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Abstract. The frequent presence of cloud cover in polar regions limits the use of the Moderate-Resolution Imageing Spectro-

radiometer Spectroradiometer (MODIS) and similar instruments for the investigation and monitoring of sea-ice polynyas com-

pared to passive-microwave-based sensors. The very low thermal contrast between present clouds and the sea-ice surface in

combination with the lack of available visible and near-infrared channels during polar nighttime results in deficiencies in the

MODIS cloud mask and dependent MODIS data products. This leads to frequent misclassifications of i) present clouds as sea5

ice/open water (false-negative) and ii) open- wateropen-water/thin-ice areas as clouds (false-positive), which results in an under-

estimation of actual polynya area and subsequently subsequent derived information. Here, we present a novel machine-learning

based approach using a deep neural network that is able to reliably discriminate between clouds, sea-ice, and open-water/thin-

ice areas in a given swath solely from thermal-infrared MODIS channels and additionally derived derived additional information.

Compared to the reference MODIS sea-ice product for the year 2017, our data results in an overall increase of 31% 20% in10

annual swath-based coverage for the Brunt Ice Shelf polynya, attributed to an improved cloud-cover discrimination . Overall, and

the reduction of false-positive classifications. At the same time, the mean annual polynya area decreases by 44% through

the reduction of false-negative classifications of warm clouds as thin ice. Additionally, higher spatial coverage results in a an

overall better sub-daily representation of thin-ice conditions that cannot be reconstructed with current state-of-the-art cloud-

cover compensation methods.15

1 Introduction

Information on cloud presence is of crucial importance when using thermal-infrared imagery. This is especially true for the

polar regions, where the thermal contrast between clouds and the underlying snow and sea-ice surface can be low through

persistent surface temperature inversion and low clouds (Welch et al., 1992). Furthermore, occurrences of warm clouds over

cold sea ice as well as cold clouds over relatively warm and thin sea ice are both possible. Despite improvements (Liu et al.,20

2004; Frey et al., 2008; Holz et al., 2008; Liu and Key, 2014), the performance of the frequently used Moderate-Resolution
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Figure 1. Location of the general (red) and focus (green) study area of the Antarctic Brunt Ice Shelf study area (red) in the south-eastern

Weddell Sea (blackblue). Data of land ice (dark gray) and floating ice shelves (light gray) are retrieved from Rtopo-2 (Schaffer et al., 2016).

Imaging Spectroradiometer (MODIS) cloud mask product (MOD35/MYD35; Ackerman et al., 2015) is substantially reduced

during polar nighttime compared to its performance during daytime conditions.

Nonetheless, several studies use MODIS thermal-infrared (TIR) data to monitor polyana polynya area and associated sea-ice

production in polynyas both in the Arctic as well as the Antarctic and compare well to or even outperform studies using25

passive-microwave satellite data in certain regions (e.g., Paul et al., 2015; Preußer et al., 2019)(e.g., Paul et al., 2015; Aulicino et al., 2018;

Preußer et al., 2019). These studies generally utilize ice-surface temperature from the National Snow and Ice Data Center

(NSIDC) sea-ice product (MOD/MYD29; Hall et al., 2004; Hall and Riggs, 2015a,b). The MOD/MYD29 product is derived

from both MODIS sensors onboard the NASA polar orbiting Aqua and Terra satellites with the MOD/MYD35 cloud mask

product already applied (Riggs and Hall, 2015). However, especially positive temperature-anomaly features such as large warm30

open-water areas through sea-ice polynyas pose a problem for the MODIS cloud mask and result in frequent misclassification

of these areas as cloud cover (Fraser et al., 2009). Additionally, other MODIS applications would potentially benefit from an

improved wintertime cloud masking. These applications comprise composite generation (e.g., Fraser et al., 2010, 2020),

merged optical and passive microwave sensor applications (e.g., Ludwig et al., 2019), basin-wide lead detection from

thermal-infrared data (e.g., Reiser et al., 2020), as well as sea-ice motion tracking through image cross-correlation.35

