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Abstract. Current observational data on Hindu Kush Himalayas (HKH) glaciers are sparse, and characterizations 12 

of seasonal melt dynamics are limited. Time series synthetic aperture radar (SAR) imagery enables detection of 13 

reach-scale glacier melt characteristics across continents. We analyze C-band Sentinel-1 A/B SAR time series data, 14 

comprised of 32,741 Sentinel-1 A/B SAR images, determine the duration of seasonal glacier melting for 105,432 15 

mapped glaciers (83,102 km2 glacierized area, defined using optical observations), in the HKH across the calendar 16 

years 2017-2019. Melt onset and duration are recorded at 90m spatial resolution and 12-day temporal repeat. All 17 

glacier areas within the HKH exhibit some degree of melt. Melt signals persist for over half of the year at elevations 18 

below 4,000 m a.s.l. and for nearly one quarter of the calendar year at elevations exceeding 7,000 m a.s.l. Retrievals 19 

of seasonal melting span all elevation ranges of glacierized area in the HKH region, extending greater than 1km 20 

above the maximum elevation of an interpolated 0ºC summer isotherm and at the top of Mount Everest, where in 21 

situ data and surface energy balance models indicate the Khumbu glacier is melting at surface air temperatures 22 

below -10ºC. Sentinel-1 melt retrievals reflect broad-scale trends in glacier mass balance across the region where the 23 

duration of melt retrieved in the Western Himalaya and Karakoram is on average one monthtwo weeks less than in 24 

the Eastern Himalaya sub-region. Furthermore, percolation zones are apparent from meltwater retention indicated by 25 

delayed refreeze. Time series SAR datasets are suitable to support operational monitoring of glacier surface melt and 26 

the development and assessment of surface energy balance models of melt-driven ablation across the global 27 

cryosphere. 28 

1 Introduction 29 

Global warming driven by the anthropogenic release of geologic carbon is causing mass loss of alpine 30 

glaciers worldwide (Brangers et al.; Zemp et al., 2006). The Hindu Kush Himalaya (HKH) region, known 31 

colloquially as the “Third Pole,” has the most ice-covered area on Earth after the high-latitude polar regions (Yao et 32 

al., 2012). In contrast to large ice sheets near the poles, these relatively small alpine glaciers – perched at some of 33 

the highest elevations on Earth – are among the most sensitive indicators within the global cryosphere of changes in 34 

global climate (Anthwal et al., 2006). Just as the recession of these sensitive mountain glaciers contribute to over 35 

one quarter of global sea level rise (Zemp et al., 2019), disturbances accompanying HKH glacier retreat pose 36 
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innumerable hazards to humans and natural ecosystems. Glacier retreat threatens to disturb the dynamics of river 37 

systems delivering freshwater resources to nearly 2 billion people across South and Central Asia (Brown et al., 38 

2007; Milner et al., 2017). Outburst floods resulting from glacier mass loss have killed at least 6,300 people in the 39 

Himalayas alone, and have caused extensive damage to property and livelihoods. These outbursts are expected to 40 

increase in frequency with continued glacier wasting (Carrivick and Tweed, 2016). Some organisms endemic to 41 

alpine aquatic ecosystems may become extinct as they lose biogeochemical regulation from upstream glaciers 42 

(Jacobsen et al., 2012). As global temperatures rise and perennial snow and ice cover decreases, societies are faced 43 

with difficult decisions around the costs and benefits of adapting to a changing climate within and around the HKH 44 

region (Brown et al., 2007). Informed decision-making for successful climate change adaptation will require 45 

knowledge of the state of natural systems and how these systems are projected to change alongside future increases 46 

in population and global average temperature (Bogardi et al., 2012). 47 

Substantial uncertainties exist in projected disturbances associated with a changing climate, environment, 48 

and hydrologic regime across the greater Himalayas due in part to a lack of observations of in situ hydrology and 49 

meteorology at high elevations (Hock et al., 2019; Litt et al., 2019; Marzeion et al., 2020). The magnitude and rate 50 

of ablation from surface melting is of particular importance as it drives changes in accumulation-zone snow-51 

properties, such as percolation and densification, that feedback into increased melting (Alexander et al., 2019). 52 

Surface melting has also been linked to increased englacial temperatures resulting in faster ice motion (Miles et al., 53 

2018). Although the general trajectory of changes to the HKH cryosphere is understood (i.e. accelerated glacier 54 

mass loss on a decadal scale in the Central and Eastern Himalaya) (Fujita and Nuimura, 2011), a consensus in 55 

projecting changes to HKH hydrology is lacking largely because of missing in situ snow and ice monitoring data 56 

across these glaciated river basins (Marzeion et al., 2020). However, construction and maintenance of in situ 57 

monitoring station networks is costly and labor-intensive because of the complexity of the high-mountain glaciated 58 

terrain. Satellite imaging radar retrieval of alpine glacier melt characteristics has long been proposed as a source of 59 

data for hydrologic and glaciologic research (Shi et al., 1994). Understanding of surface melting from observation 60 

records will enable advanced climate change projections of glacier wasting that require snow property dynamics 61 

describing the retention, refreezing and drainage of liquid water within glacier snow and firn (Pritchard et al., 2020).  62 

Recent findings indicate that shortwave radiation drives melting at elevations where air temperatures are 63 

perennially below freezing, such as those on Mount Everest where temperatures never exceed -10ºC (Matthews et 64 

al., 2019; Matthews et al., 2020). These in situ findings indicate the degree to which temperature-indexed melt 65 

models are underestimating ablation at these elevations using a 0ºC threshold for glacier melting. Further, studies of 66 

glacier wasting in High Mountain Asia have shown variability in patterns and magnitude of glacier wasting across 67 

sub-regions of the HKH that would be difficult to capture in numerical models using degree-day assumptions (Brun 68 

et al., 2017). An observationally based dataset providing characteristics of the glacier surface energy balance is 69 

necessary to capture seasonal and regional variability in glacier wasting across the HKH during melt-freeze cycles.  70 

 71 
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1.1 Snowmelt Detection and Radar Imaging 72 

This study builds on extensive research on microwave scattering from dry and wet snow and associated 73 

techniques for snowmelt retrieval from imaging radar data to present an operational monitoring system for spatially-74 

resolved glacier surface melt characteristics using synthetic aperture radar (SAR) time series and outlines of glacier 75 

area derived from satellite optical imagery across the HKH. Microwave remote sensing has been used to reliably 76 

monitor melt patterns across glaciers and ice sheets (Abdalati and Steffen, 2001; Ashcraft and Long, 2007; Jezek et 77 

al., 1994b; Steiner and Tedesco, 2014). Because imaging radar is independent of solar illumination and largely 78 

unaffected by cloud cover and atmospheric conditions, the fidelity of radar observations is defined by the frequency 79 

of the satellite platform’s observational opportunities and by the characteristics of the imaging sensor. At C-band 80 

frequencies, frozen glacier percolation areas are recognized as one of the brightest radar targets on Earth, and glacier 81 

surfaces are unambiguous targets for determination of surface melt/freeze characteristics (Jezek et al., 1994; Rott 82 

and Mätzler, 1987). Detection of seasonal melt on ice surfaces at C-Band frequencies (4 – 8 GHz) depends on a 83 

strong radiometric response at melt onset (MO), when liquid water content introduced to an otherwise frozen snow 84 

or firn matrix causes a drastic decrease in the radar backscatter from the medium (Hallikainen et al., 1986). Deep, 85 

frozen snow and firn has a high scattering albedo across microwave frequencies (Matzler, 1998), resulting in high 86 

radar backscatter intensity over glaciated regions during the frozen months (Winsvold et al., 2018; Wiscombe and 87 

