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Abstract. The interaction of mountain terrain with meteorological processes causes substantial temporal and spatial variability 

in snow accumulation and ablation. Processes impacted by complex terrain include large-scale orographic enhancement of 

snowfall, small-scale processes such as gravitational and wind-induced transport of snow, and variability in the radiative 

balance such as through terrain shadowing. In this study, a multi-scale modeling approach is proposed to simulate the temporal 15 

and spatial evolution of high mountain snowpacks. The multi-scale approach combines atmospheric data from a numerical 

weather prediction system at km-scale with process-based downscaling techniques to drive the Canadian Hydrological Model 

(CHM) at spatial resolutions allowing for explicit snow redistribution modelling. CHM permits a variable spatial resolution 

by using the efficient terrain representation by unstructured triangular meshes. The model simulates processes such as radiation 

shadowing and irradiance to slopes, blowing snow transport (saltation and suspension) and sublimation, avalanching, forest 20 

canopy interception and sublimation and snowpack melt. Short-term, km-scale atmospheric forecasts from Environment and 

Climate Change Canada’s Global Environmental Multiscale Model through its High Resolution Deterministic Prediction 

System (HRDPS) drive CHM, and are downscaled to the unstructured mesh scale. In particular, a new wind downscaling 

strategy uses pre-computed wind fields from a mass-conserving wind model at 50-m resolution to perturb the meso-scale 

HRDPS wind and to account for the influence of topographic features on wind direction and speed. HRDPS-CHM was applied 25 

to simulate snow conditions down to 50-m resolution during winter 2017/2018 in a domain around the Kananaskis Valley 

(~1000 km2) in the Canadian Rockies. Simulations were evaluated using high-resolution airborne Light Detection and Ranging 

(LiDAR) snow depth data and snow persistence indexes derived from remotely sensed imagery. Results included model 

falsifications and showed that both wind-induced and gravitational snow redistribution need to be simulated to capture the 

snowpack variability and the evolution of snow depth and persistence with elevation across the region. Accumulation of wind-30 

blown snow on leeward slopes and associated snow-cover persistence were underestimated in a CHM simulation driven by 

wind fields that did not capture leeside flow recirculation and associated wind speed decreases. A terrain-based metric helped 

to identify these lee-side areas and improved the wind field and the associated snow redistribution. An overestimation of snow 
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redistribution from windward to leeward slopes and subsequent avalanching was still found. The results of this study highlight 

the need for further improvements of snowdrift-permitting models for large-scale applications, in particular the representation 35 

of subgrid topographic effects on snow transport.   

1 Introduction 

High mountain snowpacks are characterized by a strong spatial and temporal variability that is associated with elevation, 

vegetation cover, slope steepness, orientation and wind exposure. This variability results from processes occurring during the 

snow accumulation and ablation periods at a large range of spatial scales (e.g., Pomeroy and Gray, 1995; Pomeroy et al., 1998; 40 

2012; 2016; Clark et al., 2011; Mott et al., 2018). Snow accumulation at the mountain range scale (1-500 km) is primarily 

dominated by orographic precipitation, and results in regions of enhanced or reduced snowfall (e.g., Houze, 2012). At the 

mountain-ridge and slope scales (5 m – 1 km), preferential deposition of snowfall and blowing snow transport, including 

transport in both saltation and suspension layers, strongly impact snow accumulation (e.g., Mott et al. 2018). Redistribution 

by avalanches (e.g., Bernhardt and Schulz, 2010; Sommer et al., 2015) and surface and blowing snow sublimation (e.g., 45 

MacDonald et al., 2010; Vionnet et al., 2014; Musselman et al., 2015; Sextone et al., 2018) also modify the spatial variability 

of snow. During the ablation period, spatially varying melt rates result from differences in solar irradiance due to aspect and 

shading (e.g., Marks and Dozier, 1992; Marsh et al., 2012), in net solar irradiance due to albedo variations (e.g., Dumont et 

al., 2011; Schirmer and Pomeroy, 2020), in turbulent fluxes (e.g., Winstral and Marks, 2014; Gravelman et al., 2015) and in 

advected heat from snow-free ground in patchy snow cover conditions (e.g., Mott et al., 2013; Harder et al., 2017; Schlögl et 50 

al., 2018).  

The multi-scale variability of mountain snow represents a challenge for snow models used in support of avalanche hazard 

forecasting (Morin et al., 2020), hydrological predictions (e.g., Warscher et al., 2013; Brauchli et al., 2017; Freudiger et al., 

2017) and climate projections (e.g., Rasouli et al., 2014; Hanzer et al., 2018) in mountainous terrain. Several modelling 

strategies have been proposed to face this challenge and to capture this multi-scale variability. At the mountain range scale, 55 

atmospheric models at sufficient resolutions (4-km or finer) can bring valuable information on the variability of snowfall and 

resulting snow accumulation (e.g., Prein et al., 2015; Lundquist et al., 2019; Fang and Pomeroy, 2020). Indeed, at these 

resolutions, atmospheric models operate at convection-permitting scales, and explicitly represent convection and highly 

resolved vertical motions, achieving improved estimates of snowfall (e.g., Rasmussen et al., 2011). Sub-grid parameterizations 

of snow depth have been proposed to represent the snow variability at the mountain-ridge and slope-scale for snowpack models 60 

operating at km scales (Liston, 2004; Helbig and van Herwijnen, 2017; He and Ohara, 2019). Another strategy consists of 

explicitly modelling the snow evolution at the mountain-ridges and slopes scales at resolutions ranging from a few meters to 

200 meters (Liston, 2004; Musselman et al., 2015). At theses scales, the variability of snow accumulation can be represented 

using (i) simple parameterizations to adjust snowfall as a function of topographic parameters (e.g., Winstral and Marks, 2002; 

Hanzer et al., 2016) or (ii) using models that explicitly represent preferential deposition and/or wind-induced snow 65 
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redistribution (e.g., Essery et al., 1999; Durand et al., 2005; Pomeroy et al., 2007; Liston et al., 2007; Lehning et al., 2008; 

Sauter et al., 2013; Vionnet et al., 2014; Marsh et al., 2020a). These models can be classified as snowdrift-permitting models 

since they operate at sufficient resolutions (200-m or finer) to activate the horizontal redistribution of snow between 

computational elements. High resolution remote sensing data assimilation can also be used at these scales to correct spatial 

biases in the atmospheric forcing and to account for missing physical processes in the models (e.g., Durand et al., 2008; Baba 70 

et al., 2018). 

Snowdrift-permitting models simulate wind-induced snow transport in the saltation and suspension layers (e.g, Pomeroy and 

Gray, 1995). As proposed by Mott et al. (2018), they can be divided into two main categories: (i) models solving the vertically-

integrated mass flux in the saltation and suspension layers (Essery et al., 1999; Durand et al., 2005; Pomeroy et al., 2007; 

Liston et al., 2007) and (ii) models solving the three-dimensional (3-D) advection-turbulent diffusion equation of blown snow 75 

particles in the atmosphere (Gauer, 1998; Lehning et al., 2008; Schneiderbauer and Prokop, 2011; Sauter et al., 2013; Vionnet 

et al., 2014). One of the main challenges for all these models is obtaining accurate driving wind fields at sufficient high 

resolution since they strongly impact the accuracy of simulated snow redistribution (Mott and Lehning, 2010; Musselman et 

al., 2015).  Models of the first category need two-dimensional (2-D) driving wind fields. Liston et al. (2007), inspired by Ryan 

(1977), proposed the use of terrain-based parameters to adjust distributed wind fields to the local topography. These distributed 80 

wind fields can be obtained from interpolated station data (Gascoin et al., 2013; Sextone et al., 2018), hourly output from 

regional climate model at convective-permitting scale (Reveillet et al., 2020), or a pre-computed wind field library using an 

atmospheric model (Berhnardt et al., 2010). Essery et al. (1999) used a linearized turbulence model (Walmsley et al., 1982) to 

build a pre-computed library of 2-D wind maps to distribute wind measurements from stations data. Musselman et al. (2015) 

showed that this approach led to more accurate simulations of snow redistribution around an alpine crest than wind fields 85 

derived from the terrain-based parameters proposed by Liston et al. (2007). Models of the second category require a 3-D 

representation of the wind field and associated atmospheric turbulence. In this case, driving wind fields can be obtained from 

computational fluid dynamics (CFD) models (Gauer, 1998; Schneiderbauer and Prokop, 2011), or atmospheric models in 

Large Eddy Simulations (LES) mode used to generate library of pre-computed wind fields (Lehning et al., 2008; Mott and 

Lehning, 2010) or fully coupled to a snowpack model (Vionnet et al., 2014). These advanced models can be used for detailed 90 

studies such as the feedbacks between blowing snow sublimation and the atmosphere (Groot Zwaaftink et al., 2011) or the 

processes driving the variability of snow accumulation during a snowfall event, including preferential deposition of snowfall 

(Lehning et al., 2008; Mott et al., 2010; Vionnet et al., 2017).  