In this study, we propose a new novel machine-learning based approach to discriminate between open-water/thin-ice, sea-ice

and cloud-covered areas in MODIS TIR swaths. We evaluate and analyze the use of two different approaches – Random Forests (Breiman,

2001) and a Neural Network (e.g., Kohonen, 1988) – a deep neural network (e.g., Kohonen, 1988; Goodfellow et al., 2016) building upon a

comprehensive set of newly generated labeled training data. The data set is derived using a combined approach of unsupervised

deep-learning, subsequent clustering, and manual screening from co-located full channel 1km resolution MOD/MYD02 product40
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Figure 2. Flow chart summarizing all processing steps from the generation of the initial training data through manual classification to the

training of the final classifier and its application for open-water/sea-ice/cloud discrimination.

data (MODIS Characterization Support Team (MCST), 2017a,b) accessed through the Level-1 and Atmosphere Archive & Dis-

tribution System (LAADS) Distributed Active Archive Center (DAAC) and Sentinel-1 A/B (S1-A/B) synthetic aperture radar

(SAR) calibrated backscatter data acessed accessed through the Alaska Satellite Facility (ASF) DAAC as a cloud-independent

reference.

The resulting classifier performance is then analyzed and evaluated based on wintertime estimates of resulting polynya area45

in comparison to the MOD/MYD29 reference product for the Brunt Ice Shelf (BIS) region in the Antarctic Weddell Sea in

the year 2017 (Fig. 1). This region was chosen for its combination of high inter-annual polynya activity and high spatio-

temporal coverage with Sentinel-1 data. Results are expected to be transferable to other polynya regions in the Antarctic.

In the following sections, we will first describe our methodology and input data starting with the employed basic methods50

and algorithms (Sect. 2.1) as well as followed by the used input data (Sect. 2.2), a detailed explanation of the initial training

data generation scheme (Sect. 2.3) and the subsequent training and evaluation of the initial supervised classifiers (Sect. ??&2.4). Next, we describe the

processing steps that lead to our final classifier (Sect. 2.5) and, finally, 2.4 & 2.5). Finally, we describe and discuss our results (Sect.

3) in comparison to standard MOD/MYD29-derived estimates as well as using co-located S1-A/B SAR reference data. In the

end we provide a summary and an outlook to future applications (Sect. 4).55

2 Data and Methods

In the following subsections we describe our methods and input data that lead to our deep neural network for the sea-ice, cloud,

and open-water/thin-ice discrimination (Fig. 2).
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2.1 Basic methods and algorithms

This section intends to provide a basic introduction to the methods used in this study. However, it would be beyond the scope60

of this article to provide an exhaustive review of these methods. Please refer to the provided references for more detailsFor more details,

additional references are provided.

All computations for this study were carried out using the R software (R Core Team, 2018) running on a commercially

available laptop.

2.1.1 Gray-level co-occurrence matrices (GLCM)65

Gray-level co-occurrence matrices (GLCM) are a tool to quantify spatial texture based on brightness values of a pixel neigh-

borhood (Haralick et al., 1973; Haralick, 1979; Hall-Beyer, 2017; R: Zvoleff, 2019). The directional-dependent occurrence

frequencies of brightness-value combinations are counted and normalized to probabilities. Subsequently, several statistical

measures can be calculated from the GLCM as an additional descriptive statistic of the data.

Haralick et al. (1973) proposed 14 different metrics, however, not all were commonly adopted and implemented into modern70

software. For R, eight different measures are implemented (Zvoleff, 2019), from which we utilized threefour: GLCM mean,

GLCM variance, and Homogeneity Contrast and Entropy (Tab. 1).

Hall-Beyer (2017) showed that GLCM variance can be associated with edges of different class patches, while GLCM mean

and Homogeneity Contrast, and Entropy correspond well to patch-interior texture.

