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We thank the reviewer for their very thorough and insightful review of this paper.  We believe the 
changes made in response to these comments make the manuscript stronger overall. Below, comments in 
blue are our direct responses to the reviewer’s comments. 

Based on a large ensemble of the state-of-the-art Community Ice Sheet Model simulations the authors 
develop a flexible and efficient method to represent the Antarctic ice sheet under a wide range of ocean 
melt forcings, a major part of the general climate forcing in Antarctica. The manuscript explores the use 
of an statistical emulator for updated projections of 200-year sea level rise contributions. The link 
between global climate predictions and the Antarctic response is a key challenge the ice sheet modelling 
community is currently facing and the use of advanced uncertainty quantification methods, as done here, 
is likely to play an important role for this.  

The presented work is therefore of very high relevance, however, I have concerns regarding the proposed 
approach to find probabilistic projections and a lack of testing of this approach. These are largely 
evolving around refining the parameter priors which should make it easier to address my concerns for re- 
vision. Once this is done I see the potential for follow up studies to combine multi-GCM southern ocean 
climate prediction distributions with ocean melt prediction PDFs and the ice sheet model sea level 
emulator developed here. This could be an major step towards a quantification of the sea level rise 
projection uncertainties. I will address general concerns below, followed by specific comments.  

General Comments  

The main contribution of this work is to develop a framework to propagate uncertainties in ocean melt 
forcing (originating from a large range of sources) to uncertainties in the Antarctic mass loss. I am glad to 
see that this focus is highlighted by the authors throughout the manuscript. For developing such 
framework, however, more analysis is needed, in particular regarding the limitations of the currently 
proposed approach. This should include, as far as possible, a benchmark of the approach to successfully 
represent uncertainties.  

For the currently proposed approach I am concerned about the influence of the input space boundaries on 
the analysis and the unclear (to me) measures taken to alleviate this. Several of the optimal fitting 
parameters for t0 and (maybe) tau appear to be at the edge or even outside of the considered input space. 
As the authors note, this is a problem because large parts of derived priors lie outside of the considered 
space which cannot be (well) represented in the following analysis. The authors shift the fitted parameter 
values away from these boundaries (to a value ’within 1 sigma of best fit’) which is, however, no 
appropriate measure to handle this limitation. First, it is not clear what data the sigma (=standard 
deviation?) is based on and which/how many parameter values are effected. But more importantly, by 
(seemingly arbitrarily) changing the values you are not representing the ocean model melt forcing 
anymore which undermines the following analysis.  



We agree with the reviewer here regarding the lack of clarity around the method to shift parameters away 
from the bounds. We no longer include such a method, but for clarification for the reviewer we feel 
compelled to explain more clearly how this shifting was implemented, and why it was done. 

First, we want to clarify the actual method used for moving away from the edge of the parameter space. 
The parameter values themselves were not shifted by 1 sigma (standard deviation), but instead we relaxed 
the ‘best fit sigmoid’ criteria such that the best fit could occur anywhere within a 1 sigma window around 
the optimally fit sigmoid.  In this way we were able to find a sigmoid fit within this window that was 
characteristic of the ocean model output but was not using edge-hitting parameters. The parameter ranges 
were originally chosen based on expert judgement (though in one case we caveat this turned out to be too 
narrow, and we discuss this in further detail below).  

We believe the boundary-hitting behavior we see is evidence of non-identifiability (compensating 
parameter errors) rather than that the ranges are too narrow. The reviewer notes this same issue of non-
identifiability later in the review, and we agree with their assessment. Indeed, edge-hitting parameter 
estimates do not imply that the ‘best fit’ curves lie outside of our range. Hitting edges can occur due to 
confounding between parameters, meaning there are many ways of generating parameter combinations 
for equally good fits (both inside and outside the parameter space). When there are identifiability issues 
due to confounding between parameters, we generally expect (nearly) equally-good parameter fits to lie 
on some “ridge” or low-dimensional manifold within parameter space.  As a consequence, we can find 
“good fits” for unphysical parameter values.  Therefore, we tried our best to cut off the unphysical range 
with our prior. 

We illustrate this issue further by showing examples of equally good fits within and outside of our 
parameter ranges.  Fig R1.1 shows this for two ocean model projections. In the case of the Ross region 
(left panel), a similar fit can be found by increasing both t0 and Mmax.  As t0 (the inflection point) is 
pushed later, Mmax also must increase to compensate. For the Weddell region (right panel) a similar fit 
can be found if tau is increased.  In that case M increases so that the curve grows to a higher value but 
more slowly.  

 

Fig R1.1: Ocean model melt rate time series (grey) as well as the best fit in our bounds (blue) and out of 
our bounds (orange) for the Ross region (left) and Weddell region (right).  We see in the left panel that 
the t0 value in the blue curve is hitting the upper edge of our boundary (t0=225).  The RMSE for in 
bounds = 0.74, RMSE for out of bounds = 0.71.  For the Weddell (right), t0 is edge-hitting on the lower 
boundary (t0=100). By increasing tau, t0 and M also must increase to compensate. The RMSE for the 
curve in our bounds = 0.47 and RMSE for the curve out of bounds = 0.48.   



Overall, we believe the existence of edge-hitting parameter values does not imply in most cases that our 
ranges are too small, because equally good fits occur within our ranges, and thus do not believe that 
expanding the ranges will necessarily achieve better fits. 

Therefore, our rationale for the ad-hoc methodology was to provide a better basis for a multi-model 
distribution over the point estimates obtained from fitting the sigmoid curve to different ocean models. If 
many parameter settings provide equally good fits due to non-identifiability, we could safely seek a 
‘central’ value for each model parameter while maintaining a good fit to the data. This could then be used 
as a point estimate from which to construct a multi-model normal distribution, avoiding a heavily 
truncated distribution.  

We found that, for the most part, edge-hitting was not a problem for this reason of non-identifiability. 
However, in the case of one ocean model (BRIOS ocean model), we have evidence that none of the 
parameters within our prior range provide good fits (Fig R1.2).  The physical origin of the misfit is that 
our range did not allow for earlier t0 values that correspond to earlier inflection points in the curve. As a 
result we no longer include this model, and only focus on the FESOM model to test our emulator. We will 
caveat this in the text.   