Differences in the level of complexity of snowdrift-permitting models and associated driving wind fields influence the spatial 

and temporal ranges of application of these models. Due to their relatively low computational costs, models of the first category 95 

can be applied to simulate the snow cover evolution over entire snow seasons at resolution between 25 and 200 m for regions 

covering hundreds of km2 (e.g., 210 km2 for Berhnardt et al. (2010); 1043 km2 for Gascoin et al. (2013); 3600 km2 for Sextone 

et al. (2018)). On the other hand, models of the second category are usually restricted to the simulation of single blowing snow 

events at resolution between 2 m and 50 m over regions covering tens of km2 (e.g., 1 km2 in Schneiderbauer and Prokop (2011), 
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2.3 km2 in Mott and Lehning (2010); 23 km2 in Vionnet et al. (2017)). The study by Groot Zwaaftink et al. (2013) is an 100 

exception and relied on the Alpine 3D model (Lehning et al., 2008) to simulate the snow cover evolution at 10-m resolution 

over a region of 2.4 km2 of the Swiss Alps for an entire winter. All these snowdrift-permitting models used a gridded 

representation of the topography. Large-scale applications of these models over mountainous area are limited by the need to 

have a fixed and sufficiently high resolution over large areas even in regions where wind-induced snow transport is not active 

(valley bottom for example).  105 

To overcome some of these limitations, Marsh et al. (2020a) developed a snowdrift-permitting scheme of intermediate 

complexity that solves the 3-D advection-diffusion blowing snow transport on a variable resolution unstructured mesh. This 

scheme is implemented in the Canadian Hydrological Model (CHM; Marsh et al., 2020b). The landscape is discretized using 

a variable resolution unstructured mesh that allows an accurate representation of terrain heterogeneities with limited 

computation elements (Marsh et al., 2018). Marsh et al. (2020a) used the WindNinja diagnostic wind model (Forthofer et al., 110 

2014) to build libraries of pre-computed wind fields. Wagenbrenner et al. (2016) showed that WindNinja can be used to 

downscale wind field from atmospheric models running at convection-permitting scale in complex terrain.  

The objective of this study is to present and evaluate a novel strategy for multi-scale modelling of mountain snowpack over 

large regions and for entire snow seasons. Specifically: (1) Can efficient wind-downscaling approaches be used for blowing 

simulation? (2) Over large spatial extents, can lateral mass redistribution (blowing snow and avalanching) be ignored? (3) Can 115 

optical satellite imagery be used to diagnose model performances over large spatial extents? This modelling strategy combines 

(i) atmospheric forcing from the convection-permitting Canadian Numerical Weather Prediction (NWP) system, (ii) a 

downscaling module including wind fields from a high-resolution diagnostic wind model and (iii) the multi-scale snowdrift-

permitting model CHM running on an unstructured mesh. This modelling strategy was applied for a full winter over a domain 

of 958 km2 around the Kananaskis Valley in the Canadian Rockies. Different model configurations were tested to assess the 120 

impact of the representation of physical processes in CHM as well as the complexity of the wind downscaling scheme. Airborne 

LiDAR snow depth data and snow persistence indexes derived from Sentinel-2 images were used to evaluate the ability of the 

different CHM configurations to capture the elevation-snow depth relationship as well as snow redistribution around wind-

exposed ridges. The paper is organized as follows: Section 2 presents the study area and the different observation datasets used 

in this study, and also describes the CHM modelling platform, the wind downscaling strategy and the configurations of the 125 

CHM experiments; Section 3 evaluates the impact of the wind field downscaling and the quality of the snowpack simulations 

using airborne LiDAR snow depth data and snow persistence indexes; Section 4 discusses the main challenges associated with 

snowdrift-permitting modelling of mountain snowpack and associated limitations. Finally, concluding remarks are presented 

in Section 5. 
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2 Data and Methods 130 

2.1 Study Site  

This work studies the evolution of the mountain snowpack around the Kananaskis Valley of the Canadian Rockies, Alberta 

(Fig. 1). The study domain covers an area of 958 km2 and is characterized by a complex and rugged topography with elevations 

ranging from 1400 m a.s.l. at the Kananaskis valley bottom in the northeastern part of the domain up to 3406 m a.s.l. at the 

summit of Mount Sir Douglas in the southern part of the region (Fig. 1b). Valley bottoms and lower slopes are predominately 135 

covered by needleleaf evergreen forest (Fig. 1a). Short shrubs and low vegetation are present near treeline whereas exposed 

rock surfaces, talus and grasses are found in the highest alpine elevations. The Kananaskis Valley hosts several meteorological 

stations that are part of the University of Saskatchewan’s Canadian Rockies Hydrological Observatory (CRHO; 

https://research-groups.usask.ca/hydrology/science/research-facilities/crho.php) and is active for research in snow hydrology 

(e.g., MacDonald et al., 2010; Musselman et al., 2015; Pomeroy et al., 2012; 2016; Fang et al., 2019; Fang and Pomeroy, 140 

2020). More details about these meteorological stations are given in Sect. 2.3.1.  

2.2 Model  

2.2.1 Mesh generation 

The Digital Elevation Model (DEM) from the Shuttle Radar Topography Mission-SRTM (EROS Center, 2017) at a resolution 

of 1-arc second (30 m) was used as input to the mesher code (Marsh et al., 2018) to generate an unstructured, variable resolution 145 

triangular mesh over the Kananaskis domain (Fig. 1). In mesher, triangles are bounded with minimum and maximum areas 

and are generated to fulfil a given tolerance defined here as the root mean square error to the underlying topographic raster. 

This study uses a high-resolution mesh, denoted M1550, with a minimum triangle area of 50 m ´ 50 m and a vertical tolerance 

of 15 m. The characteristics of the generated mesh are given in Table 1. For the Kananaskis domain, 383 200 raster grid cells 

with a 50 m resolution are required to represent the terrain, whereas 101 700 triangles are used in M1550 (Fig. 2).  Large triangles 150 

are found in valley bottoms of low topographic variability, whereas small triangles dominate in alpine terrain, close to ridges 

where wind-induced snow redistribution is common.  

A dataset of tall vegetation (>5 m) coverage, with a resolution of 30 m (Fig. 1a), was obtained from Hansen et al. (2013). 

These fractional values were applied to the triangular mesh via mesher by averaging the raster cells that correspond to each 

triangle and assigning this average to the triangle. Triangles with an average fraction of high-vegetation larger than 0.5 were 155 

classified as forest. 

2.2.2 Snowpack model  

Distributed snowpack simulations over the triangular mesh of the study area were performed using the version of the Snobal 

scheme (Marks et al. 1999) implemented in CHM (Marsh et al. 2020b). Snobal has been used in numerous mountainous regions 



6 
 

across North America (e.g., Garen and Marks, 2005; Pomeroy et al., 2016; Hedrick et al., 2018). Snobal is a physically based 160 

snowpack model that approximates the snowpack with two layers. The surface layer was implemented here with a fixed 

thickness of 0.1 m and is used to estimate surface temperature for outgoing longwave radiation and turbulent heat fluxes. The 

second lower layer represents the remaining snowpack. For each layer, Snobal simulates the evolution of the snow water 

equivalent (SWE), temperature, density, cold content, and liquid water content. The version of Snobal used in this study 

includes an improved algorithm for snow compaction that accounts for bulk compaction and temperature metamorphism 165 

(Hedrick et al., 2018). Snobal in CHM employs the snow albedo routine of Verseghy et al. (1993). The ground heat flux 

assumes heat flow to a single soil layer of known temperature and thermal conductivity. In these simulations, the soil 

temperature was set to -4°C at 10 cm below the soil-snow interface. Marsh et al. (2020b) used the same value for Snobal 

simulations with CHM at the Marmot Creek Research Basin located further north in the Kananaskis Valley (Fig. 1).  

CHM also includes a 3-D advection-diffusion blowing snow transport and sublimation model (Marsh et al., 2020a): the 3-D 170 

Prairie Blowing Snow Model (PBSM-3D). This scheme uses a finite volume method discretization on the unstructured mesh. 

It deploys the parameterization of Li and Pomeroy (1997) to determine the threshold wind speed for snow transport initiation 

as a function of air temperature and snow presence. It does not depend on the properties of surface snow (e.g. density, liquid 

water content) simulated by Snobal (see Sect 4.4 for a discussion on the limitation of this approach). In case of blowing snow 

occurrence, the steady-state saltation parameterization of Pomeroy et al. (1990) is used to compute the mass concentration in 175 

the saltation layer. The concentration in the saltation layer is impacted by shear stress partitioning due to the presence of 

vegetation (such as shrubs) and the upwind fetch. Upwind fetch is calculated for each triangle of the mesh using the fetchr 

parameterization of Lapen and Martz (1993) and is used to reduce the mass concentration in the saltation layer in regions 

where flow is developing. The saltation layer acts as a lower boundary condition for the suspension layer, which is discretized 

with a user-defined number of layers to resolve the gradient of concentration of blowing snow particles in the suspension layer. 180 

For each layer, PBSM-3D solves the evolution of the concentration of blowing snow particles accounting for advection, 

turbulent diffusion, sedimentation and mass loss due to sublimation based on the parameterizations proposed by Pomeroy and 

Male (1992) and Pomeroy et al. (1993). At a given time step, erosion and deposition rates are computed as the spatial 

divergence of the saltation and suspension fluxes and the snowpack simulated by Snobal is updated accordingly. In this study, 

10 layers were used for a total height of the suspension layer of 5 m as in Marsh et al. (2020a). Snowfall over complex terrain 185 

is calculated by GEM according to its microphysics scheme (Milbrandt et al., 2016). CHM does not simulate explicitly 

preferential deposition of snowfall (Lehning et al., 2008; Mott et al., 2018). New snow is added to the surface layer in Snobal 

and, if wind speeds exceed the threshold wind speed, it is transported in the saltation and suspension blowing snow layers by 

PBSM-3D.  
In steep alpine terrain, gravitational snow transport strongly affects the spatial variability of the snowpack (e.g. Sommer et al., 190 

2015), the mass balance of glaciers (Mott et al., 2019) and modifies the runoff behaviour of alpine basins (Warscher et al. 

2013). For these reasons, the SnowSlide scheme (Bernhard and Schulz, 2010) was implemented in CHM. SnowSlide is a 

simple topographically driven model that simulates the effects of gravitational snow transport. SnowSlide uses a snow holding 
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depth that decreases exponentially with increasing slope angle, limiting snow accumulation in steep terrain. SnowSlide was 

initially developed for regular gridded rasters and has been adapted here to the unstructured triangular mesh used by CHM. 195 

SnowSlide operates from the highest triangle of the mesh to the lowest one. If the snow depth exceeds the snow holding 

capacity for a given triangle, excess snow is redistributed to the lower adjacent triangles, proportionally to the elevation 

difference between the neighboring triangles and the original one. SnowSlide uses the total elevation (snow depth plus surface 

elevation) to operate. In this study, the default formulation of the snow holding depth proposed by Bernhardt and Schulz (2010) 

is used which leads to a maximal snow thickness (taken perpendicular to the slope) of 3.08 m, 1.11 m, 0.45 m, and 0.15 m for 200 

slopes of 30°, 45°, 60°, and 75°, respectively.  

