
Alexander Robel (Referee) 

This manuscript explores the stability of Pine Island Glacier under forcing from ocean melt, using a 

high order model of marine ice sheet dynamics. Additionally, this is the first study to bring the 

concept of Early Warning Signals (EWS) to the stability transition known as the "marine ice sheet 

instability" (MISI). Though EWS have been explored in a limited degree in some other areas of 

glaciology, this is an interesting and useful application to the MISI problem, which has recently been 

a focus of intense study in the glaciology community. 

The central concept and design of this study are sufficiently novel and important that it eventually 

should be published in The Cryosphere, though I think it requires some revision first. In particular, 

since this is the first application of EWS to the MISI problem, it needs to be clear why exactly EWS 

are a useful tool for studying marine ice sheet stability. Additionally, the methodological details of 

EWS, while established in the dynamical systems literature, are not well known in glaciology. If the 

authors wish other glaciologists to follow their lead in using this approach (which I think should be 

the case), then they need to do a better job explaining the methods they use and the assumptions 

inherent to these methods. I lay out these critiques in more detail below through major and minor 

suggestions: 

Many thanks, Alex, for the positive evaluation of our study and the helpful comments. We replied to 

all comments and hope that our replies and changes made to the manuscript address all issues 

raised. Our replies below are indicated in red, changes to the manuscript summarised in blue and 

references can be found at the end of the document. 

Major: 

1. Here is the question that you should answer in this manuscript: Why/When are EWS a useful 

tool for understanding MISI at a particular glacier? At the moment, my interpretation 

(perhaps erroneous) of the purpose of EWS laid out in this manuscript is to show that there 

is a bifurcation (in fact several) in the model. However, you don’t need EWS to show that 

this is the case when you have a model available, since you have the quasi-steady 

simulations which show the bifurcation structure of PIG. Rather, the point of EWS is to 

detect a bifurcation before it occurs. You do so in the context of your model, however, solely 

within the context of a predictive model, EWS are not strictly necessary, because the model 

can be run forward to determine whether a bifurcation will occur with continued forcing 

along some trajectory (this is the point of physical models!). However, what you could argue 

here is that your study is a proof-of-concept to indicate the circumstances under which we 

would expect to detect EWS in observations, which would be immensely useful for the 

community. This is what I find currently lacking in the study - any discussion of the 

implications of your study for observations. For example, you touch on this issue later in the 

paper about the fact that in the real world, ice sheets do not stay on the stable manifold 

because forcing is much faster than the response time, but then don’t really explore 

whether this makes EWS useless in practice (I think no, but that isn’t my take away from the 

current way its written). Another issue (which you don’t remark on) is the fact that a 300 

year averaging window for the EWS indicators is not super useful when the entirety of the 

observational record is 40 years long (perhaps a bit longer if we include some lower quality 

historical obs). This is all to say that showing EWS exist in a model is not very insightful in of 

itself if it doesn’t provide some indication for what we should be looking for in observations 

(since again, we already know that there are bifurcations associated with MISI in models).  



Both reviewers state that our paper needs to do a better job of explaining the background and 

methodology of EWS and why our results are useful in a glaciological context. We agree that 

both of these things could be greatly improved on and will endeavour to do so in a revision of the 

paper. The aim of this paper is a ‘proof of concept’, demonstrating that EWS can be found for the 

marine ice sheet instability in realistic geometries. The theoretically-proven hysteresis of MISI 

(Schoof 2007) is similar to a fold (aka saddle node) bifurcation. For this class of dynamic systems 

the existence of EWS can be theoretically proven. However, it is by no means clear that EWS can 

be still detected in more complex, realistic systems, as for example discussed in Dakos et al., 

(2015). We show for the first time for a realistic geometry (including for example ice shelf 

buttressing that is not considered in the theoretical hysteresis for MISI) that indeed EWS can be 

detected.  We will add more discussion regarding the potential for observations of ice sheets to 

be used in the context of EWS since we agree that this is arguably the most important potential 

outcome of our findings. Our study is a first step in understanding how this methodology could be 

used. Certainly, as Alex points out, a 300 year averaging window is not necessarily useful in terms 

of available datasets. An important caveat that we will make much clearer in a revised paper is 

that the 300 year averaging window that we found was optimal does not necessarily represent a 

lower bound and this is something that certainly requires and warrants further investigation.  

We have added an extensive new section in the paper that explain early warning theory, 

including a new figure. In addition, we have added much more discussion on the applications of 

this work in terms of ice sheet modelling and observations, as well as caveats to issues such as 

the window size that would be important to readers looking to apply this to their own work. 

2. You haven’t necessarily explained why EWS show up in certain types of systems. To me, this 

is key to then explaining why you are calculating these things (ACF, variance, etc). In a 

canonical saddle-node bifurcation, we expect the stable eigenvalue of the linearized system 

state to smoothly decrease towards zero as you approach the bifurcation, which causes 

weaker damping of noisy forcing back towards the stable manifold. So, do EWS only occur 

where there is a saddle-node bifurcation? How do we know that MISI at PIG has such a 

smooth approach to the bifurcation? i.e. if the eigenvalue associated with the stable mode is 

controlled at first order by bed topography (which it is in the canonical formulation of MISI, 

see Schoof 2012 and others), then does the topography in the vicinity of the bifurcation 

need to vary smoothly towards a bedrock peak to produce EWS? Maybe these are questions 

for another study, but there needs to be some indication that you have grappled with the 

question of why you expect EWS to occur for PIG.  

Although EWS have largely been used to detect saddle node bifurcations these methods can be 

applied to other types of bifurcation (Scheffer, 2009), for example they have successfully been 

used in the context of Hopf bifurcations (Chisholm & Filotas, 2009). We will add this point to the 

revised paper. The second comment, regarding how bed roughness might affect the performance 

of EWS, is something we looked at during our modelling work but ended up not including in the 

paper submission. In fact, this was originally a major motivation of the PIG experiments because 

there was no guarantee that observing critical slowing in the idealised MISMIP experiment would 

work for a realistic topography. Before we did the PIG experiment we superimposed varying 

types and amounts of Perlin noise onto the smooth MISMIP bed, such that the overall retrograde 

bed slope became more obscured by smaller scale bed features. Repeating the same experiments 

on these new beds and extracting the relaxation time to predict the tipping point became 

successively less accurate as more noise was added. However even for a very bumpy bed there 

was still a trend towards longer relaxation times as the tipping point was approached and the 



accuracy of the predicted tipping point was still good enough that we had confidence this 

approach would work for a real glacier. The resolution of both our PIG model and the bed 

topography are such that we resolve as much of this ‘bumpiness’ as possible in these simulations. 

Discussion around both of these points will be added into a revised version of the manuscript.  

We have added further discussion in the manuscript around why early warning signals show up 

in certain systems and that this is not just true for saddle-node bifurcations. We have also added 

a section to the flowline experiment results describing the extended experiments we did whereby 

bed bumpiness was increased, and discussed the implications of this in the manuscript.  

3. Related to the issue above, more of the detail about how the EWS indicators are calculated 

would be helpful to bring into the main text, since this is a topic most TCD Interactive 

comment Printer-friendly version Discussion paper TC readers are not familiar with. How do 

you ensure statistical significance? Could we see EWS away from a bifurcation by chance? 

Why not? 

The issue of so-called ‘false alarms’, whereby an EWS is detected and incorrectly anticipates a 

bifurcation, is something  that has been written about extensively in the literature and indeed it 

is entirely possible using this methodology. In our paper we do various statistics on the sensitivity 

and the significance of the indicators that we have calculated. These are currently in an appendix 

and would probably warrant being moved into the main text which we will do, along with 

reference to the possibility of false alarms. 

The explanation of how early warning indicators are calculated has been expanded and is now 

consolidated into one part of the manuscript. 

 

4. You say that you force your model with variability from a "surrogate model" based on ocean 

variability in the Amundsen Sea region, but don’t provide further details. First, more detail is 

needed on the surrogate model. Second, presumably this surrogate model produces ocean 

variability with significant power in the decadal range, as many studies (e.g. from Jenkins 

and others) have found that such variability is important in this region. However, the typical 

formulation of EWS (e.g. Lenton et al. 2008, and previous studies) assumes a martingale 

process for the noise forcing (i.e. white noise) which is not the case here. Can you explain 

why this doesn’t affect your interpretations of EWS indicators? Third, it is unclear whether 

the steady-state and quasi-steady-state simulations used to make the bifurcation diagrams 

in Figure 3 include noise forcing. If not, then this is concerning, because it is well known that 

marine ice sheets have a different steady-state with and without noise in the forcing (e.g. 

Robel et al. 2018, Hoffman et al. 2019, Mikkelsen et al. 2018 (but for non-marine ice 

sheets)). This could be quite important in your simulations, since the location of the 

bifurcation is important to know for calculating EWS. 

The surrogate model was an AR based surrogate and does indeed contain a lot of decadal variability 

and this is important to capture as Alex and other authors have shown. We will provide more details 

on how this surrogate was made in a revised version of the paper. The second important benefit of 

adding this variability to our melt rate forcing is that, by perturbing the model, it helps to extract 

information on the system response time to identify critical slowing. It is true that the paper by 

Lenton 2008 shows results from earlier work by Held and Kleinen 2004 and in this case they used 

white noise with the same aim. The variability we add to our forcing is not white noise but there is no 

reason why this should affect our ability to extract information on the system response time. Indeed, 



other authors have found critical slowing in a wide variety of paleo data (e.g. Dakos et al. 2008) and 

the natural variability that drove these systems is presumably also not white noise. The key to be able 

to detect EWS is to add some perturbation with a measurable impact on the system state and our 

surrogate time series succeeds in that with the added benefit of replicating natural variability as 

closely as possible. Indeed, using natural variability to test for EWS arguable has more relevance to 

this system than using white noise. With regards to our steady-state simulations (the squares and 

circles in figure 3b) no natural variability was added to these simulations. With the addition of strong 

variability in the forcing it is possible that some of these steady states might be nudged far enough 

that they end up in a different basin of attraction. However, we disagree with the reviewer that this is 

concerning. The location of the bifurcation for the purposes of searching for EWS was not defined 

based on these points but on the ‘quasi steady state’ points and so have no bearing on our results 

and merely serve to demonstrate that several hystereses exist. Having said that, it is more consistent 

to add the same variability in these runs. We have re-run these steady state simulations with the 

same natural variability that was added to the main PIG simulations and this has no significant 

impact on the location of these points but we will use these results, rather than the ones shown in 

this version of the paper, for a revised submission. 