 

Fig R1.2:  Ocean melt rate anomalies from the BRIOS ocean model output (red), best fit sigmoid outside 
of our bounds (green) and best fit inside of our bounds (blue). 

All in all, we agree with the reviewer that our previous methodology of shifting away from the edges was 
still left wanting. We no longer include this procedure and have instead replaced it with three new 
methods of generating prior distributions. These are described in more detail below.  

The preferred solution would be to run additional CISM simulations to expand the input space. In case 
they exist, you could also give strong arguments why such simulations would have to be considered 
unrealistic (a-priory) to justify the prior cut-off. Otherwise you would, at the very least, have to show the 
impact of said boundary cut-offs on the sea level rise distribution (see quality assessment below).  

Unfortunately, we cannot run any more simulations as we no longer have computational time available 
for use.  Available models were examined at the time the ensembles were designed in order to decide on 
prior cut-offs. As stated in our response to the previous comment, the ranges were decided primarily on 
the fits to the available data at the time and expert judgement. Since it is possible to find “good fits” for 
unphysical parameter values, we tried our best to cut off the unphysical range. We’ve articulated these 
limitations in the revised text. 

The second concern are the sigmoid parameter distributions themselves (Figure 10). In some cases you 
have as little as two values (Peninsula) to fit a Gaussian distribution to, which leads without doubt to a 
large standard error of the mean. In addition you treat all sigmoid parameters as statistically independent. 



Let me give an example why this is problematic: The sigmoids with [t0=100, tau=70, M200=50] and 
[t0=0, tau=700, M200=250] result in very similar forms, despite having very different parameter values (I 
realize that said parameter values are outside of the parameter space you consider, but this is just an 
example for the existence of ambiguities). Another example is the case where the melt rate is constant in 
time (M200=0) in which case the other two parameters are completely unconstrained. By an independent 
treatment you cannot take this kind of ambiguities into account. This raises the question of how the 
proposed approach to find priors compares to approaches which do not rely on such an assumption of 
independence. These kinds of limitations are clearly stated by the authors (e.g. line 341-347), but should 
be addressed by further analysis (i.e. comparing and testing alternative approaches).  

We now include three different methods of extracting prior estimates aimed at this ambiguity issue by 
considering a windowed set of ‘good fits’ (as the reviewer suggests) rather than a single point estimate. 
The methods are described in detail below.  
 

§ Method 1: Individual fits + normal distribution 
This method is performed by generating a distribution of prior parameters based on the 'best fits'. The best 
fits are found by a least-squares optimization between the fitted sigmoid curves and the original basal 
melting rate anomalies from the ocean models (Fig. 5 colored and grey curves respectively). The sigmoid 
parameters that describe the data fits are then used to generate a normal distribution that serves as the 
prior. This final step is to allow for the possibility that other ocean models, not considered here, could 
lead to plausible parameter values. The emulator then samples parameters from this distribution. These 
prior distributions can be combined and presented as a distribution of sigmoid anomalies (Fig. 10). 

§ Method 2: Window fits + direct sampling 
This method constructs a windowed set of good parameter values for each ocean model. The window size 
is defined as 2 SD around the best fit sigmoid. Instead of finding a singular best fit to the ocean model as 
in Method 1 over which a normal distribution is generated, only fits within this window are used. The 
windowing is to allow for relaxation away from the edge-hitting parameters. For each region there is an 
equal-probability mixture of ‘windowed fits’ across the ocean models to represent the multi-model 
uncertainty. This method does not account for the possibility of melt trajectories not represented by the 
ocean models.   

§ Method 3a: Mixture method (Window fits +normal distribution) 
This method uses a mixture of Methods 1 and 2, an attempt to get the `best of both worlds’: account for 
non-identifiability/ambiguity in model fits by including a windowed set of good fits as in Method 2, but 
fit a continuous distribution of the model fits so that probability does not concentrate only on the 
parameter space locations of the ocean models. This gives nonzero probability to ocean melt trajectories 
that don’t come from the ocean models in order to account for multi-model uncertainty. So, the same 
windowing technique is used as in Method 2, but instead of using the parameters of the windowed curves 
directly as our priors, we generate a normal distribution around the windowed fits as in Method 1. This 
may be thought of as an approximation to the hierarchical Bayesian approach taken in Jonko et al. (2018), 
where the parameters arising from fitting each climate model are assumed to be a sample from an 
underlying multi-model distribution.  

§ Method 3b: Mixture method (Window fits + multivariate normal distribution) 
This method is the same as Method 3a in that we want to allow for the possibility of other ocean models 
not contained here.  However, unlike in method 3a, it does not assume an independent normal distribution 
for each parameter.  Instead, in order to account for correlation across parameters, we use a multivariate 
normal distribution (aka a tilted normal). 

By using these three methods we are trying to account for issues like non-identifiability (by windowing) 
and multi-model uncertainty (by adding a normal distribution). Our new results therefore include the SLR 
projections for each of the methods (Fig R1.3 below).  



 

FigR1.3: Sea level rise probability distributions for (a) year 100 and (b) year 200.  The ensemble SLR 
PDF at year 100 and 200 (grey), and the predicted SLR PDFs for three prior methodologies described: 
Individual fits + normal distribution (blue), window fits + direct sampling (orange), window fits + normal 
distribution (green) and window fits + multivariate normal distribution (red).  

This result shows that in both year 100 and 200, the likeliest predicted SLR in both of these years is not 
strongly dependent on the prior method choice. The addition of a normal distribution to account for multi-
model uncertainty (ie. the possibility of other models occupying nearby but not the same parameter space) 
generally causes the mode of the distribution to shift to slightly larger SLR values. Prior methods 2 
(window fits + direct sampling) and 3b (window fits + multivariate normal distribution) produce the 
lowest SLR prediction for year 100. As expected, by using a multivariate normal (method 3b) instead of a 
normal distribution (method 3a), the SLR prediction shifts closer to the direct sampling (method 2) 
prediction which also implicitly has correlations in it. A notable difference in method 2 and method 3b, 
however, is that method 2 results in bimodality in year 200. This is an artifact of sampling over a small 
discrete set of ocean models. There is a bimodality for the same reasons in the year 100 prediction for this 
method as well but is smoothed out when emulator uncertainty is accounted for. Our preferred method is 
3b, because it is the most principled approach. These results and associated discussion is included in the 
text now. 