The impact of the presence of forest vegetation on snow interception, sublimation, snowpack accumulation and melt energetics 

are represented in CHM using the same canopy module as in the Cold Region Hydrological Model (CRHM; Ellis et al., 2010; 

Pomeroy et al. 2012). This module used Leaf Area Index and canopy closure to compute the effect of forests on shortwave 

and longwave irradiance at the snow surface. Snow interception and sublimation of intercepted snow are also represented 205 

following Hedstrom and Pomeroy (1998). In this study, the canopy module was activated for the triangles covered by forest 

as described in Sect. 2.2.1.  

2.2.3 Atmospheric forcing 

Snobal and PBSM-3D require the following atmospheric forcing: air temperature, humidity, wind speed, wind direction, liquid 

and solid precipitation rates, and longwave and shortwave irradiance. Due to the scarcity of the network of meteorological 210 

stations in the region (Fig. 1), hourly atmospheric forcings were obtained from the High-Resolution Deterministic System 

(HRDPS; Milbrandt et al., 2016). HRDPS is the high-resolution NWP system running the Global Environmental Multiscale 

Model (GEM) operationally over Canada at 2.5-km grid spacing. Successive HRDPS forecasts from the 00 and 12 UTC 

analysis time at 6 to 17 h lead time were extracted over the region and combined together to generate a continuous atmospheric 

forcing. Previous studies have also used distributed forcing data from NWP systems to drive snowpack models in mountainous 215 

terrain since these data can often represent the complex interactions between topography and atmospheric flow better than 

sparse meteorological measurements (Quéno et al., 2016; Vionnet et al., 2016; Havens et al. 2019; Lundquist et al., 2019; Fang 

and Pomeroy, 2020).  
The HRDPS atmospheric forcing at 2.5-km grid spacing was downscaled to the triangles of the CHM mesh. Horizontal 

interpolation was first applied using inverse-distance weighting from the closest four HRDPS grid points. Corrections for 220 

elevation differences were then applied to adapt the HRDPS meteorological forcing to the high-resolution topography of the 

CHM mesh. Constant monthly lapse rates were used to adjust HRDPS 2-m air temperature and humidity (Kunkel, 1989; Shea 

et al., 2004). HRDPS temperature was reduced (increased) if the elevation of the triangle is higher (lower) than the elevation 

of the HRDPS grids points. Precipitation amounts were not modified to account for elevation difference as it was assumed that 

HRDPS already captures the main orographic effects affecting mountain precipitation (Lundquist et al., 2019). The 225 

precipitation adjustment function of Liston and Elder (2006) has been tested but it led to strong overestimation of snow depth 
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at high elevation (not shown), suggesting that this factor may not be adapted to account for the subgrid variability of 

precipitation amount within a 2.5 km grid. A cosine-correction was then applied to adjust precipitation falling on inclined 

triangle for mass-conservation purpose (Kienzle, 2011). Downscaled temperature and humidity were finally used to compute 

the precipitation phase with the psychrometric energy balance method of Harder and Pomeroy (2013) that performed well in 230 

the Kananaskis Valley. Direct and diffuse solar irradiance were taken from the HRDPS forecast and direct irradiance was 

corrected for slope and aspect as described in Marsh et al. (2012). Local terrain shadowing and its impact on shortwave 

irradiance were calculated using the algorithm of Dozier and Frew (1990) adapted for unstructured meshes as described in 

Marsh et al. (2020b). Longwave irradiance was adjusted for elevation difference using the climatological lapse rate of Marty 

et al. (2002). Finally, wind speed and direction were taken from the lowest HRDPS prognostic level at 40 m above the surface 235 

and were downscaled to the CHM mesh using the strategy described in the next section.  

2.2.4 Wind field downscaling 

Mountain wind fields are notoriously difficult to observe and model (Davies et al., 1995), and obtaining high-resolution wind 

fields constitutes one of the greatest challenges for blowing snow models in mountainous terrain (e.g., Mott and Lehning, 

2010; Vionnet et al., 2014; Musselman et al., 2015, Réveillet et al., 2020). In the context of this study, hourly HRDPS near-240 

surface wind fields at the 2.5 km scale were downscaled to the CHM mesh over the full duration of the simulations (one water 

year). This required a computationally efficient wind downscaling method. Therefore, the wind downscaling strategy used in 

this study was derived from the method proposed by Barcons et al. (2018) for mesoscale-to-microscale downscaling of near-

surface wind fields. This method combines precomputed microscale simulations with a mesoscale forecast using transfer 

functions. In their study, Barcons et al. (2018) combined the Weather Research and Forecast mesoscale model at 3-km grid 245 

spacing and the Alya-CFDWind microscale model at 40-m grid spacing. In our study, microscale wind simulations were 

generated with the WindNinja model. WindNinja is a mass-conserving diagnostic wind model, primarily designed to simulate 

mechanical effects of terrain on the flow (Forthofer et al., 2014). Forthofer et al., (2014) showed that the model captures 

important terrain-induced flow features, such as ridgetop acceleration or terrain channeling and can improve wildfire spread 

predictions in complex terrain. Wagenbrenner et al. (2016) used the model to directly downscale near-surface wind forecast 250 

from NWP systems in complex terrain.  

The application and extension of the Barcons et al (2018) approach for use on an unstructured mesh and to account for direction 

perturbations is detailed below. First, to build the windmap library, WindNinja was run at 50-m resolution over the Kananaskis 

domain (Fig. 1). As WindNinja uses a regular grid, the input topography was taken from the same SRTM DEM at 30-m grid 

spacing that was used to build the CHM mesh (Sect. 2.2.1). WindNinja used a spatially constant roughness length (𝑧! = 0.01 255 

m) representative of snow-covered terrain in alpine topography (Mott et al., 2010; Mott and Lehning, 2010) and vegetation 

effects were introduced later in the downscaling procedure, as described below. WindNinja simulations were carried out for 

24 initial wind directions (each 15°) with an initial wind speed at 40 m above the surface set to 10 m s-1. The height of 40 m 

corresponds to the lowest HRDPS prognostic level.  
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Then, for each wind direction in the windmap library, the transfer function f was computed for use in the downscaling 260 

procedure given as: 

 
𝑓 =

𝑈"#
< 𝑈"# >$

 
(1) 

 

where UWN is the local wind speed (UWN = *𝑢"#% + 𝑣"#% ), uWN and vWN  are the horizontal components of the wind at 50-m 

resolution, and < 𝑈"# >$ is the spatial average of UWN over an area of size L×L. By construction, when L tends towards 0, f 

tends towards 1. As L increases, f incorporates the local wind fluctuation induced by the micro-scale terrain features (Barcons 

et al., 2018). A value of L = 1000 m was used in this study in agreement with the finding of Barcons et al. (2018) in complex 265 

terrain. Note that Barcons et al. (2018) used a circle instead of a square to compute the spatial average of the wind speed. Thus, 

f acts as a speedup/slowdown factor that accounts for topographic impacts on wind speed. Only one value for the initial wind 

speed was used to build the wind library due to the insensitivity of the transfer function to the initial wind speed found with 

WindNinja.    

To account for impacts on direction, the following approach was taken. The rasters of the windmap library containing the 270 

horizontal u and v wind components and the transfer function f for each initial wind direction were applied to the triangles of 

the unstructured mesh using the mesher code (Marsh et al., 2018). At each CHM time step, the HRDPS uHRDPS and vHRDPS wind 

components were spatially interpolated to the triangles centres with an inverse-distance interpolant using the four closest 

HRDPS grid points. For each triangle, the interpolated HRDPS wind direction, θHRDPS, was then reconstructed from the 

interpolated HRDPS wind components, uHRDPS_int and vHRDPS_int. This direction was used to select the two sets of precomputed 275 

micro-scale wind components or the wind directions φ1 and φ2 that bounds θHRDPS (i.e., φ1 < θHRDPS < φ2). These selected 

microscale wind components including the local terrain effect were then linearly interpolated and recombined to obtain the 

downscaled wind direction θDown. The transfer functions corresponding to the wind directions φ1 and φ2 were also linearly 

combined to obtain the final transfer function, fdown. It was finally applied to scale the modulus of the interpolated HRDPS 

wind speed and derive the final downscaled wind speed as in Barons et al. (2018): 280 
 

𝑈&'() = 𝑓*'().𝑢+,&-._0)1% + 𝑣+,&-._0)1%  (2) 

Wind speeds were then adjusted to 10-m wind speeds using the Prandtl-von Kármán logarithmic wind profile and modified 

to include vegetation interactions using the vegetation cover of the triangle as defined in Sect 2.2.1. Fetch effects due to the 

presence of upstream vegetation are not taken into account when adjusting the wind speed.   
Forthofer et al. (2014) and Wagenbrenner et al. (2016, 2019) have shown that the mass-conserving version of WindNinja has 

difficulties simulating lee-side recirculation where flow separation occurs. This difficulty is due to the absence of a momentum 285 

equation in the WindNinja flow simulation (Forthofer et al., 2014). As lee-side flow strongly influences snow accumulation 

(e.g. Gerber et al., 2018), an additional and optional step was added to the wind downscaling procedure described above. It 

consisted of a modification of the transfer functions fdown to reduce wind speed in leeward areas prone to flow separation. At 

each CHM time step, leeward areas were identified using the Winstral topographic parameter Sx (Winstral and Marks, 2002; 
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Winstral et al., 2017), computed at each triangle using the downscaled wind direction, θDown. The Sx algorithm examines all 290 

triangles along a fixed search line emanating from the triangle of interest to determine which triangle has the greatest upward 

slope relative to the triangle of interest. Positive Sx values indicate sheltering features whereas negative Sx values indicate that 

the triangle of interest height is the highest cell along the search line and is topographically exposed. In this study, the Sx 

algorithm used a search distance of 300 m, as in Winstral et al. (2017). Triangles with Sx values larger than 20○ were considered 

susceptible to flow separation in agreement with previous studies on the onset of flow separation in complex terrain (e.g., 295 

Wood, 1995). For these triangles, the transfer function, fdown was set to a value of 0.25 (Winstral et al., 2009). Note finally that 

a mass and momentum-conserving version of WindNinja is also available (Wagenbrenner et al., 2019). Wagenbrenner et al. 

