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Abstract. A methodology for examining a temporal sequence of Synthetic Aperture Radar (SAR) images as applied to the

detection of the A-68 iceberg and its drifting trajectory, is presented. Using an improved image processing scheme, the analysis

covers a period of eighteen months and makes use of a set of Sentinel-1 images. A-68 iceberg calved from the Larsen C ice shelf

in July 2017 and is one of the largest icebergs observed by remote sensing on record. After the calving, there was only a modest

decrease in the area (about 1%) in the first six months. It has been drifting along the east coast of the Antarctic Peninsula and5

it is expected to continue its path for more than a decade. It is important to track the huge A-68 iceberg to retrieve information

on the physics of iceberg dynamics and for maritime security reasons. Two relevant problems are addressed by the image

processing scheme presented here: (a) How to achieve quasi-automatic analysis using a fuzzy logic approach to image contrast

enhancement, and (b) Adoption of ferromagnetic concepts to define a stochastic segmentation. The Ising equation is used to

model the energy function of the process, and the segmentation is the result of a stochastic minimization.10

1 Introduction

Weather conditions and seasonal variations impose restrictions on the monitoring of Antarctica by satellite remote sensing.

Continuous sunlight from December to February makes it a good period for optical image remote sensing. However, clouds,

snow and ice elements all display a similar spectral signature in both optical and thermal wavelengths. Antarctica has seven15

months of winter darkness, from March to September. During the Antarctic night, both SAR and infra-red images can monitor

ice coverage, however, cloudy weather makes infra-red observation impossible. The scatterometer is an alternative instrument,

but because of its low spatial resolution, it can only give rough estimations of large icebergs. Consequently, continuous moni-

toring of Antarctica can only be carried out by SAR imaging systems. This paper gives an example of Antarctic monitoring by

analysing some elements of the drifting trajectory of the A-68A iceberg using Sentinel-1 SAR data.20

The fracture of the Antarctic Larsen C ice shelf occurred in 2017 between July 10th and 12th, with a loss of some 5,800

km2 corresponding to about 12% of the entire shelf area. The giant calved iceberg was named “A-68” by the US National Ice

Center (USNIC). Later it broke apart and the largest chunk was named A-68A. It is the sixth-largest recorded iceberg, and at
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present, it is the largest iceberg in the world. Because of its size, an iceberg like A-68A can have a life of several years. Iceberg

drifting patterns constitute a risk for navigation and shipping routes. Satellite remote sensing imagery can provide the tool for25

mapping iceberg trajectory progression.

In iceberg monitoring by remote sensing there are two basic objectives: iceberg detection and iceberg drifting forecast. For

iceberg detection, a hierarchical object-based segmentation is applied to a set of geometrical parameters of ENVISAT/ASAR

images (Mazur et al., 2017). The radar altimeter is an alternative instrument and in (Tournadre et al., 2016) the signatures of

icebergs in waveform space are analysed by threshold criteria to parametrize iceberg distribution. In (Scheick et al., 2019), a30

machine learning technique is applied to mask clouds in multispectral Landsat images. Then, iceberg detection is performed

by threshold criteria being careful to notice the radiometric contrast between icebergs and the surrounding open sea. Using

Sentinel-1 SAR and CryoSat-2 SIRAL data, Han et al. (Han et al., 2019) describe the topological evolution of iceberg A68 and

investigate the effects of environmental forces over a period of 18 months. A review of the remote sensing of the cryosphere

and processing techniques for sea ice can be found in (Meier and Markus, 2014; Zakhvatkina et al., 2019). For more than 4535

years passive microwave images have been used for monitoring polar regions. The natural molecular interaction of the scene

elements produces an electromagnetic radiation which can be used by passive microwave (PMW) sensors to discriminate the

electromagnetic signatures of water, snow cover and ice extent (Thomas, 1986). Main applications of PMW images are sea-ice

concentration analysis (Ivanova et al., 2014; Kern et al., 2019), thin ice studies (Mäkynen and Similä, 2015), sea-ice extent and

ice-edge location (Meier and Stroeve, 2008), and sea ice production (Preußer et al., 2019). However, the emitted radiation is40

very low, and consequently the passive energy must be compiled over large regions. With a swath width of 1450 km, the spatial

resolution of the Advanced Microwave Scanning Radiometer 2 (AMSR2) ranges from 5×3 km to 62×35 km. Thus, PMW

instruments are appropriate to observe large regions and can give only a rough estimation when applied to iceberg monitoring.