Two possible alternative approaches come to mind: (1) The sigmoid parameter priors could be base on the 
cumulative ocean melt instead of the fitted parameter values. Or (2) the sigmoid parameter distributions 
could be derived jointly by agreement with the time-series themselves; One possible approach to this (but 
by no way the only possibility) would be to take the mean and sd. for each year of the ocean model time 
series for each basin (gray lines in Figure 5) and search the input space for all sigmoids which are in 
reasonable agreement with this. ’Reasonable agreement’ can by defined with a threshold or weighting on 
any kind of score function (such as a simple RMSE), or possibly by ruling out all sigmoids which are 
outside of the mean+-3sigma interval for more then 5% of the time (Pukelsheim, Friedrich. ”The three 
sigma rule.” The American Statistician 48.2 (1994): 88-91.) and uniform (equally likely) treatment of all 
passing sigmoids.  

As described above, we now use 3 new methods, two of which include a windowing technique similar 
(but more conservative) to what the reviewer describes here.  

(b)(a)



In any case, we need to address the quality of the resulting distributions. One easy step of validation 
would be to inspect the consistency of SLR contributions from the updated emulator priors (i.e. solid lines 
in Figure 12) with results from the optimal sigmoids (without shifting them, i.e. the ones shown in Figure 
5). If there are biases, can they be explained? How compares the spread within the emulated ensemble 
with the optimal? Similar tests could be done for subsets (selected or random) of CISM simulations which 
are treated as synthetic test melt predictions (perfect model test).  

This has been addressed above as well. 

As you point out, the very limited number of ocean model melt predictions limits the ability to constrain 
the prior distributions. Considering the focus on designing and testing statistical methods I would suggest 
to distinguish between 100-year and 200-year predictions more strongly. For the 100-year period more 
ocean melt projections are available from the current sources, but also projects like ISMIP6, which would 
allow for more analysis of the priors (as described above). If appropriate, inter-GCM comparisons could 
be another option.  

We agree that considering the ISMIP6 100 year predictions would be interesting, however we do not 
think it would add much to the current form of the manuscript, which is introducing a technical approach.  
More ocean models would certainly give a more realistic prior, but our results are anyway not a realistic 
projection of SLR. Rather, demonstration of our technique is the goal here. In the future, we plan to 
include the ISMIP6 data after addressing, for example, the equilibrium spin-up issue.  

Specific Comments  

L1: ’and have already begun thinning in response to increased basal melt rates’ Many Antarctic ice 
shelves are not currently thinning  

This has been changed to scale back the statement. It now reads: “Antarctic ice shelves are vulnerable to 
warming ocean temperatures, and some have already begun thinning in response to increased basal melt 
rates.” 

L32: Consider more appropriate reference (e.g. Chapter 4 of IPCC Special Report on the Ocean and 
Cryosphere in a Changing Climate, or references therein)  

Good suggestion, a new reference has been included: “Despite its potential to contribute to sea level rise 
(SLR) vastly more than any other single source (~5m West Antarctica, ~60 m all Antarctica), and 
documented ice shelf thinning (e.g. Schroeder et al., 2019; Reese et al., 2018), Antarctica’s contribution 
to sea level remains highly uncertain (Oppenheimer et al., 2019; Heal and Milner, 2014).” 

L44 or elsewhere: consider Holland et al. (2019) for more context (https://doi.org/10.1038/s41561- 019-
0420-9)  

This paper has now been included in our introductory remarks of the paper. 

L40: -’the forefront’ +’a focus area’ 

The new sentence reads: “Development of these modeling capabilities is still a major focus area of current 
research.” 



 
L41: comma after ’those that do’ Added. Thanks. 

 
L70-74: This is a good explanation of emulators. Thanks. 

 
L95: here and elsewhere: ice model -> ice sheet model  Thanks, these have been updated. 

L109: Since you combine (2) and (3) of the list above, I am skeptical about ’is intended to be agnostic 
with respect to these assumptions’. Maybe something like: ’is intended to overcome some of these 
limitations’?  

Yes, good suggestion. 

L110: highly -> densely Done 

L113: ’any scientific source’: can you be more precise?   This has been updated for specificity. It now 
reads: “After constructing a statistical emulator of this ensemble, we can then provide the emulator with 
basal melt assumptions derived from a number of ocean/climate model combinations.” 

L143: please specify the SMB forcing here; Is the SMB constant through the spin-up and future? Which 
years is it based on and how?    
Yes the SMB is constant for the spin-up and uses a 1976-2016 climatology from RACMO2, and is also 
held constant for the forward runs.  The following text has been added for clarification: 
 
“Surface mass balance (SMB) from late 20th century simulations with the RACMO2 regional climate 
model (van Wessem et al., 2018). SMB is held constant using the RACMO2 1976-2016 climatology in 
the spin-up and forward runs.” 

Figure 1: The order of tasks is a bit confusing; Task 3 is (emulator) validation and Task 5 is emulation. 
Can Task 5 and 6 be combined?  

The figure has been updated to try and clarify Task 3, as well as combining Task5/6. See the new version 
below. 



 

L146: In Seroussi et al. 2020 a 30 000 year spin-up is used. What was the reason to use 40 000 years here 
and how big is the difference to the ISMIP6 initial state?  

The spin-up used in our paper was identical to that used in Seroussi et al. (2020) but section C7 in 
Seroussi has been confirmed to contain a typo. It states the spin-up was 30 000 years, when in fact it was 
40 000 years.  
 
More generally, it is worth noting that it doesn’t much matter whether you spin up for 30 ka or 40 ka. 
There is a long period of slow drift as the temperature equilibrates, and results won’t be sensitive to a few 
thousand years of this slow drift.  
 

Figure 2: A difference plot between the modelled and observed speeds would be helpful here, e.g. 
replacing the observed speed map similar to Figure 3.   
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We have updated this Figure (below) so that it now includes a panel showing the difference in observed 
and modeled speeds.  Furthermore, the color scheme has been updated to match those in the CISM 
ISMIP6 paper for consistency. Figure 3 has also been updated for consistency in figure style. 
 

 

L154: The model is in a steady state and the observations indicate otherwise, this alone can be seen as a 
contradiction to ’excellent agreement between observed and modeled...’, please rephrase.  