Warren, 1980). The introduction of liquid water in the snow or firn matrix at even hydrologically minimal amounts 88 

causes a pronounced increase in the medium’s dielectric constant, increasing radar signal attenuation and 89 

diminishing volume scattering, and leading to a pronounced decrease in radar backscatter, usually by half power or 90 

more (Kendra et al., 1998; Shi and Dozier, 1995). In areas that are seasonally snow-free, e.g. for glacier ablation 91 

areas of debris-cover or bare ice, melting conditions are dominated by heterogeneous scattering mechanisms 92 

following the disappearance of seasonal snow, a topic of study not well represented in the theoretical literature on 93 

radar physics likely due to the complex nature of the glacier ablation surface. Because of the relatively strong signal 94 

produced at the onset of melting, radar-based melt-detection records have been developed across regions of the 95 

global cryosphere for several decades using both real and synthetic aperture radar sensors (Bhattacharya et al., 2009; 96 

Bindschadler et al., 1987; Koskinen et al., 1997). Subsequently, snowmelt detection algorithms have been developed 97 

using a host of radar sensors to monitor the onset and duration of snowmelt across glaciers and ice sheets (Abdalati 98 

and Steffen, 2001; Ashcraft and Long, 2007; Bahr et al., 1997; Jezek et al., 1994; Kayastha et al., 2019; Koskinen et 99 

al., 1997; Winebrenner et al., 1994). Prior applications of SAR mapping of seasonal surface melting over ice sheets 100 

and glaciers have been limited by a lack of repeat observations such as those now available from the Sentinel-1 SAR 101 

constellation (Lund et al., 2019).  102 

Observations from time series SAR data have been used to delineate zones of glacier facies and regions of 103 

glacier mass balance (Winsvold et al., 2018). In glacier percolation zones, seasonally wet snow refreezes into ice 104 

lenses, pipes, and other percolation-related features that amplify both surface and volume scattering of C-band radar 105 

and result in the brightest SAR backscatter being captured during the frozen periods (Jezek et al., 1994; Rau et al., 106 

2000). Studies have shown that SAR backscatter generally increases with elevation across glacier surfaces during 107 

frozen periods, from the glacier terminus, through zones of ablation, frozen meltwater percolation, and eventually 108 
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attenuating in zones where dry snow accumulates (Winsvold et al., 2018). In transitions between these zones there 109 

are pronounced backscatter contrasts rather than smooth, gradual transitions. At C-band frequencies, radar scattering 110 

within glacier percolation areas dominates the backscatter amplitude during frozen periods (Jezek et al., 1994). 111 

Importantly for melt retrievals, the diminished volume scattering during surface melting in areas of meltwater 112 

percolation creates a pronounced and unambiguous radar signature in time-series observations. The sensitivity of 113 

SAR backscatter to the introduction of liquid water in an otherwise frozen snowpack or firn structure provides a 114 

reliable mechanism for the retrieval of percolation zone melt characteristics (Lievens et al., 2019). In refreezing 115 

percolation zones, the upper layers of firn will freeze first with the freezing front advancing downward across layers, 116 

thus progressively increasing backscatter and with decreasing total-column liquid water content (Ashcraft and Long, 117 

2005). In this way, the timing of refreeze relative to the surface energy balance at the surface provides a direct and 118 

spatially resolved indicator of subsurface meltwater storage within the snow or firn and deliniates the percolation 119 

zones over mountain glaciers. Like in the accumulation zone, the surface melting response in the ablation zone will 120 

dominate the seasonal trends in backscatter because of absorption from liquid water at the surface over both bare-ice 121 

and debris-covered portions of ablation areas. Although the absolute fraction of backscatter at C-band frequencies 122 

over debris covered portions of ablation zones attributed to volume scatter is not well known, there is evidence that 123 

for low frequencies it can account for a majority of radar observations (Huang, et al. 2017). 124 

This study enlists SAR data acquired at a spatiotemporal resolution that captures melt variability across 125 

mountain glacier surfaces suitable for constraining seasonal characteristics of melt onset and duration while building 126 

on associated methods often employed for glaciers and ice sheets. In this paper we utilize SAR data to retrieve melt 127 

status on HKH glacier surfaces with a simple threshold-based change detection classification melt/freeze state - an 128 

observational constraint on glacier ablation. It is possible that intense incident solar radiation is driving these melt 129 

processes at elevations above the 0ºC summer isotherm (Matthews et al., 2019) across the entirety of the  HKH, and 130 

that the sensitivity of SAR backscatter to changes in the glacier surface melt/freeze condition as seen  when water 131 

transitions between solid and liquid phases provides a real alternative to temperature elevation lapse rate estimates 132 

of melting (Litt et al., 2019) for assessing models of glacier ablation. Though coarse in temporal resolution relative 133 

to typical meteorological datasets, retrieval of melt status using SAR time series produces mappings with very high 134 

spatial resolution and a continuous record of melt timing and duration across glaciated regions. We present an 135 

application of this melt retrieval technique at the scale of the HKH with spatiotemporal fidelity adequate to capture 136 

seasonal variability in melt timing and duration across individual glacier surfaces and sub-regional heterogeneities 137 

across the HKH. 138 

2 Setting and Data 139 

 The HKH region (Fig. 1) spans 13 million km2, including areas inhabited by 240 million people with nearly 140 

2 billion people relying on the delivery of water resources from catchments that originate within the region (Scott et 141 

al., 2019). Within the high elevation HKH, seasonal meltwater from snow and glacier ice is the primary source of 142 

domestic freshwater supply (Bolch et al., 2012). Wasting of HKH glaciers poses a risk to the domestic water 143 

resource supply for those populations living within these high elevation HKH catchments (Wood et al., 2020). 144 
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Glacier wasting in the HKH is heterogeneous and the increase in global average temperature has caused mass 145 

wasting of mountain glaciers across all HKH sub-regions (Farinotti et al., 2020; Gardelle et al., 2012). Distinct 146 

glacio-climatic sub-regions are characterized by these unique dynamics of glacier wasting (Bolch et al., 2019a). The 147 

wasting of HKH glaciers is thus a spatially and temporally heterogeneous phenomenon where distinct glacio-148 

climatic regimes control ablation (Bolch et al., 2012). In this study, we refer to glacio-climate sub-regions delineated 149 

in Bolch, et al. (2019a) and modified by Shean, et al. (2020). These delineations of glacio-climate were produced by 150 

the Hindu Kush Himalaya Monitoring and Assessment Program (HiMAP) and we will refer to the sub-regional 151 

delineations as “HiMAP regions” throughout the text. We selected 12 HiMAP subregions that intersected with a 152 

boundary of the HKH region delineated by the International enter for Integrated Mountain Development (ICIMOD)  153 