For iceberg and ice tracking forecasting, an unmanned aerial vehicle platform was used to analyse thermal video (Leira et al.,

2017). A set of dynamic forecasts was obtained using GPS trackers positioned on icebergs in (Yulmetov et al., 2016). Based on45

Sentinel-1 images in (Demchev et al., 2017) non-linear diffusion filtering reduces the speckle noise, and features are detected

in a non-linear multiscale space representation; nearest-neighbour matching reveals the connections between the extracted

features, these being the basis for sea ice drift tracking. In another study (Muckenhuber et al., 2016), the Sentinel-1 SAR image

resolution is reduced by a spatial average operation to decrease speckle influence. Then, sea ice tracking is performed using a

scale-invariant feature transform algorithm. In a set of ENVISAT/ASAR images, after morphological characterization by pixel-50

based segmentation, tracking is performed using ocean current data (Collares et al., 2018). In (Wesche and Dierking, 2016), a

drift model makes use of wind predictions for estimating positions and trajectories of icebergs observed in ENVISAT/ASAR

images. More complete delineations, such as the statistical, kinematic and dynamic models, require hydro-meteorological data

and both atmosphere and ocean circulation models (Diansky et al., 2018). In general, modelling the interacting forces is a very

complex task (Andersson et al., 2016; Bigg et al., 2018).55

With regard to the image processing domain, SAR reconnaissance capabilities are limited by the peculiar behaviour of radar

imaging; indeed, basic problems, such as the irregular image contrast and the multiplicative degradation by speckle noise are

still a challenge. Pixel-based techniques, such as K-means, Fuzzy C-means, minimum distance criteria and normalized multi-
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band indexes are well suited for optical and multi-band images, but their algorithmic performance is limited by the random

nature of the SAR data (Maître, 2010).60

For this reason, in this paper, the stochastic process theory is taken into account. For modelling the spatial interaction of

pixel data, a model based on concepts of statistical ferromagnetism appears promising. Two relevant problems are addressed

by our image processing technique: (a) Low-level fuzzy logic image contrast enhancement, which was derived from medical

image analysis, and (b) A segmentation algorithm which considers the random behaviour of the SAR imagery for merging

contextual data. A processing scheme was then implemented which consists of the following steps: (1) Contrast enhancement;65

(2) Stochastic segmentation, and (3) Measurement of the drift trajectory.

2 Material

This study is based on a set of twelve Sentinel-1 Extra Wide Swath Ground Range Detected (S1 EW GRD, 400 km swath, 20

x 40 m spatial resolution) images at Level-1 in HH polarization; the images were acquired from 22 July 2017 to 26 January

2019 and their geographical coordinates range from latitude 66◦ S to 69◦ S and from longitude 57◦ W to 63◦ W. After retrieval70

from the ESA Scientific Data Hub, the images were remapped onto a regular grid in stereo-polar projection with a pixel size

of 200×200 m. The scene size is 400×400 km. Figure 1 shows the image corresponding to 22 July 2017, just a few days after

the calving event. In Antarctica, most icebergs are created by the calving of ice shelves and glacier tongues. The flat plateau

top appearance is a characteristic feature of the tabular icebergs produced in this region.

3 Methods75

Electromagnetic variables of radar may introduce undesirable effects in the radiometric quantization so that the grey-level

distribution displays a histogram with saturation in local ranges. The subsequent effect is poor image contrast which reduces

perception capabilities. Some images in the analysed data set display this characteristic, and, for this reason, intensity transfor-

mation was included in the analysis.