This is a good point, and the text has been updated for clarity: “The model is run on a uniform 4 km grid, 
resulting in a spun-up state with good agreement between observed and modeled surface velocity (Fig. 2), 
ice shelf extent, and ice thickness (Fig. 3), except in regions that are known to be out of steady state, such 
as the Amundsen sector and the Kamb Ice Stream.” 
 
L156: ’very little drift’ can you give a number/order of magnitude here?  
 
Yes, this is a good point.  The text has been updated to include a quantification of the drift: “A control run 
starting from the end of spin-up and going forward 1000 yr (not shown) indicates that there is very little 
drift (<1 Gt/yr) in the ice sheet moving forward and that most changes in ice thickness will be a result of 
forcing as opposed to internal variability or model drift.” 

L159: I agree with the editor that the interpretation as preindustrial initial state (after nudging to modern 
velocities and using ocean melt forcing from 2000 onward) is not helpful, nor necessary.  

We agree and have removed the comment that this is closer to a PI state.  The text now reads: “A control 
run starting from the end of spin-up and going forward 1000 yr (not shown) indicates that there is very 
little drift (< 1 Gt/yr) in the ice sheet moving forward and that most changes in ice thickness will be a 
result of forcing as opposed to internal variability or model drift.  This is not fully realistic, since the real 
ice sheet is never truly in equilibrium with the climate, particularly if current observations are used to tune 
the model. Therefore, henceforth, we do not explicitly state the year corresponding to SLR projections.  
Rather, we refer to our SLR projections as relative to the number of years run forward in the model from 
the end of spin-up.  As a result, the sea level rise projections are not tied to a particular year in the future.  
Rather, they are meant to show that the emulator is a powerful and useful tool, and SLR predictions are 
considered a proof-of-concept. 

L165-L173: Please clarify: Are any ocean melt predictions used here based on ECHam5 simulations? 
ECHam5 based ocean melt simulations in both references (Timmermann and Hellmer (2013) and 
Cornford et al. (2015)) seem to end in year 2100 while all melt forcings shown here are 200 years long.  

The reviewer is correct, there are no ECHam5 simulations included here because they only go to 2100.  
We only use ocean simulations that go out to the year 2200.  The text has been updated to clarify which 



model combinations are used, along with a Table that shows data sources and ocean simulations used in 
this work.  

Please further clarify: Are any ocean melt predictions used here based on the E1 climate scenario? And if 
so, which? Comparing Figure 4 in Cornford 2015 with Figure 5 in this manuscript makes me wonder 
why, e.g. the Filcher-Ronne ice shelf time-series for HadCM3 / E1 with BRIOS ocean model is not 
included as Weddell sea ocean forcing. If there has been a selection process, what is the criterion for 
selection? A Table with source, ocean model, climate model and climate scenario would help with a more 
transparent database.  

A table has now been added that describes the data sources for each region as well as the model 
combinations each uses.  We are only using the A1B scenario here, and HadCM3 global model.  In 
addition to the table, the text now reads:  

We use ocean model data from Timmermann & Hellmer (2013) and Cornford et al. (2015) to inform the 
types of possible basal melt rate trajectory shapes for 200 years forward. The forcing data for the ocean 
models are generated with the global climate models HadCM3 (Gorden et al., 2000; Collins et al., 2001) 
under the A1B emissions scenario. A1B is a moderate scenario similar to Representative Concentration 
Pathway 6 (RCP6).  This is then dynamically downscaled by two high-resolution atmosphere models 
(RACMO2 and LMDZ4) and two ocean models: the medium resolution BRIOS Bremerhaven Regional 
Ice-Ocean Simulation (BRIOS) (Timmermann et al., 2002) and the higher resolution Finite-element Sea 
ice-ocean model (FESOM) (Wang et al., 2014). 

Which are the four East Antarctic Ice Sheet ocean melt predictions used for Figure 5? I am just asking 
because Timmermann and Hellmer (2013) seem to focus on only three types of 200 year simulations 
(HadCM3- A1B+FESOM, HadCM3-E1+FESOM and HadCM3-A1B+BRIOS) and Cornford et al. (2015) 
do not include the EAIS at all. On top of this there seems to be an unfortunate similarity between the 
highest EAIS melt pre- diction in Figure 5 and one of the Cornford et al (2015) predictions for the Marie-
Byrd land (Figure 4, lower right panel, HadCM3/A1B+Brios). Again, the before mentioned table could 
help to clarify this.  

As suggested, a Table has now been added and the text has been clarified to reflect the data sources.  We 
only use HadCM3+A1B from both Cornford and Timmermann.  The reviewer did catch a typo in the 
EAIS melt, where we erroneously included the MBL from Cornford (2015) in Figure 5.  It is also worth 
noting that MBL was not included in the SLR predictions, so it was simply an erroneous inclusion in the 
Figure. This has been rectified. 

L191-193: The comparison of quasi-random Sobol sequences to pseudo-random Monte Carlo sampling is 
unclear. What is the difference between quasi- random and pseudo-random? What do you mean by Monte 
Carlo sampling? Consider here the wide definition of ’Monte Carlo methods’ on one side and the popular 
Monte Carlo Marcov Chains on the other side (which are designed to build clusters to represent priors). 
This is probably also a good place to mention that the Sobol sequence has a uniform distribution though 
the input parameter space (unless it is already mentioned in this section somewhere?).  

“Monte Carlo sampling”, in this context, refers to independent random sampling from a distribution of 
parameters. In this case, we are sampling from bounded uniform distributions on each parameter to 
generate the emulator training ensemble. Computationally, this is often done by pseudorandom sampling, 
the standard means of generating statistically-random samples using a deterministic numerical algorithm. 



Truly random sampling is expected to produce, at random, gaps and clusters within parameter space. To 
train an emulator, we prefer a more uniform sampling of parameter space. Non-random methods to 
produce uniform, space-filling sample designs include simple grid (Cartesian product) designs, or the 
popular Latin hypercube design with better space-filling properties. However, one limitation of the Latin 
hypercube design is that it is not possible to add new design points (while maintaining the Latin 
hypercube’s uniform space-filling properties) if additional ensemble members are later desired, for 
example if the original ensemble proves too small or more computer time becomes available. 