(ICIMOD). The HKH region, HiMAP sub-regions, and glaciated area summaries within each HiMAP sub-region are 154 

illustrated in Fig. 1 alongside the Sentinel-1 acquisition plan. 155 

 156 
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Figure 1. (Top) Hindu Kush Himalaya (HKH) region and 2018 GAMDAM glacierized areas summed across 157 
glacio-climate sub-regions from Shean, et al. (2020). An inset map highlights the spatial fidelity of GAMDAM 158 
outlines in the top panel. GGI and HKH data overlay a 30m Shuttle Radar Topography Mission (SRTM) DEM 159 
hillshade (Farr, 2007). (Bottom) Sentinel-1 ascending (red) and descending (blue) swath footprints acquired across 160 
the study region. Ascending orbit cycle number 56 is highlighted in red to illustrate the SAR image processing 161 
approach for time series analysis across distinct orbit cycles. 162 

2.1 GAMDAM Glacier inventory (GGI) 163 

The Glacier Area Mapping for Discharge from the Asian Mountains (GAMDAM) glacier inventory (GGI) is 164 

a contemporary (July 2019) database on glacier outlines for the region of High Mountain Asia (Fig. 1). These 165 

outlines were originally delineated automatically using cloud and snow-free satellite optical imagery in an initial 166 

release of the database (Nuimura et al., 2015). As a recent update to the database, each outline was individually 167 

inspected for quality control to correct discrepancies where automatic glacier delineation lost accuracy in terrain -168 

occluded areas, at debris covered portions of glaciers, and through obstruction under seasonal snowpack. The 169 

recently updated glacier outlines were derived from satellite optical imagery captured across the HKH by Landsat 5 170 

and 7 between 1990-2010 (Sakai, 2019). Although these data are the most current in terms of quality control 171 

spanning the study region, they do not necessarily capture debris-covered portions of glaciers due to confusion with 172 

land in optical image classification schemes; an issue that may be resolved with interferometric SAR phase 173 

decorrelation (Bolch et al., 2019b). The 2018 GAMDAM database contained within the HiMAP sub-regions 174 

includes 105,432 distinct glacier outlines spanning a total area of 83,102 km2 within the HKH (Nuimura et al., 175 

2015).  176 

2.2 Sentinel-1 Synthetic Aperture Radar 177 

The Sentinel-1 A/B satellites were launched in April of 2014 and 2016, respectively, and collect C-band 178 

(5.405 GHz) SAR data with a combined revisit interval of 6-days over of the majority of the terrestrial Earth. Each 179 

Sentinel-1 scene acquired in the interferometric wide-swath (IW) mode has a width of 250 km and a resolution of 180 

5x20 meters in range and azimuth at the equator. This study utilized images taken in the IW mode and in cross-181 

polarized state (VH). Sentinel-1 data were accessed through a cloud-computing platform (discussed below) wherein 182 

SAR scenes were radiometrically terrain corrected to sigma naught backscatter coefficients in decibels (dB) using 183 

the European Space Agency’s (ESA) Sentinel Application Platform (SNAP) toolbox and the Shuttle Radar 184 

Topography Mission (SRTM) 30m digital elevation model (DEM) (Farr, 2007) upon ingestion into the cloud 185 

environment. Data from both the ascending and descending orbit nodes were analyzed across the study region for a 186 

total consideration of 32,741 individual Sentinel-1 A/B IW scenes across 46 unique orbit cycles captured across the 187 

calendar years 2017-2019 (Table 1, Fig. 1b). By combining orbit directions, we utilize observations acquired at day 188 

and night. For the purpose of this study we do not attempt to resolve diurnal-scale melt-freeze processes and instead 189 

focus on retrieving seasonal and annual characteristics of melt timing and duration. Cross-polarized SAR backscatter 190 

provides enhanced observational sensitivity to volume scattering of the radar signal in deep, dense and weathered 191 

snowpack and firn (Rott and Mätzler, 1987). We selected cross-polarized (VH) Sentinel-1 A/B observations because 192 

VH data show less angular sensitivities to contrasts between dry and wet snow (Nagler et al., 2016). Cross-polarized 193 
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Sentinel-1 SAR did not become available over the HKH until early 2017 and thus restricted the timeframe of this 194 

study. As illustrated in Fig. 2, we observe a large (>3dB) difference in the seasonal radar backscatter between frozen 195 

and melting periods across most of glacier surfaces in cross-polarized (VH) SAR data.  196 

 197 
Table 1. Sentinel-1 image count and orbit paths used in this study. 198 

Orbit Direction 
Number of S-1 Images by Year 

Relative orbit cycle 
2017 2018 2019 

Descending 

4,424 5,436 5,253 

4, 5, 19, 20, 33, 34, 48, 

49, 62, 63, 77, 78, 92, 

106, 107, 121, 122, 135, 

136, 150, 151, 164, 165 

Ascending 

5,302 6,097 6,150 

12, 13, 26, 27, 41, 42, 

55, 56, 70, 71, 85, 86, 

99, 100, 114, 115, 128, 

129, 143, 144, 158, 172, 

173 

 199 

 200 
Figure 2. (A) Mean summer (July-August) 2018 cross-polarized (VH) backscatter across an example region in the 201 
Trishuli basin, Nepal. (B) Mean 2018 winter (January- February) VH backscatter from Sentinel-1. (C) Sentinel-2 202 
false-color (near-infrared, green, blue) image acquired by Sentinel-2 on October 30, 2018. Glacier outlines are 203 
shown in blue and the Yala glacier base camp meteorological station is marked in red. Note the snow covered and 204 
bare-ice portions of outlined glaciers and other debris-covered portions of glacier ablation areas. (D) The difference 205 
between mean summer and winter VH backscatter from Sentinel-1. 206 
 207 
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2.3 Computing Infrastructure 208 

A cloud-computing platform and application programming interface (Google Earth Engine) with pre-209 

processed radiometrically terrain corrected Sentinel-1 A/B data was used to detect melt characteristics across the 210 

region (Gorelick et al., 2017). Radiometric terrain correction of Sentinel-1 data was conducted upon ingestion to the 211 

cloud server using the ESA’s method contained within the Sentinel Applications Platform (SNAP) processing 212 

toolbox. The SNAP toolbox is used for Sentinel-1 images to update orbit metadata with restituted orbit files, remove 213 

invalid edge data and low intensity noise, remove thermal noise, compute 𝜎0 backscatter, and conduct 214 

orthorectification upon ingestion of data to the server (Google, 2020). The SNAP toolbox terrain correction 215 

functionality utilizes the 30m spatial resolution SRTM DEM (Farr, 2007; Margulis et al., 2019). The pre-processed 216 

SAR times series data and API functionality used to derive glacier melting characteristics are available from Google 217 