We have added a more detailed explanation of our surrogate time series and re-calculated all quasi-

steady simulations to include the same variability as the transient simulations. This has not 

significantly affected any of the results and the figure now shows these steady state values instead of 

the previous ones that did not include variability. 

Minor: 

Line 23: please define what you mean by "tipping element" for the uninitiated This is now explained 

Line 29: grounding line flux Done 

Line 47: the 2012 Schoof JFM paper makes more sense to cite here Changed the citation 

Line 48: what do you mean by catastrophic? 

We use the word catastrophic in the sense that it is sometimes in literature on tipping points, that is 

a large change in the system state. We have made an effort to keep all terminology clear and 

consistent and since this is the only instance of that word in the paper we will rephrase it. 

A wide variety of words are used in this context, another example is abrupt, but this implies a rapid 

response that is not necessarily true. We opted to call this a ‘qualitative shift’ to convey that the 

system is substantially different once it crosses a bifurcation point 

Line 89: So is accumulation held constant in time or does it have a seasonal cycle? Be more specific 

here, because its important to know if there is variability in more than just ocean melt.  

Accumulation is held constant in time, specifically to avoid adding variability in more than one 

forcing which could potentially muddy our results. 

Clarified that accumulation is constant in time 

Line 119: Again, to be clear, it isn’t necessarily the case that EWS exist for all tipping points (if we 

define any bifurcation as a tipping point). 

We addressed this comment above and will add a clarification on this point. 

Added this clarification 



Line 126: it would help here to explain exactly how you force the simulations to produce the grey 

dashed and black lines in Figure 3 (also in caption). How fast is the forcing? How large are the step 

increments to determine the steady-states? How do you determine when there is a tipping point 

(just a large enough jump in the grounding line?)? What if you have a tipping point that causes the 

grounding line to retreat only a small amount? 

We will expand on this in a revised version of the manuscript. 

The paragraph of line 126 is talking about the experiment in appendix A and not the one that 

generated the results in figure 3. We have added some of these details to the figure caption and the 

rest in the relevant section in the main body of text.  

Line 119-129: This whole paragraph is confusing 

Much of this paragraph has been rewritten  

Line 136: What do you mean by short tem "weather noise"? Isn’t this the thing that is detected by 

EWS?  

This is a term that has been used in EWS literature to describe rapid but low amplitude fluctuations in 

the system state that do not represent quantities of interest 

The wording has been changed to remove this term 

Line 184: What do you mean by "equivalent to a random walk"? 

A random walk describes an evolving system that consists of a succession of random steps but this is 

probably unnecessary jargon and will be removed. 

This sentence is removed and instead we describe the DFA in more detail without this jargon in 

section 2 

Line 197-198: is this hysteresis related to the domain extent? If you aren’t simulating flow from 

outside the domain, then when the whole domain collapses you won’t be able to regrow the glacier 

for any parameter (because theres no catchment). 

The catchment is not completely gone and the grounding line remains within the basin but 

presumably you are correct that by extending the domain it might make it easier to regrow the 

glacier. That does not detract from our point in this case but we will include this as a possible 

explanation. 

This point has been added 

Line 203-205: what about much shorter windows? (related to point 1 above related to observations). 

How short of a window would actually be calculable from observations (a decade? does this start to 

run into the AC time scale of forcing?) 

This is addressed above and will be discussed in more detail in the revised paper. 

We have added substantial discussion on this point 

Line 214-215: this is a confusing sentence which leads me to think that you are saying the EWS are 

not actually "early". To what extent does this depend on the speed of the trend in forcing? Can you 

test it for different trend rates? 



We feel that the next sentence addresses this question to some extent but we can expand on that 

further. The EWS are identifying tipping in the transient simulation for which they are calculated, and 

this would be equivalent to the ‘steady-state’ simulations if the forcing was increased sufficiently 

slowly, but since the transient simulation evolves quicker than the glacier can adjust then these are 

not the same. To what extent the forcing rate affects various things is a potentially large and 

complex research question that we believe is beyond the scope of our study. 

We have added discussion of this point in Sect. 5 

Figure 3a: If the black line doesn’t fall on top of the gray dashed line, then the black line simulation 

isn’t really quasi-steady. Why not call it something else? Also, it is unclear how the grey dashed line 

is determined, and which parts are stable and unstable? 

We will think of a word other than ‘quasi steady’ as this is possibly confusing. The dashed grey line is 

just a line through the individual model results represented by symbols, all symbols are steady states 

but it is possible that these are not true stable steady states. 

We have clarified how the dashed grey line is determined in the figure caption. We discussed 

alternative names for this simulation but in the end we decided to continue with this name which is 

the same as has been used in similar studies on ice sheet hysteresis (e.g. the recently published paper 

by Garbe et al.) and instead we have added a better explanation defining what we mean by this.  

Figure 3b: please explain the different between "tipping point" and "instability onset". I can guess 

that the latter has to do with the region in which an unstable manifold exists (i.e. there is hysteresis), 

but I’m not sure readers will necessarily pick up on this without you explaining it explicitly. 

Instability onset is not the best choice of words here, and the legend and caption have been changed 

to EWI window to reflect that this is the portion of the time series that was analysed using early-

warning indicators 

Figure 4: Looking at this (and Fig. B2), it seems clear to me that the length of time ahead of the 

tipping point needed to detect EWS is directly correlated to the speed of the forcing. Yet, that isn’t 

really made clear here or in the text. 

The rate at which the forcing is changed is constant throughout the simulation (ignoring the added 

variability) 

We have added discussion on the rate of forcing in Sect. 5 

Figure B2: can you extend this to shorter windows? 

Done 

Appendix A: Related to some of the issues I raised above, it may be valuable to bring the flowline 

simulations into the main text to demonstrate, in a very simple system where the exact location of 

the tipping points are known, how EWS work 

We have added extensive explanation of how early-warning signals work to address these concerns 

but have chosen to keep this section in the appendix to avoid the confusion of describing two very 

different model simulations with different goals in the same paper 

 

References 



Dakos, V. et al. Resilience indicators: prospects and limitations for early warnings of regime shifts. 

Phil. Trans. R. Soc. B 370, 20130263 (2015) 

Chisholm, R. A. & Filotas, E. Critical slowing down as an indicator of transitions in two-species 
models. J. Theor. Biol. 257, 142–149 (2009). 
 
Scheffer, M. et al. Early-warning signals for critical transitions. Nature reviews. 461. 53-59 (2009) 
 
Dakos, V. et al. Slowing down as an early warning signal for abrupt climate change. PNAS. 14308-
14312 (2008). 
 
Held, H. and Kleinen, T. Detection of climate system bifurcations by defenerate fingerprinting. GRL. 
31. L23207 (2004). 
 
Brock, W. A. and Carpenter, S. R. Interacting regime shifts in ecosystems: implication for early 
warnings. Ecological Monographs 80, 353-367 (2010) 
 
Garbe, J. and Albrecht, T. and Leverman, A. and Donges, J. F. and Winkelmann, R. The hysteresis of 
the Antarctic Ice Sheet, Nature, 585, 538-544 https://doi.org/10.1038/s41586-020-2727-5 (2020) 

 



Anonymous Referee #2 

In this manuscript the authors seek to detect the onset of marine ice sheet instability (MISI) in model 

simulations of Pine Island Glacier, using techniques that have previously been applied to other 

complex systems. The novelty of this study lies in the application of critical slowing indicators to 

confirm MISI events. It provides an interesting framework for evaluating vulnerabilities in ice sheets 

that will be of interest to the TC scientific community. However, particularly due to its novelty within 

glaciology, some aspects of the paper need improving to aid the clarity, and it would benefit from 

further exploration/discussion of the usefulness of the techniques beyond the modelling example 

provided here. I have outlined these below, followed by line-by-line comments.  

Many thanks for the positive evaluation of our study and the helpful comments. We replied to all 

comments and hope that our replies and changes made to the manuscript will address all issues 

raised. Our replies are in red and the changes to the manuscript summarised in blue. 

The paper includes a nice explanation and accompanying schematics of hysteresis; however, the 

critical slowing description and explanation of the indicators is less intuitive. This may partly be due 

to the structure – Appendix A offers a useful demonstration of how critical slowing manifests in a 

carefully controlled simple experiment. I think it is safe to assume most TC readers will not be 

familiar with these concepts, and therefore I do not think this example should necessarily be tucked 

away in an appendix. A diagram of critical slowing in a similar vein to Figure 1 would be helpful, or 

some additional annotation to Figure A1. There is a disconnect between the flowline example in 

Appendix A, and the methods used for determining the onset of a tipping point in the main set of 

experiments. Could you show how critical slowing in the flowline experiment can be demonstrated 

with the various indicators you use in your main experiments? This would help show how these 

indicators are related to the increased recovery time from a stepwise perturbation as the tipping 

point is approached. 

The other reviewer also highlighted that various elements currently in the appendix could be moved 

into the main body of text and we will do so. We will also give a more detailed explanation of critical 

slowing since it is true that many TC readers will not be familiar with this concept and will produce a 

new figure in the introduction to hopefully aid this explanation. Our two sets of experiments, one 

using the MISMIP setup and the other using the PIG geometry, currently identify critical slowing in 

two different ways. This is intentional as these have different goals and we do not think it would be 

useful to directly compare them. The benefit of the MISMIP experiment is that it is simple and the 

way we extract the change in response time directly is very easy to understand. It is also an 

experiment that many readers of TC and the wider glaciological community are very familiar with. 