“Quasi-Monte Carlo (QMC) sampling” provides an alternate means to generate uniform space-filling 
sampling designs, which allows for the addition of new samples.  Like (pseudo)random numbers, QMC 
produces an arbitrarily long sequence of numbers, and more samples can be taken from this sequence if 
more ensemble members are desired.  However, QMC samples also fill space more uniformly than do 
true random numbers. (They also have good statistical properties: even though they are not truly random, 
expectations computed using QMC can converge faster than the 1/sqrt(N) rate of Monte Carlo methods 
arising from the central limit theorem.) Thus, they can provide a “best of both worlds”: the sequence of 
design points can be extended, like MC sampling, while retaining some of the uniform space-filling 
properties of non-random designs like Latin hypercube sampling. 

We have clarified this in the text, and included the note about the Sobol’ sequence having a uniform 
distribution through the input parameter space. 

L199-201: ’capturing all of the sigmoidal characteristics seen in the modeled ocean melt rate projections’; 
This creates the impression that the parameter ranges include all optimal sigmoidal fits to ocean model 
melt projections. Some of the lines in Figure 5 appear to have t0 values outside of the 100-225 year range. 
Please clarify whether this is the case and consider this in the impact/justification discussion of input 
space boundaries.  

This point is discussed earlier in our responses to the reviewer. In short, we did find one model that was 
not well captured with our parameter space, so it is no longer included.  Some new text has been included 
in the Methods and Discussion to justify our decision of input space boundaries and discuss its 
limitations.  

L224: Is the melt anomaly also imposed at newly ungrounding locations?  

Yes this is true, we have added a sentence to make this clear to the reader: 

“The melt anomaly is applied to any newly ungrounded cells that appear through the simulation.” 

L231: ’highly sample’ -> ’densely sample’ 

Done 

 
Figure 5 and elsewhere: m/yr vs. m/y (Figure 11) vs. m/a vs. m a−1  

Thanks, this has been updated through the text and figure captions to [m/yr] everywhere for consistency. 

Figure 6 caption: maybe: ’...up to the maximal melt values given in the text, representing roughly twice 
the maximum ’data’ melt rate at year 200’  



Done 

Figure 8: Define the error bars and preferably avoid calling the CISM SLR values ’True’ (since it is not 
the true future SLR contribution). You could use e.g. ’ice sheet model vs. emulated’ or ’CISM vs. CISM 
emulator’, etc.  

We agree and have changed the labels here to CISM vs CISM emulator.  The error bars represent 
±2sigma and that has been noted in the caption here too. 

L249: This chapter does a good job in explaining Gaussian Process emulation to non-expert audience. 
However, it is lacking one or two sentences with technical details about the emulator to be reproducible. 
E.g. ’Usually the smoothness of data being fit is estimated as part of the interpolating procedure.’: is this 
the case here? Using a marginal likelihood optimisation? What covariance function is used? Is the nugget 
(representing noise in the training data) set to zero since you emulate a deterministic model? What 
emulator sample size is used?  

We are using the ‘GPfit’ R package (Macdonald, Ranjan, and Chipman, JSS 64, 1, 2015; Ranjan, Haynes, 
and Karsten, Technometrics 53, 366, 2011). We use the standard squared-exponential covariance with 
independent (factorized) correlation functions for each parameter, and a small nugget for numerical 
conditioning. The Gaussian process variance hyperparameter is estimated analytically, as is the nugget 
(following the lower bound given in Ranjan et al., 2011), whereas the (reparameterized) correlation length 
scale parameters are fit by minimizing the negative profile log-likelihood. 

This information is now also included in the text. 

We assume the reviewer is asking what the training ensemble size is, which we state in the text to be 500 
members. 

L252: ’have excellent accuracy’, in principal emulator and ISM values can be highly correlated but not 
along the main diagonal, in which case the emulator would not be accurate. Maybe just rephrase to ’show 
a good emulator performance’ or similar.  

The text has been updated now to read: “The predicted SLR values at years 100 and 200 show good 
emulator performance with correlation coefficients of 0.98 and 0.99, respectively, against the withheld 
CISM output (Fig 8).” 

L265: ’corresponding [+rate of] mass loss (Gt/yr)’? please clarify whether this is the rate of mass loss 
contributing to sea level rise (i.e. from grounded areas), total loss of ice (i.e. including ice shelves) or flux 
across the grounding line (i.e. dynamic contribution to grounded ice mass balance, which could be 
balanced by SMB). The same applies to Figure 9, labels and caption. Also consider using mm sea level 
equivalent instead of Gt for comparability.  

The bottom panel which showed Gt/yr is no longer included, as we decided it did not add to the paper. As 
such, the discussion of it has also been removed from the text which now reads: 

“The CISM ensemble consists of 500 members where each member is forced by five melt rate 
trajectories, one in each basin. Figure 9 shows the sea level rise time series resulting from the full 500-
member ice sheet ensemble (blue shading), with the ensemble mean shown in red. The distributions of 
SLR at year 100 are more constrained (ranging from 0.5 -- 96 mm) than those in year 200 (ranging from 
33 -- 543 mm) (Figure 9 inset). Again, we note that these SLR projections are not physically meaningful 



since the parameter sampling over which the ensemble is created is uniform. The ensemble is designed 
purely to be used for the creation of an emulator.” 

L268: It is good that you are very clear about this. =) 

 
L275-276: Again, it is not clear how exactly this is done but if I understand it correctly I do not see any 
good justification for this.  

We agree, and so no longer use this method. This statement and all related analysis has been removed and 
replaced with an explanations of 3 different methodologies we use now. A full description of these 
methods can be found earlier in this response to the reviewer. 

L277: What is the impact of using normal distributions? The sample size is probably not large enough 
(yet) to support or dismiss this assumption, but you could try other shapes of distributions to investigate 
the sensitivity.  

As part of our three new prior methods, we now include an option with no assumption of a distribution 
beyond the windowed fits, as well as a normal and multivariate normal distribution. We find the 
sensitivity to these assumptions to be minor overall, though we do discuss their effect on the SLR 
predictions in the text now.  

L280 from ’This falls within...’: consider moving this and/or the remainder of the section to the 
discussion.  

Some of this has been moved to the discussion. The text that emphasizes that these predictions are not 
tied to a specific year in the future remains, simply because we want to make sure this is clear to the 
reader when reading the Results section. 