Earth Engine and can be used to recreate the work presented in this study. 218 

2.4 Automated Weather Station Data 219 

Measurements from two automated weather stations (AWS) are used to estimate surface energy balance (SEB) 220 

and evaluate surface melting conditions over the Khumbu Glacier and measurements from two additional AWS are 221 

used to calculate temperature-elevation lapse rates for comparison with melt retrievals (Table 2). The Camp and the 222 

South Col AWS were installed around Mount Everest, Nepal as part of the National Geographic and Rolex 223 

Perpetual Planet Expedition to Mt. Everest in April-May 2019 (Matthews et al., 2019). Measurements were 224 

collected at an hourly interval and include air temperature, wind speed, relative humidity, incoming shortwave and 225 

longwave radiation and barometric pressure. Time series plots of meteorological observations are shown in 226 

Supplementary Information Fig. S1. Please see Matthews et al. (2020) for a complete description of sensor 227 

specifications and sampling interval. AWS data collected within the Langtang Valley are used to estimate 228 

temperature elevation lapse rates following methods from prior studies and serve as data for comparison with 229 

Sentinel-1 backscatter values (Shea, 2016). 230 

Table 2. Sources of air temperature data used to calculate 3-day average temperature-elevation lapse rates within the 231 
Central Himalaya for the 2018 calendar year.  232 

Station Name Date Range 

(dd/mm/yyyY) 

Resolution Elevation 

(m a.s.l.) 

Latitude Longitude Source 

Yala Glacier 05/08/2012 – 

12/31/2018 

Hourly 4,950  28.23252 
 

85.61208 ICIMOD 

Kyanging 

Station 

03/22/2012 – 

12/31/2019 

Hourly 3,802 28.21081 85.56169 ICIMOD 

Camp II 05/22/2019 – 

10/31/2019 

Hourly 6,464 27.9810 86.9023 (Matthews et 

al., 2019) 

South Col 05/22/2019 – 

10/31/2019 

Hourly 7,945 27.9719 86.9295 (Matthews et 

al., 2019) 

 233 
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Methods 234 

2.5 Melt Classification 235 

 We use a threshold-based change detection algorithm applied to time series radar backscatter intensity to 236 

classify melt conditions (Ashcraft and Long, 2007). Melt detection is conducted across Sentinel-1 A/B ascending 237 

and descending orbit track time series separately and mosaicked into a final image based on a statistical score for 238 

seasonal melt magnitude after classification. To classify snowmelt, we conduct a pixel-based temporal classification 239 

by comparing each image at interval i to a dry/frozen winter average backscatter value calculated from January to 240 

February for each study year. Due to missing VH acquisitions at some locations during the 2017 frozen months, (Jan 241 

– Feb) we utilized 2018 frozen month reference data for melt retrieval across the calendar year 2017, as regular 242 

acquisitions across the HKH began in late February 2017.  Snowmelt at each image acquisition interval (𝑚𝑖) was 243 

classified using Eq. (1): 244 

 245 

𝑚𝑖 =  {
1, 𝑖𝑓 𝜎0

𝑖 < 𝜎0
𝑤 − 𝑏,

0, 𝑖𝑓 𝜎0
𝑖 > 𝜎0

𝑤 − 𝑏.
      (1) 246 

 247 

where the ground-range detected backscatter intensity at each image acquisition (𝜎0
𝑖)  within the times series must 248 

be less than the difference between the mean winter backscatter (𝜎0
𝑤) and a fixed threshold (b). Threshold value𝑠 249 

(b) have been developed across numerous studies of melt detection with C-band scatterometer and SAR datasets 250 

using both ground-based observations and radar scattering model results of changes to backscatter magnitude at the 251 

onset of melt. We followed previous studies (Baghdadi et al., 1997; Bhattacharya et al., 2009; Engeset et al., 2002; 252 

Nagler and Rott, 2000; Oza et al., 2011; Rott and Mätzler, 1987; Steiner and Tedesco, 2014; Trusel et al., 2012) and 253 

selected a b value equal to one half of the signal power (3 dB). Figure 3 provides an illustration of the SAR melt 254 

signal for a high elevation (4,950m a.s.l) meteorological station, located at the Yala glacier base camp. Backscatter 255 

values averaged across the Yala glacier acquired along the Sentinel-1 A/B descending orbit direction are plotted 256 

alongside mean daily air temperature recorded at the Yala glacier base camp automatic weather station (Shea, 2016). 257 
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If we consider air temperature above 0ºC to control glacier surface melt at this location, classification accuracy for 258 

melt retrieval using Eq. (1) is 96% in the VH polarization.  259 

 260 
Figure 3. Time-series chart of air temperature measured at the Yala glacier base camp (4,950 m a.s.l) and Sentinel-1 261 
A/B descending backscatter averaged across the Yala glacier for the years 2017-2018. Assessment of algorithm 262 
performance assuming mean daily air temperatures above 0ºC indicates active melt results in 96% accuracy for melt 263 
classification across this time series in the VH polarized backscatter. 264 

2.6 Quantifying algorithm performance 265 

Sentinel-1 SAR viewing geometry will vary as the local incidence angle increases with across-track range. At 266 

high incidence angles (far range), the sensitivity to volume scatter is diminished and the melting signal is reduced. 267 

At C-band frequencies, these effects on volume scatter are strongest only at very high incidence angles (closer to 268 

grazing) (Nagler and Rott, 2000). We classified areas as valid for melt detection using a metric of statistical 269 

separability for seasonal backscatter intensity across frozen and melt periods, which we interpret as a measure of the 270 

strength of the seasonal melt signal Eq. (2): 271 

 272 

𝒛 =  
�̅�𝟎

𝒘−�̅�𝟎
𝒔

𝒔(𝝈𝟎
𝒘)

,       (2) 273 

 274 

where the score for seasonal separability of backscatter intensity (z) was calculated across each SAR pixel’s time 275 

series using the difference between the mean winter 𝜎0
𝑤   (January-February) and summer 𝜎0

𝑠 (July-August) season 276 

backscatter intensities, as compared to the standard deviation of backscatter across the winter months 𝑠(𝜎0
𝑤). In 277 

computing z, we employed consistent repeat-pass observation geometries thereby allowing application of the time 278 

series melt-detection algorithm in regions of complex terrain. This metric serves as a measure of the magnitude of 279 

the seasonal melt signal across each pixel’s time series. It is used here as a criterion to identify valid melt 280 

observations and for selection of pixels employed in regions of overlapping orbital tracks, based on the sensitivity of 281 

the radar backscatter to melting. We apply this metric to choose which orbit direction (ascending or descending) to 282 

use for melt classification on a per-pixel basis after applying Eq. (1) across each orbit cycle time series, so as to 283 

capture the maximum area of melt signals occurring across the complex terrain. 284 
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Sentinel-1 A/B interferometric wide (IW) swath images have a range in viewing angle between 29.1-46.0° 285 

(ESA). Glacier melt retrieval using SAR data commonly begins with a normalization of radar images by viewing 286 

angle on a scene by scene basis (Adam et al., 1997; Huang et al., 2011; Rott and Mätzler, 1987; Winsvold et al., 287 