(2019) have shown that momentum-conservation improved flow simulation at windward and leeward locations compared to 

the mass-conserving version but numerical instabilities made this version of the code unusable in the complex topography of 

the Canadian Rockies.  300 

2.2.5 Model experiments  

A set of CHM experiments were designed to assess the effect of the wind field downscaling, and the impact of process 

representation on snowpack simulations at snowdrift-permitting scales (Table 2). A reference CHM configuration including 

wind downscaling accounting for recirculation, and gravitational and blowing snow redistribution was first defined (WndTr 

Av Rc). A stepwise model falsification was then used, removing the following processes from the model: (i) recirculation 305 

effects in the wind downscaling procedure (WndTr Av NoRc), (ii) blowing snow redistribution with PBSM-3D (NoWndTr Av), 

(iii) gravitational snow redistribution with SnowSlide (NoWndTr NoAv), (iv) wind downscaling with WindNinja (No Down). 

Note that all the CHM experiments considered in this study account for the effects of terrain slope and aspect on incoming 

shortwave radiation. These simulations covered the period from 1st September 2017 to August 31st 2018 to fully capture snow 

accumulation and ablation in the region. For each experiment, CHM outputs were rasterized to a 50 m x 50 m raster for model 310 

evaluation. This rasterization was done via the GDAL rasterization capabilities (GDAL/OGR contributors, 2020). In short, 

this algorithm takes the triangle geometry in conjunction with an output raster (with given cell sizes and domain extent) and 

resolves which raster cells correspond to each triangle. On the case that two triangles share an output cell, an overwrite is used 

by the algorithm. The 50 m x 50 m area was selected as it corresponds to the minimal triangle area for high-resolution used in 

this study (Table 1).  315 

2.3 Data and evaluation methods 

2.3.1 Meteorological observations 

Hourly meteorological data collected at CRHO stations were used to evaluate the precipitation and wind fields driving CHM 

(Table 3). These stations include those in Marmot Creek Research Basin (Fang et al., 2019) and Fortress Mountain Snow 

Laboratory (Harder et al., 2016) (Table 3 and Fig. 1); covering an elevation range from 1492 m to 2565 m. Table 3 also 320 



11 
 

provides the Topographic Position Index (TPI) at the position of the stations (Table 3) as this metric provides a quantification 

of each station’s elevation relative to its surrounding. In this study, TPI was defined as in Winstral et al. (2017) and consists 

of the difference between each station’s elevation on a 50-m raster minus the mean of all pixel elevations located within a 2-

km radius from the station. Hourly meteorological data were obtained from quality-controlled 15-min observations using the 

same method as in Fang et al. (2019). In particular, solid precipitation data were corrected from wind-induced undercatch using 325 

the method proposed by Smith (2007). Simulated wind speeds were corrected to the sensor height of each station (including 

snow depth) using a standard log-law for the vertical profile of wind speed near the surface and an aerodynamic roughness of 

1 mm typically found in snow-covered alpine terrain (e.g., Naaim Bouvet et al., 2010).  

2.3.2 Airborne LiDAR snow depth data  

Airborne laser scanning (ALS) surveys were performed over the Kananaskis region on 5 October 2017 (late summer scan) and 330 

on 27 April 2018 (winter scan) using a Riegl Q-780 infrared (1024 micron) laser scanner with a dedicated Applanix POS AV 

Global Navigation Satellite System (GNSS) inertial measurement unit (IMU). The Q-780 scanner was flown at heights of 

approximately 2500 m above the terrain that yielded swath widths of 2000 m to 3000 m. Post-processing of the ALS survey 

flight trajectory yielded vertical and horizontal positional uncertainties of ±15 cm (1σ). Post-processed point clouds data were 

exported into LAS files, and LAStools (https://rapidlasso.com/lastools/) was used to generate 5 m resolution digital elevation 335 

models (DEMs). The summer and winter DEMs were co-registered to minimize slope and aspect-induced errors (Nuth and 

Kääb, 2011). Additional details about the processing workflow over snow-covered terrain can be found in Pelto et al. (2019). 

To estimate uncertainties on the snow depth retrieval, snow-free areas that included peaks and road surfaces were identified in 

a 3-m satellite imagery (Planet Scope) for 27 April 2018. Analysis of elevation change over these snow-free surfaces (34 

comparison points across all elevation) indicated an average (median) elevation change of -4.1 cm (0.5 cm) and a standard 340 

deviation of 19.8 cm. The median absolute deviation reached 8.0 cm. The DEM of snow depth was masked to only include 

non-glacierized terrain (Fig. 1b) and to exclude any areas of elevation change that was less than 0 m and greater than 20 m; 

elevation change beyond these values are considered outliers (Grünewald et al., 2014) and can arise from steep terrain that was 

effectively in the shadow of the laser scanner. For model evaluation, the 5-m snow depth map was then resampled over the 

same 50-m raster as the CHM output, taking for each cell of the 50-m raster the average of all non-masked cells in the 5-m 345 

snow depth map. Cells of the 50-m raster that contained more than 75 % of masked cells in the 5-m snow depth map were 

masked out. In addition, grid points covered by glaciers identified in the Randolph Glacier Inventory (Pfeffer et al., 2014) were 

removed from the analysis since elevation change over these surfaces is also influenced by ice dynamics (Pelto et al., 2019). 

Finally, forested pixels identified using the global database of Hansen et al. (2013) at 30-m grid spacing were masked out as 

well since this study focuses on snow redistribution processes in open terrain.  350 

The distributions of simulated and observed snow depths were compared for different 200-m elevation bands for three sub-

areas of the Kananaskis domain (Fig. 1b): (i) Kananaskis North; (ii) Kananaskis South and; (iii) Haig. These three sub-areas 

were characterized by different mean (standard deviation) observed snow depths: 0.90 m (0.82 m) for Kananaskis North, 1.32 
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m (1.03 m) for Kananaskis South and 2.00 m (1.33 m) for Haig. For each elevation band, the Root Mean Squared Error (RMSE) 

and the Wasserstein distance of order 1, W1, (Rüschendorf, 1985) were used to quantify the agreement between the simulated 355 

and the observed distributions. W1 is defined as: 

𝑊2(𝑠, 𝑜) = 	6 |𝑆(𝑠) − 𝑂(𝑜)|
34

54
 

where s and o are the simulated and observed snow depth distributions and S and O the corresponding cumulative distribution 

functions. W1 has the same unit as the variable considered (here m for snow depth) and a perfect match between the distribution 

lead to W1 = 0. For each sub-area, simulated and observed snow depth distributions were also compared as a function of slope 360 

orientation in the upper slopes using bias and W1 to provide a specific assessment of model performances in regions particularly 

exposed to wind-induced snow-transport. Upper slopes in the 50-m raster were identified using the TPI as defined above. 

Regions with TPI greater than 150 m were classified as upper slopes.  

2.3.3 Sentinel-2 snow cover maps.  

Wayand et al. (2018) suggested that snow persistence indices from Sentinel-2 images present a strong potential for the 365 

evaluation of distributed snow models in mountainous area. Hence, maps of the snow-covered area from the Copernicus 

Sentinel-2 satellite mission (Drusch et al., 2012) at 20-m resolution and at 5-day revisit time were considered as complementary 

data to evaluate CHM simulations. Sentinel-2 images from 1st September 2017 to 31st August 2018 were processed using the 

snow retrieval algorithm that is currently used to produce the Theia snow collection (Gascoin et al., 2019). First, orthorectified 

top-of-atmosphere (level 1C) products were processed to bottom-of-atmosphere reflectances (level 2A) using the MAJA 370 

software version 3.1 (Hagolle et al., 2017). MAJA output cloud mask and flat-surface reflectances were used as input to the 

LIS software version 1.5. The LIS algorithm is based on the Normalized Difference Snow Index (Dozier, 1989) and uses a 

digital elevation model to better constrain the snow detection (Gascoin et al., 2019). Hansen et al. (2013) global forest product 

was used to mask out pixels with a tree cover density larger than 50% since the snow retrieval algorithm is not adapted to the 

detection of the snow cover in dense forest areas where the ground is obstructed by the canopy. To further avoid 375 

misclassifications due to forest obstruction or turbid water surfaces, the DEM was used to mask out pixels below 2000 m asl. 

The final snow product provided the following classification for each pixel: (i) no snow, (ii) snow, (iii) cloud, including cloud 

shadows and (iv) no data.   

Sentinel-2 snow cover maps at 20-m resolution were resampled to the same 50-m raster as the CHM output using a median 

filter. Maps of observed snow persistence (SP) indices at 50-m resolution were then derived following Macander et al. (2015) 380 

and Wayand et al. (2018). SP represents for each pixel the ratio between the number of snow-covered days divided by the total 

number of clear-sky observations (snow or no-snow). SP was computed using images from 1st April 2018 to 31st August 2018 

and SP ranges from 0 (always snow-free) to 1 (always snow-covered). Over the study period, the mean number of clear-sky 

observations per pixel reached 18.6 days. The same calculation was carried out with CHM outputs to derive maps of simulated 

snow persistence indices. The same dates as the Sentinel-2 maps were used and for each date, the Sentinel-2 cloud and no-data 385 
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masks were applied to make sure that the same pixels and dates were considered when computing observed and simulated SP 

indices. A grid cell was considered snow-covered if the snow thickness exceeded 5 cm (Gascoin et al., 2019). The agreement 

between the simulated and the observed SP distributions was quantified as a function of elevation and slope orientation in the 

upper slopes for the three same sub-regions considered for snow depth (i.e., Kananaskis North, Kananaskis South, and Haig). 