In general, the use of GLCM texture metrics is suitable for cloud detection and classification in polar regions using visual,75

near-, and thermal infrared satellite data (Welch et al., 1992). However, as the size of each GLCM per pixel in a sliding-

neighborhood window corresponds and increases proportionally to the image bit depth, computational cost increases rapidly

for i) large sliding windows and ii) a large number of gray-levels in the input data. For our study, all MOD/MYD02 channel-

based input parameters for the GLCM computations were re-scaled to 32 gray-levels, using a 37× 3 7 sliding-neighborhood

window with horizontal, vertical as well as diagonal directional pixel relationships.80

2.1.2 Fuzzy c-means clustering (FCM)

For initial clustering of our initial training data, we utilize an unsupervised procedure called fuzzy c-means clustering (FCM;

Dunn, 1973; Bezdek et al., 1984; R: Meyer et al., 2019).

The FCM is comparable to a classic k-means clustering approach (MacQueen, 1967; Hartigan and Wong, 1979), with the

addition of providing cluster membership probabilities for each pixel. This type of clustering is also referred to as ’soft’85

clustering. In contrast to ’hard’-clustering approaches such as k-means, FCM allows for a pixel to belong into several clusters

with a certain probability. This type of clustering is also referred to as ’soft’ clustering.

For this type of unsupervised clustering, it is necessary to preselect the number of clusters in which the input data should

be separated into. Without a-priori knowledge about potential relationships and correlations between predictors, it is standard
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common practice to choose a large number of initial clusters and manually merge similar clusters afterwards to the desired90

number of classes.

In this study, we always use a setup of 35 clusters and stop the clustering process after 30 iterations.

2.1.3 Artificial neural networks (NN)

An artificial neural network (NN) generally consists of several neurons organized in hierarchical sequential layers in which each

neuron of a layer is fully interconnected to all neurons in the adjacent two layers through weighted paths. These neurons95

respond to the weighted input of the preceding neurons and pass on their output to the adjacent neurons, modulated based on

a type of activation function (Kohonen, 1988; Lee et al., 1990; Welch et al., 1992; Atkinson and Tatnall, 1997; LeCun et al., 2015; Schmidhuber, 2015Kohonen,

1988; Lee et al., 1990; Welch et al., 1992; Atkinson and Tatnall, 1997; LeCun et al., 2015; Schmidhuber, 2015; Goodfellow

et al., 2016; R: Lammers, 2019Allaire and Chollet, 2020).

Once trained, NN are powerful tools for fast and efficient processing of large amounts of remote sensing data and have been100

shown to be more accurate, e.g., in classification tasks, than other techniques (Kohonen, 1988; Lee et al., 1990; Atkinson and

Tatnall, 1997).

Furthermore, NN can represent complex and non-linear functions without formal description through learning from labeled

training data. In contrast to statistical methods, NN allow to incorporate data from different sources and require no knowledge

or assumptions about its parametric distributions. Hence, in contrast to statistical approaches, NN solely depend on to provided input data105

(Lee et al., 1990; Atkinson and Tatnall, 1997; LeCun et al., 2015).

In their simplest form, a so-called ’shallow’ NN consist of an input layer, a hidden layer and an output layer. Input-layer

neurons correspond to the number of input features/predictors, whereas output layer neurons correspond in our case case of

classification tasks to the number of classes the input data should be categorized into. With an increasing number of hidden

layers, so-called ’deep’ NN can handle even more complex problems (Atkinson and Tatnall, 1997; Schmidhuber, 2015).110

In this study, we experiment with different numbers of hidden layers, activation functions, and the number of neurons per hidden layer. While some general sugges-

tions for the NN architecture exist, solutions are often found empirically by maximizing the accuracy through minimizing/maximizing

the loss function/accuracy for both calibration and validation data classification without overfitting the model. This process

is described in the following subsections. For all NN in this study, we use a logarithmic loss function and the adam optimizer (Kingma and Ba, 2014) as well as

either rectified linear unit (ReLU) or hyberbolic tangent (TanH) activation functions (LeCun et al., 2015).115

In addition to these general NN, we work with a second type called an autoencoder (AE). An AE is a specialized variant

of a NN used for anomaly detection and dimension reduction (Cao et al., 2018; Dong et al., 2018; R: Lammers, 2019Allaire and

Chollet, 2020).