2018). We consider changes for each individual orthorectified 10x10m pixel time series across distinct, repeating 288 

orbit tracks and directions. This approach holds the local incidence angle effectively constant for each region 289 

observed by a given set of orbit tracks. Glacier melt classification and z-score calculation are carried out across 290 

images acquired along identical orbit tracks in distinct orbit directions (Fig. 1) and mosaicked into a final dataset for 291 

each study year using the greatest z-score observed across each orbit cycle path and in each orbit direction. We thus 292 

limit temporal resolution of melt retrievals to 12-days by choosing only observations from the orbit direction with 293 

the greater z-score on a per-pixel basis. Time series analysis of SAR acquisitions on distinct orbit tracks eliminates 294 

the need to normalize each scene by incidence angle for the purposes of melt retrieval. This method reduces 295 

computational cost and eliminates artefacts that may originate from overlapping orbit paths and differences in radar 296 

viewing angle. Areas where complex topography controls the backscatter should show little time series variability in 297 

backscatter change at the SAR pixel scale when viewed at a distinct and consistent orbit path and direction and 298 

should not pass the z score test.  299 

We apply time series melt detection only where inter-seasonal backscatter intensities are separated by 300 

greater than two standard deviations (𝒛 > 2), representing better than 98% confidence in the presence of an annual 301 

melt signal. For all locations, the orbit direction and orbit cycle that has the greatest z value is used for melt 302 

classification. We find that z generally increases with elevation across sub-regions of the HKH and that, across 303 

elevation ranges, the mean z is above the threshold for melt retrieval, indicating detection of a seasonal melt signal 304 

across all ranges of glacier elevation spanning the HKH (Fig. 4). Areas of debris-cover may exhibit radar 305 

brightening with snow-free conditions above winter mean (𝒛 < 0). These areas occur towards lower elevations 306 

where seasonal snow, or firn, does not have significant contribution to the seasonal backscatter response and are not 307 

included in our melt classification approach following z-score thresholding. Nonetheless, there exists retrievable 308 

melt signals (i.e. z > 2) across ablation surfaces such that median window filtering across ablation zones can result 309 

in a geospatial dataset with more complete coverage. We obtain more robust estimates of melting onset and refreeze 310 

by spatially aggregating results of the glacier surface melt timing (Eq. 1) using a median window filter of 9x9 pixels 311 

after melt classification and z-score validation. Reach-scale regions where SAR signals fail the z-score test are thus 312 

interpolated over using 9x9 pixel median window filtering. The complexity of SAR signals involves the diverse 313 

scattering mechanisms on ablation surfaces following the disappearance of seasonal snow. Because sufficient data 314 

are retrievable on ablation surfaces (i.e. z > 2), median window filtering enables greater spatial continuity in SAR-315 

derived melt retrieval data. All spatiotemporal characteristics we report herein are after median window filtering of 316 

melt retrievals from 10m native resolution to 90m resolution. In Fig. 4 we show the mean z across HiMAP sub-317 

regions in order to illustrate that, on average across HiMAP sub-regions. Mean seasonal melt magnitude averaged 318 

over 100m elevation bins over all three calendar years of data shows strong (z > 2) melt signals across glacio-319 

climatic sub-regions and across all elevation ranges of significant glaciation. except below ~3,400m a.s.l. in the 320 

Eastern Tibetan Mountains and Eastern Hindu Kush sub-regions. 321 
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 323 
Figure 4. (Top) Glacio-climate sub-regions within the Hindu Kush Himalaya codified in Shean, et al. (2020). 324 
(Middle) Mean z-score (2017-2019) by 100m SRTM elevation bin over each sub-region in the HKH. (Bottom) 325 
Mapped glacier area from the GAMDAM database (Sakai, 2019) over 100m elevation bins derived using the 30m 326 
SRTM DEM (Farr, 2007) for each sub-region.  327 

2.7 Surface Energy Balance and Surface Melting  328 

Sentinel-1 SAR (S1-SAR) detects a substantial area and duration of melting at elevations where air 329 

temperatures should be well below freezing. Although measurement data in these areas are scarce, AWS installed 330 

during 2019 at Mt Everest Nepal can provide two instances of point-scale validations of glacier melting using 331 

surface energy balance (SEB) modelling based on in situ measurements. As described in Matthews et al. (2020), the 332 

highest AWS on the Earth are installed adjacent to the Khumbu Glacier, Nepal. We use AWS observations to 333 

compute SEB described in Matthews et al. (2020). In our SEB modelling, turbulent fluxes are determined using the 334 

aerodynamic roughness at the glacier surface taken from measurements in low latitudes (Brock et al., 2006) and 335 

nicks
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evaluated over the 5th to 95th percentile of this sample to capture uncertainty. Surface melting is defined by the 336 

glacier surface temperatures (𝑇𝑠) that is evolved from air temperatures and the residual downward glacier heat flux 337 

in the iterative approach from Wheler and Flowers (2011). Melting days are defined where 𝑇𝑠 = 0𝑜𝐶 at any point 338 

during the day. Supplementary information for this paper is provided to describe the SEB methodology in further 339 

detail (Supplementary Information Section S1.1). 340 

A comparison of S1-SAR and SEB derived melting is shown in Fig. 5. During 2019, the average daily air 341 

temperature measurements at the Camp II station (Fig. 5A) are never above zero but experience above zero 342 

maximum glacier surface temperatures during starting in June 2019 and ending in September 2019. At the South Col 343 

AWS, the average temperature is much less, close to -10oC on average during summer months (Fig. 5B). S1-SAR 344 

estimates of surface melting use two aggregated backscatter time-series over 90m x 90m areas where area centers 345 

are located nearest to each of the AWS stations over the Khumbu glacier, Nepal. For the Camp II AWS, this is 346 

centered at 6,483 m a.s.l. and for the South Col AWS, 7,128 m a.s.l. Melting signals are apparent at both Camp II 347 

(Fig. 5C) and South Col (Fig. 5D).  348 

 Melting is detected at high elevations in both SAR observations and SEB modelling output where daily 349 

average air temperatures remain below zero. We find that S1 and SEB estimates of surface melting at the Everest 350 

Camp II AWS (6,464 m a.s.l.) have an agreement score, the percentage of days where the SEB and SAR find the 351 

same condition, that ranges from 73% to 85% depending on the parameterization of surface roughness used in SEB 352 

estimates of melting. At Mt. Everest South Col (7,945 m a.s.l.) the agreement score varies from 63% to 68% We 353 

find that the S1-SAR finds 133 days of melting at Camp II while the SEB indicates from 93 to 100 days. At Mt. 354 

Everest South Col the S1-SAR finds 72 days of melting while the SEB indicates 43 to 56. The start of surface 355 

melting at Camp II from SEB modeling is day of year (DOY) 153 and DOY 142 from S1-SAR, at South Col melt 356 

onset is DOY 152 from SEB and DOY 146 from S1-SAR. The end of surface melting at Camp II from SEB 357 

modeling is day of year (DOY) 270 and DOY 290 from S1-SAR. At South Col, refreeze at the surface from SEB is 358 