However, since the bed is smooth and the perturbations to the model are stepwise, we can not 

detect EWS in the flowline setup using the same approach as was used for the PIG experiment.  

We have added a new section to the paper that gives a more detailed explanation of critical slowing 

and early warning indicators, including a new figure that explains these concepts diagrammatically. 

We have added further explanation to the differences between the flowline results and main results 

to clarify why the indicators could not be used in the flowline case. 

My other main comment is about the usefulness of this method in detecting EWS in reality. Would 

the 300-year optimal window size apply to other catchments? What kind of observational datasets 

are required to implement this analysis, in a way that would act as a useful EWS for MISI? The 

measurement used in this study (grounding line flux) does not exist (at least not at the 

quality/resolution required here) prior to the satellite era, so what is the alternative, given the 300-



year window size? In your model simulations the forcing is applied gradually in order to avoid “one 

tipping point cascading into the next and result in three individual tipping points being 

misinterpreted as only one event” (L168). What are the implications of this for detecting tipping 

points in observations, where the system is not necessarily able to return to a quasi-steady-state 

with changing forcings? Do you have a sense of whether the indicators would hold up if the forcing is 

more rapid?  Further discussion of these issues would strengthen the paper. 

Many of these points are raised by reviewer 1 and we have addressed them at length in that reply. To 

summarise our response: we will add more discussion around the implications of our results for 

finding EWS in observational records. We do not believe the 300-year window size to be a lower 

bound and did not try to reduce this systematically, but this will also be discussed in a revised version 

of the paper. Since the length of record necessary for EWS as well as the variable used to detect EWS 

are critical parts of what observations can or cannot be used, this is a very important research 

question but one that requires considerable work to address and is beyond the scope of this initial 

study. Regarding the last point about how cascading tipping points and a rapid forcing might affect 

our ability to detect critical slowing, this is known to influence the ability to detect EWS (Dakos et al., 

2015). For example in ecosystems, interacting regime shifts can muffle or magnify variance near 

critical transitions (Brook and Carpenter, 2010). In this study, as explained in detail in the response to 

reviewer 1, we first of all want to make the nontrivial case, that ESW – that exist theoretically for 

MISI – can actually be detected in a realistic geometry that is of great interest with respect to MISI at 

the moment. We would argue that this issue raised by the reviewer is very important and an 

interesting research questions but beyond the scope of this study. 

We have added extensively to the manuscript to discuss all the points raised here by the reviewer: 

the usefulness of the method, the window size, observational datasets required and cascading 

tipping points. 

Other comments:  

L13: “Self-amplifying retreat” this could be considered an overstatement. Selfsustaining retreat 

would be more accurate (and more in keeping with language further on in the manuscript).  

Changed as suggested 

 L18: “early warning indicators robustly detect critical slowing for the marine ice sheet instability”. It 

might be worth removing the term “critical slowing” from the abstract, and instead using a less 

jargon-y alternative, e.g. “robustly detect the onset of MISI”? 

Changed as suggested 

L31-32: “a complex range of factors can either cause or suppress the MISI” – such as? The two 

papers cited refer to buttressing, what about local sea level, GIA etc? Haseloff, 2018, should be 

Haseloff and Sergienko, 2018. 

Further citations added for other factors 

L68-70: “Our results reveal the existence of multiple smaller tipping points that when crossed could 

easily be mis-identified as simply periods of rapid retreat, with the irreversible and the self-sustained 

aspect of the retreat being missed”: this seems to contradict your results and conclusions. The two 

smaller tipping points are not irreversible, as the system can return to previous state through 

stronger perturbations in the opposite direction – shown by the hysteresis loops in Figure 3. 

https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1890/09-1824.1


Unhelpfully, the word irreversible is used by various authors to mean different things in this context 

and we have tried to be consistent throughout the paper and we clarify our meaning in lines 53-54. 

We are not aware of a word that uniquely describes one or other type of irreversibility but this is an 

important point to clarify. 

We now differentiate between the two types of behaviour here and throughout the manuscript 

L106: Basal melt rates: it is not clear from this paragraph whether basal melt occurs under grounded 

ice. How do you treat partially grounded elements? This has been shown to be important in 

modelling grounding line retreat (e.g. Seroussi and Morlighem, 2018, doi: 10.5194/tc-12-3085-2018). 

Melting is only ever applied to fully floating elements. 

This point is added to the revised manuscript 

L153-159: Unlike the other paragraphs in this section, this paragraph does not contain an outcome 

of your decision-making process – which of the criteria will you use? 

We find that indicators do seem to reach critical values ahead of a tipping point and but this is a 

result of our study rather than a decision made during the experiment design. 

This paragraph has been rewritten to clarify how we present our results and why 

L180-181: “Furthermore, the indicator reaches a critical value relatively close in time to when the 

MISI event gets underway”. Clarify that the critical value is 1. 

Done 

L183-185: “For this early warning indicator. . .”. I don’t understand this sentence and it seems like it 

would be better suited (with added detail) to the methods. I thought both indicators have a critical 

value of 1 (section 2.2), so why does scaling the DFA help with comparison to ACF? 

The DFA indicator does not have a critical value of 1, hence why scaling it makes sense. 

This is hopefully now much clearer as a result of the more detailed explanation of the DFA indicator 

L188-189: “although variance cannot be used directly to predict when that threshold will be crossed” 

– perhaps this is obvious, but why not? Because there is no critical value? But crossing the critical 

value doesn’t seem like a robust way of detecting the exact onset of MISI either, considering some of 

the trend lines in Fig. 4 cross x=0 before they reach the critical value? 

Yes, because variance has no critical value. It is true that our trend lines do not cross critical values 

exactly at the tipping point, that would be remarkable given the complexity of the model, however 

we do find our indicators reach critical values very close to a tipping point, making this a useful EWS. 

We have clarified why variance cannot be used and also why it is useful later in the discussion 

L275: What do you mean by “i.e. a record length of 600 years” – how does that relate to the window 

size? Is that the minimum record length required? 

This point is addressed at length elsewhere in our response. 

L258: Basin of attraction has not been defined/explained. 

Reworded this sentence 

Figure A1: Panel A, grounding line position in km: clarify the direction of retreat. 



This is now annotated on the figure 
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Abstract. Mass loss from the Antarctic Ice Sheet is the main source of uncertainty in projections of future sea-level rise, with 

important implications for coastal regions worldwide. Central to this is the marine ice sheet instability: once a critical threshold, 

or tipping point, is crossed, ice-internal dynamics can drive a self-amplifyingsustaining retreat committing a glacier to 

irreversible, rapid and substantial ice loss. This process might have already been triggered in the Amundsen Sea region, where 

Pine Island and Thwaites glaciers dominate the current mass loss from Antarctica, but modelling and observational techniques 15 

have not been able to establish this rigorously, leading to divergent views on the future mass loss of the WAIS. Here, we aim 

at closing this knowledge gap by conducting a systematic investigation of the stability regime of Pine Island Glacier. To this 

end we show that early warning indicators robustly detect critical slowing forthe onset of the marine ice sheet instability. We 

are thereby able to identify three distinct tipping points in response to increases in ocean-induced melt. The third and final 

event, triggered by an ocean warming of approximately 1.2 °C from the steady state model configuration, leads to a retreat of 20 

the entire glacier that could initiate a collapse of the West Antarctic Ice Sheet. 

1. Introduction 

The West Antarctic Ice Sheet (WAIS) is a tipping element major component of the earth system susceptible to tipping point 

behaviour, known as a tipping element (Lenton et al., 2008) and its). Its collapse, potentially driven by the Marine Ice Sheet 

Instability (MISI) (; Feldmann and Levermann, 2015), would result in over 3m of sea level rise (Fretwell et al., 2013). Key to 25 

the MISI are the conditions at the grounding line - the transition line atacross which the grounded ice begins to float on the 

ocean forming ice shelves. In steady state, ice flux across the grounding line balances the surface accumulation upstream. If a 

grounding line retreats over a region of bed where icegrounding line flux increases and is not balanced by a corresponding 

increase in accumulation, the net mass balance is negative and retreat will continue (Weertman, 1974; Schoof, 2007). 

Conversely, grounding line advance leading to an increasing accumulation greater than the change in flux will lead to a 30 

continued advance. In this regime, a small perturbation in forcing can result in the system crossing a tipping point, beyond 
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which a positive feedback propels the system to a contrasting state (Fig. 1c). A complex range of factors can either cause or 

suppress the MISI (Haseloff, 2018; Pegler, 2018, O’Leary et al., 2013; Gomez et al. 2010; Robel et al. 2016) and the difficulties 

in predicting this behaviour are a major source of uncertainty for future sea level rise projections (Church et al., 2013; Bamber 

et al., 2019; Oppenheimer et al., in press; Robel et al. 2019).  35 

 

One area of particular concern is the Amundsen Sea region. Pine Island (PIG) and Thwaites glaciers, the two largest glaciers 

in the area, are believed to be particularly vulnerable to the MISI (Favier et al., 2014; Rignot et al., 2014). Palaeo and 

observational records of PIG show a history of retreat, driven by both natural and anthropogenic variability in ocean forcing 

(Jenkins et al., 2018; Holland et al., 2019). One possible MISI driven retreat might have happened when PIG unpinned from 40 

a submarine ridge in the 1940s (Jenkins et al., 2010,; Smith et al., 2016). Recent modelling studies indicate that a larger scale 

MISI event may now be underway for both Pine Island and Thwaites glaciers that would lead to substantial and sustained mass 

loss throughout the coming centuries (Favier et al., 2014,; Jenkins et al., 2016,; Joughin et al., 2010). Being able to identify a 

