Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 4.713
IF4.713
IF 5-year value: 4.927
IF 5-year
4.927
CiteScore value: 8.0
CiteScore
8.0
SNIP value: 1.425
SNIP1.425
IPP value: 4.65
IPP4.65
SJR value: 2.353
SJR2.353
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 53
h5-index53
Preprints
https://doi.org/10.5194/tc-2020-160
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-2020-160
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

  07 Jul 2020

07 Jul 2020

Review status
A revised version of this preprint is currently under review for the journal TC.

Drivers of Pine Island Glacier retreat from 1996 to 2016

Jan De Rydt1, Ronja Reese2, Fernando Paolo3, and G. Hilmar Gudmundsson1 Jan De Rydt et al.
  • 1Department of Geography and Environmental Sciences, Northumbria University, Newcastle upon Tyne, UK
  • 2Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany
  • 3Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

Abstract. Pine Island Glacier in West Antarctica is among the fastest changing glaciers worldwide. Over the last two decades, the glacier has lost in excess of a trillion tons of ice, or the equivalent of 3 mm of sea level rise. The ongoing changes are commonly attributed to ocean-induced thinning of its floating ice shelf and the associated reduction in buttressing forces. However, other drivers of change such as large-scale calving, changes in ice rheology and basal slipperiness could play a vital, yet unquantified, role in controlling the ongoing and future evolution of the glacier. In addition, recent studies have shown that mechanical properties of the bed are key to explaining the observed speed-up. Here we used a combination of the latest remote sensing datasets between 1996 and 2016, data assimilation tools and numerical perturbation experiments to quantify the relative importance of all processes in driving the recent changes in Pine Island Glacier dynamics. We show that (1) calving and ice shelf thinning have caused a comparable reduction in ice-shelf buttressing over the past two decades, that (2) simulated changes in ice flow over a viscously deforming bed are only compatible with observations if large and widespread changes in ice viscosity and/or basal slipperiness are taken into account, and that (3) a spatially varying, predominantly plastic bed rheology can closely reproduce observed changes in flow without marked variations in ice-internal and basal properties. Our results demonstrate that in addition to its evolving ice thickness, calving processes and a heterogeneous bed rheology play a key role in the contemporary evolution of Pine Island Glacier.

Jan De Rydt et al.

Interactive discussion

Status: final response (author comments only)
Status: final response (author comments only)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Login for Authors/Editors] [Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement

Jan De Rydt et al.

Jan De Rydt et al.

Viewed

Total article views: 674 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
425 217 32 674 31 33
  • HTML: 425
  • PDF: 217
  • XML: 32
  • Total: 674
  • BibTeX: 31
  • EndNote: 33
Views and downloads (calculated since 07 Jul 2020)
Cumulative views and downloads (calculated since 07 Jul 2020)

Viewed (geographical distribution)

Total article views: 509 (including HTML, PDF, and XML) Thereof 509 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved

No saved metrics found.

Discussed

No discussed metrics found.
Latest update: 21 Oct 2020
Publications Copernicus
Download
Short summary
We used satellite observations and numerical simulations of Pine Island Glacier, West Antarctica, between 1996 and 2016 to show that the recent increase in its flow speed can only be reproduced by computer models if stringent assumptions are made about the material properties of the ice and its underlying bed. These assumptions are not commonly adopted in ice flow modelling, and our results therefore have implications for future simulations of Antarctic ice flow and sea level projections.
We used satellite observations and numerical simulations of Pine Island Glacier, West...
Citation