DOY 256 and DOY 244 from S1-SAR. 359 

Using SEB outputs we find good agreement on surface melt timings, S1-SAR detects melt onset to within 9 360 

days on average at two locations on the Khumbu Glacier in Nepal and refreeze to within 16 days. Although limited 361 

by observational data, the agreement in melt duration between S1-SAR and SEB modeling, and the understanding of 362 

the physical basis of SAR measurements we have a high degree of confidence in our methodology and in the ability 363 

of the SAR backscatter to detect melting and in data-poor regions such as the HKH.  364 

 365 
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Figure 5. Air temperature measurements from (A) the Everest Camp II automated weather station (AWS) and (B) 366 
the Mt. Everest South Col AWS are compared to glacier surface melting observations from the Sentinel-1 satellite 367 
synthetic aperture radar (SAR). (C) The radar backscatter from the Khumbu Glacier (at 6,483 m a.s.l.) adjacent to 368 
the Camp II AWS, show a pronounced decrease in backscatter over several months associated with ongoing surface 369 
melting during summer months. Melting is identified when backscatter decreases below a threshold (dashed-line), 370 
set at 3 dB below the winter mean (solid-line). (D) At the upper reaches of the Khumbu Glacier (7,128 m a.s.l.), S1-371 
SAR observes melting during ascending passes (18:00 local time) but not during descending passes (06:00 local 372 
time) except for a brief period during late June., (F) Timing of surface melt from observation and SEB modeling are 373 
compared to S1 ascending and descending observations at (E) Camp II and (F) South Col AWS. The cumulative 374 
number of melting days from the SEB model and S1-SAR are shown for (G) Camp II and (H) South Col. 375 
 376 

3.3 Comparison to temperature elevation lapse rates 377 

Melting on glacier surfaces across the HKH is controlled by the SEB between the atmosphere and 378 

underlaying snow, firn or ice. We explore the relationship between the S1-SAR derived surface melting record and 379 

air temperature-elevation lapse rates within the Central Himalayas during 2018 using data from two meteorological 380 

stations within the Langtang Valley (Table 1). Temperature-elevation lapse rates were determined using three-day 381 

averages of hourly air temperature measurements interpolated to fill gaps using methods identical for the calculation 382 

of temperature elevation lapse rates in numerical model studies of snowmelt and glacier wasting in the HKH (Baral 383 

et al., 2014). We calculated the difference between three-day average air temperatures and divided by the difference 384 

in elevation (1,148 m) between the two stations in the Langtang River Valley, Nepal. Lapse-rates ranged from 5ºC 385 

km-1 in July of 2018 to -13.7ºC km-1 in December of the same year. Temperature-elevation lapse rates were used to 386 
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extrapolate the maximum elevation of three isotherms (-10ºC, -5ºC, and 0ºC) for each day of year in 2018 in order to 387 

compare extrapolated temperatures with melt retrievals from Sentinel-1. 388 

 389 

3 Results and Discussion 390 

A melting signal (z > 2) is observed across all regions of significant mapped glacier area contained in the 391 

GAMDAM inventory. Melt retrievals are aggregated across 12 glacio-climate sub-regions within the HKH 392 

delineated within the HiMAP dataset (Shean et al., 2020) and averaged across the calendar years 2017-2019 to 393 

report summary statistics (Table 3). Aggregate statistics of melt onset (MO) and freeze onset (FO) are calculated 394 

across 100m elevation bins using the 30m SRTM (Farr, 2007) digital elevation model for each glacio-climate sub-395 

region as presented in Figure 4.  For all sub-regions, there is a roughly linear relationship of mean MO with 396 

elevation over most ranges in elevation. The progression of MO with increasing elevation is consistent with lapse 397 

rate temperature controls on surface melting for most elevation ranges. Notably, we find an inflection toward earlier 398 

melt onset occurring at higher elevations (>6,500 m a.s.l.). A divergence from lapse-rate driven melting at high 399 

elevations suggests that snowmelt onset may have regional triggers, like strong solar insolation (Matthews et al., 400 

2019) or variable regional weather patterns; such as increases in atmospheric moisture, cloudiness, and deep 401 

convection (Lau et al., 2010). 402 

In the three years of freeze onset (FO) across sub-regions we do not find the level of elevation dependence 403 

as observed in MO (Fig. 6). For much of the HKH, FO occurs during a short period of time and over large spans of 404 

elevation. For example, in the Central Himalaya sub-region, FO has a range of 4233 days while the MO for this 405 

region spans 5879 days on average. FO across sub-regions does not follow a linear trend with elevation similar to 406 

MO (Fig. 6). In western sub-regions (Eastern Hindu Kush, Western Pamir, and Karakoram), tThere is a signal of 407 

delayed refreeze apparent in summary statistics at higher elevation ranges within each respective catchment. In the 408 

Western PamirHimalaya, FO at 6,000 m occurs 242 days later than FO at 5,000m a.s.l (Supplementary Fig. S2). 409 

Similarly, in the Karakoram, FO occurs 130 days later at 7,500 m a.s.l. compared to 6,500 m a.s.l. In the Tanggula 410 

ShanEastern Hindu Kush, FO at 7,46,500 m a.s.l. is delayed by 1721 days relative to FO at 6,45,500 m a.s.l. 411 

Signals of delayed refreeze are observed at elevation ranges similar to greaterst z-score values across 412 

summary statistics of FO (Supplementary Fig. S2). Notably, we find specific high elevation ranges in select 413 

catchments in the western sub-regions (Eastern Hindu Kush, Western Pamir, and KarakoramWestern Himalaya, 414 

Gangdise Mountains, and the Karakoram region) and some eastern sub-regions ((Tanggula Shan, Nyainqentanglha, 415 

Eastern Tibetan Interior Mountains, and Hengduan ShanEastern Himalaya) where there is a signal of delayed 416 

refreeze apparent in summary statistics. Although Ssub-regional aggregate FO statistics do not show delayed 417 

refreeze in larger sub-regions (i.e. the Central Himalaya) and, we observe signals of delayed refreeze on individual 418 

glaciers within the Central Himalaya indicative of meltwater retention within percolation facies (Fig. 7). Complete 419 

refreeze across the depth of a percolation zone is delayed relative to percolation zone surfaces because liquid water 420 

is retained within a percolation zone media after the surface of the percolation zone has frozen (Paterson, 2016). 421 

Completely frozen percolation zones produce some of the largest radar backscatter responses on the terrestrial earth 422 
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(Jezek et al., 1994). Because frozen snow and percolation facies are essentially transparent, C-band SAR will be 423 

sensitive to the presence of liquid water across the volume of a snowpack or firn strata (Fischer et al., 2019). Signals 424 

of delayed refreeze across sub-regions are indicative of meltwater storage within the percolation volume due to 425 

meltwater retention. A figure illustrating melt timings and z-score metric is included as Supplementary materials 426 

(Supplementary Fig. S2). 427 

428 

 429 
Figure 6. Mean melt onset (MO, left) and freeze onset (FO, right) summarized in 100m elevation bins using the 430 
30m SRTM digital elevation model (Farr, 2007) and 12 HiMAP sub-regions (Shean, 2020). The blue to red color 431 
scale indicates the longitude of the HiMAP region centroid, where the westernmost regions are shown in dark blue 432 
and easternmost shown in dark red. 433 
 434 