L291: Please briefly set this work into relation to Levermann et al. (2020) (LARMIP-2).  

This has been done. The new paragraph now reads: 

The goal of this work is an in-depth exploration of statistical methods designed to project the effects of a 
plausible range of sub-shelf ocean forcing conditions upon Antarctic sea level rise uncertainty. We have 
presented an emulator-based approach to derive probabilistic projections of Antarctic sea level rise from a 
large perturbed basal melt rate ensemble of ice sheet model simulations. This work comes on the heels of 
other community efforts to quantify uncertainties in Antarctic sea level rise. For example, the LARMIP-2 
project Leverman et al. (2020) applies a linear response theory approach to 16 different ice sheet models 
(including CISM) in order to estimate the uncertainty of Antarctica's future contribution to global sea 
level rise that arises from uncertainties in ocean forcing. Their method, similar to that in Castruccio et al. 
(2014), relies on the assumption of linearity in the ice sheet response, which is generally valid for 
moderate basal melt rates but tends to break down (including in the CISM model) at higher melt rates, 
particularly after the first century of simulation. Our emulator method, on the other hand, does not rely on 
a linearity assumption and is thus valid over a very wide range of ocean scenarios, including the stronger 
forcing regimes. It is in the high-end (tail-area) ocean forcing scenarios where the greatest societal risk 
lies, so our focus is to carefully represent those accurately. In the future we could consider a more direct 
comparison of our results to the linear response approaches used by Levermann et al. (2020). 

 



Figure 9: Restricting the x-axis to 0-200 years would make this (and other) figure look tighter. The yellow 
bar in the top figure starts at 0, is that correct?  

Thanks for the suggestion, the changes to the x-axis on this and other figures has been implemented.  The 
yellow bar in Fig 9 has also been extended down to 0 as the reviewer points out. 

Figure 9 caption: blue shading (needs to be better defined) and red curve are introduced twice (for each 
panel) which might be possible to be combined. (maybe something like: Figure 9. 500-member CISM 
ensemble during 200- year simulations with mean (red curve) and total range of simulations[?] (blue 
shading). Shown are the SLR contribution (top) and rate of SLR contribution[?] (bottom)...).  
 

This has been updated. We have also decided that the bottom panel was not necessary, and it has been 
removed. 

L292: Agreed. I hope my remarks will help to deepen the exploration. Great, we hope to have done just 
that. 

Figure 11: I assume the differences in ’best fits’ to Figure 5 come from the one sigma shifting of the 
parameters alone? It illustrates well that the priors you generate encompass the ’best fits’ quite well, 
which could be mentioned in the text.  

This is no longer relevant because we do not include a method where the best fits are not shifted away 
from the parameter bound edges. Our responses above dig into the new methods more completely. We 
will mention how this figure encompasses the best fits fairly well.   

Figure 12: This figure shows predominantly the combined effect of constraining the ocean melt forcing 
and the methodological choices to derive the priors, compared to the training ensemble. As mentioned in 
the general remarks it should also include the results of the optimal parameter fit simulations/emulations 
to illustrate the impact of methodological choices (on the priors) alone, as well as new SLR distributions 
based on additional prior(s).   

Yes indeed, the Figure has now been updated (see FigR1.3).  We now include the results for the different 
methodological choices for prior derivations, along with the training ensemble.  We no longer include a 
method that shifts the priors away from the bounds in an ad-hoc manner. 

L299: ’we can use it to [+densely] sample’  Done 

L309: ’the [+emulated] CISM model projects’ (or, in case these numbers are not based on the emulator, 
make this more clear and compare to respective emulated values)  Done 

L460: The final version of this reference has become available   Done 
L485: The final version of this reference has become available  Done 

Other references have been updated as necessary. 

 
 
 



 
 
 
 

Responses to Reviewer 2 

Review Report on TC-2020-178: “Statistical emulation of a perturbed basal melt ensemble of an ice 
sheet model to better quantify Antarctic sea level rise uncertainties”  

We thank the reviewer for their thoughtful and insightful comments on this work.  Our responses can be 
found below inline in blue text.  

The manuscript proposes a new way to build a statistical surrogate for an expensive Antarctic ice sheet 
model which can quickly generate future SLR values given a basal melt rate anomaly trajectory, which 
represents the trajectory of sub-shelf ocean forcing. The proposed approach parameterizes the anomaly 
trajectories using sigmoid curves and builds a Gaussian process emulator for the relationship between the 
parameters of the sigmoid curves and the SLR values in the target year. This paper addresses the problem 
of accounting for ocean forcing uncertainties in future Antarctic ice sheet projections, one of the long- 
standing issues in the ice model community, and hence has scientific merit that warrants publication in 
the Cryosphere. However, I think the following major and minor points that I list below need to be 
addressed or at least seriously discussed in the manuscript before being considered for publication.  

Major Points  

1. I am mainly concerned about how realistic the smoothed the basal melt rate anomaly trajectories 
are and, if not, how the unrealistic (perhaps oversmoothed) forcing trajectories affect the realism 
of the final SLR projections. For example, while the authors argue that the basal melt rate 
anomaly trajectories from Timmermann and Hellmer (2013) and Cornford et al. (2015) in Figure 
5 are accurately captured by the sigmoid functions, I can see that a lot of mid-range temporal 
patterns are smoothed out. For example, in the second (Ross Island) panel there are some clear 
discrepancies between the fitted sigmoid curves and the original trajectories and the fitted 
sigmoid curves clearly underestimate the basal melt rate anomalies in the end. Will the overly 
smoothed trajectories lead to vastly different SLR distributions compared to the unsmoothed 
trajectories? My worry is that using smoothed forcing trajectories may result in notably smaller 
SLR variations (as the resulting simulated SLR trajectories might be also overly smoothed) than 
the variations that would have been obtained without smoothing the basal melting rate anomalies. 
One easy way to check if this is the case is to obtain a few ice sheet model runs using the original 
basal melting rate anomalies from Timmermann and Hellmer (2013) and Cornford et al. (2015) 
and see how the final results differ from the runs based on the smoothed trajectories.  