MISI driven retreat and differentiate this from an externally forced retreat where a tipping point has not been crossed is vital 

information for projections of future sea level rise. 45 

 
ThisThe tipping behaviour of the MISI is an example of a fold (or saddle-node (or fold) bifurcation in which three equilibria 

exist; an upper and lower stable branch and a middle unstable branch (Fig. 1c) (; Schoof, 20072012). Starting on the upper 

stable branch, perturbing the system beyond a tipping point (x1 in Fig. 1c) will induce a catastrophicqualitative shift to the 

lower and contrasting stable state. Importantly (and in contrast to a system such as that shown in Fig.1a and 1b), in order to 50 

restore conditions to the state prior to a collapse it is not sufficient to simply reverse the forcing to its previous value. Instead, 

the forcing must be taken back further (to point x2), which in some cases may be far beyond the parameter space that triggered 

the initial collapse. This type of behaviour is known as hysteresis. A large change in response to a small forcing is not 

necessarily indicative of a hysteresis, as shown in Fig.1b. Tipping points are crossed in both Fig. 1c and Fig. 1d and both cases 

are often referred to as irreversible, although the two are distinct in that only Fig. 1d is irreversible for any change in the tested 55 

range of the control parameter. Hereafter we will refer to the former as irreversible, in line with previous studies, and the latter 

as permanently irreversible, to differentiate the two. Diagnosing whether or not a tipping point has been crossed without some 

prior knowledge of the system is not generally possible without reversing the forcing to see if a hysteresis has occurred. An 

alternative approach to identify tipping points is based on a process known as critical slowing, which is known to precede 

foldsaddle-node bifurcations of this type (Wissel, 1984; van Nes and Scheffer, 2007; Davos et al., 2008; Scheffer et al., 2009). 60 

Critical slowing is a general feature of non-linear systems and refers to an increase in the time a system takes to recover from 

perturbations as a tipping point is approached (Wissel, 1984). We will explore both hysteresis and critical slowing as indicators 

of tipping points in our model simulations. 
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Here, weIn Section 2, we explain critical slowing and early warning indicators in the context of the MISI. We then map out 65 

the stability regime of Pine Island Glacier using numerical model simulations. We force the model with a slowly increasing 

ocean melt rate and identify three periods of rapid retreat with the methodology explained in Sect. 23.1. Using statistical tools 

from dynamical systems theory, introduced in Sect. 2.2, we find critical slowing preceding each of these retreat events and go 

on to demonstrate that these are indeed tipping points in Sect. 34. This is confirmed by analysing the hysteresis behaviour of 

the glacier, showing the existence of unstable grounding line positions. To our knowledge, this is the first time that the stability 70 

regime of Pine Island Glacier has been investigated in this detail and the first time that tipping point indicators have been 

applied to ice sheet model simulations. Our results reveal the existence of multiple smaller tipping points that when crossed 

could easily be mis-identified as simply periods of rapid retreat, with the irreversible and the self-sustained aspect of the retreat 

being missed.  

 75 

2. Critical slowing and early warning indicators 

As certain classes of complex systems approach a tipping point, they show early warning signals which can allow us to 

anticipate or even predict the onset of a tipping event by means of early warning indicators (EWIs; Wissel, 1984). Early 

warning signals have been found to precede, for example, collapse of the thermohaline circulation (Held and Kleinen, 2014; 

Lenton, 2011), onset of epileptic seizures (Litt, 2001; McSharry and Tarassenko, 2003), crashes in financial markets (May et 80 

al., 2008; Diks et al., 2018), onset of glacial terminations (Lenton, 2011) and wildlife population collapses (Scheffer et al., 

2001). Although most commonly used to detect the onset of saddle-node bifurcations, of which the MISI is an example, they 

are not strictly limited to bifurcations of this type and have, for example, also been successfully used to indicate the onset of 

Hopf bifurcations (Chisholm & Filotas, 2009).  

2.1 Critical slowing preceding the Marine Ice Sheet Instability 85 

Critical slowing is one example of an early warning signal that has been used in the past for both model output and 

observational records such as paleoclimate data, with the aim of detecting an approaching bifurcation (Held and Kleinen, 2004; 

Livina and Lenton, 2007; Dakos et al. 2008; Lenton et al. 2009; Lenton et al. 2012b). Critical slowing is so called because, as 

a non-linear system is gradually forced towards a bifurcation, that system will become more ‘sluggish’ in its response to 

perturbations (see middle panel of Fig. 2). This can be shown mathematically, because the dominant eigenvalue of the system 90 

tends to zero as a bifurcation point is approached (Wissel, 1984), or, equivalently, the recovery time (i.e. the time it takes for 

a system to return to a steady state after small perturbations) tends to infinity. While critical slowing is a general behaviour of 

the dynamics underlying the MISI, the question remains whether it can be reliably detected in the context of a complex glacier 

where many other processes are at play. 

 95 
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As a first step to addressing this question, we model a MISI in an idealised flowline setup of a marine ice sheet. In this setup, 

we determine the change in recovery time before a tipping point directly through multiple stepwise perturbations of the control 

parameter (Appendix A). Our setup closely resembles the MISMIP experiments (Pattyn et al., 2012) and indeed hints of critical 

slowing can be identified in that paper (Fig. 2 in Pattyn et al. 2012). The results in Appendix A show that critical slowing is 

easily identified preceding both MISI driven advance and retreat bifurcations.  This demonstrates that there is at least the 100 

potential that critical slowing could be found in a less simplified modelling framework. This is not a priori clear and, for 

example, adding noise to the bed topography reduces the ability to identify early warning, as detailed in the Appendix. 

Identifying critical slowing in this stepwise perturbation manner is appealing because it directly extracts the change in response 

time that we are searching for, however it is not practical for a realistic model forcing which would not normally take the form 

of a step function. A more general approach, which we adopt for our simulation of PIG, is to use EWIs to analyse the recovery 105 

time of the system as it is forced with natural variability.  

2.2. Early warning indicators 

As the field of EWIs has expanded, more methods have been developed for extracting critical slowing information from model 

results and observational records. These methods seek to approximate the system recovery time from some measure of the 

system state. The challenge is that, for most real-world applications, natural forcing does not take the form of a step function 110 

and the system is continuously perturbed and so cannot return to a true steady state. However, if the recovery time of a system 

is indeed increasing, the response to a continual stochastic forcing could be detected as a tendency for each measurement of 

the system state to be more similar to the previous measurement, sometimes referred to as an increase in “memory” of small 

perturbations. This is shown conceptually and with examples extracted from our PIG model in Fig. 2. One common way to 

measure this effect is by sampling the data at discrete time intervals and calculating the lag-1 autocorrelation, i.e. the correlation 115 

between values that are one time interval apart (examples given in Fig. 2). This measure, which we refer to hereafter as the 

ACF indicator, should increase as a tipping point is approached (Dakos et al., 2008; Ives, 1995). Since recovery time tends to 

infinity as the bifurcation is approached, successive system states should become more and more similar and the ACF indicator 

should tend to one. An alternative measure that also seeks to identify changes in recovery time is to use the Detrended 

Fluctuation Analysis algorithm (Livina and Lenton, 2007; Lenton et al., 2012a; Lenton et al., 2012b). This first calculates the 120 

mean-centered cumulative sum of the time series, splits the result into epochs of length n which are detrended and then 

calculates the RMS F(n) for each epoch. This is repeated for epochs of different length and finally an exponent 𝛼𝛼 can be fitted 

in log-log space such that 𝐹𝐹(𝑛𝑛) ∝ 𝑛𝑛𝛼𝛼.  This exponent yields information on the self-correlation of the original time series, 

whereby a value of 0.5 corresponds to uncorrelated white noise and greater values indicate increasing “memory” up to a 

maximum of 1.5. To aid comparison with the ACF indicator, we rescale the exponent so that it reaches a critical value of 1 125 

and call this the DFA indicator (Livina and Lenton, 2007). These indicators can be supported by analysing the variance of the 

system state which is expected to increase as a tipping point is approached.   
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3. Methods  

We conduct a quasi-steady modelling experiment whereby we subject PIG to slowly increasing rates of basal melt underneath 

its adjacent ice shelf (Fig. 2). We use basal melt rate as the control parameter,3). Conducting a transient simulation with an 130 

evolving basal melt that exactly tracks the equilibrium curve (Fig. 1c) is not computationally feasible or necessary for our 

purposes. Thus, we adopt this quasi-steady modelling approach in which the forcing increases slowly enough that it 

approximates the steady state behaviour, but faster than the long response timescales of the glacier would require to be truly 

in equilibrium. Quasi-steady state experiments have previously been successfully applied to identify the tipping point of the 

Greenland Ice Sheet with respect to the melt-elevation feedback (Robinson et al., 2012) and to identify hysteresis of the 135 

Antarctic Ice Sheet (Garbe et al., 2020). In Garbe et al. (2020) it was shown that such transient experiments enable 

identification of hysteresis behaviour, while the exact shape of the curve must be mapped out with equilibrium simulations. 

We accompany the quasi-steady simulations with simulations that run to a true steady state for constant values of the control 

parameter at discrete values (these simulations continue until the change in ice volume is approximately equal to zero). We 

use basal melt rate as the control parameter, i.e. the parameter that we will change to drive the system towards a tipping point. 140 

We make this choice since erosion of ice shelves by the intrusion of warm ocean currents is widely accepted as the mechanism 

responsible for the considerable changes currently observed in this region (Shepherd et al., 2004,; Rignot et al., 2014; Rignot 

1998; Joughin et al., 2010; Park et al., 2013,; Gudmundsson et al., 2019). Sub-ice-shelf melt rates are increased linearly (with 

additional variability as explained below) from a value that generates a steady state for the present-day glacier configuration. 

Based on the numerical experiments we then evaluate early warning indicatorsEWIs to test for critical slowing.  145 

2 

3.1 Model description 

All simulations use the community Úa ice-flow model (Gudmundsson et al., 2012; Gudmundsson 2013, Gudmundsson 2020), 

which solves the dynamical equations for ice flow in the shallow ice stream approximation (SSTREAM or SSA) (; Hutter, 

1983). Bedrock geometry for the Pine Island Glacier domain is a combination of the R-Topo2 dataset (Schaffer et al., 2016) 150 

and, where available, an updated bathymetry of the Amundsen Sea Embayment (Millan et al., 2014). Surface ice topography 

is from CryoSat-2 altimetry (Slater et al., 2018). Depth-averaged ice density is calculated using a meteoric ice density of 917 

kg m-3 together with firn depths obtained from the RACMO2.1 firn densification model (Ligtenberg et al., 2011). Snow 

accumulation is a climatological record obtained from RACMO2.1 and constant in time (Lenaerts et al., 2012). 