 435 

 436 

 437 

 438 

 439 

 440 
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 441 

 442 

 443 

 444 

 445 

 446 

 447 

 448 

 449 

 450 

 451 

 452 

 453 

 454 

 455 
Table 3. Melt retrieval statistics summarized across HiMAP sub-regions and aggregated over 1km elevation bins 456 
from the SRTM 30m DEM (Farr, 2007). Data for each elevation bin and sub-region are structured where the first 457 
row is the melt onset (MO) in day of year (DOY) and associated MO variance in days, freeze onset (DOY) and 458 
associated variance (days), and the area of melt retrieved in units of square kilometers. 459 
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 461 

3.1 Percolation Meltwater Hydrology 462 

Delayed freeze-up apparent in summary statistics at unique elevation ranges across glacio-climate sub-463 

regions is an important illustration of how melt retrievals from Sentinel-1 are sensitive to the presence of liquid 464 

water within the snowpack and/or firn subsurface (Brangers et al.; Fischer et al., 2019). At the Khumbu glacier on 465 

Mount Everest, Sentinel-1 retrieved refreeze occurs over thirty days later at ~6,000m a.s.l. compared to elevations 466 

below 5,400m a.s.l. and above 6,200m a.s.l., indicating that liquid meltwater was retained at elevation ranges 467 

between ~5,400-6,2000m a.s.l. during a month when elevations both above and below this range were recorded as 468 

completely frozen within Sentinel-1 retrieved melt signals. The time series of mean Sentinel-1 SAR backscatter for 469 

descending orbital nodes from two 250m buffered points on the Khumbu glacier show a rapid increase in SAR 470 

backscatter magnitude for the higher elevation location, whereas backscatter time series extracted from within the 471 

elevation range of delayed melt offset show a gradual increase in radar backscatter. We interpret this gradual 472 

backscatter increase to be indicative of gradually decreasing liquid water content in the snowpack (or firn) as 473 

refreeze progresses from the glacier surface and into the depth of the percolation zone (Fig. 7) (Forster et al., 2014; 474 

Miège et al., 2016). This elevation range (~5,400-6,200 m a.s.l.) is similar to known elevation ranges of percolation 475 

zones on the Khumbu glacier as detailed in recent field work (Matthews et al., 2019; Matthews et al., 2020). Similar 476 

delays in refreeze are observed in discrete areaselsewhere across the glacier surface. SAR backscatter time series 477 
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showing a gradual increase in backscatter within regions of known percolation suggest that  there is a relationship 478 

between frozen percolation zone depth and the rate of C-band backscatter change across refreeze cycles. It has been 479 

shown that C-band backscatter gradually increases with frozen percolation zone depth and decreasing percolation 480 

zone wetness during a refreeze process (Ashcraft and Long, 2005). 481 

482 

 483 
Figure 7. (Top) Refreeze timing over Khumbu glacier region of Mount Everest in the Central Himalaya. Red 484 
regions of freeze onset occur at mid-elevations, indicative of delayed refreeze due to meltwater retention in 485 
percolation zones. (Bottom) Sentinel-1 backscatter time series from two points on the Khumbu glacier, one within 486 
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known elevations of glacier percolation facies (teal square, 6,000 m a.s.l.) and another point at elevations where 487 
temperatures likely do not exceed 0ºC annually (pink triangle, 6,600 m a.s.l.).  488 
 489 

3.2 Spatial Variability: Radar Scattering and Glacier Facies 490 

Imaging radar backscatter intensity, and response to surface melting, is linked with glacier facies (Ramage 491 

et al., 2000; Rau et al., 2000; Zhou and Zheng, 2017). Snow melting on the glacier surface produces a strong 492 

decrease in radar backscatter across all glacier facies. In the accumulation zone the refreeze signal is also 493 

pronounced as the dissipation of strongly absorbing wet snow at the surface is followed by volume scattering from 494 

deep snowpack and stratified ice layering. The scattering response to refreeze in the ablation zone is more complex 495 

and not well characterized. Here, supra-glacier features like crevasses, sun-cups, debris-cover, and other 496 

heterogeneities are likely to cause highly variable radar scattering mechanisms over short distances upon the 497 

disappearance of seasonal snow from the ablation surface. (Rott and Mätzler, 1987). We use the z-score metric to 498 

select areas where radar backscatter increases substantially during the refreeze process. However, since scattering 499 

response during the transition from wet snow will differ with various surface features (e.g. bare ice, debris and 500 

supra-glacier ponding) it is difficult to isolate the refreeze response. Average z is minimum in the HKH across the 501 

lowest elevation glacier surfaces (2,000m-4,000m a.s.l.) whereas z is maximum at unique elevation ranges within 502 

sub-regions (Fig. 4, Supplementary Fig. S2.). Ablation zone surfaces (at lower elevations) do not exhibit the 503 

magnitude of backscatter intensity of percolation zones and therefore lower glaciated elevations show lesser 504 

seasonal contrast in backscatter compared to higher elevations. These differences are also apparent in the spatial 505 

granularity of melt retrievals from the S1-SAR product, as shown in Fig. 8. Ablation zone surfaces on valley 506 

glaciers show spatial heterogeneity in MO indicative of supraglacial features, like debris cover, rather than randomly 507 

distributed noise. There exists uncertainty in the FO signal on glacier ablation surfaces that will require further 508 

investigation. In ablation areas with lower sensitivity to melting, we hypothesize that snow-off conditions result in 509 

brightening of the radar signal due to surface scattering contributions from wet debris, bare ice, or other ablation 510 

surface heterogeneities. For this reason, at lower elevations where annual air temperatures exceed 0ºC (i.e. where 511 

temperature-elevation lapse rates hold), lapse rate estimates of elevation might be more robust estimates of FO using 512 

this approach. Overall, surface melting signals appear to be consistent with expectations of temperature lapse rates 513 

(i.e. earlier melting and later refreeze at lower elevations) across elevations where annual air temperatures likely 514 

exceed 0ºC (<6,000 m a.s.l.). We have illustrated the spatial granularity of melt retrievals in Fig. 8 in addition to 515 

average melt onset and offset by sub-region in Fig. 9. 516 

 517 
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 519 
Figure 8. Melt retrievals averaged over the calendar years 2017-2019 in the Central Himalaya and Karakoram 520 
regions. (A) Mean melt onset (DOY) in the Central Himalaya. (B) Mean melt onset (DOY) over the Siachen glacier 521 
in the Karakoram region. (C) Mean freeze onset (DOY) in the Central Himalaya. (D) Mean freeze onset (DOY) over 522 
the Siachen glacier in the Karakoram region. Data overlay a 30m Shuttle Radar Topography Mission (SRTM) DEM 523 
hillshade (Farr, 2007). 524 

