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Abstract. At high latitudes and altitudes one of the main controls on hydrological and biogeochemical
processes is the breakup and freezeup of lake and river ice. This study uses ~26663510 time series from
across 644678 Northern Hemisphere lakes and river to explore historical patterns in lake and river ice
phenology across fewrfive overlapping time periods (1931-1960, 1946-1975, 1961-1990, 19911976-

2005, and 1931-2005). These time series show laterbreakup-dates-that the number of annual open water

days increased by 0.663 days per decade from 1931-2005 across MNerth-America—and—Europethe

Northern Hemisphere, with trends for breakup and, to a lesser extent, freezeup, closely correlating with

regionally-averaged temperature. Freezeup—Breakup and freezeup trends are—wreredisplay a

spatiotemporally complex evolution and reveal considerable caveats with these-in-Europe-neghgible

beeauseinterpreting the implications of ice phenology changes at lake and river sites that may only have

breakup or freezeup i

with-the-magnitude-at-its-largest-in-the-mestrecent-time-period-data, rather than both. These results

provide an important contribution th

by showing

regional variation in ice phenology trends through time that can be hidden by longer-term trends. The
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overlapping 30-year time periods also show evidence for an acceleration in warming trends through

Understanding the changes on both long- and short-term timescales will be important for determining

the causes of this change, the underlying biogeochemical processes associated with it, and the wider

climatological significance as global temperatures rise.
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1. Introduction

One of the main controls on hydrological and biogeochemical processes at high latitudes is the freezeup
and breakup of lake and river ice (Bengtsson, 2011; Rees et al., 2008; Stottlemyer and Toczydlowski,
1999). Ice phenology is governed by the geographical setting (heat exchange, wind, precipitation,

latitude, and altitude) and the morphometry and heat storage capacity of the water body {Jeffries-and

2004 \Wilhams—1965:\Williams—and—Stefan,—2006)(Jeffries and Morris, 2007; Korhonen, 2006;

Leppéranta, 2015; Livingstone and Adrian, 2009; Weyhenmeyer et al., 2004; Williams, 1965; Williams

and Stefan, 2006). Though preceding surface air temperatures provide a seasonal energy flux that is
well correlated with breakup/freezeup (Assel and Robertson, 1995; Brown and Duguay, 2010; Jeffries
and Morris, 2007; Livingstone, 1997; Palecki and Barry, 1986), cycles of temperature linked to large-
scale climatic indices have also occasionally been observed to impact ice phenology (Livingstone,

2000a).
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The majority of lakes and rivers that seasonally freeze are in the Northern Hemisphere and most
research has tended-to—focusfocused on breakup/freezeup dates, ice season length and ice thickness
(Duguay et al., 2003; Prowse et al., 2011). As acknowledged by the IPCC (2013), an assessment of
changes in broader ice phenology is complicated by, among several factors, the tendency to consider
only local areas. Although trends vary, there is a proclivity for breakup/freezeup records to lean toward

shorter ice seasons that are correlated with temperature trends (Table 1). Changes in ice

breakup/freezeup dates, therefore, provide an additional data source for investigating climate patterns
(Assel et al., 2003). Whilst the current literature supports observations of a warming climate, the full
spatiotemporal variation seen in smaller case studies has not been transferred to a hemispheric scale.
This is important because over the next century temperature rise is expected to continue across the
Arctic, where lakes and rivers subjected to freeze and thaw cycles are predominantly located (Collins
et al., 2013). Understanding historical patterns and changes in lake and river ice phenology is required
to confidently project future evolution and climate system feedbacks {Brewn-and-Duguay,—2011:

EmHson-etal;2048)(Brown and Duguay, 2011; Emilson et al., 2018). In the last century the number

of ice phenology observations kavehas increased markedly due to their importance for energy and water
balances (Rouse et al., 2003; Weyhenmeyer et al., 2011) and infrastructure such as ice roads (Mullan
et al., 2017). This paper explores the hemispheric spatiotemporal trends in ice phenology by
investigating an extensive database containing ~26603510 individual time series from 644678 Northern

Hemisphere study sites. FhisThe aim of this work is to use this database is-usee-to explore thehow

spatiotemporal variabiity—oftrends in lake and river ice breakup/freezeup dates and the number of

annual open water days have changed across several 30-year long overlapping time periods from 1931-

2005. Observed-changesSites with data available for the full 1931-2005 time period are therused to

investigate how short-term trends observed from 30-year long records compare to longer-term changes.

Sites with data for the full 1931-2005 time period are also compared with regional climate records-ane
atmospheric/oceanic—modesdrivers (e.q. temperature) to investigate how much of the variability te
understand-thel—respectiveroles-in driving-the-observedlake and river ice phenology patterascan be

attributed to longer-term regional climate changes.
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2. Materials and methods

The Global Lake and River Ice Phenology Database from the National Snow and Ice Data Centre (NSIDC)

(available at: https://nsidc.org/data/lake_river_ice/ — Benson et al. (2013)) provides breakup/freezeup dates for 865

Northern Hemisphere sites. In this database the freezeup date is defined as the first day in which the water is
completely ice covered and the breakup is the date of the last ice breakup before the open water season. Whilst the
specific definitions for breakup/freezeup may vary between different sites, the precise definition is thought to be
consistent at each site. Thus, if climate signals are present in the ice phenology data then they should still be
observable and broadly comparable. This database is supplemented with data from the Swedish Meteorological
and Hydrological Institute (SMHI) which contains 749 lakes and rivers using similar terminology. Data for 122
lakes and rivers were provided by the Finnish Meteorological Institute. Several sites were already in the NSIDC
dataset but were updated where necessary. The three datasets were integrated to create the Ice Phenology Database

(IPD) containing data across North America, Europe, and EurasiaRussia (Fig. 1). It is important to note that in the

Breakup Freezeup Annual Open Water Days

Lakes Rivers Lakes Rivers Lakes Rivers
NAM EUR RUS | NAM EUR RUS | NAM EUR RUS | NAM EUR RUS | NAM EUR RUS | NAM EUR RUS
1931- 64 188 5 7 9 0 14 163 6 6 5 0 13 143 5 4 4 0
1960
1946- | 104 245 24 14 8 0 27 220 24 11 4 0 22 200 24 7 2 0
1975
1961- | 128 255 26 16 6 0 49 252 27 12 4 0 47 236 25 10 3
1990
1976- 91 172 1 2 5 0 41 170 1 0 2 0 38 144 1 0 2 0
2005
1931- 44 39 1 0 3 0 9 36 1 0 2 0 7 28 1 0 1 0
2005

later part of the 1980s and 1990s data for many Russian and Canadian sites stopped-recoreing-data—are not recorded

[}

in the database.

Table 2: Summary of the number of sites with at least 90% annual data available for breakup, freezeup, or annual

open water days across the five time periods and geographical regions.

Prior to 1931 data are sparse and many of the longer time series have been explored by Magnuson et al. {20005}

and-Benson-et-ak(2000) and Benson et al. (2012). To understandinvestigate the spatiotemporal patterns of ice

phenology, feurfive overlapping time periods were studied: 1931-1960, 1946-1975, 1961-1990, £8911976-2005,
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and 1931-2005. These are investigated across three broad areas: North America, Europe, and Russia. All study

sites in the database which fall within these time periods and have a maximum of 10% missing values were
included. These specific time periods hawe-beenwere chosen as they offer the opportunity to include as much data
from the IPD as possible. Initial analysis showed that of the 1736 lakes and rivers in the IPD, 44678 sites had data

with-at-least> 90% eeverageannual data for either freezeup or breakup for at least one of the time periods within

one of the three regions. The number of sites contained within each time period—Fhese-data-provide=~2600 and for

each geographical area is shown in [Table 2. The final dataset provides 3510 individual time series ane-are-spread

across the Northern Hemisphere (Fig. 1a)). but are—primarily concentrated in North America (Fig. 1b) and

FennescandiaEurope (Fig.1e). Fime-series-covering-Data on breakup, freezeup, and annual open water days for

the 1931-2005 time period were available—with-88-sites{threerivers)-having-breakup-data for 87, 48-sites{two
rivers)-with-—freezeup-—data, and 37 sites
respectively (Fable2). The majority of these sites the-majority-in-Nerth-America-are to-the-east-and-west-ofclustered
around the Laurentian Great Lakes (Fig=%e)—tn-nerthwest Europe-thesites-are-predominanthy-nin North America
Sweden and Finland (Fig: 28)-with-one-site{ej-da-San-Murezzan)-in SwitzerlandEurope. In Russia there is only

one site in the southwest of Lake Baikal.
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Figure 1: (a) Map showing the three main study sites{areas. The red and green circles)y-#4th in panels (b-d) are

lake and river sites, respectively, that have time series containing at least 90% coverage for breakup and/or freezeup

during at least one time period.

in-panels{a-e)-are-usedThe majority of river sites are located in Canada, with Russia only having data available for

lakes. The geographical extent used in panels (b-d) for each region of interest are the same in subsequent figures.

Breakup/freezeup dates were first converted to Jutanordinal days. For some sites, freezeup or breakup in a specific

year occasionally fell in a preceding or succeeding year and the Jutianordinal date reflects this by providing a
relative date — i.e. if freezeup for the 1941 ice season occurred on 5" January 1942 then the Julianordinal day
allocated was 370. Likewise, if breakup for the 1943 ice season occurred on the 28" December 1942 then the
Jubianordinal date allocated was -3. These records were adjusted as necessary to calculate the number of annual

open water days. The Juhianordinal day records were tested using the Mann-Kendall test where the null hypothesis

{H-of no trend was tested against the alternative hypothesis {-}-that there is a monotonic trend in the time series.

The Mann-Kendall test is a nonparametric test which detects trends without specifying if it is linear or nonlinear.