 155 

Viscous ice deformation is described by the Glen Steineman flow law 𝜀𝜀̇ = 𝐴𝐴𝜏𝜏𝐸𝐸𝑛𝑛 with exponent 𝑛𝑛 = 3 and basal motion is 

modelled using a Weertman sliding law 𝑢𝑢𝑏𝑏 = 𝐶𝐶𝜏𝜏𝑏𝑏𝑚𝑚 with exponent𝑚𝑚 = 3. RheologyThe constituitive law and the sliding law 

use spatially varying parameters for the ice rate factor (𝐴𝐴) and basal slipperiness(𝐶𝐶), respectively, to initialise the model with 

present day ice velocities. These are obtained via inverseoptimization methods using satellite observations of surface ice 
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velocity from the Landsat 8 dataset (Scambos et al. 2016; Fahnestock et al. 2016). An optimal solution is obtained by 160 

minimising a cost function that includes both the misfit between observed and modelled velocities and regularisation terms, to 

avoid overfitting.. An additional term in the cost function penalises initial changes inrates of ice thickness change in order to 

avoid large transientsensure that these are close to zero at the start of simulations. This approach helps to provide a steady-

state configuration of PIG from which we can conduct our perturbation experiments. 

 165 

The Úa model solves the system of equations with the finite element method on an unstructured mesh, generated with mesh2d 

(Engwirda et al. 2014). The mesh remains fixed throughout the simulation to avoid contaminating the time series with errors 

resulting from remapping fields onto a new mesh. The mesh is refined in regions of high strain rate gradients, fast ice flow and 

around the grounding line. The region of grounding line mesh refinement, in which the average element size is ~750m, extends 

upstream sufficiently far so that the grounding line always remains within this region until after the final MISI collapse. 170 

 

Basal melt rates are calculated using a widely used, local quadratic dependency on thermal forcing: 

𝑀𝑀 = 𝑓𝑓𝛾𝛾𝑇𝑇 �
𝜌𝜌𝑤𝑤𝑐𝑐𝑝𝑝
𝜌𝜌𝑖𝑖𝐿𝐿𝑖𝑖

�
2
�𝑇𝑇0 − 𝑇𝑇𝑓𝑓��𝑇𝑇0 − 𝑇𝑇𝑓𝑓�, 

where 𝛾𝛾𝑇𝑇 is the constant heat exchange velocity, 𝜌𝜌𝑤𝑤 is sea water density, 𝑐𝑐𝑝𝑝 is the specific heat capacity of water, 𝜌𝜌𝑖𝑖 is ice 

density, 𝐿𝐿𝑖𝑖 is the latent heat of fusion of ice, 𝑇𝑇0 is the thermal forcing and 𝑇𝑇𝑓𝑓 is the freezing temperature (Favier et al. 2019). 175 

Melt rates are only applied beneath fully floating elements to ensure that no melting can possibly occur upstream of the 

grounding line (Seroussi and Morlinghem, 2018). The initial melt rate factor (𝑓𝑓) is chosen such that the model finds a steady 

state with a grounding line approximately coincident with its position as given in Bedmap2 (Fretwell et al. 2013). This melt 

rate factor formsis the aforementioned control parameter for our Pine Island simulations and is increased linearly to drive that 

drives changes in the region to collapse. Themodel, some of which may be identifiable as tipping points.  180 

 

To effectively extract information about the system’s recovery time using the statistical methods outlined below relyin Sect. 

2, we need to perturb the model in a way that has some measurable impact on extracting the system recovery time from small 

perturbations.state. A slow and monotonically increasing forcing would make our chosen approach impractical and is arguably 

as unrealistic as a stepwise perturbation. We therefore add a synthetic melt rate natural variability to our linearly increasing 185 

forcing, generated as a surrogate time series of an the linearly increasing melt rate factor (𝑓𝑓). There is strong evidence that the 

inferred and observed changes of PIG over the last century can be linked to changes in thermocline depth of the Amundsen 

Sea ocean temperature proxy shelf, which in turn is influenced by a Rossby wave train originating in the Pacific Ocean (Jenkins 

et al. 2018). Following Jenkins et al. (2018), we use a ~130 year time series of central tropical pacific sea surface temperature 

anomaly as a proxy for relevant variability in our melt rate forcing. We create an autoregressive (AR) model-based surrogate 190 

from this time series using the Yule-Walker method to fit the AR model and minimum description length to determine the 

maximum order of the model. This new surrogate time series has the same decadal variability that would be expected for the 
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melting beneath PIG and can be extended to any length required. As shown in more detail below, this ensuresby superimposing 

this signal onto the linearly increasing melt rate factor we ensure that the system response contains sufficient variability to 

extract information about critical slowing and thereby facilitatingenable the calculation of early warning indicatorsEWIs.  195 

2.2 3.2 Detecting critical slowing 

We have already established the control parameter for our model, but another important decision to make is what 
model output should be used as a measure of the system state.Critical slowing and early warning indicators 

As complex systems approach a tipping point, they show early warning signals which can allow us to anticipate or even predict 

the onset of a tipping event (Wissel, 1984). Evidence of these early warnings have been found to precede, for example, collapse 200 

of the thermohaline circulation (Held and Kleinen, 20014; Lenton, 2011), onset of epileptic seizures (Litt, 2001; McSharry 

and Tarassenko, 2003), crashes in financial markets (May et al., 2008, Diks et al., 2018), onset of glacial terminations (Lenton, 

2011) and wildlife population collapses (Scheffer et al., 2001). Critical slowing is one example of an early warning signal that 

has been used extensively in various studies of this kind. Using this approach to detect a MISI event is first validated with an 

idealised flowline setup of a marine ice sheet, in which we determine the change in relaxation time before a tipping point 205 

directly through multiple stepwise perturbations of the control parameter (Appendix A). Identifying critical slowing in this 

way is straightforward but is not practical for a realistic model forcing which would not normally take the form of a step 

function. A more general approach, which we adopt for our simulation of PIG, is to analyse the response time of the system 

as it is forced with natural variability using statistical tools.  
 210 

A first decision to make is what quantity to measure in order to look for critical slowing in our model simulations and there 

are a number of possible options. One choice could be changes in ice volume, since it can be related to sea level rise and ice 

sheet model simulations tend to focus on this result. However, ice volume varies very smoothly over time, making it difficult 

to detect changes in the system recovery time. Instead, we use the integrated grounding line flux, which shows much more 

variability and whose change is directly related to the MISI mechanism. PriorAs with other studies of this type, the model 215 

output is processed prior to the calculation of critical slowing indicators,EWIs. This consists of aggregating the model output 

is aggregated(i.e. data binning) to remove short term 'weather noise'high frequency variability not related to the system 

recovery time, and detrendeddetrending to remove nonstationarities (detrending is included in the Detrended Fluctuation 

Analysis (DFA) algorithm and therefore not required before calculation of the DFA indicator). Detrending was done using a 

Gaussian kernel smoothing function that has been shown to perform better than linear detrending (Lenton et al. 20122012a). 220 

A smoothing bandwidth was selected that removed long term trends without overfitting the model time series. Indicators are 

calculated over a moving window with a length of 300 years. The optimal window length is further discussed below. 

 

From the processed time series, we calculate three different early warning indicatorsEWIs:  



8 
 

1. Critical slowing is measurable as an increase in the state variable auto-correlation. We measure this here using the 225 

lag-1 auto-correlation function (Dakos et al., 2008; Scheffer et al., 2009; Held and Kleinen, 2004) applied to the 

grounding line flux over a 300 year moving window preceding each tipping point (hereafter referred to as the ACF 

indicator).  

2. Similarly, detrended fluctuation analysis DFA (Peng et al., 1994) (hereafter referred to as the DFA indicator) 

measures increasing auto-correlation in a time series and we apply this with the same moving window approach. 230 

3. An additional consequence of critical slowing is that variance will increase as a tipping point is approached (Scheffer 

et al., 2009). We calculate variance of grounding line flux for each moving window and this can be used in conjunction 

with other indicators to increase robustness. 

 

Two different criteria are frequently used to assess early warning indicators and determine whether a tipping point is being 235 

approached. The first is simply to determine whether or not an indicator increases in the run up to a tipping event.As described 

in Sect. 2, recovery time should tend to infinity as a tipping point is approached. This corresponds to the ACF and scaled DFA 

indicators reaching a critical value of one. In practice, for a complex model there are a wide variety of reasons why a tipping 

point might be crossed before the EWI reaches a critical value. For example, this can be a result of variability in the control 

variable pushing the system over a tipping point despite its long-term mean still being some distance from its critical value. For 240 

this reason, most studies adopt an alternative approach of looking for a consistent increase in the EWIs in the run up to a 

tipping event. This is often measured by calculating the nonparametric Kendall's 𝜏𝜏 coefficient, which equals one if the indicator 

is monotonically increasing with time (Dakos et al. 2008; Kendall, 1948). A second criteria is whether the indicators reach a 

critical value (in both cases a value of one) at the onset of the tipping event and thus can be used to predict when that event 

will happen. The second is clearly more useful but often fails in high complexity models. This failure can be a result of 245 

variability in the control variable pushing the system over a tipping point despite its long-term mean being far from its critical 

value. This single value enables a simple interpretation of our results, since  0 < 𝜏𝜏 < 1 means the EWI is tending to increase 

with time, suggesting an imminent tipping point. We present our results in terms of both of these criteria.  