In a typical AE, the output or target data is equal to the input data. However, all information is forced through a bottle-neck

hidden layer. The result relies on the capability of the bottle-neck hidden-layer neurons to extract relevant features information120

from the training data to enable the AE to reconstruct the input image with minimized error (Cao et al., 2018).
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This is achieved by constructing two branches of symmetric hidden layers of neurons (called the encoder and the decoder,

respectively) around a bottle-neck neuron layer generally consisting of very few neurons (Cao et al., 2018). The resulting

encoder part of the AE can then be used for dimension reduction.

In this study, we trained the AE in a 39-23-10-3-10-23-39 fully-coupled hidden-layer setup with ReLU activation functions in 35 epochs, using a batch size of 100 and a125

pseudo-huber loss function (Charbonnier et al., 1997). The used parameters for the AE training and its application as well as for the NN are summarized in Table 1.

2.1.4 Random forests (RF)

Random Forests (RF) are an ensemble supervised machine-learning method based on multiple decision trees (Breiman, 2001; R: Liaw and Wiener, 2002). Each decision tree in a

RF is a rather simple statistical tool to predict data categories based on thresholds used in several steps to split the input data. When visualized, a decision tree resembles a tree with

an increasing number of branches between nodes, leading to the final categories.130

During the RF training, all single decision trees are fitted to the input training data following three rules/constraints (Breiman, 2001): i) for each decision tree in a RF, training

data of the same size as the input datais randomly sampled with replacement from the input data. ii) for M input parameters ideally a fixed number m� M is specified and

randomly selected out ofM . The best split on these selected parametersm is then used to split the training data at a specific node. Throughout the growth of the RF, the value ofm

is held constant. iii) each tree is grown out fully with no pruning applied (i.e., data is split until each data point is categorized).

In contrast to single decision trees that tend to overfit (i.e., match data too precisely and therefore fail for any additional data), RF do not overfit and are also capable of dealing135

with unbalanced data sets (Breiman, 2001).

An additional benefit of the RF is its internally calculated importance measure for each provided predictor. In other words, it counts the frequency of use of each predictor in the

growth process of each tree as well as the loss in overall accuracy when dropping this predictor. Furthermore, similar to the NN approach, RF are also capable to provide probabilistic

classification in addition to a standard binary classification (Liaw and Wiener, 2002).

2.2 Input data140

In total, we use four different types of data sets for the year 2017:

1. MODIS Level 1B Calibrated Radiances obtained from the MODIS sensors on-board the polar-orbiting NASA satellites

Terra and Aqua (MOD/MYD02; MODIS Characterization Support Team (MCST), 2017a,b; retrieved from the LAADS

DAAC at: https://ladsweb.modaps.eosdis.nasa.gov/) with a spatial resolution of 1 km × 1 km at nadir and swath dimen-

sions of 1354 km (across track) × 2030 km (along track),145

2. Sentinel-1 A/B Level 1 calibrated backscatter data (S1-A/B; retrieved from the ASF DAAC at: https://https://asf.alaska.edu/

and processed by ESA) with a spatial resolution of 20m × 20m,

3. NSIDC MODIS Sea Ice product (MOD/MYD29, Hall et al., 2004; Riggs and Hall, 2015) in the same resolution as

the MOD/MYD02 data but comprising a pre-computed and MODIS cloud-masked applied ice-surface temperature data

set (IST) data set, as well as150

4. ECMWF ERA-Interim atmospheric reanalysis data (Dee et al., 2011) featureing a spatial resolution of 0.75 ◦ and a

temporal resolution of 6h.
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Table 1. Summary of all used parameters, their source product/sensor as well as their application in this study. These parameters comprise

brightness temperatures (BT ) from the selected MOD/MYD02 channel subset (?) , as well as BT differences (∆BT ) to the neighboring swaths (•; i.e.