3.1 SAR scattering80

Remote sensing by SAR systems is the result of a complex electromagnetic phenomenon and the radargrammetry technique

must consider adverse variables, which may affect the function of the imaging system (Leberl, 1990). The physical manifesta-

tion of radar reflectivity is the scattering phenomenon. Diffuse and specular reflections are due to the geometric irregularities

of the surface. Other electromagnetic properties, such as the dielectric constant, permeability and conductivity complement the

scattering models. These properties modify the rate of the incident and reflected energy. Therefore, the backscattered signal85

determines the radiometric signature of the scene elements.

At high latitudes, the properties of the scene elements change with time. Geophysical and climatological variables, such

as the temperature of the medium, wind speed, rain, salinity and humidity introduce dynamic fluctuations in the scattering
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Figure 1. Sentinel-1 scene of A-68 tabular iceberg acquired on 22 July 2017, only a few days after the calving event. The first derived

parameters of this huge tabular iceberg were: the length of its major (segment AB) and minor (segment CD) axes, which were 157.5 km and

47.3 km, respectively.

phenomenon (Xu et al., 2018). For example, new ice produces specular reflections like a thin film with a smooth appearance.

Dry snow produces a very weak reflection. Ice sheets and dry soil have a similar dielectric property (Richards, 2009). However,90

moisture in snow, salt and air in the ice layers all increase diffuse scattering. The variations of the dielectric property can cause

two main problems in SAR image analysis: an irregular contrast of the scene elements and an overlap between the modes of

the intensity histogram. These problems must be solved in the feature extraction/segmentation process and a solution to both

is proposed in this section.

3.2 Fuzzy Contrast Enhancement in the spatial domain95

Several contrast enhancement methods are currently applied in image remote sensing analysis. The main options are based on

linear and non-linear formulations such as equalization, normalization, matching, logarithmic and exponential transformation

functions (Solomon and Breckon, 2011). In the spatial domain, one important parameter is the dynamic range, which is defined

by the smallest and the largest grey-level value of the image under analysis. To obtain an improved mapping of the grey-scale

distribution, the basic approach is to transform the dynamic range, a task which can be accomplished by fuzzy set theory100

(Nachtegael et al., 2003). In the case of the fuzzy histogram equalization (Kamel and Campilho, 2005), a membership function

µ(g) is defined for each pixel grey-level value gnm at the spatial coordinates (n,m) and this is expressed by:
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µ(g) =
gnm−gmin

gmax−gmin
. (1)

The terms gmax and gmin are the maximum and the minimum values of the grey-level domain. The parameter used is the

dynamic range, which is the normalization term of Eq. (1). The function µ(g) is interpreted as a homogeneity operator of the105

input image luminance, or as an adapted measure of the biological perception of contrast (Pratt, 2001). Both the input image

X and µ(g) have the same matrix rank.

In the original formulation of the fuzzy sets (known as type-1 fuzzy sets or T1 FSs), the inferred information is structured by

membership functions, which are a representation of the probability density function. A limitation of the fuzzification process

is that the membership functions are deterministic for a given random variable but usually the histogram of an image exhibits110

mixed random variables, and this uncertainty requires additional abstraction. The next step of our scheme makes use of type-2

fuzzy sets (T2 FSs): as their membership functions become fuzzy (Mendel, 2007), we obtain a better representation of the

uncertainty and the information ambiguity of the inferred probability density function.

In this paper, the T2 FSs were the choice for implementing a contrast enhancement algorithm. Equation (1) is a membership

function T1 FSs associated with a contrast enhancement procedure. Thus, a suitable T2 FSs membership function is obtained115

by making Eq. (1) fuzzy. The new function is structured by assigning an interval-based set to Eq. (1) and this is accomplished

by:

µup = [µ(g)]α

µlow = [µ(g)]1/α,
(2)

where α is a fuzzifier parameter with 0< α < 1, and µup and µlow are the upper and lower bounds of the T2 FSs membership

function (Tizhoosh, 2005). The µup and µlow functions and the input image X have the same matrix size. The fuzzy function120

maps the input image into a grey-level transformation, and this implies multi-criteria decision making. One suitable option for

global decision making is the t-conorm operator, and in this paper, the adopted algebraic operator was derived from medical

image processing literature (Chaira, 2019):

µ̃(g) =
µup +µlow +µup ·µlow ·X̄
µup ·µlow(1 + X̄) + 1 ,

(3)

where X̄ is the expected value of the input image X , and µup and µlow are the T2 FSs membership functions obtained by125

Eq. (2). The process begins with the ingestion of the input image X into Eq. (1), afterwards Eqs. (2) and (3) are computed. The

membership function µ̃(g) maps the contrast enhancement operation.