Grid cells that were not covered by forest in the observations and in the simulations were considered for the analysis.  390 

3. Results 

The evaluation of the different wind downscaling methods is described in Sect. 3.1. The quality of the snowpack simulations 

is then assessed in Sect. 3.2 using airborne LiDAR snow depth data and snow persistence indexes. A special emphasis is placed 

on the ability of the model to capture the elevation-snow depth relation as well as snow redistribution around wind-exposed 

ridges.  395 

3.1 Wind field downscaling 

Figure 3 compares the near-surface wind field obtained from a simple bilinear interpolation of the HRDPS wind field (Fig. 3a) 

with the downscaled wind field obtained with (Fig. 3c) and without (Fig. 3b) the wind speed reduction in leeward areas. 

HRDPS provided a smooth wind field with relatively higher wind speeds in the northwestern part of the region characterized 

by high relief (Fig 3a) compared to the rest of the area. HRDPS did not reflect the local terrain information due to a horizontal 400 

resolution of 2.5 km. Combining the HRDPS wind field with precomputed microscale WindNinja simulations strongly altered 

the near-surface wind field (Fig. 3b). The downscaled field contained the general pattern from the HRDPS modulated by the 

local-scale terrain information added by WindNinja and reproduced some typical features of atmospheric flow in complex 

terrain (e.g., Raderschall et al., 2008). In particular, the topography surrounding the main valleys channeled the downscaled 

atmospheric flow, as illustrated by downscaled wind directions aligned parallel to the main valley axes. The presence of ridge 405 

crests generated cross-ridge downscaled flow and associated crest wind speed-up. Downscaled wind speeds were the same on 

the windward and leeward sides of crests, however, as expected with the mass-conserving version of Wind Ninja 

(Wagenbrenner et al., 2016; 2019). For this reason, an additional downscaling step using the Winstral parameter to reduce the 

wind speed in leeward areas was considered as described in Sect. 2.2.4 (Fig. 3c). Blue arrows on Fig. 3c correspond to leeward 

areas sheltered from the atmospheric flow and characterized by low downscaled wind speed. This additional downscaling step 410 

did not modify the wind direction in these areas.  

Figure 4 gives the error metrics for the wind speed (Bias and RMSE) between the CHM simulations and observations at eight 

automatic weather stations. The HRDPS without downscaling overestimated wind speed (positive bias) at all stations, except 

the CNT station. This station is located on an exposed crest and presents the largest TPI value among the stations used for 

model evaluation (Table 3). Downscaling wind to the CHM mesh using WindNinja microscale winds (experiment 415 

HRDPS+WN) improved the error metrics (decrease in bias in absolute value and decrease in RMSE) at four of the stations 
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(BRP, HMW, FSR and CNT). In particular, the wind downscaling reduced the negative bias found in the HRDPS for the wind-

exposed CNT station, presumably because the downscaling captures ridge crest speed-up of wind velocity. Decreased model 

performances were found at four neighbouring stations located around the Fortress Mountain Snow Laboratory, however 

(CRG, FRG, FRS and FLG; Fig 3a). At these stations located along local ridges, the wind downscaling, accounting for crest 420 

speed-up, increased the wind speed and led to a larger positive bias than the default HRDPS (Fig. 3b). Accounting for the 

formation of zones of low wind speed in leeward areas in the downscaling method (experiment HRDPS+WN+Rc) was neutral 

at two stations located at low elevation (BRP and HMW) and improved results at all remaining stations, except at CNT. Indeed, 

a strong degradation of model performance was found at this station since it is placed on a sheltered triangle next to the crest 

on the CHM mesh, leading to an unrealistic reduction of downscaled wind speed.  425 

The wind downscaling method also modified the general wind direction (Figs. 3 and 5). Prevailing winds during the study 

originated from the South (S; 180○) - South West (SW; 225○) at most of the stations whereas the HRDPS without downscaling 

provided wind mainly from the SW - West (W; 270○). Improvements in wind direction when combining HRDPS and 

WindNinja were found for about half of the meteorological stations. The large error at the CRG station illustrated that none of 

the wind simulation considered in this study captured the complex features of the atmospheric flow around the Fortress 430 

Mountain Snow Laboratory (Fig 3a).  

3.2 Snowpack simulations 

3.2.1 Observed and simulated snow distributions 

To assess the ability of CHM to simulate small-scale features of snow accumulation and transport in alpine terrain, ALS-

derived snow depths were compared with simulated snow depths for different CHM experiments for a sub-region of 435 

approximately 77 km2 (Fig. 6).  Observed snow depth was characterized by strong spatial variability (Figure 6a).  Shallow 

snow cover (generally less than 1 m) was found in the upper south- to northeast-facing slopes that were primary exposed to 

wind (Fig. 5). Snow accumulated on the leeward side of these slopes (purple contours on Fig. 6a). Thick snow cover (> 4 m) 

existed at the bottom of steep slopes and in large concave cirques corresponding to avalanche deposition areas (red contours 

on Fig. 6a). The CHM simulation without lateral redistribution of snow (blowing snow and avalanching), NoWndTr NoAv, did 440 

not capture these features (Fig 6d). CHM without blowing snow and avalanche routines simulated a homogenous snow cover 

with reduced snow accumulation for some of the crest regions that are exposed to wind and prone to large surface snow 

sublimation. A better visual agreement with observations was found when accounting for gravitational snow redistribution in 

CHM (Fig. 6c). In this configuration, CHM partially reproduced reduced snow accumulation on steep slopes and avalanche 

deposits were simulated at the bottom of these slopes (red contour on Fig. 6c). However, the model mostly underestimated the 445 

snow depth in these deposits compared to the observations (red contours on Fig. 6a) and did not capture the snow depth 

distribution in the upper slopes (purple regions on Fig. 6c). The reference CHM with lateral redistribution of snow and wind 

speed reduction in leeward slopes, WndTr Av Rc, brought large improvements (Fig. 6b). Accounting for blowing snow 
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redistribution reduced snow accumulation on windward slopes and locally increased snow deposition in the upper parts of 

leeward slopes (purple contours on Fig. 6b). It also led to a large increase in snow accumulation in avalanche deposition areas 450 

(red contours on Fig. 6b) that better corresponded with observed features of snow accumulation (Fig. 6a). However, WndTr 

Av Rc presented an overestimation of snow depth in some of the large valleys of the region (blue contours on Fig. 6) where 

avalanche deposition seemed to be overestimated.  

3.2.2 Elevation-dependency of snow depth 

The agreement between observed and simulated snow depth distributions was examined as a function of elevation for three 455 

sub-regions (see Fig. 1) of the Kananaskis domain: Kananaskis North, Kananaskis South and Haig (Fig. 7 and 8). For each 

sub-region, the median of observed snow depth increased with elevation up to 2400 m followed by a decrease at the highest 

elevations (Fig. 7), a relationship reported elsewhere (Grünewald et al., 2014; Kirchner et al., 2014). The same trend was found 

for the other percentiles shown on the whisker plots of the observed distributions of snow depth (Fig. 7). All CHM simulations 

overestimated the snow depth below 2100 m for each sub-region, partly explained by the tendency of HRDPS to overestimate 460 

precipitation at valley stations (see stations HMW and UPC on Fig. S1 in the supplementary material). The CHM simulation 

without lateral redistribution of snow (NoWndTr NoAv) did not capture the observed spatial variability within each elevation 

band (Fig. 7). Instead, simulated average snow depth increased with elevation and diverged with observed decreased snow 

depth recorded with the ALS survey. Therefore, the experiment NoWndTr NoAv presented an increase of the Wasserstein 

distance and RMSE with elevation (Fig. 8) associated with a continuous decrease in model performance with increasing 465 

elevation. Accounting for gravitational redistribution in CHM (experiment NoWndTr Av; orange boxes in Fig. 7) increased the 

spatial variability within each elevation band and reduced snow accumulation above 2400 m, especially for the Haig sub-

region (Fig. 7c) characterized by steep slopes prone to avalanching (Fig. 1b). The experiment NoWndTr Av led to improved 

Wasserstein distance at all elevation for each sub-region compared to the experiment NoWndTr NoAv (Fig. 8). Snow depth 

above 2300 m for all sub-regions was still overestimated, however (Fig. 7). The increase in RSME below 2400 m (Fig. 8) 470 

suggested that experiment NoWndTr Av did not capture the location of avalanche deposits well.    

Including blowing snow redistribution strongly affected model results. As expected, it increased the spatial variability of 

simulated snow depth within each elevation band compared to experiments NoWndTr NoAv and NoWndTr Av (Fig. 7). When 

the wind speed reduction in leeward areas was not simulated (experiment WndTr Av NoRc), CHM underestimated the median 

snow depth (as well as the 1st and 3rd quartile) above 2500 m compared to observations. This underestimation increased with 475 

elevation and was largest for the elevation band 2900-3100 m. Including the recirculation effect when simulating blowing 

snow (experiment WndTr Av Rc) strongly improved the ability of the model to capture the distribution of snow depth at high-

elevation (above 2700 m for Kananaskis North, Fig. 8a; above 2500 m for Kananaskis South, Fig. 8b and above 2100 m for 

Haig, Fig. 8c). Overall, the experiment WndTr Av Rc captured the observed shape of the elevation-snow depth relation for 

each sub-region (Fig. 7). Below 2300 m, experiments WndTr Av NoRc and WndTr Av Rc overestimated the value of the 95th 480 

percentile of the snow depth distribution compared to observations (Fig. 7). These two configurations of CHM also led to a 
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larger Wasserstein distance (between 1900 m and 2100 m) and larger RMSE (below 2500 m) compared to experiments 

NoWndTr NoAv and NoWndTr Av . These results are consistent with the overestimation of gravitational snow redistribution to 

lower elevation and the erroneous location of avalanche deposits observed on Fig. 6b. 