It does not, however, calculate trend magnitude, so Sen’s slope was also used (Yue et al., 2002). Fhese—twe

statistical-techniques-are-explained-briefly-below-and-aA full definition-is-provided-bydescription of these combined

methods can be found in Salmi et al. (2002). These two statistical techniques are commonly used in climate and

environmental science as they can account for missing values. These methods were applied to all sites with at least

90% data ([fable™2) for each individual time period to document the significance (0<0.1), the magnitude of the

slope, and decadal change derived from that magnitude. The 90% allowance means that the maximum number of

sites were used for each of the five time periods. The trend magnitudes and directions were converted into the

number of days change per decade in the date of breakup/freezeup or number of annual open water days at each

site during each time period. The magnitude of the decadal change is mapped for all sites, with those that are

statistically significant clearly identified in the symbology. To investigate short-term variations on the 75-year time

period, residuals were calculated for breakup, freezeup, and open water days. Similar to Sharma and Magnuson

9
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(2014), a range of running means were applied, with an 11-year window shown to be most useful for the 75-year
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A range of climate variables and atmospheric/oceanic modes of variability were downloaded from KNMI Climate

Explorer (http://climexp.knmi.nl/) to facilitate examination of potential regional drivers of ice phenology change.

Monthly mean temperatures and precipitation were extracted from the Climatic Research Unit (CRU) Time-Series
(TS) Version 4.01 (Harris et al., 2014). CRU TS4.01 applies angular-distance weighting (ADW) interpolation to
monthly observational data derived from national meteorological services to produce monthly gridded mean
temperatures and precipitation at a spatial resolution of 0.5° latitude x 0.5° longitude. Wind speed data were
extracted from the International Comprehensive Ocean-Atmosphere Data Set (ICOADS) 2-degree Enhanced
Dataset, which provides simple gridded monthly wind speeds for 2° latitude x 2° longitude grid boxes (Freeman et
al., 2017). -All these data were downloaded as a spatially averaged regional time series for three geographical

regions —~enneseandia-(FENencompassing only study sites with data for the full 1931-2005 time period — Europe

(EUR): 57.5-68.5°N, 12-29°E; North America (NAM): 42.5-47°N, 73.5-95.5°W; and Russia (RUS): 51.5-52°N,
104.5-105°E. Data were extracted for 1931-2005 to correspond with the length of the IPD. \We elected for this
regionalised strategy because (1) the computational and human resources needed to analyse climate records for

each individual site are vast; and (2) we were interested in establishing broader regional climate drivers of ice

phenology rather than developing correlations with local climate, which we would expect to be very strong. For

1931-2005 monthly data on the Arctic Oscillation (AO) (Thompson and Wallace, 2000), the Atlantic Multidecadal
Oscillation (AMO) (van Oldenborgh et al., 2009), ane-the North Atlantic Oscillation (NAO) (Jones et al., 1997),

and the Southern Oscillation Index (SOI) (Ropelewski and Jones, 1987) were also extracted.

Ice breakup/freezeup records from the IPD were spatially averaged into three regional composite records

corresponding to the three geographical regions (FENEUR, NAM, and RUS) defined above. Statistical

11
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relationships were then examined between ice breakup/freezeup dates and climate records (maximum temperatures
and modes of variability) using Pearson Product-Moment Correlation. These relationships were analysed on a
monthly basis, first for each of the twelve calendar months, and second for twelve sliding windows of three-month

means (e.g. mean of January, February, March, then mean of February, March, April etc.).

3. Results: Ice phenology change

A climate regime with increasing mean air temperatures would be expected to increase the number of annual open

water days for sites with-seasenal-freezing—Thisreduction-in-ice-covercould-resultfrom-that seasonally freeze
through earlier breakup; and/or later freezeup dates-era-combination-of-beth-that-leaves-arelative-inerease-in-the

number-of-opep-waterdays—Decadaltrends, The decadal trend for the number of annual open water days allows

for an integrated observation of breakup/freezeup date changes relative to each other — i.e. the longevity of ice

eoversopen water, rather than a specific shift in the precise breakup/freezeup/sreak dates. Fhe-statistical-analysis

in-the-magnitude-of that reduction-through-time—[n this section the generalpatterns-results from the Mann-Kendall

and Sen’s slope analysis gre presented befere-an-in-depth-analysis-of the-changes-observed-in-for the three main

study areas—Re-the e D005 seapds fop sirec v coptiapars antos

latitude—This—is-the-case—for-both-Europe-and North America, but-netEurope, and Russia;—tikehy-owing-to-the

extensive-geographical-spread-of only-a-few study-sites.. In Europersuecessivetotal, 678 study sites provide at least
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one time series with > 90% complete annual data across the four 30-year, time periods shew-a-general-shift-toward

evidenced-by-_time period, with 3510 individual time series available (T@ble"2). A summary of the inereased

elustering-of-breakup/freezeup, dates within-the-first-100-daysavailable for each of the four 30-year during199%-

~time periods is presented in Fig.2. These

data are used to determine decadal trend directions that have been summarised in Fige8 and in [Fable’8 as mean

changes in breakup/freezeup dates, and the number of annual open water days. The general trends are first

presented, before looking at the spatiotemporal trends across the three study regions.
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Figure 2: Summary graphs showing breakup and freezeup dates against latitude for the-three-short-timeperiods:

Red-andall lake and river sites included in each of the four 30-year long time periods. The data are colour coded by

region on the key. The numbers that are adjacent to the recorded dates are R? values for each set of regional data.

These are also colour coloured coded on the key — e.g. light blue data shows the median breakup dates for North

America and an R? value between median date and latitude of 0.52. The underlying grey points representstuey-site

dates that were recorded for each site in each time period. Note that some European breakup observations between

1961-1990-demonstrate that breakup occurred in the December preceding the start of that years” open water season

—i.e. avery early winter cessation of the ice season. Likewise there are sites in all study areas where freezeup dates

were sufficiently late that it did not occur until late in the winter season — i.e. January of February of the following

year.

3.1. General trends
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The combined time series and spread of dates for breakup/freezeup across each time period
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is summarised in Eige2. In North America across all time periods the majority of sites are in a band of latitude

between 42-55°. There is a moderate correlation between median breakup dates and latitude, with the R? values

typically > 0.50 showing that breakup date becomes later with increasing latitude (Fig2). The one exception to

this is for the 1976-2005 time period where the R? value is 0.27. However, one site in the northwest of the region

has a latitude 16° more northerly than any other site and appears to skew the correlation as when this outlier is

removed the R? value increases to 0.48. An additional caveat is that this time period also marks a reduction in the

latitudinal range of the sites included in the database. Median freezeup dates in North America also show a moderate

correlation (R? = 0.49-0.59) with latitude, with freezeup occurring earlier in the year with increasing latitude.

Similar to breakup, the 1976-2005 time period shows the weakest correlation, but is not associated with an

anomalous high latitude site. Unlike North America, where sites cover a wide range of longitude, in Europe the

data are generally restricted to a narrower range in Sweden and Finland (Fig=d). In all four of the 30-year time

periods there is a strong correlation (R? = 0.77-0.86) between median breakup dates and latitude (Fige2). Freezeup

15



P65

66

P67

68

P69

70

P71

D72

D73

D74

P75

D76

dates appear to show some association with latitude, but trends are very weak in the first two time periods (R? =

0.19-0.21) and weak in the last two (R? = 0.39-0.42). The range of breakup/freezeup dates recorded at European

sites (qrey points in [EiG8) become more scattered through time, especially south of 60 °N. This shows greater

variability in breakup/freezeup dates at lower latitude sites and that the time window in which ice breakup/freezeup

occurs appears to have become wider from 1961-2005. These date shifts also show that in the latter two time

periods, compared with the first two time periods, there is an increased occurrence of breakup dates within the first

40 days of the year and freezeup dates shifting to a later part of the winter season — i.e. freezeup not occurring until

January and February of the following year. The wide longitudinal and latitudinal spread of a comparatively small

number of lakes in Russia for any time period (T&BIEN2) precludes any confident correlations or associations.

Although it is sporadic and not consistent in study areas or time periods, additional analysis of all the lake and river

sites show that occasionally median dates were weakly or very weakly (R? = 0.05-0.25) correlated with other

criteria such as lake area and elevation.
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Figure 3: Summary charts showing generalised decadatpatternstrends for all the sites contained within each of the

30-year time periods. The percentages are calculated as a proportion of the total number of sites for each time
period (bold text — e.g. in the first panel, across the-Nerthern-Hemispheredata-all sites there are 263273 sites with

1991-20051931-1960 breakup data—Nete-that). The trends are derived from the Mann-Kendall analysis for each

site, where the direction and statistical significance («<0.1) are recorded as a warming, cooling, or no trend. A

warming trend for breakup or freezeup dates is determined by a negative (earlier date) or positive (later date) trend,
respectively. A cooling trend for breakup or freezeup dates displays a positive (later date) or negative (earlier date)
trend, respectively. For the number of annual open water chartsdays a positive trend-Mann-Kendall value indicates

an increase-ir-the-number-of-annual-open-waterdays. Sig. Warming/Cooling on the key indicates sites where that

trend was statistically significant.
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BO9

B10

B11

B12

B13

B14

B15

is-the-small-sample-size-for-For each 30-year time period the proportion of trends displaying warming and cooling

trends have been summarised in [EiG8. This shows that through time the proportion of sites displaying warming

trends has increased. Freezeup and the number of annual open waters days display a gradual increase in warming

trends through time, and an increase in the proportion of sites with statistically significant warming trends. Mean

decadal values show a gradual reduction in cooling trends from 1931-1960 to an increased warming during 1976-

2005, albeit with high standard deviations when averaged across all sites (J@BIER). Despite this consistent pattern

when observed at the three regional scales (discussed below), the proportion of warming and cooling patterns tend

to fluctuate between the different time periods. It is only freezeup changes in Europe that show a similar pattern to

that observed for all freezeup sites when combined, likely reflecting that data in Europe provides a larger proportion

of the total number of sites (Eili8). What is common amongst all sites is that the 1976-2005 time period displays

the largest proportion of sites with warming trends, with the exception of Russia (which has only one site), for

freezeup and the number of open water days. For breakup the warming pattern for all sites also shows a longer-

term increase through time that is interrupted by an increased proportion of sites displaying cooling trends from

1946-1975 (EiGl8). This appears to be largely driven by an increase in the proportion of sites in Europe during that

time period displaying either cooling or significant cooling trends. A similar interruption is also observed in North

