hydrological applications, uniform sensor arrangement at a given interval (e.g. 5-10 cm) may be 

preferable.  

 At follow-up visits to several of our sites, we experienced water damage to HOBO MX2202 Pendant Wireless 340 

Temperature/Light loggers leading to battery failure and a cessation of data collection despite their reported waterproof casing. 

We have interpreted this to be a result of bowing of the logger casing because we overtightened the screws when affixing 

loggers to the wooden stakes (Fig. 3). It is advised that in the future these loggers are loosely attached to stakes to maintain 

the integrity of the logger structure. Field visits to sites also suggest that maintaining a consistent measurement height may be 

challenging in areas with significant frost heave from year-to-year therefore alternative anchoring may be needed for 345 

examining changes at a site over multi-year periods. The widespread applicability of SCLT will depend on further testing at 

high latitudes where the lack of light availability during December and January may limit its utility during portions of the 

winter. However, this concern may be limited to the short periods of complete darkness as we observed substantial light 

reflection from high albedo tundra snow cover at our highest latitude site (BaseSnow) even in December. Exploring the 

potential utility of combining light intensity and temperature together with more advanced predictive modelling may further 350 

mitigate this concern. We would also recommend that a specific sensor arrangement pointing south or towards the most open 

portion of the canopy could be adopted to enhance light intensity contrasts at low sun angles. 

Overall, the SCLT method was found to provide robust and cost-efficient snow depth estimation in regions that are 

not suitable for outfitting with full weather stations. We unambiguously show that light intensity is a clearer metric for 

estimating daily snow depth than temperature-only methods. Further analysis combining the light intensity measurements with 355 

temperature within the snowpack will allow for a more robust snowpack characterization than available through the use of 

time lapse photography-based methods. The dual measurements collected by the SCLT technique coupled with ground 

temperature measurements will also enable simplified characterizations of temperature gradients within the snowpack and at 

depth as a coupled system (Fig. 13). Further studies should explore how SCLT can be applied to better understand other 

snowpack characteristics including density, grain size and effective thermal conductivity.  360 

 

 

 



24 

 

 

Figure 13: X-Y-Z plot showing interpolated temperatures for Amet29 within the snowpack and the underlying soil (maximum depth: 365 
85 cm). Snowpack height is estimated using the interpolated light threshold contour (mean) (black line) and ground temperatur es 

were recorded at 5 cm and 85 cm depth with a HOBO V2 Pro data logger. 

6 Conclusion 

 Improved monitoring and characterization of a changing snowscape is imperative to conservation, planning and 

climate adaptation in across the globe but particularly in Subarctic and Arctic regions. Snow characterization under natural 370 

environments is currently lacking in most northern environments with measurement stations mostly in open areas near airports 

or communities making snow studies outside of these regions dependent on snow courses and remote sensing (Brown et al., 

2003; Goodison, 2006; Pulliainen et al., 2020). In this study, we introduce a novel method (SCLT) for characterizing snow 

conditions in remote northern environments that uses a combination of vertically arranged light and temperature loggers. We 

present three different methods for analyzing SCLT data, including a temperature-only approach for comparison with prior 375 

studies. Our results broadly show that raw and interpolated SCLT data can be used to efficiently characterize snow depth over 

full snow seasons at sites that varied considerably in ecotype and inferred snow characteristics. All SCLT-based snow 
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estimation techniques provided clear advantages over the temperature-only approach with the latter performing particularly 

poorly where snow density was inferred to be higher (shrub-tundra).   

 The development of the SCLT method as a cost-effective measurement technique aims to help fill knowledge gaps 380 

in snow-vegetation interactions and to facilitate a wider snow monitoring network in remote areas under natural conditions. 

The method requires further research and refinement; however, these preliminary results are sufficiently promising that 

deployment of SCLT across northern research basins for testing purposes may be desirable. Applying this new method will 

improve our understanding of the changing cryosphere, local hydrology and climate change impacts on ecosystems and 

biodiversity. Further elucidation of snow-vegetation-permafrost interactions will also aid community development, local travel 385 

safety and cultural practices.  

Code and Data Availability 

The SCLT data contributes to a larger dataset presented by Way and Lewkowicz (2018) that will be made available through 

Nordicana D. The R v3.6.0 or RStudio v1.2.1335 code for: (a) inputting and preprocessing HOBO Pendant Light/Temperature 

csv data (b) determining light thresholds and (c) snow depth evaluation through changepoint analysis and interpolation, are 390 

available through the authors’ ResearchGate repository at the doi links below. Additional code is available upon request. 

(a) Tutton, R. and Way, R.: SCLT Data Pre-processing, doi:10.13140/RG.2.2.17281.48483, 2019. 

(b) Tutton, R. and Way, R.: SCLT Threshold Determination, doi:10.13140/RG.2.2.14093.15841, 2019. 

(c) Tutton, R. and Way, R.: SCLT Snow Cover Determination (Changepoint), doi:10.13140/RG.2.2.35064.67843, 2020. 
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