Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 4.713
IF4.713
IF 5-year value: 4.927
IF 5-year
4.927
CiteScore value: 8.0
CiteScore
8.0
SNIP value: 1.425
SNIP1.425
IPP value: 4.65
IPP4.65
SJR value: 2.353
SJR2.353
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 53
h5-index53
Preprints
https://doi.org/10.5194/tc-2020-179
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-2020-179
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

  24 Jul 2020

24 Jul 2020

Review status
A revised version of this preprint was accepted for the journal TC and is expected to appear here in due course.

The cryostratigraphy of the Yedoma cliff of Sobo-Sise Island (Lena Delta) reveals permafrost dynamics in the Central Laptev Sea coastal region during the last about 52 ka

Sebastian Wetterich1, Alexander Kizyakov2, Michael Fritz1, Juliane Wolter1, Gesine Mollenhauer3, Hanno Meyer4, Matthias Fuchs1, Aleksei Aksenov5, Heidrun Matthes6, Lutz Schirrmeister1, and Thomas Opel4,7 Sebastian Wetterich et al.
  • 1Permafrost Research, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
  • 2Cryolithology and Glaciology, Faculty of Geography, Lomonosov Moscow State University, Moscow, Russia
  • 3Marine Geochemistry, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
  • 4Polar Terrestrial Environmental Systems, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
  • 5Polar Geography, Arctic and Antarctic Research Institute, St. Petersburg, Russia
  • 6Atmospheric Physics, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
  • 7PALICE, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany

Abstract. The present study examines the formation history and cryolithological properties of late Pleistocene Yedoma Ice Complex (IC) and its Holocene cover in the eastern Lena Delta on Sobo-Sise Island. The sedimentary sequence was continuously sampled in 0.5 m resolution at a vertical Yedoma cliff starting from 24.2 m above rivel level (arl). The sequence differentiates into three cryostratigraphic units; unit A: dated from ca. 52 to 28 cal ka BP; unit B: dated from ca. 28 to 15 cal ka BP; unit C: dated from ca. 7 to 0 cal ka BP. Three chronologic gaps in the record are striking. The hiatus during the interstadial MIS 3 (36–29 cal ka BP) as well as during stadial MIS 2 (20–17 cal ka BP) might be related to fluvial erosion and/or changed discharge patterns of the Lena River caused by repeated outburst floods from the glacial Lake Vitim in Southern Siberia along the Lena River valley towards the Arctic Ocean. The hiatus during the MIS 2-1 transition (15–7 cal ka BP) is a commonly observed feature in permafrost chronologies due to intense thermokarst activity of the deglacial period. The chronologic gaps of the Sobo-Sise Yedoma record are similarly found at two neighbouring Yedoma IC sites on Bykovsky Peninsula and Kurungnakh-Sise Island, and most likely of regional importance.

The three cryostratigraphic units of the Sobo-Sise Yedoma exhibit distinct signatures in properties of their clastic, organic and ice components. Higher permafrost aggradation rates of 1 m ka-1 with higher organic matter (OM) stocks (29±15 kg C m-3, 2.2±1.0 kg N m-3) and mainly coarse silt are found for the interstadial MIS 3 unit A if compared to the stadial MIS 2 unit B with 0.7 m ka-1 permafrost aggradation, lower OM stocks (14±8 kg C m-3, 1.4±0.4 kg N m-3 in unit B) and pronounced peaks in the coarse silt and medium sand fractions. Geochemical signatures of intrasedimental ice reflect the differences in summer evaporation and moisture regime by higher ion contents and less depleted stable δ18O and δD isotope ratios but lower deuterium excess (d) values during interstadial MIS 3 if compared to stadial MIS 2. The δ18O and δD composition of MIS 3 and MIS 2 ice wedges shows characteristic well-depleted values and low d values, while MIS 1 ice wedges have elevated mean d values between 11‰ and 15‰ and surprisingly low δ18O and δD values. Hence, the isotopic difference between late Pleistocene and Holocene ice wedges is more pronounced in d than in δ values.

The present study of the permafrost exposed at the Sobo-Sise Yedoma cliff provides a comprehensive cryostratigraphic inventory, insights into permafrost aggradation and degradation over the last about 52 thousand years, and their climatic and morphodynamic controls on the regional scale of the Central Laptev Sea coastal region in NE Siberia.

Sebastian Wetterich et al.

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Sebastian Wetterich et al.

Sebastian Wetterich et al.

Viewed

Total article views: 353 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
265 79 9 353 23 7 10
  • HTML: 265
  • PDF: 79
  • XML: 9
  • Total: 353
  • Supplement: 23
  • BibTeX: 7
  • EndNote: 10
Views and downloads (calculated since 24 Jul 2020)
Cumulative views and downloads (calculated since 24 Jul 2020)

Viewed (geographical distribution)

Total article views: 311 (including HTML, PDF, and XML) Thereof 309 with geography defined and 2 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved

No saved metrics found.

Discussed

No discussed metrics found.
Latest update: 21 Oct 2020
Publications Copernicus
Download
Citation