

Many thanks to the authors for their detailed responses. The revised version has improved significantly and they have responded to my comments quite well. I think the paper now warrants publication in its current form, providing that the authors take into account the following minor suggestions:

P2L35 (revised version): Saltation is physically defined as the motions of particle within the first 10 centimeters above ground (e.g. Pomeroy, 1989), not 2 m. I see a less major issue at referring to drifting snow only as saltating snow as long as it is explicitly mentioned in the text, although I'm not aware of any reference to rely on for such a statement. But surely saltation could not be reasonably defined as the motions of particles from 0 to 2 m. Please correct. The caption of Fig. 1 could also be adapted ("mobilized" or "put in saltation" instead of suspended?) as the model more likely represents the effect of saltation rather the a full saltation+suspension layer, as explained in Section 2.1.

P5L112: I'd like to see this value for roughness length discussed and put a bit in perspective of the existing observed values over Antarctica (see for instance Amory et al. 2017 for a review but plenty other references are possible).

Amory, C., Gallée, H., Naaim-Bouvet, F., Favier, V., Vignon, E., Picard, G., Trouvilliez, A., Piard, L., Genthon, C., and Bellot, H.: Seasonal Variations in Drag Coefficient over a Sastrugi-Covered Snowfield in Coastal East Antarctica, *Bound.-Lay. Meteorol.*, 164, 107–133, <https://doi.org/10.1007/s10546-017-0242-5>, 2017.

Pomeroy, J. W., A process-based model of snow drifting, *Ann. Glaciol.*, 13, 237-240, 1989.