America, but is followed during 1961-1990 by a major increase in the number of warming trends. Similar to

freezeup and the number of annual open water days, the mean decadal change for all sites shows warming trends

develop and increase in magnitude by 1976-2005, again with the caveat that the standard deviation is high enough

to switch trend direction (HEBIEH). The limited number of Russian sites with breakup data show a decrease through

time in the proportion of cooling trends (FiGHS).
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For breakup, freezeup, and annual open water days there is general pattern towards warming through time and

mean values increase in the magnitude of change. This increase in magnitude is sufficient so that during 1976-2005

breakup is 2.81 days per decade earlier (c = 2.18) and the number of annual open water days increased by 5.83 per

decade (o = 4.08) for all sites. The standard deviation from these sites is lower than the mean magnitude of change

meaning variation higher than one standard deviation is required to potentially move across a zero value and change

trend direction — i.e. whilst the standard deviation is larger than most other time periods, the higher magnitude

means that more of this variability is in one trend direction ([FEBIEI8). A difference is also observed for the evolution

of lakes and rivers, where rivers appear to show a more consistent warming pattern for breakup, freezeup, and the

number of annual open water days through time (TEBIEIS).
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1960-and-these-are-again-concentrated-around-the- Great-Lakes(EigMean trends show breakup dates became 1.27

days per decade (o = 2.63) later during 1946-1975, with the trend driven largely by lakes with later breakup dates

(IEEBIEI8), many of which are statistically significant ([Eiili8). From 1961-1990, most sites display earlier breakup

trends, with a mean change of 2.98 days per decade (c = 1.88) (T@BIEH). Nearly half of all sites display significant

breakup trends (FiSH8IAE), many of which previously displayed significant later breakup trends (EiGili8). Four

sites show later breakup trends, of which one is geographically-isolated and the others are surrounded by lakes with

earlier breakup trends, many of which are significant. This suggests local factors, such as human modification of
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for local-scale heterogeneity. From 1976-2005 sites are clustered around the Great Lakes and demonstrate partial

changes compared to the preceding time period (FEil§). Whilst 72% of sites trend towards earlier breakup (FEil
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66  change for lakes, at 1.16 (o= 1.39), is double that for rivers, at 0.56 (o.= 0.81) (@BIEH). The standard deviation

167  continues to show considerable variation around the mean.
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f-and-}inFennoscandia-forthe three-individual-time perieds:From 1931-1960 no clear geographical pattern exists,

with 25% of sites displaying significant later freezeup trends for rivers and lakes (Eifi8). Mean decadal trends

show freezeup was 0.85 days per decade later, but this is associated with a high standard deviation (¢ = 3.16) and

a large difference in the mean trends for lakes and rivers ([EBIEI8). During 1946-1975, spatial patterns remain

varied (FEil48) and sites with significant later and earlier freezeup trends each account for 10.5% of all sites (Eifl

B). Significant sites are both rivers and lakes and unlike breakup do not appear to be clustered east of the Great

Lakes. The mean trend for lakes remains low at 0.17 days per decade earlier (c =2.29), whilst rivers are comparably

higher with freezeup occurring 1.22 days per decade (¢ = 4.42) later (-). Freezeup date changes during 1961-

1990 show that sites in the west more commonly trend toward earlier freezeup and in the east toward later breakup

(EiG4H). Compared with the breakup trends for the same period, and freezeup trends for the preceding period, the

proportion of sites with significant earlier (4.9%) and later (3.3%) freezeup dates is smaller (-). The mean

decadal trend of 0.18 days per decade (o = 1.97) earlier freezeup dates for lakes and rivers combined is weaker

than observed for earlier breakup during the same period (TR&BIEI8). From 1976-2005, freezeup trends demonstrate

32



603  aclear pattern, with no sites displaying earlier freezeup trends (Eiga4K) and 39% of sites showing significant later

604  freezeup trends (Fig.8). This is markedly different to all other time periods where spatial patterns were much more

605  varied in the Great Lakes region (Eig.4h). There are no river sites with freezeup data for this time period ([fable’2)

606 and mean values for lake changes show that freezeup was becoming later by 3.61 days per decade (0. = 2.32) (Tablé

07 [).

Freezeup

1931-1960

1946-1975

1961-1990

1976-2005

Days per decade change in breakup date Days per decade change in freezeup date Days per decade change in open water days
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609 Figure 4: Decadal trends for breakup (a, d, g, and j), freezeup (b, e, h, and k), and the number of annual open

610  water days (c, f, i, and I) in North America for the four individual time periods. The trend directions and magnitudes

611 were derived from the Mann-Kendall and Sen’s Slope tests. The triangles and circles indicate whether the trend
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was or was not statistically significant. Sites with a dot in the centre of the circle are river sites. BlueThus, a red

triangle symbol with a dot in the middle indicates a river site that has a statistically significant warming trend over

that time period. The blue and red tones on the scales are related to cooling and warming sigralstrends, respectively.
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Trends for annual open water days during 1931-1960 are broadly similar to those for freezeup, with a comparable

number of sites showing more or fewer open water days (Ei§ll48). Four of the 17 sites show significant trends (note

that two sites overlap on [Eil48) and this variability reflects the low mean value of 0.29 fewer annual open water

days per decade (c = 4.82) and is mostly associated with lakes (TaBIEI8). From 1946-1975 the number of annual

open water days closely matches breakup trends, with 20.7% of sites displaying significant trends towards a
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decrease (Eil8). all of which are east of the Great Lakes (FEi§il4). Reduced annual open water days are observed

for lakes rather than rivers, which display a mean increase ([RBIEI8). Annual open water days during 1961-1990

are similar to breakup patterns during the same period, including in western Canada where freezeup dates were

earlier (FiG40). The low magnitude of freezeup trends compared to high magnitude breakup trends in the same

area are having a larger impact on the number of annual open water days. The majority of sites trend towards more

open water days, with 26.3% being significant (Fill8) and spread across North America (FEiGll4). The mean

magnitude of change shows the number of annual open water days increased by 2.77 days per decade (o= 3.12)

with the changes for lakes being larger in magnitude than rivers (TE8BIEI). Most sites with data for the number of

annual open water days in the preceding time period show the trend direction changed or reduced in magnitude,

even when the 1946-1975 trend was a significant reduction in open water days (_). Patterns from 1976-

2005 reflect that most sites display earlier breakup and later freezeup dates, extending the length of the open water

season by 4.15 more days per decade (o = 2.84) (TABISIBNEIGNA]). In total, 36.8% of sites display significant trends

towards more open water days ([Ei§ll8), maintaining warming trends from the preceding time period but with less

variability in the magnitude of that change.

3.3. Europe

In Europe, 1931-1960 breakup trends show a proclivity for sites to display non-significant earlier breakup or no

trend at all (Fil8). Most sites trending towards earlier breakup dates are at higher latitudes compared to those

displaying later breakup (Fijll58). The lack of observable trends is reflected by the low magnitude of the mean

trend towards earlier breakup by 0.10 days per decade (o = 1.29) for lakes and rivers ([F@BIER). In 1946-1975 most

sites show later breakup dates by 1.75 days per decade (a.= 1.31) ([F@BIEI8). with the only observable spatial pattern

being that of the 22.1% of sites displaying significant later breakup trends (Ei#8). most are located in areas where

earlier breakup was common in the preceding time period (Eiil58). By 1961-1990 decadal breakup trends switched

from predominantly later to earlier breakup. Of the 261 sites, 53.6% display earlier breakup, with a further 8.8%

being significant [EiG#8). with a change toward earlier breakup dates by 0.82 days per decade (o = 1.25), but the

variability remains large enough that one standard deviation of change is enough to switch trend direction (TaBIE

B). Northern sites make up the majority with significant earlier breakup trends for both lakes and rivers (EigH5g).

There remains spatial variability, with 12.6% of sites showing later breakup trends. The magnitude of the trend
39
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towards earlier river breakup dates is almost three times that of lakes (T&BIEI). From 1976-2005 most sites display

earlier breakup trends (EilB]). of which 72.3% are significant (Eil8). During this period the breakup date has

become earlier by a mean of 3.70 days per decade (o = 2.00), with the magnitude of change experienced in lakes

over double that for rivers (TEEBIER).

During 1931-1960, a total of 45.2% of sites display earlier freezeup, with a further 22.6% being statistically

significant ([EiGEH81 BB). Freezeup decadal trends show lake freezeup became earlier by 2.31 days per decade (.=

3.43) (WEBIEIS). The large standard deviation reflects highly variable trend magnitudes towards both later and earlier

freezeup (EiGBB). The five river sites trend towards later freezeup dates by 3.52 days per decade (.= 3.17). From

1946-1975, spatial patterns in southern Finland (EiliB8), where many sites previously displayed significant earlier

freezeup dates, there is now considerable variability, more so than for breakup (Ei§ll58), with both earlier and later

significant freezeup trends. Compared to 1931-1960 there is a considerable drop in the number of sites displaying

significant earlier freezeup trends to 8.4% ([Eil8). Mean lake decadal trends show earlier freezeup reduced to 0.78

days per decade (o = 3.27), but with considerable variation (TE&BIEI8). Rivers continue to have opposing trends, but

also experienced a reduction in trend magnitude. During 1961-1990 there is a clear increase in sites displaying later

freezeup trends and a reduction in trend magnitude for sites showing earlier freezeup (EiGlBH). Freezeup and

breakup trends in Sweden both display a warming pattern, whilst in Finland they are generally opposed (EiGl5al

BH). The decline in earlier freezeup lake trends is now characterised by later freezeup of 0.34 days per decade (o=