 525 
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 527 
Figure 9. Melt onset (top) and freeze onset (bottom) averaged over 2017-2019 plotted over a SRTM 30m DEM 528 
hillshade (Farr, 2007). Melt retrievals are averaged across HiMAP glacio-climate sub-regions (Bolch et al., 2019a; 529 
Shean et al., 2020) and scaled by the mapped glacier area within each sub-region.  530 

 531 

3.3 Considerations of Temperature-Elevation Lapse Rates 532 

 533 
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534 

 535 
Figure 10. Sentinel-1 SAR retrieved melt onset (orange) and freeze onset (gray), with spatial variability at ±1 536 
standard deviation, across the Central Himalaya region. The elevations of the 0ºC, -5ºC, and -10ºC isotherms from 537 
2018 are overlaid for comparison. Melt signals are recorded in excess of three months at elevations extending >1km 538 
above the maximum elevation of the 0ºC isotherm, indicative of a sustained presence of liquid water within the 539 
snow matrix across these high elevation ranges. 540 

 We compare SAR retrievals of MO and FO to temperature-elevation lapse rates derived within a catchment 541 

in the Central Himalaya to investigate SAR retrievals alongside lapse-rate assumptions of glacier melt status; using 542 

methods and AWS data for the construction of lapse-rates from prior studies in the Langtang valley, Central 543 

Himalaya (Baral et al., 2014). In 2018, we observe that the average MO is found to follow the 0º and -5oC range in 544 
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isotherms for elevations ~3,64,500 to 6,500m a.s.l. (Fig. 10). Below and above these elevations, and for FO, we find 545 

episodic melting events occurring over a range of elevations. This is especially apparent in the FO around day of 546 

year 2870 where FO occurs within a roughly two weekone month period across glaciers between 5,000m-7,500m 547 

a.s.l. MO and FO signals are retrieved on days and at elevations where lapse-rate derived temperatures do not 548 

exceed -10ºC, which strengthens and expands recent in situ observations on glacier melt at the Khumbu glacier in 549 

the Mount Everest region showing incident shortwave radiation drives melt at these temperatures and elevations 550 

(Matthews et al., 2019). Here we observe that, even at these extreme elevations (>7,000m a.s.l.) melt signals persist 551 

for over three four months on average across the Central Himalaya, which suggests that liquid water is retained at 552 

these high elevations across a seasonal melt cycle and may not be hydrologically negligible. In radar-derived 553 

observations there is a discrepancy between SAR and lapse-rate estimated melting records that occurs at elevations 554 

extending 1km above the maximum 0ºC isotherms in the Central Himalaya. Glaciated areas in the Central Himalaya 555 

at elevations greater than 6,000m a.s.l. – the approximate maximum elevation of the 0ºC isotherm for 2018 – 556 

account for 21.58% (2,453 km2) of total glaciated area within the region. 557 

 558 

3.4 Melt Retrievals and Glacio-Climate Sub-regions 559 

 The three-year record of Sentinel-1 SAR retrievals of glacier melt status represent a baseline measurement 560 

for the HKH region. The summary melt statistics are aggregated over HiMAP sub-regions in order to compare melt 561 

retrievals and sub-regional estimates of glacier mass loss (Shean, et al., 2020). Overall, the HKH sub-regions with 562 

the most rapid mass loss between 2000-2010 tabulated in Shean, et al. (2020) (Eastern Himalaya, Hengduan Shan, 563 

Nyainquntanglha) exhibit the greatest number of melt days on average in 2017-2019 from Sentinel-1 retrievals. Sub-564 

regions with slower mass loss (Eastern Hindu Kush, Western Pamir, Karakoram, Tibetan Interior) show on average 565 

one month less of melt duration relative to regions with accelerated mass loss. Interestingly, the Gangdise sub-566 

region, with one of the higher post-2000 rates of glacier wasting in the HKH, shows annual melt durations of less 567 

than three months on average, which appears more characteristic of western regions with slower mass loss (i.e. 568 

Tibetan Interior Mountains). Although Sentinel-1 retrievals of glacier melt status for three calendar years does not 569 

make-up a climatic record, we observe that between 2017-2019 there was on average less duration of melting in 570 

regions where in situ data and climate models indicate that frozen winter precipitation contributes to glacier 571 

accumulation despite warming global climate (Karakoram, Hindu Kush, Eastern Pamir, Western Himalaya) (Kääb et 572 

al., 2015; Kapnick et al., 2014; Palazzi et al., 2013). We interpret shorter duration of annual melt days in the western 573 

regions of the HKH as a potential indicator of the “Karakoram Anomaly” reflected in the Sentinel-1 data record. 574 

Because the meteo-climatic drivers of the Karakoram Anomaly are still under debate (Farinotti et al., 2020), 575 

Sentinel-1 retrievals of melt duration may be useful for interrogating meteo-climatic drivers of heterogeneity in 576 

glacier wasting dynamics across the HKH. 577 
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4 Conclusion 578 

Synthetic aperture radar time series backscatter images and glacier extent maps derived from optical imagery 579 

have long been proposed to inform hydrologic and glaciologic research across the global cryosphere, however a 580 

harmonized dataset of glacier surface melt does not exist. We retrieve glacier surface melt timing and duration for 581 

the study years 2017-19 across the HKH region using time series C-band SAR from the Sentinel-1 A/B satellites and 582 

an inventory of 105,432 glaciers spanning 83,102 km2 of ice-covered area. We quantify the magnitude of the 583 

seasonal melt signal by comparing mean summer and winter backscatter using a z-score metric and retrieve 584 

constraints on seasonal melt characteristics across all glaciated elevations of HKH at 90m spatial and 12-day 585 

temporal resolution.  Melt conditions in surface energy balance models of glacier melt, driven by in situ 586 

meteorological data from Mount Everest, fall within the date ranges of melt retrievals recorded in Sentinel-1 SAR 587 

data. Comparison of melt retrievals to temperature-elevation lapse rates calculated using two high-elevation 588 

meteorological stations in the Central Himalaya reveal that melt onset persists for over threefour months at 589 

elevations where extrapolated air temperature fields do not exceed -10ºC. Melt is retrieved across all elevation 590 

ranges of HKH glaciers, which suggests that a dry snow accumulation zone in the HKH region does not exist.  591 

Meltwater retention is indicated within known glacier percolation zones on Mount Everest through signals of 592 

delayed refreeze. This dDelayed refreeze occurs across the HKH at elevations with the greatest seasonal contrast in 593 

backscatter intensity, attributable to radar scattering in percolation facies. Melt signals persist for a greater portion of 594 

the year in regions known for rapid contemporary glacier wasting (i.e. Central and Eastern Himalaya sub-regions) 595 

whereas regions with a more stable glacier mass balance (i.e. Karakoram) exhibit a shorter duration of annual melt. 596 

We produce a geospatial data product of melt onset (DOY) and freeze onset (DOY) spanning glaciers of the HKH 597 

region at 90m spatial resolution for the calendar years 2017-2019 and plan to release annual updates to this dataset 598 

each calendar year across the mission duration of Sentinel-1.  The methods presented in this study can provide the 599 

basis for an operational monitoring system of glacier surface melt dynamics and aid the development and 600 

assessment of surface energy balance models of glacier ablation across the global cryosphere. 601 
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