

Interactive comment on "Continuous in situ measurements of anchor ice formation, growth and release" by Tadros R. Ghobrial and Mark R. Loewen

Edward Kempema (Referee)

kempema@uwyo.edu

Received and published: 3 September 2020

I think a reasonable argument could be made that our understanding of anchor ice initiation and growth have not advanced significantly since Altberg (1936) published his findings 84 years ago. We have a particularly poor understanding of the relative importance of frazil accretion versus in situ ice growth in accumulating anchor ice masses (something Altberg struggled with). The paper by Ghobrial and Loewen describes their technique of using a high-resolution camera package to measure the growth of anchor ice (both individual ice crystals and anchor ice accumulations) on a natural cobble substrate in the North Saskatchewan River. Their paper presents preliminary data on frazil

C1

accumulation versus in situ anchor ice growth mechanisms based on their imaging system. This paper makes a significant contribution to the ice community's understanding of anchor ice formation in this natural setting.

In my opinion the authors give short shrift to Kempema and Ettema (2013, 2016; the 2016 paper is an expanded version of the 2013 conference proceedings). These two papers describe the use of a high-resolution camera system to determine anchor-ice crystal growth rates on a wedge wire screen element placed in the Laramie River during the 2012-2013 winter. They were able to document the growth rate of individual anchorice ice crystals in anchor-ice masses with this system, which was similar in concept to the camera system described by Ghobrial and Loewen. Although the camera systems in both studies were similar, the two systems differed in two important ways: (1) Kempema and Ettema focused on anchor ice growth on an intake screen while the present paper focus on anchor ice on the bed; and (2) Ghobrial's and Lowen's system is much more advanced that that used by Kempema and Ettema. Specifically, the Ghobrial and Loewen system includes precise water temperature measurements to relate ice growth to supercooling levals and their camera system included a fixed, consistent cobble bed, a better camera, and heating elements to keep ice off the camera lens. This system is a major advance over what is described in Kempema and Ettema (2013, 2016) This made it possible for the authors to measure the increase of anchor-ice mass thickness in addition to measuring individual ice crystal growth. Ghobrial and Loewen reference Kempema and Ettema (2013) but appear to dismiss their reported ice crystal growth rates of \sim 1-4 cm/hr on the basis that the wedge wire screen was placed in the water column where heat transfer was greater relative to the bed. They suggest this might explain the higher ice-crystal growth rates reported by Kempema & Ettema relative to their findings (1-3 cm/hr) (P12L24-29, P: page number, L: line number). Considering the paucity of attached anchor ice crystal growth rates in natural settings reported in the literature (39 to my knowledge) it seems curious to dismiss $\sim 3/4$ of the observations on the basis that they were taken at the wrong point in the water column. While acknowledging that the goals of the two projects were somewhat different and the substrates were very different, my bias is that anchor ice is anchor ice, regardless of the substrate it forms on. Kempema and Ettema (2013, 2016) make the case that "frazil ice blockages" are, in fact, anchor ice. I agree with Ghobrial and Loewen that underwater ice crystal growth rates are determined by turbulent heat transfer (Altberg also concurred), but point out that every growing underwater ice crystal is in a unique, local turbulent/heat transfer environment and so will have a unique morphology representing its growth history. This reinforces my argument for including, not downplaying (dismissing?), the Kempema and Ettema (2013, 2016) ice crystal growth rates. Considering the different settings (river morphologies, water depths, weather conditions, and substrates), the observed range of growth rates are very consistent. A very real contribution of the Ghobrial and Loewen paper is that it describes a system (camera, processing software, temperature recorders, consistent bed strucure) that can be used to more (and more detailed) observations in the future.