2.17) (TEBIEM8). In the final time period the region is characterised by later freezeup trends (EiGHIBK). which is

similar to breakup trends (Eili5]). Later freezeup trends account for 52.9% of sites, with anather 21.5% displaying

significant later freezeup. A small number of sites display significant earlier freezeup trends, but these are out of

synchrony with the wider area (FiGIBK). This time period is the culmination of a gradual reduction in earlier

freezeup trend magnitude for lakes during 1931-1960, before a switch to later freezeup dates, and then a magnitude

increase in later freezeup date to 2.51 days per decade (o = 3.05) (E&BIEI). Through all four time periods rivers

have displayed trends towards later freezeup dates (TEBIERE).
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Figure 5: Decadal trends for breakup (a, d, g, and j), freezeup (b, e, h, and k), and the number of annual open

water days (c, f, i, and I) in Europe for the four individual time periods. The trend directions and magnitudes were

derived from the Mann-Kendall and Sen’s Slope tests. The triangles and circles indicate whether the trend was or

was not statistically significant. Sites with a dot in the centre of the circle are river sites. The-amplification-of-high
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Thus, a red triangle symbol with a dot in the middle indicates a river site that has a statistically significant warming

trend over that time period. The blue and red tones on the scales are related to cooling and warming trends,

respectively. Note that in some places the symbols overlap.
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Spatial patterns in the number of annual open water days from 1931-1960 (FEiGlB8) are similar to those observed

for freezeup, with most sites displaying decreases (Eili8). Across all sites a mean reduction of 2.09 days per decade

(0= 4.06) is associated with considerable variation, whilst lakes and rivers show opposing trends ([E&BIER). During

1946-1975 open water days (Eil5H) remain broadly similar to freezeup trends patterns for the same period (il

.) albeit with local-scale changes that appear to be associated with significant later breakup trends in southern

Finland (-). The proportion of sites showing fewer open water days remains broadly the same, as do mean

trend values (FiIBITEBIEIS). The increased trend magnitude for river open water days is halved compared to the

previous time period, but this reflects the fact that only two river sites have data. Spatial patterns for open water

days during 1961-1990 (EiglBi) closely resemble breakup (EiflB8). except for southern Finland where earlier

freezeup trends (EIGHBHA) cause several sites to display fewer open water days. Most sites show an increase in open

water days (Ei8). with a mean increase of 1.81 days per decade (o= 2.84) ([F&BIEN). From 1976-2005, trends in

the number of annual open water days are similar to breakup (FiGSNSINS]), with a near-uniform increase, with

50.7% of sites significant (). A minority of sites showing fewer open water days have breakup and freezeup

dates becoming earlier during the time period — i.e. earlier freezeup trends are strong enough to reduce the open

water season. Earlier breakup and later freezeup trends lead to a mean increase in open water days of 6.30 days per

decade (« = 4.22) (TEABIEI8). with the trend being considerably stronger for lakes than for rivers.
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BREAKUP FREEZEUP OPEN WATER
SITE 1931-60|1961-90 §1931-60|1961-90 § 19231-60 [ 1961-90
LAKE BAIKAL il 0.0 -1.8 3.0 -2.1 3.3
LAKE BAYKAL [P.BUKHTA) -0.6 -0.9 2.5 =kl 3.3 =1l
LAKE KUBENSKOYE (PESKI) 1.4 -1.2 -3.9 0.0 -5.8 1.5
LAKE LATCHA 0.6 -1.5 -3.0 =i -4.4 -2.3
LAKE SENEZHSKOYE - - -3.3 0.0 - -
LAKE TELETSKOYE L7 -2.0 -2.0 1.9 -3.3 3.6

48




Breakup i Freezeup Open Water Season

Days per decade change in breakup date Days per decade change in freezeup date Days per decade change in open water season
o000 00 c0oe0e00ee o000 0 0 ¢ ceeceeee L IR o000 0e
1412108 6 4 2 0 2 4 6 8 101214 1412108 6 4 2 0 2 4 6 8 101214 28242016128 4 0 4 8 1216202428
BS8 Later Earlier Earlier Later Shorter Longer

889

890

891

892

893

894

895

896

897

898

899




D02

D03

D04

D05

D06

B07

D08

D09

D10

D11

D12

D13

50



| FENNO:
STUDY SITE 1931-60 | 1961-90 | 1991-05 || 1931-05 STUDY SITE

[AZISCOHOS LAKE 06 42 | 7 03 ACKLINGEN
BLACK OAK LAKE 08 13 05 ALA-KIVIJARVI - YLA-MUNNI (1489)
BONAPARTE 17 5, 09 06 [ALA-RIEVELI
CAZENOVIA 0.0 44 12 ANKARVATTNET
COBBOSSEECONTEE LAKE 09 43 00 09 BALUNGEN
DAMARISCOTTA LAKE 06 22 08 DAMMSJON
DETROIT 18 -19 0.0 05 GIERTSJAURE
EAST OKOBOJI LAKE 54 29 00 HAUKIVES|
EMBDEN POND 00 38 03 INRE-KLIPPTRASKET
FIRST CONNECTICUT LAKE 13 | 29 00 JAASJARVI SW
GEORGE 14 29 11 05 JUKKASJARVI
HOUGHTONS (HOOSICWHISICK) POND 13 14 KALLSJON
KEZAR LAKE -14 29 50 06 KITUSJARVI (3548)
LAKE AUBURN -06) | 14 1.0 KUKKIA - PUUTIKKALA (3512)
LAKE MENDOTA 25 00 09 LAKE NASIJARVI
LAKE MONONA 00 14 LANDOGSJON
LAKE SUPERIOR AT BAYFIELD 26 33 20 LANGELMAVESI - KAIVANTO (3506)
LAKE WINNIPESAUKEE 10 17 02 LAPPAJARVI - HALKOSAARI (4703)
LOON 41 23 07 LEIPIKVATTNET
MARANACOOK LAKE 0.0 43 07 LEJ DA SAN MUREZZAN
MINNETONKA 10 25 07 LENTUA I
MINNEWASKA 31 33 03 LESTIJARVI 15 05 33 08
MIRROR 06 03 LILLA SKEPPTRASKET 0.0 -12 00
MOHONK 08 086 MALMAGEN 08 11 07
MOOSEHEAD LAKE 00 33 02 NACKTEN 02 -09 04
ONEIDA 11 33 02 NORRA HORKEN 04 -1.0 07
OTSEGO 0.0 07 OULUJARVI 24 20 1.0
PLACID -14 33 05 OVERSTJUKTAN 06 0.0 00
PONKAPOAG POND 26 PIELINEN 25 23 08
PORTAGE LAKE 0.0 38 06 RIVER TORNIONJOKI -05 26 03
RAINY 00 30 08 SADDAJAURE 04 30 07
RICHARDSON LAKE 11 27 0.1 SADUGGEN 14 0.0 15
ROCK LAKE 32 43 12 SILIAN 09 1.3 08
SCHROON 14 33 09 SIMPELEJARVI 00 13 09
SEBEC LAKE 00 27 04 STORSJON 00 05 00

HELL LAKE 2 3 06 TASION 00 O Ry
SKIFF LAKE 12 33 a4 10 TORNEALVEN VID HAPARANDA 10 25 00
SUNAPEE LAKE 06 47 o0 f 08 [ TORNETRASK 21 38 1.2
SWAN LAKE 00 20 06 VASTERVATTNAN 19 -15 00
UMBAGOG LAKE 11 28 03 VIKARSJON 07 7 04
VERMILION 09 26 42 02 VISUVES! 14 0.0 07
WEST GRAND LAKE 00 38 | 50 f 03 YLA-KIVIJARVI - JURVALA 08 00 03
WEST OKOBOJI LAKE 6.0 38 03 YTTRE-KLIPPTRASKET 13 12 00
WHITE BEAR 14 29 14 02
|
RUSSIA 44 14

STUDY SITE 1931-60 | 1961-90 | 1991-05 || 1931-05 : @
LAKE BAIKAL | 11 [ oo [ 50 f oo
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D69

D70
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D72

D73

D74

STUDY SITE 1931-60 | 1961-90 | 1991-05 | 1931-05 STUDY SITE
CAZENOVIA 40 05 11 KITUSJARVI
EAST OKOBOJI LAKE 45 25 03 KUKKIA - PUUTIKKALA
LAKE MENDOTA 07 12 09 LAISAN
LAKE MONONA 10 00 13 LAKE KALLAVES!
LAKE SUPERIOR AT BAYFIELD 21 04 25 LAKE NASIJARVI
MIRROR 17 12 07 LAKE PAWANNE
PLACID 31 00 02 LANDOGSJON
SHELL LAKE 08 00 13 LANGELMAVES! - KAIVANTO
'WEST OKOBOJI LAKE -33 -16 0.0 LAPPAJARVI - HALKOSAARI
LEIPIKVATTNET
LENTUA
RUSSA LESTIJARVI
STUDY SITE [ 1931-60 | 1961-90 | 1991-05 || 1931-05 OULUJARVI
LAKE BAIKAL | 18 | 30 | 50 f 10 OVERSTJUKTAN
PIELINEN
RORSJON
FENNOSCANDIA SADDAJAURE
STUDY SITE 1931-60 | 1961-90 | 1991-05 || 193105 SADUGGEN
ALA KINTAUS SW 56 15 SILIAN
ALA-KIVIJARVI - YLA-MUNNI 26 09 SIMPELEJARVI
ALARIEVELI 47 1.0 STORSJON
ANKARVATTNET 0.0 0.0 TASJON
BALUNGEN 19 00 TORNETRASK
GIERTSJAURE 08 00 VASTERVATTNAN
HAUKIVES! 26 08 VIKARSJON
[JAASJARVI SW -30 0.0 | YLA-KIVIJARVI - JURVALA
“[JAKARN 31 07
SUKKASIARV] 06 K |
KALLSJON 07 06 2 o 20
KAML T 35 00

Days per decade change in freezeup date
°

® cee
3210123
Earlier Later
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D96

D97

D98

B99

P00

P01

D02

P03

D04

D05

NORTH AMERICA
STUDY SITE 1931-60 | 1961-90 | 1991-05 J| 1931-05 STUDY SITE
EAST OKOBOJI LAKE 117 15 00 KUKKIA - PUUTIKKALA
LAKE MENDOTA 55 60 75 14 LANDOGSJON
LAKE MONONA -1.7 18 50 23 LANGELMAVESI - KAIVANTO
LAKE SUPERIOR AT BAYFIELD 22 22 38 LAPPAJARVI - HALKOSAARI
MIRROR 26 46 100 13 LEIPIKVATTNET
PLACID 39 30 18 10 LENTUA
WEST OKOBOJI LAKE -10.0 19 10.0 0.7 LESTIJARVI
OULUJARVI
OVERSTJUKTAN
il PIELINEN
STUDY SITE 1931-60 | 1961-90 | 1991-05 | 1931-05 SADDAJAURE
LAKE BAIKAL 21 | 33 | 20 f 15 SADUGGEN
SILJAN
SIMPELEJARVI
FENNOSCANDIA STORSJON
STUDY SITE 193160 | 1961-90 | 1991-05 [ 1931-05 TASJON
[ALA-KIVIJARVI - YLA-MUNNI 50 05 00 TORNETRASK
ALA-RIEVELI 41 1.0 03 VASTERVATTNAN
ANKARVATTNET 00 23 VIKARSJON
BALUNGEN EX 12 VLA KIVIJARVI - JURVALA
GIERTSJAURE 04 33
HAUKIVESI 22 10
JUKKASJARVI 1.0 31
KALLSJON 20 07
_i?ITUSJARVI 44 5.0