We appreciate this concern; unfortunately we are unable to run any more simulations in order to explicitly 
test the effects of the smoothing on the mass loss projections.  However, we do not believe that this is 
necessary to justify our smoothing techniques here.  First, we want to reiterate that we are only interested 
in generating a probabilistic SLR at a specific point in the future (2100, 2200) and we are not attempting 
to reproduce the transient SLR variability. Furthermore, we physically expect the ice sheet response to be 
highly integrated (convolved) with respect to basal melt rates, with long timescales, that will tend to 
eliminate the effects of small rapid stochastic forcings. 



Based on previous work by Hoffman et al (2019), Holland (2017), and Robel et al (2019), we do not 
believe the smoothing will cause vastly different SLR distributions compared to unsmoothed trajectories. 
(Indeed, one could argue that other important work on Antarctic SLR uncertainty has had to rely on fairly 
broad assumptions as well (e.g. the assumption of linearity in ice sheet response to forcing in Levermann 
et al. (2020)). We hope to support this with the following points: 

a) Hoffman et al (2019) ran an ice sheet model of Thwaites Glacier, that includes synthetic short-
term fluctuations in ocean temperature to investigate if the effect of high-frequency variability on 
glacier retreat.  They found that for long ice sheet simulations (500 years), fluctuations with 
periods of 5, 20 and 70 year periods indeed caused a slower retreat. However, the strongest effect 
they found was up to 10% difference in mass loss at the end of the 500 year run for the longest 
period of variability (70 yr). For the period of 5 years, the mass loss reduction is only about 2% at 
year 500. For shorter than 5 year variability, they suggest the effect becomes increasingly trivial. 
This is because periods below 5 years are too short to support an equilibrium response in ice shelf 
melting for a small, warm ice shelf such as Thwaites due to incomplete flushing of the sub-shelf 
cavity (Holland, 2017). In our case, most of the variability in the ocean melt rates is 5 years or 
less, so we would expect minimal effects on mass loss for a 200 year long simulation.  
 

b) The reviewer points out that they are concerned about longer periods of variability (such as that 
seen in the Ross region (Fig 5 in the paper).  Hoffman et al (2019) show that the influence of all 
periods and amplitudes of variability do not manifest in large SLR differences (compared to the 
control) before the year 200 (Fig R2.1, below).  Since our runs are only up to 200 years, it is 
unlikely that our smoothing will have a large impact on SLR projections. 

 

FigR2.1 This shows the difference in SLR contribution for each ensemble relative to the control 
run (Fig 5d in Hoffman et al., 2019). The colors represent the different ensembles of imposed 
synthetic noise, each with different amplitudes and periods.  This nicely illustrates that SLR 
slowing as a result of added variability is minimal in the first few centuries of a simulation. The 
effects really take hold after year 300.  This experiment is just for the Thwaites glacier, so the size 
and bedrock topography play a large role in how each cavity will individually respond.  However, 
we suggest this indicates a small effect on shorter time scales. 
 

c)  Hoffman et al. (2019) also evaluate the fractional uncertainty for each of their model ensembles à 
la Robel et al (2019) and found that at around 200 years, the biggest effect that ocean variability 
had on total mass loss uncertainty was about 2%. Therefore, in our relatively short simulations of 
200 years long, we do not expect the effect of smoothing our basal melt rates to lead to vastly 
different ice mass loss projections.   



Therefore, we do not believe smoothing should cause a large bias in our SLR predictions. However, to be 
sure, we now include additional sources of uncertainty in our emulator.  See Point 2 (below) for more 
details. 

 

2. If the smoothing indeed leads to underestimation of the SLR uncertainties, one way to solve the 
issue might be to add some additional noise generated from temporally dependent processes such 
as the ARMA model to the simulated SLR trajectories. The parameters for the ARMA model 
might be estimated by comparing the SLR projections generated based on the original basal 
melting rate anomalies and those generated based on the corresponding sigmoid curves.  

Thank you for the suggestion here. We can approximate the effects of a stochastic forcing by adding a 
stochastic term to the response (SLR) in order to account for the over-smoothed forcings (as discussed 
point 1 above).  We added autoregressive noise to the emulated SLR in order to account for natural 
variability SLR.  Furthermore, in order to do a full accounting of uncertainty, we have also accounted for 
code (emulator) error.  

We estimate the magnitude of natural variability from the Rignot et al. (2019) mass loss data in Fig R2.2 
below. The purple curve shows a time series of the total Antarctic mass loss with error bars in billions of 
tons.  We approximate the standard deviation to be about 500 Gt, or roughly 1.4 mm of SLR equivalent.  
We note that the natural variability here is not very large compared to the forced secular trend so its 
impact on SLR predictions will be minimal.  

 

FigR2.2: Figure from Rignot et al. (2019). Time series of 
cumulative anomalies in SMB (blue), ice discharge (D, red), 
and total mass (M, purple) with error bars in billions of tons 
for Antarctica, with mean mass loss in billions of tons per 
year and an acceleration in billions of tons per year per 
decade for the time period 1979 to 2017. The balance 
discharge is SMB1979−2008. Note that the total mass 
change, M = SMB − D, does not depend 
on SMB1979−2008. 

 

Fig R2.3 below shows a comparison of our SLR predictions with and without the natural variability error 
included.  The solid red curve shows the original SLR distribution, and the blue dotted line shows the 
effect of when natural variability noise is added.  The red dotted line shows when both natural variability 
and model noise are included. The effect of the natural variability is minor, and in fact in the year 200 it is 
difficult to make out the difference at all. When both sources of error (natural variability + model noise) 
are added the effect is larger.  



 

Fig R2.3: SLR pdfs for year 100 (left) and 200 (right) showing the difference between the original 
prediction (solid red), the original prediction + natural variability only (dotted blue), and original 
prediction + natural variability + model noise (dotted red). 

 

FigR2.4: SLR pdfs with and without added both noise terms are shown year 100 (left) and 200 (right).  
Solid curves show results without noise, and dotted lines show the updated distributions once noise is 
added.  

Fig R2.4 shows the effects of including both additional sources of uncertainty on the three new prior 
methods discussed below. (A more involved discussion on these three methods can be found above in our 
response to the reviewer).   