34. Results 

The quasi-equilibrium simulation shows three potential tipping points with respect to the applied melt (Fig. 34). Upon crossing 250 

each threshold, indicated by the numbered blue dots in Fig. 34, PIG undergoes periods of not only rapid but (as we show 

laterbelow) also self-sustained and irreversible mass loss. At this stage, relying only on a record of changes in ice volume 

resulting from an increasing forcing (solid black line in Fig. 34), one can only speculate that these are indeed tipping points 

and more analysis is necessary to confirm this hypothesis, as we go on to later. The last of the three events causes ana 

permanently irreversible collapse within the entire model domain (Fig 3a).4a). We focus our results on these three major 255 

changes in the glacier configuration and ignore any possible smaller tipping points that do not result in significant grounding 
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line retreat or changes in ice volume. We increase basal melt rates gradually and in a quasi-steady-state manner to ensure that 

successive retreat events can be isolated, and their effects do not overlap during the simulation. A more rapidly increasing 

forcing could lead to one tipping point cascading into the next and result in three individual tipping points being misinterpreted 

as only one event.  260 

 

Grounding line positions before each of these retreat events and after the final collapse are shown in Fig. 23. Events 1 and 2 

each contribute approximately 20mm of sea-level rise while event 3, which arises after slightly more than doubling current 

melt rates, contributes approximately 100mm. The actual sea level rise that would result from this third and largest event is 

likely to be larger since in our simulation the effects stop at the domain boundary and in reality neighbouring drainage basins 265 

would be affected.  

34.1 Early warning for the marine ice sheet instability 

The three periods of MISI-driven retreat after a tipping point has been crossed can be identified clearly using early warning 

indicatorsEWIs (Fig. 45). The ACF early warning indicator increases and tends to one as the tipping points are approached 

(Fig. 4a5a-c), indicating a tendency to an infinitely long relaxationrecovery time as predicted by theory (Wissel, 1984).. We 270 

calculate Kendall’s 𝜏𝜏 coefficient to identify trends in the indicator, with a value of one representing a monotonic increase in 

the indicator with time (SI).. The positive Kendall’s 𝜏𝜏 coefficient shows that in all three cases, the lag-1 auto-correlation 

increases before the onset of unstable retreat. Furthermore, the ACF indicator reaches a critical value of one relatively close in 

time to when the MISI event gets underway. 

 275 

These findings are supported by the DFA indicator. For this early warning indicator, a scaling exponent is calculated that 

reaches a critical value at 1.5, equivalent to a random walk (rescaled here to reach a critical value at unity to aid comparison 

with the ACF indicator) (Livina and Lenton, 2007). Also here, the, described in Sect. 2. The Kendall’s 𝜏𝜏 coefficient indicates 

a significant increase of the indicator when approaching the tipping points. and the indicator trends towards a critical value of 

one. We show the change in normalised variance calculated over each time window and in all cases this increases ahead of the 280 

tipping points being crossed with a positive Kendall’s 𝜏𝜏 coefficient. The increase in variance gives greater confidence to the 

findings of the other two early warning indicators that a tipping point is being crossedEWIs, although variance cannot be used 

directly to predict when that threshold will be crossed.  since it does not approach a critical value before a tipping point is 

crossed. 

34.2 Hysteresis of Pine Island Glacier 285 

In order to verify that we have correctly identified tipping points using the early-warning indicatorsEWIs, we run the model 

to steady state for a given melt rate to search for hysteresis loops that indicate the presence of unstable grounding line positions. 

These simulations start from either the initial model setup (advance steady state) or the configuration just prior to the final 
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tipping point (retreat steady state) and the). The model is run for a range of fixed melt raterates between these two states, with 

the mean melt factor held constant and the same natural variability applied as in the forward simulation, until itthe modelled 290 

ice volume reaches a steady state. The first two tipping events show relatively small but clearly identifiable hysteresis loops 

(Fig. 3b4b), for which recovery of the grounding line position requires reversing the forcing beyond the point at which retreat 

was triggered (i.e. as shown in Fig. 1c). The third event marks the onset of an almost complete collapse of PIG (Fig. 3a4a). 

Unlike the previous two, this collapse cannot be reversed to regrow the glacier for any value of the control parameter. This is 

an example of ana permanently irreversible tipping point, as shown in Fig. 1d. Note that this permanent irreversibility is only 295 

true for the glacier modelled in isolation and by expanding the domain it would presumably be possible for other catchments 

that may not have collapsed to enable this glacier to regrow. 

34.3 Robustness of the indicators 

We carry out several tests to assess the robustness of the EWIs and their sensitivity to the processing that is done on the model 

output prior to calculating each indicator. Two parameters in this processing step are the bin size into which data are aggregated 300 

and the bandwidth of the smoothing kernel that removes long term trends in the time series. To check that the increasing trends 

in our indicators are a robust feature of our results, regardless of these choices, we conducted a sensitivity analysis. The 

parameters were varied by +/- 50% and the indicators were recalculated for each resulting time series. As before, we assess 

the utility of an indicator by whether it shows an increasing trend before each tipping point, as measured by a positive Kendall's 

𝜏𝜏 coefficient. The results of this sensitivity analysis are presented for each MISI event in Fig. 6. Kendall’s 𝜏𝜏 coefficient is 305 

positive for all tested combinations of parameters and all MISI events, although MISI event 2 is particularly insensitive to 

these parameter choices whereas the spread in Kendall’s 𝜏𝜏 coefficient is greater for the other two events.  

 

In general, critical slowing will only occur close to a tipping point. Determining how close to a tipping point a system must be 

in order to anticipate the approaching critical transition, i.e. the prediction radius, is an important question and also informs 310 

the selection of palaeo-records that could be used to detect an upcoming MISI event. We show results for a window size of 

300 years (i.e. a record length of 600 years), which is the shortest window size for which the DFA indicator provides an 

accurate prediction for all tipping events. We explored the prediction radius of our model by calculating Kendall's 𝜏𝜏 for the 

ACF and DFA indicators and the variance for a range of window lengths, see Fig. 7. For the main tipping event, preceded by 

the longest stable period, the indicators gradually lose their ability to anticipate a tipping event as more data is included further 315 

from the event. The same is true for the two smaller tipping events, but the drop off is quicker such that the indicators break 

down for window lengths > 500 years. These results suggest that the prediction radius is relatively small and window sizes 

that are too large, and hence include data far from a tipping point, become less useful for the application of EWIs. 

 

In addition to a sensitivity analysis, it is important to check that trends in the calculated indicators are statistically significant 320 

and not the result of random fluctuations. We follow the method originally proposed by Dakos et al. (2012) and produce 
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surrogate datasets from the model time series that have many of the same properties but should not contain any critical slowing 

trends. We generate 1000 of these datasets using an autoregressive AR(1) process based surrogate. For each of these datasets 

we calculate the ACF and DFA indicators and variance in the same way as with the model time series and then estimate the 

trend with values of Kendall’s 𝜏𝜏 coefficient. We calculate the probability of our results being a result of chance for each 325 

indicator and for all three combined as the proportion of cases for which the surrogate dataset was found to have a higher 

correlation than the model time series.  We find that P<0.1 in all but one instance for the ACF and DFA indicators but variance 

trends were generally less significant (Table 1). However, the combined probability that all three indicators would be equally 

positive as a result of chance was less than 0.02 for the first MISI event and less than 0.005 for the second two events.  

We carry out several tests to assess the robustness of the early warning indicators, see Appendix B and C. Varying parameter 330 

choices in the time series processing steps can in some cases reduce the strength of the positive Kendall’s 𝜏𝜏 correlation before 

each tipping point, but in general the trends are consistent and not dependant on the selected parameters (Fig. B1). A window 

size of 300 years is the smallest for which we find that the early warning indicators can provide a useful prediction for when a 

tipping point will occur (Fig. B2). Larger window sizes lead to a steadily reducing positive Kendall’s 𝜏𝜏 correlation as a larger 

proportion of the time series is far away from a tipping event. To test whether the observed Kendall’s 𝜏𝜏 correlations could have 335 

been obtained by chance we generate randomised surrogates of the model time series, process them in the same way and 

calculate Kendall’s 𝜏𝜏 correlations. In this framework, the likelihood of obtaining our trend statistics by chance is estimated by 

the proportion of surrogate time series with a larger Kendall 𝜏𝜏 value than detected in the original data. We find that individually 

the DFA and ACF indicators are significant at the 10% level in all but one case and the significance of obtaining such positive 

trends for all three indicators at the same time is significant at the 1% level or less for all three MISI events (Table C1). 340 

 
 

5. Discussion 

The indicators we have tested provide early warning of tipping points as they are approached in our transient simulation with 

gradually increasing melt rates. Tipping points driven by the MISI represent potential ‘high impact’ shifts in the earth climate 345 

system, since they may lead to considerable changes in the configuration of the Antarctic Ice Sheet that are effectively 

irreversible on human timescales. Computational models are frequently used to forecast future changes of the Antarctic Ice 

Sheet in response to various greenhouse gas emission/warming scenarios. Predictive studies of this kind sometimes label 

periods of rapid retreat as ‘unstable’ without further analysis of the type done here (e.g. Joughin et al. 2014; Ritz et al. 2015; 

Favier et al. 2014) or avoid making this diagnosis altogether (DeConto and Pollard, 2016). Here, we have demonstrated that 350 

EWIs robustly approach critical thresholds preceding tipping points driven by the MISI. Our results show that EWIs can be 

used as a method to identify instabilities without the need of the aforementioned modelling approach based on computationally 

expensive equilibrium simulations.  
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It is important to clearly understand what critical threshold is identified by the early warning indicators.EWIs.  In Fig. 34 the 355 

simulated steady-states show the crossing of the tipping point earlier than identified by the indicators in the transient simulation. 