Days per decade change in open water season

o000 LN ]
432101234
Shorter Longer




P06

P07

P08

D09

D10

D11

D12

D13

D14

P15

D16

D17

D18

D19

D20

D21

022

D23

D24

D25

D26

027

028

NAME BU [ FU [OW]

SADUGGEN

SILJAN (STORSILJAN SO SOLLERON)

NAME NAME

ALA-KIVIJARVI - YLA-MUNNI LANDOGSION

ALA-RIEVELI LANGELMAVESI - KAIVANTO
ANKARVATTNET LAPPAJARVI - HALKOSAARI
BALUNGEN LEIPIKVATTNET
GIERTSJAURE LENTUA

HAUKIVESI LESTUARVI

JUKKASIARVI QULUJARVI

KALLSJION OVERSTIUKTAN
KITUSJARVI PIELINEN

KUKKIA - PUUTIKKALA SADDAJAURE

SIMPELEJARVI

STORSJON

TASION

TORNETRASK

VASTERVATTNAN

VIKARSION

YLA-KIVIJARVI - JURVALA
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In Russia there are only a few sites across the four 30-year time periods with breakup, freezeup, or open water day

data, with the 1976-2005 time period only having one site at Lake Baikal (H&8BIEI). The majority of the data are

clustered in northwest Russia, with a number of individual sites spread out across the Kazakhstan border region

and around Lake Baikal in the east (Ei§ll). The lack of spatiotemporal consistency makes it difficult to determine

any prevailing trends. Broadly there is a reduction in the number of sites displaying later breakup dates through

time (Fi8). as is also reflected by the changes in mean breakup date from 0.83 days per decade (o = 0.79) later

in 1931-1960 to 0.83 days per decade (c. = 1.83) earlier from 1961-1990 (aBIEMS), albeit with the latter associated

with more variability. For breakup trends, in the northwest there are two sites with continuous data across the first

three time periods (_) and these show a gradual change from later to earlier breakup through time.

The adjacent sites in this area also show a tendency for earlier breakup dates during these time periods. The border

region sites generally display earlier breakup dates, many of which are statistically significant during the 1946-

1975 time period. Around Lake Baikal there is considerable variation between different sites, with no dominant

trends, even for the one continuous site through all four 30-year time periods (FEigHe]).

Between the four 30-year time periods, sites with freezeup data covering at least two time periods demonstrate

considerably more variation than breakup (EiGHEBNBEN6H). Between different time periods the freezeup dates for

the same sites can move in opposing directions, and in some cases, such as in the Kazakhstan border region, these

freezeup date changes have been significant. Long-term there is an apparent reduction in the number of sites

displaying earlier freezeup trends (Eil8). but this is caveated by the low number of sites with data and the much

larger standard deviations associated with decadal trends (FE8BIEI8). Changes in the number of annual open water

days across Russia capture a slightly more consistent pattern compared to changes in breakup and freezeup dates,

but it remains spatially chaotic, with no dominant spatial patterns observable (_). In all three regions

northwest Russia, the Kazakhstan border region, and around Lake Baikal there is a shift through time for most sites

with continuous data to display more annual open water days per decade, a number of which are statistically

significant (Ei#8). However, these values are again associated with considerable variation around what is generally

a low magnitude decadal mean ([E8BIENS). The one site with continuous data through all four time periods, Lake

Baikal, shows a gradual switch from fewer annual water days during the first time period, to no observable trend,

before demonstrating more open water days in the final two time periods, suggesting a gradual warming signal.
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Figure 6: Decadal trends for breakup (a, d, g, and j), freezeup (b, e, h, and k), and the number of annual open

water days (c, f, i, and 1) in Russia for the four individual time periods. The trend directions and magnitudes were

derived from the Mann-Kendall and Sen’s Slope tests. The triangles and circles indicate whether the trend was or

was not statistically significant. Sites with a dot in the centre of the circle are river sites. Thus, a red triangle symbol

with a dot in the middle indicates a river site that has a statistically significant warming trend over that time period.

The blue and red tones on the scales are related to cooling and warming trends, respectively. Note that in some

places the symbols overlap.
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Figure 7: The graphs show the annual residuals (grey) with an 11-year running mean (blue) for ice breakup (a-c),

freezeup (d-f), and number of annual open water days (g-i) across the three regions of study. The dashed red line

shows the linear trend for the 11-year running mean and is associated with the labelled R? values. The associated

maps show the decadal trends for breakup (a-c), freezeup (d-f), and the number of annual open water days (g-i).

The trend directions and magnitudes were derived from the Mann-Kendall and Sen’s Slope tests for the full 1931-

2005 time period. The triangles and circles indicate whether the trend was or was not statistically significant. Sites

with a dot in the centre of the circle are river sites. Thus, a red triangle symbol with a dot in the middle indicates a

river site that has a statistically significant warming trend from 1931-2005. The blue and red tones on the scales

are related to cooling and warming trends, respectively. Note that in some places the symbols overlap.

3.5. Sites with continuous data — 1931-2005

Data covering the full 1931-2005 time period in North America are clustered around the Great Lakes region. Over

this period mean breakup dates became earlier by 0.66 days per decade (. = 0.50) ([EBIEN). with 66% of sites

displaying earlier breakup trends and 29.5% showing significant earlier breakup dates. No dominant spatial patterns

are observed, with earlier breakup dates observed across the entire Great Lakes region, except for two sites

displaying no trend (Eili#8). The extent of sites with freezeup data limits spatial analysis, but of the nine sites with

data, 55.6% show statistically significant later freezeup dates ([Eiili#d). with freezeup, on average, occurring 0.84

days per decade (a.= 0.78) later through time (TEBIEIS). Sites with both breakup and freezeup data (FEiGlig) show

42.9% have a significant trend towards more open water days, with the mean being an extra 1.49 days per decade

(o= 1.12) ([EBIEMA). Residuals calculated from mean breakup and freezeup dates, as well as annual open water

days, across all North American sites show how the 30-year time period trends ([Eiil#) appear to be superimposed

onto a longer-term warming pattern, particularly the cooling trend towards later breakup dates from 1946-1975

(EiGAEITEBIENS ). Breakup dates, when viewed as a running 11-year annual mean (EigliZd), show a weak (R? =

0.25) trend towards earlier breakup, whilst freezeup trends display a moderate trend (R* = 0.48) towards later

freezeup ([EiIZaMA0). Breakup and freezeup trends combined show that once shorter-term variability is removed,

there is a moderate trend towards more annual open water days per year (R2 = 0.50) (EigliZg)
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Sites for the 1931-2005 period in Europe cover much of the length of Sweden and southern Finland. Breakup date

changes over this time period suggest that it was becoming 0.52 days per decade earlier (o = 0.40) ([FEBIERS). Most

of the significant trends are located in southern Finland, with Sweden characterised by sites with low magnitude

earlier breakup or no observable trend (Eili#B). Lakes and rivers both trend towards earlier breakup, albeit with

rivers displaying a lower magnitude. Freezeup trends demonstrate greater variability than breakup, with freezeup

dates becoming earlier by 0.20 days per decade (o = 0.97) ([aBIEI8). However, lakes and rivers show opposing

trends, with rivers demonstrating later freezeup by 0.70 days per decade (o = 0.70) ([FEBIEN8). Spatial patterns in

freezeup dates vary more than breakup dates, with significant trends towards earlier freezeup dates in Finland and

later freezeup in Sweden (EiliZ8). These heterogeneous changes in freezeup dates are also reflected in the low

magnitude mean trend of 0.39 more open water days per decade (.= 0.90) (TaBIEI8). The spatial patterns remain

varied but are more similar to freezeup dates (FEiGli#Hl). For all three phenomena, the 11-year running mean of the

residuals display very weak correlations through time.

In Russia only Lake Baikal has data for 1931-2005 and shows there is no observable change in breakup dates (il

[Z8). in contrast to the freezeup dates which have become significantly later by 1.04 days per decade (TEBIEISNEIR

[f). Unsurprisingly, when the two are combined there is a significant trend towards 1.53 more annual open water

days over the 75-year time period (Eil#i). The 11-year running mean of the residuals show strong trends towards

later freezeup (R? = 0.60) and moderate trends towards more open water days per year (R = 0.38).

4. Results: Causes of ice phenology change

FIgUa 7 shows-the correlationsCorrelations between breakup/freezeup dates and a series of regionally-averaged
climatic variables and indices for each of the three study regions:Fennescandia-(FEN (Fif 8): Europe (EUR),

North America (NAM) and Russia (RUS), on a monthly basis and for three-monthly means over the time period

1931-2005. Unsurprisingly, rising temperatures appear to be the dominant control on the shift towards earlier
breakup and later freezeup in the ice phenology records. Late winter and spring temperatures negatively correlate
most strongly with breakup, which is expected since rising temperatures lead to more rapid ice melt and thus earlier
breakup dates. Autumn and early winter temperatures positively correlate most strongly with freezeup, which is

entirely as expected as increasing temperatures lead to delayed freezeup dates. A+FENIN Europe and NAMNorth

62

[Formatted: Font: Bold




1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

America, the month preceding breakup (April and March, respectively) exhibits the strongest correlation with
temperatures, whereas for freezeup the strongest correlation with temperatures occurs on the month of freezeup
(November and December, respectively). This may relate to the gradual build-up of rising air temperatures required
to break up ice to depth, as opposed to the more rapid onset of freezeup with falling autumn and winter air

temperatures.