previous or next swath covering the same area) as well as normalized BT (BTnorm; �•). Furthermore, ice-surface temperatures (IST) from MOD/MYD02

together with the IST from neighboring swaths (ISTNeighbors) and the time-normalized IST change (IST∆t) between them as well as

IST from the MOD/MYD29 product. The texture metrics calculated from GLCM (Mean, Variance, Contrast, and HomogeneityEntropy), as

well as the calibrated backscatter (σ0) from Sentinel-1 A/B as reference (R). Finally, the atmospheric parameters taken from the ERA-Interim

reanalysis necessary for the calculation of thin-ice thickness (TIT). The applications comprise primarily their use in Neural Network the neural

network (NN) or Random Forest (RF) classifier and autoencoder (AE) training.Bold NN marks the parameters used for the final classifier.

Symbol/Abbreviation Parameter Source Application

BT [?] Brightness Temperatures MOD/MYD02 NNAE/RF NN

∆BT ?/•Brightness Temperature Differences MOD/MYD02 AEBTnorm [?/�] Normalized Brightness Temperatures MOD/MYD02 AE/NN /RF

IST Ice-Surface Temperature MOD/MYD02 AE/NN/RF NN + TIT

ISTNeighbors Ice-Surface Temperature of neighbor swaths MOD/MYD02 AE/NNNN

IST∆t Time-normalized Ice-Surface Temperature difference to neighbor swaths MOD/RF MYD02 AE/NN

GLCMMean [?] Mean of the GLCM MOD/MYD02 NNAE/RF NN

GLCMV ar [?] Variance of the GLCM MOD/MYD02 NNAE/RF NN

GLCMHom GLCMCon [?] Homogeneity Contrast of the GLCM MOD/MYD02 NNAE/NN

GLCMEnt [?] Entropy of the GLCM MOD/RF MYD02 AE/NN

IST Ice-Surface Temperature MOD/MYD29 TIT

σ0 Calibrated Backscatter S1-A/B R

T2m 2m Temperature ERA-Interim TIT

Td2m 2m Dew-Point Temperature ERA-Interim TIT

mslp Mean Sea-Level Pressure ERA-Interim TIT

u10m 10m u Wind Component ERA-Interim TIT

v10m 10m v Wind Component ERA-Interim TIT

AE/NN=Autoencoder/Neural Network; R=Reference; TIT=Thin-Ice-Thickness Calculation

?=Calculated/Derived for MODIS channels: 20, 25, 31, and 33;

•=Normalized through swath-wide mean and standard deviation:BTnorm = (BT −BT )×σ−1
BT

An overview of all used input parameters with their respective source as well as their application is provided in Table 1.

All MODIS and ERA-Interim data are resampled to a common equi-rectangular grid of the Brunt Ice Shelf (BIS) area with

an average spatial resolution of 1 km × 1 km and an extent from 34 ◦W to 18 ◦W and 77 ◦S to 73 ◦S using a nearest-neighbor155

approach. For visual reference, the S1-A/B data is also resampled to an equi-rectangular grid with the same extent but a
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spatial resolution of 25m. Through the decreasing distance between meridians towards the pole, the per-pixel spatial area also

decreases. This results from the constant latitudinal distance between grid points in this type of projection. Ice-shelf areas are

excluded from our analysis based on Rtopo-2 data (Schaffer et al., 2016).

2.2.1 MOD/MYD02 L1b calibrated radiances160

Our goal for the later discrimination algorithm was for it to solely rely on MODIS-channel data, without the need for any

auxiliary data.

Brightness temperatures (BT) were calculated from calibrated radiances comprising MODIS channels 20, 22, 23, 24, 25, 29, 31,

32, and 33 , and 35 following Toller et al. (2009). This channel subset allows to distinguish between sea-ice, open-water/thin-ice,

and cloud pixels through a high inter-channel variability.165

Furthermore, we computed additional parameters from these BT comprising , while reducing the impact of stripes in the MODIS data. Addition-

ally, channel 32 data is used for the calculation of the ice-surface temperature (IST; following (Riggs and Hall, 2015)as well as

. Furthermore, we computed image-texture parameters using GLCM (Tab. 1). For this we use MODIS collection 6.1 data.