3.3 Stochastic segmentation approach

SAR images are affected by multiplicative speckle degradation; therefore, even binary segmentation is not a simple task. In

an elementary polar environment description, the analysed scene is a binary field composed of open sea and ice sheet objects.130
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In the framework of Bayes’ theory, the implementation proposal infers the relevant information from both pixel-based and

locally connected pixels. The input image X is a pixel lattice S of N×M, where the pixel coordinates (i, j) are structured by

a neighbourhood system η. According to the Euclidean distance, the first and second-order system, η1 and η2, correspond to

the 4-connected and to the 8-connected systems, respectively. A clique is a subset C ⊂ S and it represents the primitive image

structure of connected pixels or sites. For a system η2, the associated set of cliques C1 and C2 are, respectively, the central135

pixel Xij and the set of pixel pairs. The spatial feature field defines a set of n mutually exclusive labels L= {l1, l2, · · · , ln}.
The output of the segmentation process is the variable Y = {yij ∈ L}.

With the term P (X|Y ), the Bayesian theory takes into account the probability distribution of the pixel grey-level, given the

label field Y and also the “a priori” information of the labelling process, i.e. the term P (Y ). A Bayesian maximum-a-posteriori

(MAP) estimator is:140

P (Yl |Xij) = arg max
Yl

(
P (Xij |Yl)P (Yl)

P (X)

)
, (4)

where Yl ∈ L, and P (X) is the probability of realization of the input random variable. Using a Markov random field (MRF)

model, the probability terms of the MAP equation can be adapted to introduce contextual information. Once the random

variable X is assumed as a MRF realization, a Gibbs function models the region process of Y . Thanks to this concept, the

terms of Eq. (4) are approached by the sum of energy functions U ≈ U(X|Y ) +U(Y ).145

The term U(X|Y ) is considered a realization of the label set in the grey-level range, and, in this paper, the conditional

modes are expressed by Gaussian functions U(X|Y ) = ln(
√

2πσi) + (X − Ȳ i)2(2σ2
i )
−1, where Ȳi is the mean, and σ2

i is the

variance of the label Yi. The MRF theory is based on statistical physics (SIGELLE and RONFARD, 1992), and in this paper

for introducing the function U(Y ), the Ising model (Ibe, 2013) was implemented following a ferromagnetic interpretation of

the random process. The cardinality of the sites σi is specified through the local label arrangement of Y :150

U (Y ) =−αMσi−β
∑

ij

σiσj . (5)

In a ferromagnetic reading, α is a characteristic of the involved element, M is a supplementary magnetic field, and β is the

magnetic condition of the material. The effect of M is to induce alignment of the ferromagnetic elements in the direction of

the field of M . The β parameter indicates the interactive magnetic forces of adjacent sites. The magnetic attractive case occurs

when β > 0. The joint effect of M and β is to produce states of low energy, and in the case of a segmentation process, to155

generate homogeneous label configurations. Thus, the resulting U function is driven by:

U =
∑
c1∈ C

U(X|Y ) +
∑
c2∈ C

U (Y ). (6)

To find the optimal estimate of the label fieldL, a numerical minimization ofU is needed. As Eq. (6) is a non-convex function

displaying different local minimal energy states (zero slop intervals), in order to induce progressive low energy configurations,

a simulated annealing scheme was implemented. To obtain further adjustments in the local energy array, thus allowing to reach160
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a global minimum state, the Gibbs sampler criterion (Chatelain et al., 2011) was applied. A homogeneous grouping of the

pixels is obtained at the end of the recursion.