3.2.3 Snow distribution around ridges 485 

The observed and simulated snow depth distributions were compared for the upper slopes of the domain (defined in Sect. 

2.3.2), particularly exposed to wind-induced snow transport (Fig. 9). The CHM simulation without lateral redistribution of 

snow, NoWndTr NoAv, presented a systematic overestimation of snow depth for all slope orientations (Fig. 9, Top) and yielded 

the worst Wasserstein distance metric among all simulations (Fig. 9, Bottom). Including gravitational redistribution reduced 

the positive bias and the Wasserstein distance. This reduction was not found for some slope orientations, however (W, SW 490 

and S orientations for Kananaskis North, Fig. 9a, and SW and S orientations for Kananaskis South, Fig 9b). The moderate 

values of the slope angle generally found for these orientations were not sufficient to trigger gravitational snow redistribution 

in SnowSlide. For example, the percentage of slope values larger than 40○ is only 9% for the SW and S orientations for 

Kananaskis North, compared to 43% and 63% for the N and NE orientations for the same region, respectively. Accounting for 

blowing snow redistribution without wind speed reduction in leeward areas generated a systematic underestimation of snow 495 

depth for all slope orientations and sub-regions (Fig. 9, Top). This negative bias in snow depth indicates that snow erosion on 

the windward slopes (S to NW orientations) was overestimated for experiment WndTr Av NoRc. Thinner-than-observed snow 

depth on the upper part of the leeward slopes (N to SE orientations on Fig. 9, Top) suggests that the wind-blown snow eroded 

in excess from the windward slopes was transported by PBSM-3D to the lower part of the leeward slopes due to the absence 

of wind recirculation in the driving wind field used by experiment WndTr Av NoRc (Fig. 3b). A similar underestimation of 500 

snow depth on the windward slopes exists for experiment WndTr Av Rc. Due to the activation of the wind speed reduction in 

leeward areas, however, this experiment simulated snow deposition in the upper part of these areas. The experiment WndTr 

Av NoRc led to an overestimation of snow depth on the leeward slopes for Kananaskis North and South (N to SE orientations, 

Fig. 9a b) and nearly unbiased estimation of snow depth for Haig (NE to SE orientations, Fig. 9c). Overall, experiment WndTr 

Av Rc provided the best performances in term of Wasserstein distance for the windward slopes of all sub-regions (Fig 9. 505 

Bottom) despite the negative bias in snow depth for these areas. Performances were more mixed for leeward slopes: Haig 

showed an improvement compared experiment NoWndTr Av (Fig. 9f) whereas worst performances were obtained for 

Kananaskis North (Fig. 9d).   

3.2.4 Snow Persistence 

Figure 10 shows the maps of observed snow persistence indexes as well as the indexes derived from two CHM simulations. 510 

Observed SP (Fig. 10a) presented similar patterns compared to the observed distribution of snow depth in late April (Fig 6a), 

showing that snow persistence patterns are primarily controlled by the patterns of peak snow accumulation (Wayand et al., 

2018). Avalanche deposits identified on Fig. 6a corresponded to maximal SP values whereas low SP values were found near 
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ridges lines, exposed to wind. Overall, the Pearson correlation coefficient between observed snow depth and SP reached 0.69 

(p <0.001), 0.68 (p<0.001) and 0.75 (p<0.001) for Kananaskis North, Kananaskis South and Haig, respectively. Without 515 

accounting for lateral snow redistribution (experiment NoWndTr NoAv), CHM-simulation derived SP values were dependent 

upon the elevation and slope orientation (Fig. 10c), primarily due to the impact of solar radiation on simulated snow ablation. 

Without lateral snow redistribution, snow accumulation was spatially uniform (Fig. 6d and 7). Lower values of simulation 

derived SP were found in the lower south-facing slopes whereas steep slopes on northern faces had SP values close to 1.0. The 

simulation derived SP was strongly modified with experiment WndTr Av Rc (Fig. 10b), similarly to the effect found for snow 520 

depth near peak snow accumulation (Fig. 6b). In this experiment, windward slopes systematically presented low SP values 

and maximal SP values close to 1.0 were found at the bottom of slopes due to gravitational redistribution of snow that prevented 

from snow persistence on steep slopes.  

Figure 11 shows how accurately the different CHM experiments were able to reproduce the observed SP distributions as a 

function of elevation. The simulation derived and observed SP distributions are shown on Fig. S2. Model performances for 525 

snow persistence were generally in agreement with those for snow depth presented at Fig. 8. Experiments without blowing 

snow redistribution (NoWndTr NoAv and NoWndTr Av) overestimated snow persistence at all elevations with a positive bias 

increasing with elevation for experiment NoWndTr NoAv. Including blowing snow redistribution in experiments WndTr Av 

NoRc and WndTr Av Rc significantly decreased snow persistence, mainly above 2300 m. The absence of wind speed reduction 

in leeward areas (experiment WndTr Av NoRc) led to negative bias of snow persistence above 2700 m and a decrease in model 530 

performances compared to experiment WndTr Av Rc that includes recirculation effects. Below 2500 m, experiments WndTr 

Av NoRc provided the best performances in terms of bias and Wasserstein distance. Consistent results compared to snow depth 

were also obtained when considering how observed and simulated SP distributions vary with slope orientation in upper slopes 

(Fig. 12). For example, the tendency of experiment WndTr Av Rc to overestimate snow accumulation on the leeward slopes of 

Kananaskis North led to a clear overestimation of snow persistence on these slopes (Fig. 12a) and a degradation of model 535 

performance compared to a simulation without blowing snow redistribution (Fig. 12d).   

4. Discussions 

4.1 Modelling of mountain snowpack 

This study presents a new high-resolution modelling strategy for mountain snowpack combining atmospheric forcing from a 

NWP system at convection-permitting scale with the multi-scale, snowdrift-permitting model CHM. Several CHM 540 

configurations were tested to highlight how missing physical processes influenced the performances of snowpack simulations 

at snowdrift-permitting scales (50 m in this study). Lateral snow redistribution (blowing snow and avalanching) were required 

to capture natural variations in snow depth and its persistence, a finding that accords with Winstral et al. (2013) and Hanzer et 

al. (2016). These results differed from Revuelto et al. (2018) who showed that a distributed snowpack scheme without lateral 

snow redistribution can provide accurate estimation of snow cover variability. This discrepancy may arise from (i) the 545 
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resolution of 250 m used in Revuelto et al. (2018) for which lateral redistribution processes are partially sub-grid and (ii) the 

absence of ALS data and high-resolution satellite images to evaluate their snowpack simulations. Accounting for gravitational 

redistribution reduced snow accumulation and persistence in steep slopes in agreement with the findings of Bernhardt and 

Schulz (2010). This was not sufficient and snow depth and persistence were still overestimated for the upper slopes exposed 

to wind. The CHM simulation (WndTr Av Rc) that included blowing snow redistribution and avalanching was required to 550 

capture the decrease in snow depth at high-elevation (above 2500 m); it also improved the elevation-snow depth relationship 

for all sub-domains of the Kananaskis domain. Similar elevation-snow depth relationships presenting a snow depth maximum 

below the highest elevations have also been reported for other mountainous regions (Grunewald et al., 2014; Kirchner et al., 

2014). Our results suggest that accounting for blowing snow redistribution and avalanching in distributed snowpack 

simulations is crucial to accurately simulating the elevation-snow depth relationships in high mountain terrain.  555 

Results of blowing snow redistribution simulations in CHM were sensitive to the quality of the driving wind field, in particular 

the impact of recirculation areas, at the mountain range scale (> 100 km2). This observation builds on the similar findings of 

Mott and Lehning (2010) and Musselman et al. (2015) based on ridge-scale simulations of snow depth. High-resolution wind 

fields obtained using the mass-conserving version of the diagnostic wind model WindNinja (Forthofer et al., 2014) presented 

some features of atmospheric flow in alpine terrain (e.g. valley channeling, crest speed-up) but they did not capture the 560 

formation of recirculation areas on leeward slopes. This lack of recirculation led to lower-than-observed snow deposition and 

persistence on leeward slopes. These results highlight the limitations of mass-conserving diagnostic wind models for blowing 

snow modelling in alpine terrain. Combining high-resolution wind fields from WindNinja with a terrain-based parameter 

(Winstral and Marks, 2002) allowed identifying potential areas of flow separation on leeward slopes and improved simulations 

of the elevation-snow depth relationship and of the snow distribution and persistence around ridges. This simulation was still 565 

impacted by an overestimation of snow erosion on windward slopes and subsequent deposition on leeward slopes, likely arising 

from uncertainties associated with the wind downscaling method and limitations in CHM parameterizations discussed in Sect. 

4.3 and 4.4.   

4.2 Importance of high-resolution distributed evaluation data 

The evaluation of the wind downscaling methods versus point measurements did not show systematic improvements compared 570 

to the original HRDPS wind field, consistent with studies of high-resolution wind modelling in complex terrain (e.g., Horvath 

et al., 2012; Vionnet et al., 2015). Model results in Sect. 3.1 highlight the challenge of evaluating wind simulations at locations 

near peaks or ridges due to approximation in the location of the stations as previously mentioned in Fiddes and Gruber (2014) 

and Winstral et al. (2017). On the other hand, differences between the wind downscaling methods were clearly identified and 

quantified when evaluating the snow simulations using distributed data. ALS snow depth and snow persistence indexes derived 575 

from Sentinel-2 allowed for targeted model evaluation in area of interest such as the upper slopes exposed to wind-induced 

snow transport. These results confirm the large potential of ALS snow depth data for detailed model evaluation (e.g., Hanzer 

et al., 2016; Hedrick et al., 2018). In addition, they show that snow persistence indexes derived from freely available Sentinel-
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2 images (Wayand et al., 2018) can generally support similar conclusions than those derived from ALS snow depth. This 

highlights that these indexes can be used to evaluate large-scale snowpack simulations at snowpack-permitting scales in regions 580 

that are not covered by LiDAR. As illustrated by Wayand et al. (2018), the snow persistence index is influenced by variability 

in both snow accumulation and ablation, so that this index can only be used to evaluate snow redistribution models if variable 

insolation effects are also simulated. This is the case in the simulations presented in this paper (Sect 2.2.5).    

