
S1. Decay of thermal signal created during drilling compared to observed temperature changes 

An analytical model describing the thermal decay from linear heat sources in ice is obtained from the solution to a 

line source within an infinite media presented by Carslaw and Jaeger (1959): 
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where l is the linear distance away from the heat source, t is the time that has elapsed, Q is the amount of heat per 

unit length of the line source, k is the thermal diffusivity, 𝜌 is the density of the of the medium, and C is the specific 5 

heat capacity. 

Humphrey and Echlemeyer (1990) modified Eq. (S1) to estimate the temperature at time t for sensors 

installed in a borehole using a hot water drill. Setting l = 0 removes the exponential term from the equation. 

Humphrey and Echlemeyer (1990) also substituted thermal conductivity (K) for (𝑘𝜌𝐶) and added the term T0 to 

account for the ambient temperature of the ice before being disturbed by drilling. This leads to equation 24 in 10 

Humphrey and Echlemeyer (1990): 
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Equation (S2) illustrates the asymptotic temperature decrease which is proportional to inverse time. The Q 

term is amount of heat per unit length of the borehole and includes both sensible heat during drilling and latent heat 

from the water refreezing. The sensible heat required to raise the temperature of ice to its melting point is small 

compared to the large amount of latent heat required to melt the borehole. Q is given by: 15 

 𝑄 = 𝑚𝑤𝐿𝑓 +  𝑚𝑖𝐶∆𝑇 (S3) 

where the right-hand terms are the latent heat of refreezing in the borehole and the sensible heat to warm the melted 

ice up to 0 °C. The mass of water in 1 m of the borehole is: 

 𝑚𝑤 =  𝜌𝑊𝜋𝑟2ℎ (S4) 

Here r is the radius of the borehole, which we assume equals 5 cm if the boreholes have approximately a 10 cm 

diameter. The mass of ice raised to its melting temperature is represented by mi and is found by solving Eq. (S4) but 

substituting the density of ice for the density of water. 20 

 The temperature of the borehole decays towards the ambient ice temperature. After 1 year < 0.1% 

difference remains between the borehole temperature and ambient ice temperatures. For ambient ice temperatures 

below -1 °C, this is well below sensor resolution and does not affect our observational data. To avoid any potential 

contamination of both the static and temporal trend of the sensor temperature data from the thermal disturbance of 

installation, we ignore the first year of data in our analysis. 25 

S2. Estimating the temporal change of temperature in a stepped digital record 

The lengths of our temperature records are restricted by the date of installation after the borehole was drilled, and 

the date of the last data collection in July 2017. The time change of temperature is near the digital resolution of the 

temperature sensors, which can result in a stair stepping of the record over only a few steps and over the entire 

record (see Fig. S1 for an extreme example). Applying a linear regression to the raw data can lead to a biased 30 



estimate of the rate of change of temperature. As an example of this problem, we look at a full sensor record 

showing a decrease of approximately 0.1 °C through time (Fig. S1).  

 

Both the first and last digital steps of this record have fewer entries recorded due to the restrictions of the 

sampling window. Assuming that temperature change is close to linear with time, we expect that with a longer 35 

record, the sensor would record approximately the same number of readings at each resolution step. Short data 

lengths occurring at either the beginning or end of the records are likely truncated by the restricted time period of 

our study. To correct for our restricted sampling time, we pad the first and last steps in our data to match the length 

of a fully-recorded resolution step. This is performed by copying the required length of data from a full resolution 

step, and pre- or post-appending it to the truncated data, while equating the temperatures. This procedure is 40 

illustrated in Fig. S2, which also shows the difference in derived rates of temperature change over time.  

Figure S1. Temperatures (black dots) recorded over two years by sensor #15, which is 200 

meters above the bed in borehole 14SA. When plotted over time, the temperatures display 

characteristic stair-stepping pattern between resolution steps of the sensor.   



S3. Modeling distributed cooling from multiple basal crevasses 

We model a field of 3 basal crevasses that are 1 m thick with a 1-D diffusion model in the direction 

perpendicular to the crevasses and at some height above the bed. Our finite difference model domain is 800 m wide, 

covering 3 crevasses spaced 100m apart. Initial ice temperature is -4 °C, which is the average temperature in the 45 

lowest 200 m of the ice column from our borehole temperature measurements. To simulate three basal crevasses, 1 

m wide, 0 °C nodes are located at 300, 400 and 500m. Boundary nodal temperatures are fixed at -4 °C, while 

temperatures throughout the rest of the domain evolve following Eq. (2) for 30 years. The model duration is chosen 

based on our timescale analysis, which suggests that crevasses occurring ~20 - 30 years ago could produce the 

cooling rates in each borehole.  50 
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Figure S2. Temperatures (black dots) recorded over two years. The augmented records are 

shown with light grey points. The original least-squares line of best fit is shown with the 

black dashed line and the dotted line is the newly calculated trend using the augmented data. 