The three-month temperature means exhibit even stronger correlations with breakup and freezeup, with March-
May temperatures and February-April temperatures correlating most strongly with breakup at-FENIn Europe and

NAMNorth America, respectively, and October-December temperatures correlating most strongly with freezeup

atin both FENEurope and NAMNorth America. These correlations are physically sensible, with breakup/freezeup

occurring towards the end of the three month means. In RUSRussia, strongest correlations with breakup occur in
February — three months prior to the mean breakup date in early May, which may relate to an increased ice thickness
and hence longer time period required to cause breakup. However, when considering the three month temperatures
means, the strongest correlations with breakup occurs during February-May — which fits more closely with the
mean breakup date. Temperatures during the month preceding freezeup (December) and particularly the three-

month mean period October-December correlate most strongly with freezeup dates at RUSRussia. This delayed

response to falling winter temperatures at-RUSin Russia compared to FENEurope and NAMNorth America may

relate to the influence of other climatic or site-specific factors, especially since the RUSRussian record applies to

justa-singleonly one lake.
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(a) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

031 | 048 050 045 017 009 008 020 008 012 026

Temp | -0.16 | -0.43 0.07 010 020 -006 -0145 002 015 0.06

024 | 047 032 037 006 015 005 013 007 -0.04 018 -0.04

038 030 022 011 012 015 013 003 012 002 006 001

Prep | 011 000 021 010 043 006 004 012 015 017 004 003

004 008 001 010 005 000 001 013 021 000 000 009

074 012 011 003 024 019 016 024 010 003 005 008

Wind | 031 022 -014 011 024 | 037 028 039 031 030 013 005

BREAKUP 041 | 039 034 017 007 021 009 018 006 010 003 001

wao | 011 022 019 017 017 007 006 001 002 013 004 002

029 030 -025 -002 015 012 001 016 023 006 012  0.08

031 | 041 | 041 029 016 015 003 004 016 003 003 018

A0 | 010 010 016 -003 004 004 011 008 007 003 012 012

029 | 040 -025 019 012 006 003 011 011 0147 011 0.04

007 006 009 002 006 010 005 012 010 006 002 012

Avo | 010 009 013 017 031 016 006 002 008 000 004 -0.07

010 010 012 016 016 011 -0.02 016 017 016 018 -0.05

012 020 023 025 003 010 006 008 027 035
Temp | 007 027 001 011 003 018 -003 018 019 014

024 008 013 009 002 006 002 003 000 -0.07 032 049

008 000 002 012 | 034 014 017 004 000 007 | 046 009

Prep | 042 007 011 005 000 011 005 002 006 002 015 006

012 017 002 011 002 001 011 002 008 003 003 006

018 | 034 016 004 012 013 016 014 005 009 025 009

Wind | 014 007 002 016 014 029 011 007 028 019 020 027

FREEZEUP 012 012 000 000 004 006 001 015 013 025 021 0.0

wAO | 009 008 004 008 -007 008 014 -010 -012 -004 026 0.23

010 000 008 022 009 013 000 011 021 015 004 002

005 022 002 015 011 001 002 007 028 016 013 010

AC | 005 005 000 -0.03 001 -004 001 -007 -003 -005 021 -0.01

007 000 012 031 003 003 001 002 023 015 035 016

016 013 022 010 013 018 015 019 015 001 017 023

AMO | 001 003 006 003 000 009 022 008 002 007 003 013

021 009 006 003 001 001 003 007 003 002 012 018
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(b) JJA__JAS ASO SON__OND _NDJ _ DJF
017 016 017 0.18 026 037 | 048] FEN

Temp 016 019 009 013 -003 013 029 | NAM
012 001 001 008 005 005 | 037 | RUS

015 003 006 013 005 019 036 | FEN

Prep 005 008 010 008 006 003 -0.08 | NAM
017 018 015 003 003 003 002 | RUS

020 019 020 007 001 003 012 | FEN

Wind 038 031 033 022 024 020 017 | NAM
RUS

BREAKUP 018 004 013 003 013 000 004 024 060 FEN
023 019 007 002 009 006 -003 -0.03 019 | NAM

000 002 018 004 008 024 015 007 032| RUS

036 019 01z 013 008 003 018 019 019 | FEN

002 000 007 005 002 012 012 012 012 | NAM

010 005 009 001 010 020 004 004 0.03 | RUS

0. ] ] 007 008 010 010 010 005 006 007 0410 | FEN

avo | 003 007 023 024 019 -007 004 002 -004 -0.04 000 004 | NAM
012 D014 016 016 010 011 012 017 019 014 013 010 | RUS

022 027 022 005 010 004 012 L0A4T 029 | FEN
Temp | 008 017 004 013 005 -001 001 009 | 052 044 | nNAM
019 007 003 008 005 002 001 -003 020 042 053 040 | RUS

005 007 027 035 034 018 013 007 028 033 039 009 | FEN

Prep | 043 005 001 005 007 004 -0.05 015 013 -0.10 0.07 014 | NAM
008 -020 005 010 003 -0.02 002 -0.06 -0.08 010 002 001 | RUS
024 029 006 009 014 015 014 008 017 014 018 021 | FEN
Wind | 0.06 002 004 -013 010 006 -0.05 -0.09 018 -0.46 004 0.05 | NAM
RUS

FREEZEUP 013 008 003 005 007 014 017 031  03% 027 019 015 | FEN
nao | 002 003 007 013 018 019 020 -0.16 0.07 027 021 012 | NAM
008 008 005 016 -0.02 000 -0.06 015 018 -0.06 007 005 | RUS

014 019 012 017 006 005 012 020 028 010 010 -0.10 | FEN

A0 | 000 002 001 003 -0.01 006 005 -008 010 001 -001 -0.01| NAM
002 015 021 021 000  -001 013 019 006 016 016 016 | RUS

016 016 016 016 017 019 016 012 012z 014 022 020 | FEN

Avo | 003 002 001 003 012 014 010 000 002 006 004 004 | NAM
013 -004 001 002 001 -003 005 -0.03 005 010 019 -0.18 | RUS
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(a) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
031 048 050 - 045 017 009 008 -020 -008 D12 -0.26| EUR
Temp | -0.16 | -0.43 0.07 -010 020 006 -015 002 015 006 | NAM
024 047 032 037 006 015 005 013 -007 -0.04 018 -0.04 | RUS
£3% 030 02 011 -012 015 -013 -0.03 012 0.02 0.06 0.01 | EUR
Prep | 0.11 000 021 010 013 006 0.04 012 015 017 0.04 0.03 | NAM
0.04 008 001 010 005 000 -0.01 -013 024 0.00 0.00 0.09 | RUS
0.14 012 0.1 003 024 019 016 024 010 D03 005 008 | EUR
Wind | 031 -022 014 0N 024 037 028 039 0. 0.30 0.13 0.05 | NAM
RUS
04 039 034 0147 007 021 003 -018 006 -010 003 -0.01| EUR
BREAKUP | NAO | 011 022 019 017 0417 007 006 -001 -0.02 -013 004 0.02 | NAM
023 030 025 002 015 -012 -0.01 -016 023 0.06 0.12 0.08 | RUS
03 04 041 029 016 015 003 -004 -016 0.03 0.03 -018 | EUR
AO 010  -010 -016 -0.03 004 0.4 011 008 007 003 012 012 | NAM
029 040 025 019 012 006 003 -011 0N 017 0.1 0.04 | RUS
-0.07 006 -009 -002 -0.06 -010 005 -012 010 006 002 -012| EUR
AMO | 010 003 013 017 031 016 -0.06 002 -0.08 000 -0.04 007 NAM
010 010 012 016 016 011 002 -016 017 016 018 -0.05| RUS
017 016  0.08 0.12 0.1 0.08 0.10 0.14 017 0.08 0.03 0.06 | EUR
so/ | 003 017 017 010 017 009 -027 -013 012 -004 D09 010 | MAM
0.00 007 006 009 007 -004 005 -0.01 -0.02 -0.03 -D15 -0.05]| RUS
0.12 0.20 0.23 025 003 010 -006 008 0.27 0.35 | EUR
Temp | -0.07 027 -000 011 003 018 003 018 019 0.14 NAM
0.24  0.08 013 -009 002 -006 002 0.03 0.00 -0.07 032 049 | RUS
0.08 0.00 0.02 0.12 034 014 017  0.04 0.00 0.07 | 045 009 | EUR
Prep | 012 007 011 005 0.00 011 005 002 006 002 015 0.06 | NAM
012 017 002 011 002 001 011 002 008 0.03 0.03 0.06 | RUS
018 034 016 -004 012 013 0.16 0.14 005 -009 025 009 | EUR
Wind | 014 -007 002 016 014 023 011 007 -028 -019 020 -0.27 | NAM
RUS
0.12 012 0.00 0.00 0.04 0.06 0.01 0.15 0.13 0.25 0.21 0.01 | EUR
FREEZEUP | NAC | 009 0.08 0.04 -008 007 008 014 010 012 004 026 023 | NAM
0.10 0.00 0.08 -022 009 013 0.00 011 021 015 004 -0.02 | RUS
0.05 0.22 0.02 0.15 011 -0.01 002 007 0.28 0.16 013  -010 | EUR
AO -0.05 005 0.00 -003 001 004 001 007 -003 -005 021 -0.01] NAM
0.07 000 012 031 003 003 001 002 023 -015 035 0.16 | RUS
0.16 013 0.22 0.10 0.13 0.18 0.15 0.19 015 001 017 023 | EUR
AMO | 001 -0.03 -0.06 0.03 0.00 -009 022 008 0.02 0.07 003 013 | NAM
021 003 006 0.03 0.01 001 003 007 003 002 012 -018 | RUS
-0.01 007 -0.06 004 -004 -011 011 020 -017 015 0.03 0.06 | EUR
Soi 0.09 012 017 0M 0.11 0.0 0.03 004 001 019 013 -008 | NAM
0.33 0.31 026 034 036 018 0.25 0.20 0.16 0.05 0.09 -0.02 | RUS
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1140