Since the time-scales of ice are longer than the forcing time-scale, the ice-sheet system modelled here does not evolve along 

the steady-state branch (as shown schematically in Fig. 1c). Relaxation to a steady-state takes centuries to millennia in the 

simulations. This means that while technically the critical value of the control parameter (basal melt rate) might have already 

been crossed, the glacier state could still be reverted in the transient simulation at that point, if the basal melt rate was reduced 360 

below the critical threshold. This is true until the system state variable crosses its critical value (point xt in Fig. 1c) – and this 

is the point picked up by the early warning indicators. This complication in interpreting early warning indicators is inherent to 

ice dynamics because of its long response time scales1c) – and this is the point identified by the EWIs. This complication in 

interpreting EWIs is inherent to ice dynamics because of its long response time scales. We find that both the ACF and DFA 

indicators not only increase as a tipping point is approached, as shown by positive Kendall coefficients, but also generally 365 

approach the critical value of one, although with varying degrees of precision (Fig. 5). This enhances their predictive power, 

since by extending a positive trend line it is possible to approximate what value of the control parameter will eventually cause 

a tipping point to be crossed. While our experiments in Appendix A showed that critical slowing down can accurately predict 

onset of tipping points in an idealised setup, applying this method to a more complex case study may have failed and in this 

context our finding that these indicators largely retain their predictive power is very encouraging. One area of additional 370 

complexity in our model of Pine Island Glacier compared to the setup in Appendix A is the bed geometry, which is obtained 

from observations and so much less smooth than the synthetic retrograde bed used in the MISMIP experiments. We explored 

how the addition of ‘bumpiness’ to bed geometry affects the performance of EWIs and found that this reduces how clearly we 

can resolve the change in response time (Appendix A). This effect may account for the fact that EWIs do not precisely reach 

a value of one at the bifurcation point but confirming this would require further testing. 375 

4 

There are several important caveats to the use of EWIs as presented here. Firstly, and as explained above, the tipping point 

identified is that of the transient system not in steady state. Although the transient behaviour is arguably of greater societal 

relevance and an ice sheet is unlikely to ever truly be in steady state, this is an important distinction to make. Secondly, the 

predictive power of this method decreases as the distance to tipping increases and must eventually break down altogether. This 380 

effect can be clearly seen in Fig 7 as the Kendall’s 𝜏𝜏 coefficient decreases with increasing window length. Thirdly, there is a 

risk of so-called ‘false alarms’ and ‘missed alarms’ (Lenton, 2011). False alarms, whereby a positive trend in an indicator that 

is incorrectly interpreted as a tipping point being imminent, can occur for a wide variety of reasons. First and foremost, 

interpreting EWIs requires robust statistical analysis and judicious data processing to ensure that the response time being 

measured is that of the critical mode (Lenton, 2011). It is possible that rising autocorrelation is a result of other processes, and 385 

using more than one indicator together with changes in variance can help mitigate this risk (Ditlevesen, 2010). It is also possible 

for a tipping point to be crossed with no apparent warning i.e. ‘missed alarms’. This could happen if the internal variability in 
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a system is high so that it changes state before a bifurcation point is reached, or similarly if the forcing is too sudden. This last 

point is particularly pertinent, since we intentionally perturb our model slowly and do not explore how a change in forcing rate 

affects the performance of our chosen EWIs. Increasing the forcing rate might present further problems by leading to cascading 390 

tipping points. For example, if the control parameter changed rapidly after crossing the first tipping point it might cause the 

system to cross the second tipping point in a way that disguised that two distinct tipping points had been crossed. This issue 

of cascading tipping points is that one that we intentionally avoid in our experiments to simplify the analysis and is known to 

influence EWIs (Dakos et al., 2015, Brock and Carpenter, 2010). 

 395 

In this paper we have presented an application of EWIs on model output to anticipate tipping points. This is a useful approach 

in and of itself, since it could be used in model studies to detect bifurcations in the system with minimal computational expense, 

or to check whether a model might be on a trajectory to cross a tipping point at some point in time beyond the simulation. 

Alternatively, it may be possible to use this method on observational data, palaeo records, or some combination thereof. This 

raises the question of what data might qualify as useful for the application of EWIs, which can be broken down further into 400 

(1) the type of data needed and (2) the length of record necessary. As mentioned previously, ice volume or related measures 

of an ice sheet’s size do not show sufficient variability for information on the recovery time to be extracted. Ice speed however 

can change significantly over very short timescales, for example many ice streams show large variability over timescales as 

short as tidal periods (Anandakrishnan et al., 2003, Gudmundsson, 2006, Minchew et al., 2017). Ice flux was chosen in this 

study since it is closely related to the MISI mechanism and because flux is proportional to velocity, but it is possible that other 405 

metrics related to ice velocity might also exhibit critical slowing in a similar way. With regards to record length, we find in 

this study a minimum window length of 300 years must be applied to obtain reliable early warning of tipping points. However, 

this does not mean that is this represents the minimum window size in general and is likely sensitive to a number of the choices 

in our methodology. For example, this value is likely to be sensitive to the rate of forcing applied to the system. In the limiting 

case of a forcing rate approaching zero, the necessary window length must increase since EWIs are only expected to work 410 

relatively close to the tipping point. Both of these points require further study in order to establish suitable datasets for 

prediction of MISI onset.  

6. Conclusions 

Conducting quasi-steady numerical experiments, whereby the underside of the PIG ice shelf is forced with a slowly increasing 

ocean-induced melt, we have established the existence of three distinct tipping points. Crossing each tipping point initiates 415 

periods of irreversible and self-sustained retreat of the grounding line (MISI) with significant contributions to global sea level 

rise. The tipping points are identified through critical slowing, a general behavioural characteristic of non-linear systems as 

they approach a tipping point. Early warning indicatorsEWIs have been successfully applied to detect critical slowing in other 

complex systems. We here show that they robustly detect the onset of the marine ice sheet instability in the simulations of the 

realistic PIG configuration which is promising for application of early warning to further cryospheric systems and beyond. 420 
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While the possibility of PIG undergoing unstable retreat has been raised and discussed previously, this is to our knowledge the 

first time the stability regime of PIG has been mapped out in this fashion. The first and second tipping events are relatively 

small and could be missed without careful analysis of model results but nevertheless are important in that they lead to 

considerable sea level rise and would require a large reversal in ocean conditions to recover from. The third and final tipping 

point is crossed with an increase in sub-shelf melt rates equivalent to a +1.2°C change in ocean temperatures and leads to a 425 

complete collapse of PIG. Long-term warming and shoaling trends in Circumpolar Deep Water (Holland et al., 2019), in 

combination with changing wind patterns in the Amundsen Sea (Turner et al., 2017), can expose the PIG Ice Shelf to warmer 

waters for longer periods of time, and make temperature changes of this magnitude increasingly likely. 

Appendix A: Flowline experiments 

The MISI has been a major focus of modelling efforts within the glaciological community in recent years. In an effort to assess 430 

how ice-flow models capture this behaviour, a model inter-comparison experiment was performed to calculate the hysteresis 

loop of advance and retreat of a marine ice sheet on a retrograde slope, known as MISMIP experiment 3 (referred to as EXP 3 

hereafter, Pattyn et al., 2012). As a first step to establishing whether critical slowing can be observed prior to the MISI, we 

undertook a slightly modified version of this experiment using the Úa ice-flow model (Gudmundsson 2012, Gudmundsson 

2013, see methods). In our modified experiment, the marine ice sheet is forced towards tipping points through step 435 

perturbations in the control parameter as before, but with smaller steps and the additional constraint that the model must be in 

steady state after each perturbation before moving onto the next. In this experiment the chosen control parameter is the ice rate 

factor, a parameter linked to ice viscosity and temperature. 

 

Following each perturbation in the ice rate factor, we analyse the e-folding responserelaxation time (𝑇𝑇𝑅𝑅) of the state variable 440 

(in this case, grounding line position) to directly extract the relaxationrecovery time (𝑇𝑇𝑅𝑅) of the model as it approaches each 

tipping point (both advance and retreat). Theory predicts that 𝑇𝑇𝑅𝑅 → ∞ close to a tipping point and that the point at which 𝑇𝑇𝑅𝑅−2 

(as plotted versus the control parameter) reaches 0 thus identifies the critical value of the control parameter, beyond which a 

tipping point is crossed (Wissel 1984). We show this plot for both the advance and retreat scenarios of EXP 3 in Fig. A1. In 

both cases the relaxation time decreases as predicted by theory, even far from the tipping point. A linear fit through the last six 445 

perturbations yields a good agreement with theory and accurately predicts the critical value of the control parameter when 

compared to the analytical solution (red arrows in Fig. A1) given by Schoof (2007). Critical slowing still occurs outside of this 

range (equivalent to a change in ice temperature of >5 °C) but using these more distant points to forecast the tipping point 

would yield a less accurate prediction. These results therefore provide some insight into how far from the basin of 

attractiontipping point we can expect the predicted linear response.  450 
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Appendix B: Indicator sensitivity 

Before calculating the ACF and DFA indicators, the model output grounding line flux was processed, as described in the 

methods. Two parameters in this processing step are the bin size into which data are aggregated and the bandwidth of the 

smoothing kernel that removes long term trends in the time series. In order to check that the increasing trends in our indicators 455 

are a robust feature of our results, regardless of these choices, we conducted a sensitivity analysis. The parameters were varied 

by +/- 50% and the indicators were recalculated for each resulting time series. As before, we assess the utility of an indicator 

by whether it shows an increasing trend before each tipping point, as measured by a positive Kendall's 𝜏𝜏 coefficient. The results 

of this sensitivity analysis are presented for each MISI event in Fig. B1. Kendall’s 𝜏𝜏 coefficient is positive for all tested 

combinations of parameters and all MISI events, although MISI event 2 is particularly insensitive to these parameter choices 460 

whereas the spread in Kendall’s 𝜏𝜏 coefficient is greater for the other two events.  

 

In general, critical slowing will only occur close to a tipping point. Determining how close to a tipping point a system must be 

in order to anticipate the approaching critical transition, i.e. the prediction radius, is an important question and also informs 

the selection of palaeo-records that could be used to detect an upcoming MISI event. We show results for a window size of 465 

300 years (i.e. a record length of 600 years), which is the shortest window size for which the DFA indicator provides an 

accurate prediction for all tipping events. We explored the prediction radius of our model by calculating Kendall's 𝜏𝜏 for the 

ACF and DFA indicators and the variance for a range of window lengths, see Fig. B2. For the main tipping event, preceded 

by the longest stable period, the indicators gradually lose their ability to anticipate a tipping event as more data is included 

further from the event. The same is true for the two smaller tipping events, but the drop off is quicker such that the indicators 470 

break down for window lengths > 500 years. These results suggest that the prediction radius is relatively small and window 

sizes that are too large, and hence include data far from a tipping point, lose their ability to serve as early-warning indicators. 