Ghobrial and Lowen describe observations of anchor ice masses breaking the surface of the water at 1.6 m water depth near their deployment site (p13L18-25). Using their measured ice growth rates, they calculate it would take 267 hours to grow this accumulation of anchor ice. Their Figure 4 shows a 10-day period when conditions appear to have been conducive to a multi-day anchor ice cycle that could have produced this amount of ice at the rates reported in this paper. Unfortunately, the authors do not report the date of their observation. Alternatively, anchor ice growth rates may have been higher in the deeper water or released anchor ice masses (possibly negatively buoyant) were stacked one on top of the other to this thickness. The use of an average growth rate to calculate a growth time implies a much greater confidence in the average than is warranted. A possible example of released anchor ice stacking can be seen at 2:08 to 2:11 (minutes:seconds) in the manuscript video (clock time December 4, 2018 05:16 to 05:41). A frazil floc or released anchor ice mass appears on to the left of the PVC pipe in the image frame at the start of this sequence and disappears at the end. Similar processes, with potentially much larger ice masses, could have built the observed 1.6 m thick accumulation in a relatively short time. In my opinion, it

C3

would be good to discuss these other methods of building up thick layers of anchor ice (if one can call accumulations of released ice that) rather than present the calculation. In this same section, the authors state that several auger holes showed anchor ice in contact with the underside of border ice in 1.5 m water depth. It is very common for released anchor ice to be advected under border ice in my experience. I would argue that the observation of large ice crystals has no relevance vis a vis local anchor ice growth or formation. This gets to be something of a semantic argument. Once anchor ice is released from the bed it is no longer, strictly speaking, anchor ice. By extension accumulations of this released anchor ice (slush ice?) under border ice are no longer anchor ice unless they are attached, as opposed to in contact with, the bed.

The three panels in Figure 10 purport to show (a) curved needle crystals, (b) platelet ice, and (c) ice disks. However, (a) also contains ice disks (I would call them modified frazil crystals) on the left and what looks like platelet ice on the right side of the figure; (b) does look like platelet ice; and (c) contains at least as much platelet ice as disk ice. Perhaps you could put an arrow in each panel to identify the ice crystal morphology they are meant to show? I actually think these are wonderful images, because they show the complexity that is common in an anchor ice mass (also shown in Figure 9). My experience is that most anchor ice consists of a mix of ice crystal morphologies that represent their past growth history. These photos show this wonderfully. This paper made me rethink my own concepts on anchor ice formation, which made it a pleasure to read. The paper represents a significant contribution to anchor ice growth mechanisms in the future.

References

Altberg, W.J. 1936, Twenty years of work in the domain of underwater ice formation, International Union of Geodesy and Geophysics, International Association of Scientific Hydrology, Bulletin 23 373-407. Kempema Edward, W. and Ettema, R. 2016, Fish, Ice, and Wedge-Wire Screen Water Intakes, Journal of Cold Regions Engineering, 30-2, doi:10.1061/(ASCE)CR.1943-5495.0000097.

Kempema, E.W. and Ettema, R. 2013. Anchor ice and wedge-wire screens, CRIPE 17th Workshop on River Ice Processes and the Environment. CGU HS Committee on River Ice Processes and the Environment, Edmonton, Alberta, Canada, http://www.cripe.ca/docs/proceedings/17/Kempema-Ettema-2013.pdf, 15 pages.

Technical comments:

P1L7: suggest changing "cooled to slightly below 0oC" to "cooled to slightly below the freezing point" to make the definition of supercooling clear (e.g. ocean water at -1 oC is not supercooled). P3L4: Add "and" before "for collecting" P3L8: change "crystals layers" to "crystal layers" P4L34: "the crystals showed grew preferentially perpendicular to the flow" remove "showed"? P5L4: "1,800 m above sea level" not sure what this refers to. Is it the highest peak in the drainage (seems unlikely), the average elevation of the upper drainage, or what? P5,L5-10: What size classification scheme did you use? Wentworth's size classification lists sediment used in this study in the cobble size range. Gravel is not used in Wentworth's classification and boulders are >256 mm in diameter. P15L18-19: "Newly formed anchor ice accumulations likely have higher porosities because they often do not maintain their structural integrity when sampling is attempted." Is this based on personal observation or a literature reference? If this is your observation, it seems a little odd that it shows up in the discussion. At least, please, make the source clear.

C5

Interactive comment on The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-161, 2020.