4 Results

4.1 Fuzzy Contrast Enhancement

In order to evaluate its performance, the applied fuzzy algorithm was compared with alternative contrast solutions: (a) the165

contrast limited adaptive histogram equalization (CLAHE) (Zuiderveld, 1994), and (b) the exponential grey-scale transforma-

tion. The SAR image with an acquisition date of 13 December 2017 was selected as the test image as it displays a deficient

contrast. Figure 2 shows: (a) The full input SAR image; (b) A selected window of 700×700 pixels of the input image; (c)

Result of the CLAHE algorithm; (d) The exponential grey-scale transformation, and (e) Result of the applied fuzzy algorithm.

The fuzzifier parameter was fixed to α= 0.6. It is observed in (c) and (d) a regular distribution of the contrast. Both open-sea170

and non-open-sea elements are ambiguous regions and cannot be precisely defined even by visual inspection. The results are

therefore unsatisfactory for a subsequent segmentation stage. In (e) the dark regions are slightly brighter, and the bright regions

are brighter as well. The fuzzy function maps the input image to a grey-level transformation, in agreement with the visual

perception of contrast. Hence, the contrast of the sea-ice elements is enhanced.

4.2 Stochastic segmentation175

The energy term U(X|Y ) requires the mean and variance of the Gaussian modes. The set of parameters was obtained by

manually training windows over the observed ice sheet and non-ice sheet regions. In terms of the Ising model, the parameters

of Eq. (5), were fixed to α= 0.3, M = 1 and β = 0.35. The variables σi and σij are the one-site clique and the two-site

cliques, respectively. The parameters α, M and β were fixed by experimental evidence. A modest contribution is expected by

the pixel-based analysis and, for this reason, the information of the pixel σi was given using α < 0.5 and a M value equal180

to 1. The parameter β is important because β ≈ 0 produces under segmentation while β ≥ 1 over segmentation. Thus, an

appropriate domain is 0.3< β < 0.4. The simulated annealing process requires a numerical simulation: in consideration of its

parameters, the number of iterations was fixed at 40. The derived variance of the A-68A grey-level ranges from 100 to 400,

which means a transformation of the pixel region process. Consequently, an overlap is observed between the modes of the

intensity histogram, and this is a basic problem in SAR image segmentation. To tackle this problem, a contextual second-order185

neighbourhood model and the Ising model are necessary to MRF segmentation. Two examples of the result obtained by the

proposed segmentation algorithm are shown in Fig. 3; Fig. 3(a) shows the iceberg detection of the image of 13 December 2017

while Fig. 3(b) the result corresponding to 18 January 2018. The detected iceberg shape is displayed in white and, for a better

visualization, the whole SAR scenes are used.
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Figure 2. Comparison of contrast enhancement algorithms: (a) Overview of the input SAR image of 13 December 2017; (b) A window

of the SAR input image; (c) Result of the CLAHE algorithm; (d) The exponential grey-scale transformation, and (e) Result of the applied

fuzzy algorithm. This algorithm improves the dark and bright feature contrast. As a result, the mapping of the grey level range enhances the

discrimination of the iceberg structure.

4.3 Measurement of the drift trajectory190

Based on the segmentation result, the objects of the binary field are labelled, and the iceberg shape can be detected and

extracted from the input images. Computation of its geometric parameters is now a straightforward task. For each input image,

the retrieved parameters were: area, perimeter and coordinates of the centroid. For the analysed period the image acquisition

dates were (1): 22 July 2017, (2): 8 August 2017, (3): 2 October 2017, (4): 13 December 2017, (5): 18 January 2018, (6): 12

June 2018, (7): 30 July 2018, (8): 11 August 2018, (9): 4 September 2018, (10): 28 September 2018, (11): 27 November 2018195

and (12): 26 January 2019. Figure 4 shows the variation of the area on the left of y-axis and the perimeter on the right of the

y-axis. To appreciate the long-term tendency, a curve fitting function was used: for both parameters a 5th-degree polynomial

curve fits the series of data points. A decay tendency is observed in both area (blue curve) and perimeter (red curve) parameters.