Two types of metrics were used when using ALS snow depth data for model evaluation: RMSE and Wasserstein distance. 

RMSE corresponds to a traditional “point-to-point” verification metric. Such metric may favor homogenous snow cover 585 

simulations. Indeed, a snow cover simulation including avalanching may present a degree of realism but errors in the exact 

location of the avalanche deposits may increase RMSE compared to a simulation without avalanching due to the double-

penalty problem (e.g., Nurmi, 2003). This issue is often encountered when evaluating the ability of high-resolution atmospheric 

model to simulate localized events such as convective precipitation (e.g., Clark et al., 2016). The Wasserstein distance 

(Rüschendorf, 1985) was used in this study as a complementary metric to evaluate the agreement between observed and 590 

simulated distributions for specific areas (elevation bands or specific slope orientations). This metric may lead to a perfect 

match even if the observations and the simulations are not co-located, however. This highlights the need to consider several 

verification metrics with identified strengths and limitations. In the future, more advanced verifications methods such as the 

neighborhood methods developed in the atmospheric community (Ebert et al., 2013) could be considered.  

4.3 Uncertainties in the atmospheric driving data 595 

This study used a wind downscaling method inspired by Barcons et al. (2018) and developed for large areas. Part of the 

uncertainty associated with this method comes from the value of the radius of influence used to compute the transfer functions 

(Sect. 2.2.4). A value of 1 km was selected for this study, similar to Barcons et al. (2018) as the resolutions of the mesoscale 

atmospheric models were similar between the two studies (2.5 km in this study and 3 km in Barcons et al., 2018). Further work 

is required to adapt this value to the resolution of the mesoscale atmospheric models and to the terrain complexity. Sensitivity 600 

tests revealed that the wind field in the upper slopes strongly depend on the value of the radius of influence with a potential 

large impact on simulated snow redistribution. The accuracy of the wind downscaling was also influenced by the quality of 

the diagnostic wind model used to generate microscale wind fields. In particular, the mass-conserving version of WindNinja 

used in this study failed to simulate the formation of recirculation areas on leeward slopes that are one of the main features of 

atmospheric flow in alpine terrain (Raderschall et al., 2008; Gerber et al., 2017). The practical method relying on the Winstral 605 

parameter (Winstral and Marks, 2002) proposed to overcome this limitation is affected by strong assumptions on the value of 

the critical angle for flow separation (Wood, 1995). Gerber et al. (2017) showed that atmospheric stability affects the value of 

this angle and the development of leeside recirculation. A constant value of 0.25 is used for the transfer function in recirculation 

zones. This value falls within the range of values reported on Fig. 10 of Menke et al. (2019) for the ratio, R, between the 

maximum wind speed in recirculation flow and the inflow wind speed at the crest. Menke et al. (2019) found that R tends to 610 

decrease with increasing stability in a stable atmosphere and it presents values lower than 0.3 for inflow wind speed greater 
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than 12 m s-1. This suggests that a dynamic value based on atmospheric stability could be used for the transfer function in 

recirculation zones. In addition, the wind direction is not modified in these areas, contrary to simulations resulting from CFD 

models or atmospheric models in LES mode (Gauer, 1998; Mott and Lehning, 2010; Vionnet et al., 2017). Improvements in 

the wind downscaling could be achieved using such models to generate the library of wind fields, as proposed by Barcons et 615 

al. (2018). Different conditions of atmospheric stability could also be considered (e.g., Gerber et al., 2017) as well as different 

input wind speeds that affect significant flow features such as flow separation. Final selection of the wind downscaling strategy 

will ultimately be a trade-off between model complexity, accuracy and computational costs and will vary as a function of 

model applications.  

All the atmospheric driving data for CHM were obtained from the HRDPS, the Canadian NWP system using GEM at 2.5 km 620 

(Milbrandt et al., 2016). It consisted of successive short-range forecasts combined to generate a continuous atmospheric 

forcing. Such approach has been used previously to generate atmospheric forcing for snowpack models in mountainous terrain 

(Horton and Jamieson, 2016; Quéno et al., 2016; Vionnet et al., 2016; Luijting et al., 2018). Error in the snowpack variables 

can grow with time due to errors in the successive forecasts, especially those due to precipitation biases (e.g., Vionnet et al., 

2019). Errors in the longwave and shortwave radiative input can also significantly affect snowpack simulations (Lapo et al., 625 

2015; Quéno et al., 2020). The downscaling techniques used to adapt the HRDPS forcing to the CHM mesh likewise contribute 

to the uncertainty in the quality of the meteorological input. Monthly fixed altitudinal gradients were used to adjust the near-

surface temperature and humidity forcing; this method might be further improved using upper-air HRDPS temperatures and 

humidity fields (e.g., Jarosch et al., 2010; Fiddes et al., 2014). Contributions from the surrounding topography to longwave 

irradiance were also neglected, despite its impact on the snowpack energy balance on inclined slopes (Pluss and Ohmura, 630 

1997). Ensemble simulations based on ensemble meteorological forcing (e.g., Vernay et al., 2015) and ensemble downscaling 

methods (Marsh et al., 2020a) could be used to investigate the impact of these sources of uncertainties.  

4.4 Limitations in the physical parameterizations in CHM 

The model evaluation for the upper slopes exposed to wind showed that CHM simulations including blowing snow tend to 

overestimate snow-redistribution across slopes subject to wind erosion and deposition. These results were obtained for a CHM 635 

mesh with a typical area of 50 m ´ 50 m near the crest lines. Mott and Lehning (2010) found a similar overestimation of snow-

redistribution in simulations of the snow cover evolution for a crest of the Swiss Alps using the Alpine 3D model (Lehning et 

al., 2008) running at 50-m grid spacing. They showed that increasing the model resolution finer than 10 m increased snow 

accumulation on windward side due a more accurate representation of small-scale terrain features trapping snow on the 

windward side. These results suggest that the absence of any subgrid topography effects on snow transport in CHM can 640 

partially explain the overestimation of snow redistribution from windward slopes to leeward slopes and subsequent 

avalanching. In addition, CHM uses the formulation for the threshold friction velocity for snow transport of Li and Pomeroy 

(1997) that only depends on snow presence and air temperature. Though based on a large multi-year observational dataset, 

such parameterization is empirical and does not also account for the effect of snow fragmentation during blowing snow events 
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(Comola et al., 2017) which may lead to an underestimation of the threshold friction velocity and an overestimation of blowing 645 

snow occurrence in alpine terrain (Vionnet et al., 2013). CHM may benefit from the inclusion of a more physically based snow 

transport routine in the future. Finally, CHM uses a thickness of 5-m for the suspension layer (Marsh et al., 2020a). This is 

sufficient to capture most of the mass transported in alpine terrain over slopes exposed to wind with limited fetches (Pomeroy 

et al. 1993; Naaim Bouvet et al, 2010) but it cannot simulate the formation of snow plumes at crest lines. Mass loss due to the 

advection of blown snow particles to atmospheric layers and subsequent sublimation are likely underestimated by CHM. Such 650 

a limitation is also found for more advanced blowing snow schemes (see for example Fig. 6 of Groot Zwaaftink et al., 2011 

and Fig. 8.6 of Vionnet, 2012).  

Gravitational snow redistribution is simulated in CHM with the SnowSlide scheme (Bernard and Schulz, 2010). Model results 

showed that CHM can reproduce the formation of snow accumulations due to avalanching that visibly correspond with the 

observations. However, the increase in RMSE for snow depth at low elevation for all simulations including avalanching 655 

suggests that CHM does not effectively capture the true location of these deposits. SnowSlide relies on a maximum holding 

capacity of snow that only depends on the slope angle and does not consider the small-scale terrain roughness, limiting the 

ability of the scheme to reproduce snow accumulation for steep faces (Sommer et al., 2015). In addition, the exact location of 

avalanche deposits is influenced by avalanche dynamics (Pudasaini and Hutter, 2007) which are not reproduced in SnowSlide. 

CHM also does not represent snowfall enhancement due to interactions between the flow field and the local cloud formation 660 

as well as the preferential deposition of snowfall resulting from pure particle flow interaction (Lehning et al., 2008; Vionnet 

et al., 2017; Mott et al., 2018). Gerber et al. (2019) suggested that, when combined, these two effects can increase snow 

accumulation on the leeward side of mountain ridges by 26-28%. In the current version of CHM, wind-induced snow transport 

is the only process responsible for additional snow deposition on leeward slopes. The parameterization of Dadic et al. (2010) 

could be tested in CHM but would require an estimation of the vertical wind speed that could be provided by WindNinja. A 665 

study is in progress in the Canadian Rockies to better assess the impact of terrain–flow–precipitation interactions on snow 

accumulation in the region. Finally, uncertainties associated with the Snobal snowpack scheme were not quantified in this 

study. In particular, errors in simulated snow density can affect the comparison between observed and simulated snow depth 

(Raleigh and Small, 2017; Lv and Pomeroy, 2020), despite the use of an improved snow density algorithm for Snobal (Hedrick 

et al., 2018). Inaccurate estimations of the ground heat flux may also affect the simulation of the snow cover duration (Slater 670 

et al., 2017). Pritchard et al. (2020) showed how multi-physics ensemble snow modelling can be applied to assess uncertainties 

on distributed snowpack simulations and a similar framework could be applied to CHM, including uncertainties in PBSM-3D 

and SnowSlide.   