1141

1142

1143

1144

1145

1146

1147

1148

JJA __JAS ASO __SON__OND _NDJ _ DJF
017 016 -017 016 -026 -0.37 | 048 | EUR
016 019 009 013 003 013 029 | nAM
012 001 001 008 005 -005 -037| RUS
015 003 006 013 005 -0.19 | 036 | EUR
005 008 010 008 006 -003 -0.08 | NAM
017 018 015 003 003 003 002 | RUS
020 019 020 007 001 009 012 | EUR
038 031 033 022 024 020 017 | NAM
RUS
[ [P0E9N)053 030 018 -004 019 003 013 000 -004 -024 [-0800| EUR
BREAKUE | NAO | 026 015 009 023 019 007 002 -009 -006 -003 -003 -019 | NAM
043 034 010 000 002 018 004 008 024 015 007 032 | RUS
051 | 053 047 036 019 012 013 008 003 018 019 019 | EUR
A0 | 016 015 042 002 000 007 -005 002 012 012 012 012 | NAM
043 | 041 022 010 005  -009 001 010 020 004 004 003 | RUS
008 -006 -007 -007 -008 -010 -010 -0.10 -005 -0.06 -0.07 -010 | EUR
ANMO | 003 007 -023 024 -019 -007 -004 -002 004 -004 000 004 | NAM
012 014 016 -016 010 011 -012 017 -019 014 -013 -010 | RUS
015 013 011 011 010 042 015 014 010 006 012 013 | EUR
sof | 013 016 -016 013 019 018 020 011 009 008 -014 015 | NAM
0.05 002 003 -007 -002 000 001 002 -0.08 -0.08 -004 001 | RUS
022 027 022 005 -010 004 012 [L047 0550 029 | EUR
Temp | 009 017 004 013 005 -0.01 -0.01 009 | 052 044 | nAM
019 007 003 -008 -005 002 001 -003 020 042 053 040 | RUS
005 007 027 035 034 048 013 007 028 033 039 009 | EUR
Pep | 013 005 001 005 007 004 -005 -015 -013 -010 007 014 | NAM
008 -020 005 -010 003 -002 -002 -0.06 -008 010 -0.02 001 | RUS
024 029 -006 009 014 015 074 008 017 014 -018 021 | EUR
Wind | 006 -002 004 -013 -010 -006 -005 009 018 -016 004 005 | NAM
RUS
013 008 003 005 007 074 017 031 034 02r 019 015 | EUR
FREEzEUP | nAC | 002 003  -007 013 018 013 -020 -016 007 027 021 012 | NAM
008 -008 005 -016 -002 000 -006 -015 -018 -0.06 0.07 005 | RUS
014 019 012 017 006 005 012 020 028 -010 010 -010 | EUR
A0 | 000 002 001 -003 -001 006 -005 -008 010 -0.01 -001 -001| NAM
002 015 021 021 000 001 -013 019 006 016 016 016 | RUS
018 016 016 016 017 049 018 012 012 014 022 020 | EUR
ANMO | 003 002 -001 -003 -012 -014 -010 000 002 006 004 004 | NAM
013 004 001 002 -001 -003 005 -003 -005 -010 -013 018 | RUS
005 003 002 -004 010 015 -017 019 -011 002 -0.01 -001 [ EUR
sof | 014 014 014 008 005 003 002 006 -013 015 002 007 | NAM
033 032 034 031 028 023 022 015 011 004 025 024 | RUS

(b)

Temp

Prop

Wind

Figure 178: ‘Heatmap’ illustrating correlations between breakup/freezeup and a series of climatic variables and
indices for each of the three study regions: Feaneseandia(FENEurope (EUR), North America (NAM) and Russia
(RUS) on a monthly basis (a) and for three-monthly means (b) where JFM is the mean of January, February and
March etc., over the time period 1931-2005. The grey line for Russia displays that there were no wind data

available.

Although temperature exhibits the strongest correlations with both breakup and freezeup, precipitation also appears

to play an important role in some instances. Increasing winter precipitation (January and particularly the January-
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March mean) is associated with earlier breakup in FENEurope, while increasing spring precipitation (March and
particularly the March-May mean) appears to exert a stronger influence on earlier breakup in NAM-North America.
The latter likely relates to increasing precipitation as rainfall, which aids in the melting of ice (Beltaos and Burrell,
2003). The rising winter precipitation in FENEurope, presumably as snowfall, may also be associated with earlier
breakup since snowfall settling on ice can insulate the ice surface and prevent further thickening during the winter
(Park et al., 2016) — therefore, potentially promoting earlier breakup. Rising precipitation in November (and to a
lesser extent the November-January mean) is associated with later freezeup in FENEurope. This may relate to
increased discharge into lakes or rivers, making it harder for surfaces to stabilise and freeze. The correlations

between precipitation and freezeup are weak atin both NAMNorth America and RYSRussia, while RJISRussia also

exhibits weak correlations between precipitation and breakup. There are also some relatively close associations
between wind speed and breakup/freezeup at-FENIn Europe and NAMNorth America (no wind speed data was

available for RUSRussia). Higher wind speeds in summer correlate most strongly with later breakup and earlier

freezeup in NAMNorth America. The latter seems counter-intuitive since high wind speeds are generally thought
to disrupt the water surface and delay freezupfreezeup, while the former does not have any particularly relevant
temporal connection. These correlations are not particularly strong compared to those of temperature with
breakup/freezeup and to a lesser extent precipitation, whilethus, they eould-alse-simphy-be a product of chance that

relates to false positives.

In terms of the atmospheric/oceanic modes of variability, some strong correlations exist with breakup and to a
lesser extent freezeup in all regions. Most notably there are strong negative correlations between breakup and
winter/early spring NAO and AO, i.e. when NAO/AO are in a positive phase, breakup occurs earlier. This is
particularly true in FENEurope, where a strong positive phase of NAO and AO for the January-March mean and
the February-April mean respectively are associated with earlier breakup. Correlations for RUSRussia at a similar
time of year are also apparent, while correlations in NAMNorth America are much weaker. Positive correlations
(albeit not as strong) between freezeup and NAO/AO occur in autumn in FENEurope and early winter in
NAMNorth America, i.e. when NAO/AO are in a positive phase, freezeup occurs later. These findings are expected,
since a stronger positive NAO/AO phase results in an increase in stronger westerly winds, drawing warmer air
across northern Europe feeding from the North Atlantic Drift and the Norwegian Current (Hurrell, 1995). A strong

positive NAO/AO promotes later freezeup in late autumn/early winter, and earlier breakup in spring. Trends
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towards earlier breakup and later freezeup throughout the latter third of the 20th century may relate to the positive
trends of the NAO and the closely associated AO for much of the 1970s and 1980s, with historical highs in the
early 1990s (Cohen and Barlow, 2005). Correlations with AMO and SOI for the full time period are generally not
as strong, with the exception of negative correlations between late spring AMO and breakup in NAMNorth
America, i.e. when AMO experiences a warm phase, earlier break up occurs. During warm phases of the AMO,
elevated sea surface temperatures in the North Atlantic bring about warmer and drier conditions across much of
North America (Enfield et al., 2001) — hence the association between earlier breakup with the AMO in this region.

There are also positive correlations between winter and spring SOl and freezeup in Russia (i.e. when SOI

experiences a positive phase, later breakup occurs).

SumRn e cptheanausians

All correlations were established between local ice phenology records and the broad regional climate for each

region rather than the local climate corresponding to each site. Examining the latter, while more labour intensive,

would likely reveal stronger correlations on a site by site basis — acknowledging the fact that synoptic and local

climate forcings can greatly influence the timing of lake and river ice freezeup and breakup. The broader

geographical approach we have taken also has clear merit, however, as it demonstrates that wider regional climate

exerts considerable influence over ice phenology. We also acknowledge the potential for ‘false positive’

correlations when assessing so many correlations in a matrix as we do in Figure 8. This provides reason to be

cautious when interpreting these findings.

5. Discussion

The results presented for all three regions show that between different 30-year time periods there are fluctuations

in the trend directions for breakup/freezeup dates and the number of annual open water days. The two most recent

30-year time periods in North America and Europe (Fig5:4=5) show that warming trends dominated. Warming

trends for the number of annual open water days were initially driven by earlier breakup dates before then being

increased further by later freezeup (see below). This is in line with other studies that capture long-term reductions
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in the ice season (Futter, 2003) and show that warming breakup trends are more common (Brammer et al., 2015;

Jensen et al., 2007), and whilst freezeup trends do move toward warming patterns, they are often more variable

(Duguay et al., 2006; Hewitt et al., 2018). The 30-year time period analyses documented here also show that some

short-term variations lead to variable spatial patterns through time. For example, in the Great Lakes region, the two

most recent time periods show consistent trends towards earlier breakup dates (EiGS#28#4]). which is corroborated

in more localised studies (e.g. Magnuson et al., 2005), but the trends in the first two 30-year time periods show

variability in the trend magnitude and direction of phenology changes, with sites to the west and east displaying

opposing trends (_). The trends in this region, as well as more broadly across North America, Europe, and

Russia are dominantly driven by regionally-averaged temperature changes, with precipitation and teleconnections

also helping to explain some of the variation (Ei§i8). Such a finding is not new (e.q. Blenckner et al., 2004; Bonsal

et al., 2006; Duguay et al., 2006; Ghanbari et al., 2009; Hewitt et al., 2018; Livingstone, 1999; Sharma et al., 2013;

Smith, 2000), but it does further confirm that the prevailing climate conditions can only partially account for some

of the variability in ice phenology trends. What is interesting is the fact that strong correlations can be established

despite correlating ice phenology records with spatially averaged climate data over large regions. This indicates

that broad regional climate exerts a considerable degree of influence over changes in ice phenology. Such a finding

is important because it means that site specific climate data, either from in situ observations or from numerical

downscaling of climate models, may not be explicitly required to explain a large amount of the phenology variation.

Whilst there are clearly merits in looking at sites with local data to better understand the underlying processes

taking place and how this relates to the observed climatological trends (e.qg. the influence of wind on ice phenology),

being able to regionalise and simplify the analysis to sites across broad areas that do not have local climate

observations is important for upscaling efforts to project larger-scale climatic changes.