Two complementary parameters are the major axis length and the rotation angle. The binary pattern of the detection is the

basis for expressing the iceberg shape as a polygon with specific properties. The geometric centroid (centre of mass) of the200

connected iceberg pixels, i.e. concurrency point of both the major and minor axes, was derived. The two axes are marked as

the segments AB and CD in Fig. 1. Taking as reference the horizontal axis and the segment defined by the centroid and point

A, the rotation angle is computed in a counter-clockwise sense. Figure 5 displays the rotation angles derived from the first and
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Figure 3. Segmentation result: (a) Image of 13 December 2017 and (b) of 18 January 2018. The detected A-68A object is displayed in the

input SAR scenes. Even with the low contrast of the original scenes, the detection appears homogeneous with no spurious pixels.

Figure 4. The derived time-series data of the A-68A iceberg. Based on a polynomial least squares regression, the red and blue curves display

the long-term tendency of the area and perimeter parameters.

the last analysed images. Figure 6 shows the time evolution of both the rotation angle and the major axis length parameters.

For a time period of 553 days, from 22 July 2017 to 26 January 2019, Fig. 5 shows the estimated drift positions.205
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Figure 5. The derived rotation angle of the A-68A iceberg: (a) Image of 22 July 2017, the initial angle was 99.6◦; (b) Image of 26 January

2019, the angle was 249◦.

Figure 6. The curve of A-68A iceberg temporal displacement. Based on a polynomial least-squares regression, a 5th-degree polynomial

curve fits the series of data points. The red and blue curves display the long-term tendency of rotation angle and major axis length.

5 Discussion

The multiplicative nature of speckle degradation introduces spurious pixel grey level values, and this statistical confusion is

a basic difficulty for SAR image segmentation. To address the random nature of the SAR data, two probability abstractions

provide the required information: a contextual second-order neighbourhood model and a pixel-based analysis. Therefore, the

segmented field is the result of a double segmentation model, and it was implemented using numerical optimization. Two train-210

ing windows are manually fixed to derive the mean values of the ice sheet and non-ice sheet objects. This is done for each image
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Figure 7. The derived sequence of the A-68A iceberg positions: (a) Overview of the derived iceberg drift, eastern Antarctic Peninsula

(Google Maps ©). The blue rectangle indicates the drift area; (b) Iceberg locations. The centroid coordinates are used to display the drift

trajectory.

analysed. Under-segmentation or over-segmentation is the result of an inappropriate selection of the mean values. The language

used to implement the algorithms was MATLAB(R). Using a laptop with Intel(R) Core(TM) i7-7700HQ, CPU @2.8GH and

8GB Ram, the CPU time was 1.26 seconds for the fuzzy algorithm and 19.04 minutes for the stochastic segmentation. A trained

person could perform manual tracing in a reduced time, but the goal of our method is to arrive at semi-automated detection.215

Figure 4 shows some increases in the time series area, but this can be attributed to the attachment of sea-ice fragments. Because

of the contextual analysis (to decide the class of a given pixel, its 8-neighbouring pixels are taken into account), the contours

are detected with one-pixel position accuracy. Concerning the tracking application, see Fig. 7, during the year 2017 the iceberg

remained near the collapse zone: the displacement was only some 30 km towards the Eastern Weddell Sea, and the area was

99% intact. The sea-floor elevation layers of the Bawden Ice Rice affected A-68A’s drift movement and the iceberg did not220

move much during the first six months of 2018. In July 2018, it started to swing slowly in an anticlockwise direction. In the

period July 2017 to August 2018, the computed mean speed was 7.2 km/month. By the end of September 2018, the rotation

angle was 185◦ (see Fig. 6, point 10), and the speed increased to 16.8 km/month. By January 2019, the angle of the major

axis was about 250◦. Using the centroid data, the total displacement distance was 220.6 km. In the analysed period, a slight

reduction in the planar shape parameters was observed. The visible iceberg area reduced by about 3.7% and the major axis225

length by 3.9%. Melting, breakup and forced motion are consequences of the iceberg-environment interaction; main driving