5. Conclusions  

This study presents a new multi-scale modeling strategy of mountain snowpack over large regions. It combines (i) atmospheric 675 

forcing from the Canadian GEM NWP system at a convective-permitting scale (Milbrandt et al., 2016), (ii) a meteorological 
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downscaling module including a wind downscaling strategy relying on the diagnostic wind model WindNinja (Forthofer et al., 

2014) and (iii) the multi-scale snowdrift-permitting model CHM (Marsh et al., 2020a, b). This system was used to simulate 

the snowpack evolution for an entire snow season over a domain of 958 km2 in the Kananaskis Valley of the Canadian Rockies. 

Wind simulations were evaluated using data from automatic stations in the domain. The distributed evaluation data for the 680 

snowpack simulations consisted of maps of snow depth derived from airborne LiDAR and snow persistence indexes derived 

from optical satellite imagery. Several configurations of CHM were tested to assess the effect of the wind field downscaling, 

and the impact of process representation on snowpack simulations at snowdrift-permitting scales. 

The main conclusions of this study are that: 

• Pre-computed wind fields at 50-m grid spacing with the WindNinja model can be combined efficiently with output 685 

of the Canadian NWP system at 2.5 km grid spacing to produce hourly driving wind fields including small-scale 

topographic features. The mass conserving version of WindNinja used in this study cannot reproduce leeside flow 

recirculation, however. The Winstral terrain parameter, Sx, provides a solution to identify potential recirculation areas 

and adjust accordingly the wind field downscaled with WindNinja.   

• Snowpack simulation without lateral snow redistribution (blowing snow and gravitational snow redistribution) cannot 690 

capture the spatial variability of snow cover in alpine terrain and overestimates snow depth and snow cover duration 

at high elevations. Including gravitational redistribution improved model results and reduced snow depth at high 

elevations. Snow depth and snow cover duration was still overestimated around ridge lines exposed to winds.  

• Snowpack simulation including blowing snow and gravitational snow redistribution provided the best estimates of 

the shape of the elevation-snow depth relation across the Kananaskis region and reproduced the decrease in mean 695 

snow depth found at high elevation. These results were obtained for a CHM experiment driven by a wind field 

including the wind speed reduction in leeward areas. Removing these zones led to a systematic underestimation of 

snow depth around ridges, partially due to an underestimation of snow deposition on leeward slopes. These results 

highlight that wind fields without lee-side slowdown are not sufficient to simulate snow redistribution in mountainous 

terrain.  700 

• Snowpack simulations including blowing snow and gravitational snow redistribution overestimated snow 

redistribution from windward to leeward slopes and subsequent avalanching. This is potentially due to the absence of 

subgrid topographic effects in the driving wind field and in the snow transport equations in CHM.  

• High-resolution snow persistence indexes derived from Sentinel-2 presents a strong potential for the detailed 

evaluation of distributed snowpack models, in particular in regions where Airborne LiDAR snow depth data are not 705 

available. These indices can be used for model evaluation targeting specific areas (e.g. ridges lines exposed to intense 

wind-induced snow redistribution, avalanche deposition areas). 

The results of this study demonstrate that CHM at snowdrift-permitting scale constitutes a promising tool for large-scale 

modelling of mountain snowpack. Future work will combine (i) improvements in the physical parameterizations in CHM and 
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in the driving wind fields, (ii) large scale simulations across the Western Canadian Cordillera, and (iii) improvements of CHM 710 

simulations with assimilation of high-resolution observations such as ALS snow depth or Sentinel-2 snow cover.  

Code availability 
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Windmapper tool (https://github.com/Chrismarsh/Windmapper). The Sentinel-2 snow cover maps were generated from level 

1C images using the free software MAJA (https://logiciels.cnes.fr/en/content/maja) and the open source software LIS 

(https://gitlab.orfeo-toolbox.org/remote_modules/let-it-snow/). 
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Table 1: Characteristics of the mesh used in this study. The vertical error corresponds the root mean square error to the underlying 1060 
reference topographic raster.  

Name of the 

mesh 

Minimum 

triangle area (m2) 

Maximum 

triangle area (m2) 

Median triangle 

area (m2) 

Vertical 

error (m) 

Number of triangles 

M1550 50 ´ 50 250 ´ 250 63 ´ 63 15 101 700 

 
Table 2: CHM simulations (experiments) used in this study. Rc indicates CHM simulations using wind fields from the downscaling 
method accounting for wind speed reduction in leeward areas. HRDPS refers to the High Resolution Deterministic Prediction System 
and WN to Wind Ninja. See text for more details.  1065 

Name Driving Wind Field  Gravitational 

redistribution 

Wind-induced 

snow transport 

NoDown HRDPS No No 

NoWndTr NoAv HRDPS + WN + Rc No No 

NoWndTr Av HRDPS + WN + Rc Yes No 

WndTr Av NoRc HRDPS + WN Yes Yes 

WndTr Av Rc HRDPS + WN+ Rc Yes Yes 

 

Table 3: Meteorological stations used for wind evaluation. TPI refers to the Topographic Position Index and is defined as the 
difference between the elevation of the station minus the mean elevation within a 2-km radius from this station. The location of the 
stations is shown on Fig. 1. 

Full Name Code Latitude (°)  Longitude (°) Elevation (m) TPI (m) 

Centennial Ridge CNT 50.9447 -115.937 2470 248 

Fisera Ridge FSR 50.9568 -115.2044 2325 -10 

Hay Meadow HMW 50.9441 -115.1389 1492 -33 

Fortress Ledge FLG 50.8300 -115.2285 2565 216 

Fortress Ridge FRG 50.8364 -115.2209 2327 99 

Fortress Ridge South FRS 50.8382 -115.2158 2306 129 

Canadian Ridge CRG 50.8215 -115.2063 2211 68 

Burtsall Pass BRP 50.7606 -115.3671 2260 -90 

 1070 
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Figure 1: a) Land cover map and b) elevation map of the Kananaskis Valley, Alberta, Canada study domain. The glacier mask is 
taken from the Randolph Glacier Inventory version 6.0 (Pfeffer et al., 2014). The red-shaded area correspond to the area shown in 1075 
Fig. 2, 3 6 and 10. The characteristics of the meteorological stations are given in Tab. 3. Areas labelled from 1 to 3 correspond to 
sub-regions used in the analysis of the results (see Sect. 2.3.2). 
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Figure 2: Variable resolution triangular mesh used in this study over a sub-area of the Kananaskis domain. The location of this sub-
area corresponds to the red-shaded area shown on Fig. 1b. The underline DEM was taken from the SRTM mission at 1 arc second.  1080 
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Figure 3: Near-surface wind field on 10 September 2017 at 18 UTC from (a) HRDPS without downscaling, (b) HRDPS downscaled 
to the CHM mesh M15

50 using WindNinja and (c) same as (b) but including a parameterization for the formation of recirculation 
zones on leeward slopes (see Sect. 2.2.4 for more details). The location of this sub-area corresponds to the red-shaded area shown on 
Fig. 1b.  Arrows indicate wind direction while colours indicate wind speed. One arrow is shown every 250 m for clarity. The 1085 
underlying topography is shown using hill shading. Effects of vegetation on the simulated wind fields are not shown in these maps. 
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Figure 4: Evaluation of simulated wind speed using different downscaling methods: (Top) Bias and (Bottom) Root Mean Square 
Error (RMSE). Grey colours show the HRDPS wind speed without downscaling, blue colours show the HRDPS wind speed combined 
with WindNinja microscale winds (HRDPS+WN) and red colours show the same configuration as HRDPS+WN including in addition 1090 
the wind speed reduction on leeward slopes. Stations used for evaluation are classified by increasing TPI (Table 3). Their location is 
shown on Fig. 1.  
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Figure 5: Same as Fig. 4 for wind direction: (Top) Preferential wind direction and (Bottom) Root Mean Square Error (RMSE). 1095 
Error metrics were computed for wind direction only when observed wind speed was larger than 3 m s-1. Configuration 
HRDPS+WN+Rc is not shown since the wind direction is unchanged compared to HRDPS+WN.  
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Figure 6: Snow depth on 27 April 2018 (a) measured by ALS and simulated by three CHM configurations: (b) WndTr Av Rc, (c) 
NoWndTr Av, and (d) NoWndTr NoAv (Table 3). Properties of snow depth distribution in areas with coloured contours are discussed 1100 
in the text. Pixels covered by tall vegetation in the observations and in the simulations are excluded from the comparison and appear 
in grey. Black isolines correspond to Δz = 50 m and the location of this region in shown on Fig. 1b. 
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Figure 7: Boxplots showing the distributions of observed and simulated snow depth per 200-m elevation bands for three sub-regions. 
The location of these sub-regions is shown on Fig. 1b. Results of four CHM experiments are shown. The numbers in italic indicate 1105 
the number of grid points within each elevation band. The whiskers show the 5th and 95th percentiles and outliers are not plotted.  
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Figure 8: Wasserstein distance and RMSE between observed and simulated snow depth distribution as a function of elevation for 
four CHM experiments and three sub-regions. The location of these sub-regions is shown on Fig. 1. 
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 1110 
Figure 9: Bias (Top) and Wasserstein distance (Bottom) between observed and simulated snow depth distribution in upper slopes as 
a function of slope orientation for four CHM experiments and three sub-regions. The location of these sub-regions is shown on Fig. 
1. Upper slopes are defined as regions of TPI larger than 150 m (see Sect. 2.3.2). The thick grey circles on graphs a, b and c indicate 
a zero bias. Values outside this circle indicate a positive bias whereas values within this circle indicate a negative bias.  
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Figure 10: Maps of snow persistence index (SP) (a) derived from Sentinel-2 and simulated by two CHM configurations: (b) WndTr 
Av Rc, and (c) NoWndTr NoAv (Table 3). Pixels covered by tall vegetation in the observations and in the simulations are excluded 
from the comparison and appear in grey. Black isolines correspond to Δz = 50 m and the location of this region in shown on Fig. 1b. 
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Figure 11: Bias and Wasserstein distance between observed and simulated snow persistence index as a function of elevation for four 
CHM experiments and three sub-regions. The location of these sub-regions is shown on Fig. 1. 
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Figure 12: Same as Fig. 9 for the snow persistence index (SP) 1125 

 

 