The inclusion of noise in the SLR estimates generates a greater effect in year 100 than it does in year 200. 
We find that the uncertainty from the emulator is generally larger than the uncertainty from natural mass 
loss variability.  Even though the effect of the emulator uncertainty is not large in absolute terms, it can be 
significant for low SLR values which is why the final SLR distribution is more impacted in year 100 than 
in 200. This can also be seen in the validation figure (Fig 8 in the paper), which shows that despite a 
strong correlation between CISM and CISM emulator SLR values, the width of the error bars can be on 
the same order as the smallest SLR values.  



We now present only the ‘noise-added’ SLR distributions in the manuscript, and we have updated the text 
to describe how we include natural variability and emulator error into the SLR predictions. 

 

3. In Lines 273-275, the authors mention that ‘least-squares optimization’ is done to find the best fit. 
However I cannot find what variables are actually used in the ‘least-squares optimization’ here. 
Are they the simulated SLR trajectories and some observational data? Or are they the fitted 
sigmoid curves and the original basal melting rate anomalies? Judging based on the caption in 
Figure 6, I think it is the latter. Then I think the issue can be easily solved by expanding the 
plausible ranges and also running more ice sheet model runs and obtaining more emulated runs 
accordingly so that the envelop of the colored curves shown in Figure 6 well-contain the black 
curves. I am not sure why the authors are relying on some ad-hoc procedure to fix the issue 
instead of expanding the plausible ranges.  

First, the reviewer is correct that we are optimizing to fit the sigmoid curves to the regional ocean model 
basal melt time series.  We have clarified this in the text for future readers: “The best fits are found by a 
least-squares optimization between the fitted sigmoid curves and the original basal melting rate anomalies 
from the ocean models (Fig. 5 colored and grey curves respectively). The sigmoid parameters that 
describe the data fits are then used to generate a normal distribution that serves as the prior.”  

The other reviewer also asked about the possibility of running more simulations. Unfortunately, we no 
longer have the computer time to run more ensemble members in order to expand the plausible ranges. 
We believe the boundary-hitting behavior we see is evidence of non-identifiability (compensating 
parameter errors) rather than that the ranges are too narrow. Edge-hitting parameter estimates do not 
imply that the ‘best fit’ curves lie outside of our range. Even if we expanded the parameter ranges, the 
optimizer may still move along flat ridges of the loss function and hit the boundaries of whatever new 
ranges we imposed.  A lengthier discussion on this, along with evidence of non-identifiability in our fits 
can be found in the responses to Reviewer 1 (see the first response to General Comments, including 
figures R1 and R2.) 

At the suggestion of the reviewer, we are now recommending three different methods of extracting prior 
estimates.  One of those includes the following procedure: construct a windowed set of good parameter 
values for each ocean model, construct an (equal) mixture distribution of each of these windowed sets, 
and then fit a normal & multivariate normal distribution to this mixture of windows to form our prior.  
The reason we take the last step, instead of using the mixture-of-windows directly, is to allow for the 
possibility that other ocean models, not considered here, could lead to plausible parameter values not 
contained within the windows for any of the ocean models.  We therefore want to “smooth over” the 
mixture of windows, to assign nonzero probability to parameter settings that lie near, but not within, the 
window from any given ocean model.  This may be thought of as an approximation to the hierarchical 
Bayesian approach taken in Jonko et al. (2018), where the parameters arising from fitting each climate 
model are assumed to be a sample from an underlying multi-model distribution. We include a multivariate 
normal distribution in order to account for correlation across parameters. This is our preferred method as 
it is the most principled approach. Again, we refer the reviewer to the responses to Reviewer 1 for more 
details on all of the new methods that are included and the rationale behind each choice. 
 
 
 
 



Minor Points  

1. Related to the major point #1 above, there is an existing method to emulate the future projections 
for different forcing scenarios (Catruccio et al. 2014). I think it will be ideal to compare the 
proposed method with this approach, but it might require too much effort to repurpose this 
method for ice sheet projection. I will leave the decision to the authors, but I think it is at least 
worth mentioning this approach as a possible future direction.    

Based on Eq 1. in Castruccio et al (2014), their method using an “infinite distributed lag model” is similar 
to what Levermann et al. (2020) did in the LARMIP-2 project. They are estimating the unknown kernel 
parameter (the decay rate, or response timescale) by inverting a response to a transient forcing (the 
forcing scenarios shown in Fig. 1 in their paper). Both Castruccio et al. (2014) and Levermann et al. 
(2020) are building a reduced model based on convolving a response kernel with a forcing. However, 
Castruccio et al. (2014) parameterized their response kernel as a decaying exponential, whereas 
Levermann et al. (2020) was able to directly invert for the response kernel nonparametrically from the 
model response to a step forcing.  The reason we did not use such an approach in our work is because of 
the underlying assumption of linearity, which Levermann showed can break down in some cases 
(generally in high forcing scenarios after the first century of simulation).  However, in the future we 
might try to compare our emulator to such an approach. We have added text in the Discussion that puts 
our work in the context of the LARMIP-2 project and also references the relation of Levermann methods 
to Castruccio’s. 

Another potential idea for future work might be to recover a response function (convolution kernel) from 
each ensemble member and use an emulator to interpolate the response functions instead of the actual 
time series. Effectively, interpolate between response ‘models’ instead of responses. This may allow for 
far fewer CISM runs if each linear response model is valid over a wider range of forcings than our current 
emulator.  

 

2. The authors use Kennedy and O’Hagan (2001) as the main reference for Gaussian process-based 
emulation, but that idea should be attributed to Sacks et al. (1989). In fact the main contribution 
of Kennedy and O’Hagan (2001) is more on the calibration side rather than the emulation side.   

Thanks for the note on this – the reference has been updated to Sacks et al. (1989). 

3. Related to the major point #3 above, having estimated parameter values that are at or outside of 
the plausible parameter ranges for a model ensemble is a well-known issue in computer model 
calibration literature (see. e.g., Brynjarsdóttir and OʼHagan,2014, Chang et al., 2016, Salter et al., 
2019). In fact, this is a typical example of a ‘terminal case’ mentioned in Salter et al. (2019).   

 

This is indeed a common issue.  In our case, we believe that “edge-hitting” fits are largely is an artifact of 
non-identifiability between the sigmoid parameters, rather than misspecification / discrepancy of the 
sigmoid model of basal melt rate trajectories, or too-narrow bounded priors. This is discussed in further 
detail above. 
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