force arises from the surrounding ocean with some atmospheric contributions. Large icebergs last for several years and the

gravitational force may introduce topological changes. The gravitational force pushes outward the iceberg mass, and, over the

years, the cumulated effect produces a decrease in thickness and an increase in iceberg length (Bigg, 2015). The influence of

these elements is out of the scope of this paper. In the last analysed image, the A-68A iceberg was approaching the marginal230
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zone of the Antarctic Circle. At this point, the coastal current is expected to be the driving force of its displacement. Moving

in the direction of the Scotia Sea, the iceberg must still travel about 400 km to reach the northernmost point of the Antarctic

Peninsula.

6 Conclusions

A methodology is proposed for the analysis of a temporal sequence of SAR images. Two fundamental problems in the remote235

sensing domain are the irregular image contrast and the mixed multimodal class distribution. This paper takes into account the

image uncertainty for proposing the combined use of fuzzy logic and of a ferromagnetic approach which models overlapping

class intervals. A pre-processing stage implements a fuzzy contrast enhancement in the spatial domain. In the fuzzification

process, a set of image features define the membership functions whose domain and range are a rough fit to the image feature

histogram. The concepts of ferromagnetic theory were chosen to define a stochastic segmentation method. In ferromagnetic240

theory, the effect of an external magnetic field is to induce alignment of the ferromagnetic elements; this, in the case of a

segmentation process, simulates the magnetic attractive force by generating local homogeneous pixel configurations. The Ising

model and the Bayes equation were the basis for implementing the spatial pixel interaction. The derived binary field is the result

of a stochastic minimization process. Because of the scene size and of the recursive nature of the optimization algorithm, the

computational requirements of the MRF segmentation are computation-intensive. The final analysis result shows the movement245

of the A-68A iceberg over a time period. Due to its colossal size, small variations in area, perimeter and major axis length

parameters were observed. Up to 26 January 2019, the detected area was 96% of its original size. The surrounding ice in

the winter season, wind patterns and sea-floor elevation layers cause irregular displacements and variant iceberg velocities,

but the dominant direction seems to be towards the Eastern Weddell Sea. The main contribution of this paper is in the image

processing domain with an application to the tracking of the A-68A iceberg. Ancillary information such as meteorological data,250

ocean currents, wind speed, temperature and geomorphology of the seabed was not available for this study, but the proposed

methodology can be integrated to perform dynamic modelling.

Data availability. Data are available upon request from: mmoctezuma@fi-b.unam.mx

Author contributions. Conceptualization, L.L, F.P., M.M. and L.G.; Methodology, L.L., F.P., M.M. and L.G.; Validation, L.L., F.P. and L.G.;

Formal analysis, L.L., F.P., M.M. and L.G.; Data curation, L.G.; Writing–review and editing, L.L., F.P., M.M. and L.G.; Visualization, L.L.,255

F.P., M.M. and L.G.; Supervision, F.P.;

Competing interests. The authors declare that they have no conflict of interest

12

https://doi.org/10.5194/tc-2020-180
Preprint. Discussion started: 21 July 2020
c© Author(s) 2020. CC BY 4.0 License.



Financial support. This research was funded partially by Universidad Nacional Autónoma de México and Consejo Nacional de Ciencia y

Tecnología through scholarship grant number 099598462.

13

https://doi.org/10.5194/tc-2020-180
Preprint. Discussion started: 21 July 2020
c© Author(s) 2020. CC BY 4.0 License.



References260

Andersson, L. E., Scibilia, F., and Imsland, L.: An estimation-forecast set-up for iceberg drift prediction, Cold Regions Science and Tech-

nology, 131, 88 – 107, https://doi.org/10.1016/j.coldregions.2016.08.001, 2016.

Bigg, G. R.: Icebergs: Their Science and Links to Global Change, Cambridge University Press, https://doi.org/10.1017/CBO9781107589278,

2015.

Bigg, G. R., Cropper, T. E., O’Neill, C. K., Arnold, A. K., Fleming, A. H., Marsh, R., Ivchenko, V., Fournier, N., Osborne, M., and Stephens,265

R.: A model for assessing iceberg hazard, Natural Hazards, 92, 1113–1136, https://doi.org/10.1007/s11069-018-3243-x, 2018.