Across the longer 75-year time period the results broadly match those previously published (Table 1) and show

general warming patterns for breakup across all regions (Eiili#). Freezeup patterns in Europe show less consistent

patterns through time, with many sites showing earlier and later freezeup trends (FEiGi8). Whilst these freezeup

trends do evolve into warming trends in the latest time period, this is not fully captured in the 75-year time period

studied here, but it is documented in other studies looking at longer records (e.g. Korhonen, 2006). It is also notable

that the standard deviation of the trends derived from the Mann-Kendall and Sen’s Slope analyses for freezeup tend

to be higher than those for breakup (T&BIEE). Although temperatures appear to be able to explain a large proportion

70



P31

P32

P33

P34

P35

P36

P37

P38

P39

P40

P41

P42

D43

D44

P45

D46

D47

D48

D49

D50

P51

P52

P53

P54

P55

P56

P57

P58

of variations in freezeup dates, at least in Europe, it does not account for why the variability is larger than for

breakup, which is also well correlated with temperature changes (Eigli8). Whilst breakup is dominated by thermal

characteristics of the climate, freezeup is a result of not just the thermal properties of the environment but also

water Kinetics — e.g. even if water temperatures are low enough to freeze, wind and water movement can

mechanically prohibit freezeup as the kinetic energy makes it harder for the water to stabilise or ice patches to

agglomerate (Beltaos and Prowse, 2009). The complexity involved in water freezeup likely acts as an important

control on these fluctuating trends and would benefit from additional study to explore how this can be accounted

for in models (e.g. Bruce et al., 2018). This likely explains why the breakup and freezeup patterns do not simply

reflect observed increases in air temperatures.

Unlike lakes, and with the exception of European river breakup trends from 1946-1975, the mean ice phenology

trends for rivers show a more consistent warming pattern through most time periods for all regions (TEBIEE). Whilst

acknowledging the caveats of a limited number of sites, the above evidence suggests that during the 20" century,

rivers were responding to increased surface air temperatures faster than lakes. This may be explained, possibly, by

the river flow gradient causing waves and ripples which instigates air turbulence and greater interaction of water

and air causing a faster transfer of atmospheric heat. Whilst ripples and waves do form on still water bodies, this is

likely limited compared to actively flowing rivers, causing a slower response time in lake temperatures to air

temperature increases. As the lakes gradually experience this warming the same reasons may also restrict heat

exchange from the lake to the atmosphere. Though the physics require further study, it is possible this thermal

legacy allowed lakes to gradually become a heat sink and might explain why over longer timescales the lakes begin

to demonstrate larger magnitude warming trends than rivers, particularly in the 1976-2005 time period (TEBIEE).

Changes in the number of open water days may relate to movements in breakup and/or freezeup dates, allowing

the relative influence of date changes to be compared. Eillféld summarises sites with open water data across all

time periods in each region and separates breakup/freezeup combinations into warming, cooling, and no trends —

e.g. 35.2% of North American sites during 1931-1960 had earlier breakup, later freezeup, and more open water

days. In all three regions there is a gradual reduction through time in the proportion of sites displaying fewer open

water days caused by later breakup and earlier freezeup dates. Most other sites are characterised by showing the

same trend direction towards earlier or later dates, where either later breakup or earlier freezeup trends (cooling

trends) are stronger than later freezeup or earlier breakup trends (warming trends), thus, reducing the relative
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number of open water days ([Ei§l8). Through time there is a reduction in the number of sites displaying significant

trends towards fewer open water days, which contrasts with an increasing proportion of sites displaying more open

water days, with the trends at many sites becoming significant in the later time periods (_). Most changes

appear to be dominated by sites with both earlier breakup and later freezeup dates, or where earlier breakup or later

freezeup trends are larger in magnitude than later breakup and earlier freezeup ([Ei§ll8). Some anomalous sites with

no warming breakup or freezeup trends relate to low magnitude trends close to zero. All sites combined, most that

display trends towards more or fewer open water days do so because both breakup and freezeup date trends are

moving in opposite directions — earlier breakup and later freezeup in the case of more open water days, and the

opposite trends where there are fewer open waters days — suggesting changes across different seasons. During

1931-2005 most sites display an increase in open water days that is predominately driven by earlier breakup and

later freezeup dates in North America. This aligns well with other studies looking at a range of different sites across

the region showing ice season length was driven by either earlier breakup (Brammer et al., 2015; Futter, 2003) or

both earlier breakup and later freezeup (Latifovic and Pouliot, 2007). In Europe the pattern is more mixed with a

number of sites showing that earlier freezeup trends are enough to reduce the number of open water days for ~25%

of sites, irrespective of a warming pattern in earlier breakup dates. In some circumstances the ice-free season shifts

—e.g. 17.3% of sites in Europe during 1931-2005 display earlier breakup and earlier freezeup — without actually

changing its length, potentially having consequences on biogeochemical cycles in areas that have lakes responding

at different rates and in different trend directions. The majority of sites do, however, display trends towards more

open water days, but from a range of different breakup and freezeup trend combinations, with most related to earlier

breakup and later freezeup dates (Ei8). This is similar to observations from Finland looking at a longer time

period and documenting reduced ice season lengths (Korhonen, 2006). The one Russian site shows more open

water days being driven by later freezeup dates. Combined, these results match well with numerous other studies

across the Northern Hemisphere showing earlier breakup and freezeup dates (e.g. Magnuson et al., 2000; Table 1),

with the addition that the strength of these changes has increased in more recent times and that the changes in the

number of open water days are not always associated with both warming breakup and freezeup dates (FiGSIZSIg).

This suggests that it is not just the length of time that is important for understanding the context of the trends that

are documented (e.g. Wynne, 2000), but also which phenomena is being investigated as there are numerous

examples where warming trends in either the breakup or freezeup date are not matched with a correlative increase

in the number of open water days. Thus, environmental changes inferred from only breakup or freezeup data are

72



Juny

Juny

P88

P89

P90

P91

P92

P93

P94

P95

P96

P97

P98

P99

BOO

BO1

B02

BO3

potentially misleading as they might not reflect wider changes in the ice season length, and should be interpreted

cautiously.

[ pattern | North America Europe Russia |
1961-1990 | 1976-2005 [ 1931-2005 176-2005 [ 19312005 || 1931-1960 | 1946-1975

35.0(11) 714 (3) E 7 70.4 (73)

|83 | 120 ]

| soc | 125 [ so |
[ 22 [ a0; |
a2 [ 40 ]

% of Sites 0.0
E——
Number of Sites 17 29 57 38 7 147 202 239 146 29 5 2 25 1 1
Sig. Cooling 3 6 o 0 () 12 26 ) [1) 1 1 (o) 1 o 0
Sig. Warming. 1 1 15 14 3 4 2 11 74 4 0 4 5 0 1

Figure 9: Summary of trends for sites with data for breakup (BU), freezeup (FU), and open water day (OW) trends

that were derived from the Mann-Kendall and Sen’s Slope analysis. On the left, where the pattern is shown as red

the phenomena had a warming trend, as blue a cooling trend, and as white no trend — thus, the top row shows

breakup was earlier, freezeup later, and the number of open water days increased. The values in the different

columns show the proportion of sites during each time period that experienced the specific trend combination, with

the number in brackets the amount of sites with open water day trends that were significant (Sig.) — e.g. 23.5% of

North American sites from 1931-1960 had a combination of later breakup, earlier freezeup, and fewer open water

days, all cooling trends, with three of these sites displaying an open water days trend that was significant. This
allows for the relative contributions of trend directions for breakup and freezeup changes to be compared against
changes in the number of open water days. The dark red cells show specific combinations of trends during that

time period which were not experienced at any sites.

6. Conclusions
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Utilising a number of different datasets, a series of analyses have been used to investigate how the number of annual
open water days per year and the timing breakup/freezeup dates have changed for water bodies that ephemerally
freeze across the Northern Hemisphere. FeurFive overlapping time periods (1931-1960, 1946-1975, 1961-1990,
19911976-2005, and 1931-2005) have been investigated across 644678 sites with data in at least one of the time
periods to provide ~26003510 time series of lake and river ice phenology change to be statistically, spatially, and
temporally analysed. A warming signal has been observed that shows the breakup-datesforsites-with-continueus
data-in-the-1931-2005period-have-oceurred-en-averagenumber of annual open water days has increased by 0.663

days per decade earlier-across the MNH-

earlier-breakup—inereases-through-the-three—periodsNorthern Hemisphere from 1931-2005. The breakup trends

display a strong correlation with temperature observations in the weeks preceding breakup and during winter ice

growth, suggesting that temperature can be confidently used to predictbreakup-date—Freezeup-trends-are-generatly

e-explain a large proportion of

variability. Freezeup trends show the greatest variability that is less easily predicted from air temperature changes

compared to breakup. This is likely because freezeup is not guaranteed to occur simply because temperatures have

moved below 0 °C as water kinetics can prevent freezeup. When the time series are investigated on smaller

timescales to explore temporal changes, trends for the number of open waters days show variation, with the two

most recent 30-year time periods displaying a consistent trajectory towards more open water days that is nonlinear

with respect to magnitude. In general, the number of open water days tend-to-cisplay-similarspatistemperalclosely
resemble breakup patterns
changes—in-freezeup-dates—therelativechangesbetween—, suggesting that breakup anrdfreezeup-dates—hasted:
drenghcre—earecnstiop-onds arc the length-oitheeocecconcrndcopscononis sap-narene—n-dhopumact
of-open-waler days-across-the-Northern-Hemisphere:

Fivemain driver in open water day trends. Four key conclusions have been drawn from this research; (1) aan

accelerating warming signal is clearly observable in breakup anddates at many sites;{2)-this-warming-signal-has
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generally and is reasonably well-aligned to broad regional temperature trends, (42) freezeup trends are more
spatiotemporally complex and display weaker temperature correlations-wth-climate-patterns—ane<5, (3) the length
of the open water season has generally increased through time—Fhe-resulispresented-here provide-an-important

contribution-that-can-be-used-to-help-understand-how- and was predominantly driven by earlier breakup dates, and
(4) that care needs to be taken when interpreting the implications of ice phenology patterns-may-change-in-the

hightightsbreakup or freezeup data. These results highlight the need for a more detailed understanding of historical

changes and their causes to fully unravel the potential implications of ice phenology change-for-theprojection

efwhen projecting future climate changes.
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