Appendix C: Indicator significance 

In addition to a sensitivity analysis, it is important to check that trends in the calculated indicators are statistically significant 

and not the result of random fluctuations. We follow the method originally proposed by Dakos et al. (2012) and produce 475 

surrogate datasets from the model time series that have many of the same properties but should not contain any critical slowing 

trends. We generate 1000 of these datasets using an autoregressive AR(1) process based surrogate. For each of these datasets 

we calculate the ACF and DFA indicators and variance in the same way as with the model time series and then estimate the 

trend with values of Kendall’s 𝜏𝜏 coefficient. We calculate the probability of our results being a result of chance for each 

indicator and for all three combined as the proportion of cases for which the surrogate dataset was found to have a higher 480 

correlation than the model time series.  We find that P<0.1 in all but one instance for the ACF and DFA indicators but variance 

trends were generally less significant (Table C1). However, the combined probability that all three indicators would be equally 

positive as a result of chance was less than 0.02 for the first MISI event and less than 0.005 for the second two events.  
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One major simplification in this idealised experiment is the bed geometry, which is synthetic and arguably unrealistically 

smooth. To test whether the addition of ‘bumpiness’ to the bed affects how accurately the critical value of the control parameter 485 

can be predicted, we conducted further experiments in which the bed was made successively less smooth. One simple but 

flexible way to generate the desired roughness is to add Perlin noise to the bed. Perlin noise is a commonly used method in 

terrain generation that adds noise at a number of levels with successively smaller wavelengths and amplitudes. The number of 

levels is denoted by the octave, the rate at which each octave changes frequency is the lacunarity and the rate at which each 

octave changes amplitude is the persistence. We made the common choice of a lacunarity greater than one and a persistence 490 

less than one, meaning that each octave adds noise of higher frequency and lower amplitude. For a starting octave amplitude 

of 25m the difference between the analytical solution and linear fit is less than 1%, but this grows to ~5% with an amplitude 

of 50m (note the change in height from peak to trough in the retrograde region of the smooth bed is ~120m). This suggests 

that more realistic bed geometries with increased roughness might make the task of predicting tipping points more challenging 

than it is in this simplified case. 495 
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Figure 1. Possible range of behaviours for a system state (e.g. ice flux) in response to perturbations in a control parameter (e.g. ocean 
temperature). A system can respond to a perturbation (a) in a linear way that is directly recoverable with a reversal of the forcing, 
(b) with a large response to a small perturbation but that is still directly recoverable, (c) with a large response to a small perturbation 
that is irreversible (hysteresis behaviour), and (d) with a large response that is irreversible for any change in the control 755 
parameter.tested range of the control parameter, a behaviour we refer to as permanently irreversible (no recovery possible even if 
forcing is reversed well below the initial level). Tipping points are crossed only in panels (c) and (d) and are indicated by x1, x2 and 
x3. Panel (c) also shows a transient response in which the system state lags behind changes in the control parameter as is the case for 
ice sheets and thus crosses the irreversible system state at a later point, xt. 
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Figure 2.  
Figure 2. Critical slowing can serve as an indicator that the system is approaching a tipping point. This can be understood 
conceptually using the common ‘ball on a slope’ analogy (middle panel), where the ball represents the system state and minima are 
stable equilibrium states.  Two example cases are superimposed onto their corresponding positions in the hysteresis plot of MISI 765 
shown by the green line and equivalent to Fig. 1c. The processed model results demonstrate how critical slowing manifests itself, as 
shown in the blue and red panels at the sides. If the system is far from a tipping point (blue case), the system state (which is in this 
study the grounding line flux qGL, upper left panel) recovers quickly from perturbations in the control parameter (which is here the 
basal melt variability). This means that from one measurement (at time t) to the next (at time t+1) the grounding line flux changes 
rapidly and has a low lag-1 auto-correlation (lower left panel). Conversely, close to a tipping point (red case), critical slowing 770 
manifests and the system state responds more slowly to perturbations in the control parameter (upper right panel). Since the state 
variable is changing more slowly, successive measurement are more similar, resulting in a higher lag-1 auto-correlation (lower right 
panel).  
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Figure 3. Marine Ice Sheet Instability events for Pine Island Glacier. Shown are (a) grounding line positions before and after the 775 
three MISI driven glacier collapses with (b) a zoom to the initial events (coloured lines). The colormap indicates initially modelled 
ice velocity and the model domain boundary is indicated by a dashed black contour in panel a . Panels (c) and (d) show a transect 
through the main trunk of PIG, calculated as an average of properties between the two dashed magenta lines in (b). The vertical 
section along the transect is shown (c) at the initial steady state where fluxes (Qin and Qout) are in balance and (d) during a MISI event 
where retreat causes an increase in Qout, pushing the glacier to be out of balance and leading to further retreat. 780 
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Figure 34. Change in system state in terms of sea level equivalent ice volume as a function of the control parameter, which is the 
melt rate at the ice-ocean interface. (a) The model is run forward with a slowly increasing basal melt rate (solid black line) and shows 785 
three distinct tipping points (blue dots).dot). From the start of the transient simulation to the third tipping point is approximately 
10kyrs. The steady states for a given melt rate in both an advance and retreat configuration are plotted as dashed grey lines, arrows 
indicate the direction of the hysteresis. Panel (b) focuses on the model response before the larger tipping point (event 3) and shows 
the three windows that we analyze for early warning indicators as shaded red boxes (Fig. 4).5). Circle and square symbols represent 
steady state configurations for a given forcing and the dashed grey line is a linear interpolation between these points. Each step in 790 
melt rate for the steady state runs is approximately equivalent to 0.4m/yr of basal melting, or 250 years in the transient simulation. 
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Figure 4. Early warning indicators5. EWIs for the marine ice sheet instability in Pine Island Glacier. Each panel shows the early 
warning indicatorsEWIs preceding each of the three MISI tipping event marked in Fig 3b, along with the linear trend extrapolated 
to the point in the simulation when the respective tipping event occurs. Increasing trends in all indicators are shown by a positive 800 
Kendall’s 𝜏𝜏 coefficient which measures the correlation between each indicator and time between -1 and 1. 
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Figure  
6. Sensitivity analysis for the ACF and DFA indicators. Each occurrence is the Kendall’s 𝜏𝜏 coefficient for a different choice of filtering 
bandwidth and data aggregation. The solid red and blue lines show the Kendall’s 𝜏𝜏 coefficient for the DFA and ACF indicators 
respectively, as calculated for the choice of parameters used in Fig. 5. 810 
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Figure 7. The effect of window length on the predictive power of EWIs for the MISI. The three panels show the change in Kendall's 
𝜏𝜏 coefficient as calculated for each indicator versus window length for MISI events 1, 2 and 3 (panels a, b and c respectively). 815 
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Event Number Indicator name Indicator value Probability Total Probability 

MISI event 1 DFA 0.55 0.041 0.0198 

ACF 0.53 0.122 

Variance 0.37 0.315 

MISI event 2 DFA 0.60 0.022 0.0030 

ACF 0.76 0.012 

Variance 0.53 0.207 

MISI event 3 DFA 0.44 0.099 0.0044 
 

ACF 0.72 0.026 

Variance 0.89 0.018 

 
Table 1. Probability of the Kendall’s 𝜏𝜏 correlation for each indicator being a result of chance. One thousand surrogate time series of 
the state variable are generated and the indicators and Kendall’s 𝜏𝜏 correlations calculated for each one. The probability of a 
Kendall’s 𝜏𝜏 value is then the fraction of these surrogate time series with a higher correlation coefficient. The total probability is the 820 
fraction of surrogates for which all three indicators have a higher correlation coefficient than is observed in the original model time 
series. 
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Figure A1. Results of EXP 3, showing change in GL position with time resulting from step perturbations in the ice rate factor (panel 825 
a). The calculated inverse relaxation time for each corresponding step change in rate factor in both the advance (square symbols) 
and retreat (circular symbols) phase is shown in panel b. The dashed line in panel b is a line of best fit, calculated for the five steps 
in rate factor that preceded the advance or retreat MISI phase. Red arrows indicate the rate factors for which the analytical solution 
predicts a MISI event and black arrows show the direction of the forcing towards each tipping point. 
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Figure B1. Sensitivity analysis for the ACF and DFA indicators. Each occurrence is the Kendall’s 𝜏𝜏 coefficient for a different choice 835 
of filtering bandwidth and data aggregation. The solid red and blue lines show the Kendall’s 𝜏𝜏 coefficient for the DFA and ACF 
indicators respectively, as calculated for the choice of parameters used in Fig. 3. 
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 840 
Figure B2. The effect of window length on the predictive power of early warning indicators for the MISI. The three panels show the 
change in Kendall's 𝜏𝜏 coefficient as calculated for each indicator versus window length for MISI events 1, 2 and 3 (panels a, b and c 
respectively). 
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Event Number Indicator name Indicator value Probability Total Probability 

MISI event 1 DFA 0.55 0.041 0.0198 

ACF 0.53 0.122 

Variance 0.37 0.315 

MISI event 2 DFA 0.60 0.022 0.0030 

ACF 0.76 0.012 

Variance 0.53 0.207 

MISI event 3 DFA 0.44 0.099 0.0044 
 

ACF 0.72 0.026 

Variance 0.89 0.018 
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Table C1. Probability of the Kendall’s 𝜏𝜏 correlation for each indicator being a result of chance. One thousand surrogate time 

series of the state variable are generated and the indicators and Kendall’s 𝜏𝜏 correlations calculated for each one. The probability 

of a Kendall’s 𝜏𝜏 value is then the fraction of these surrogate time series with a higher correlation coefficient. The total 

probability is the fraction of surrogates for which all three indicators have a higher correlation coefficient than is observed in 

the original model time series. 850 