Chaira, T.: Fuzzy Set and its Extension: The Intuitionistic Fuzzy set, John Wiley & Sons, Ltd, https://doi.org/10.1002/9781119544203, 2019.

Chatelain, F., Descombes, X., Lafarge, F., Lantuéjoul, C., Mallet, C., Minlos, R., Schmitt, M., Sigelle, M., Stoica, R., and Zhizhina, E.:

Applications de la géometrie stochastique à l’analyse d’images, Hermes Science-Lavoisier, 2011.

Collares, L. L., Mata, M. M., Kerr, R., Arigony-Neto, J., and Barbat, M. M.: Iceberg drift and ocean circulation in the northwestern Weddell270

Sea, Antarctica, Deep Sea Research Part II: Topical Studies in Oceanography, 149, 10 – 24, https://doi.org/10.1016/j.dsr2.2018.02.014,

oceanographic processes and biological responses around Northern Antarctic Peninsula: a 15-year contribution of the Brazilian High

Latitude Oceanography Group, 2018.

Demchev, D., Volkov, V., Kazakov, E., Alcantarilla, P. F., Sandven, S., and Khmeleva, V.: Sea Ice Drift Tracking From Sequen-

tial SAR Images Using Accelerated-KAZE Features, IEEE Transactions on Geoscience and Remote Sensing, 55, 5174–5184,275

https://doi.org/10.1109/TGRS.2017.2703084, 2017.

Diansky, N. A., Marchenko, A. V., Panasenkova, I. I., and Fomin, V. V.: Modeling Iceberg Drift in the Barents Sea from Field Data, Russian

Meteorology and Hydrology, 43, 313–322, https://doi.org/10.3103/S1068373918050059, 2018.

Han, H., Lee, S., Kim, J.-I., Kim, S. H., and Kim, H.-c.: Changes in a Giant Iceberg Created from the Collapse of the Larsen C Ice Shelf,

Antarctic Peninsula, Derived from Sentinel-1 and CryoSat-2 Data, Remote Sensing, 11, [doi:10.3390/rs11040404], 2019.280

Ibe, O.: Markov Processes for Stochastic Modeling, Elsevier insights, Elsevier Science, London, UK, 2nd edn., https://doi.org/10.1016/B978-

0-12-407795-9.00015-3, 2013.

Ivanova, N., Johannessen, O. M., Pedersen, L. T., and Tonboe, R. T.: Retrieval of Arctic Sea Ice Parameters by Satellite Passive Microwave

Sensors: A Comparison of Eleven Sea Ice Concentration Algorithms, IEEE Transactions on Geoscience and Remote Sensing, 52, 7233–

7246, https://doi.org/10.1109/TGRS.2014.2310136, 2014.285

Kamel, M. and Campilho, A., eds.: Type-2 Fuzzy Image Enhancement, Springer Berlin Heidelberg, Berlin, Heidelberg,

https://doi.org/10.1007/11559573_20, 2005.

Kern, S., Lavergne, T., Notz, D., Pedersen, L. T., Tonboe, R. T., Saldo, R., and Sørensen, A. M.: Satellite passive microwave sea-ice concen-

tration data set intercomparison: closed ice and ship-based observations, The Cryosphere, 13, 3261–3307, https://doi.org/10.5194/tc-13-

3261-2019, 2019.290

Leberl, F.: Radargrammetric image processing, Artech House remote sensing library, Artech House, 1990.

Leira, F. S., Johansen, T. A., and Fossen, T. I.: A UAV ice tracking framework for autonomous sea ice management, in: 2017 International

Conference on Unmanned Aircraft Systems (ICUAS), pp. 581–590, https://doi.org/10.1109/ICUAS.2017.7991435, 2017.

Maître, H., ed.: Processing of Synthetic Aperture Radar Images, John Wiley & Sons, Ltd, https://doi.org/10.1002/9780470611111, 2010.
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