We generally limited our swaths to study to swaths featuring sensor incidence angles ≤6050 ◦ in 65% of the study area (to

minimize spatial distortion towards the swath edgesand a coverage ) and a total coverage of our study area >90%of our reference .170

In order to aid the manual categorization by providing favorable geometries, the MODIS colocation swath to the S1-A/B

reference data needs to feature sensor incidence angles ≤35 ◦ in 65% of the study area.

2.2.2 MOD/MYD29 sea-ice product

For a later comparison based on cloud coverage , and polynya area, and sea-ice production rates, we extracted and use the IST from the

reference NSIDC MOD/MYD29 sea-ice product produced from MODIS collection 6 data, which offers an overall accuracy of175

1–3K under ideal (i.e., clear-sky) conditions (Hall et al., 2004; Riggs and Hall, 2015).

Both IST (MOD/MYD02 and MOD/MYD29) are derived based on a constant emissivity for snow/ice (Hall et al., 2015), but

with the MODIS cloud mask already applied to the MOD/MYD29 product.

2.2.3 S1-A/B L1 calibrated backscatter

In order to reliably identify polynyas independent of cloud-cover or other atmospheric disturbances, we selected a total of eight180

22 S1-A/B swaths featuring an active polynya in front of the BIS.

These S1-A/B swaths together with co-located and at least partially cloud-free MOD/MYD02 data are used for training cal-

ibration and validation of the algorithm. S1-A/B swath acquisition times are temporarily distributed over the 2017 Antarctic

winter, with all additional information summarized in Table 2.
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Table 2. List of used S1-A/B swaths where the top six were used for calibration/training, validation, and bottom two only for a detailed analysis (Fig.

??6).

Satellite Product Acquisition in UTC

Calibration/Training

S1-B IW_GRDH_1SSH 2017-04-02 03:49:42

S1-A EW_GRDM_1SSH 2017-04-10 23:23:10

S1-A EW_GRDM_1SSH 2017-04-07 22:58:51

S1-A EW_GRDM_1SSH 2017-05-18 23:06:59

S1-A EW_GRDM_1SSH 2017-05-28 00:19:56

S1-A EW_GRDM_1SSH 2017-05-28 23:23:13

S1-A EW_GRDM_1SSH 2017-06-21 23:23:14

S1-A EW_GRDM_1SSH 2017-07-03 23:23:15

S1-A EW_GRDM_1SSH 2017-07-08 00:28:10

S1-A EW_GRDM_1SSH 2017-07-08 23:31:21

S1-A S1-B IW_GRDH_1SSH 2017-07-13 2017-07-31 03:50:25 49:48

S1-A IWEW_GRDHGRDM_1SSH 2017-08-06 03:50:27 2017-08-08 23:23:17

S1-B IW_GRDH_1SSH 2017-08-19 23:30:41

S1-A IW_GRDH_1SSH 2017-09-01 23:23:18

S1-A EW_GRDM_1SSH 2017-09-20 00:11:57

S1-A EW_GRDM_1SSH 2017-09-25 23:23:19

Validation

S1-A EW_GRDM_1SSH 2017-04-07 22:58:51

S1-B EW_GRDM_1SSH 2017-04-09 00:27:24

S1-A EW_GRDM_1SSH 2017-05-11 00:11:50

S1-A EW_GRDM_1SSH 2017-07-20 00:28:11

S1-A IW_GRDH_1SSH 2017-08-06 03:50:27

S1-A IW_GRDH_1SSH 2017-09-11 03:50:28

Example

S1-A EW_GRDM_1SSH 2017-05-16 23:23:12

S1-A EW_GRDM_1SSH 2017-05-18 23:06:59

2.2.4 ERA-Interim data and thin-ice retrieval185

For a quantitative comparison between resulting sea-ice production rates and polynya area polynya area (i.e., the total area of pixels cov-

ered with a maximum ice thickness of 0.2m), we calculate the thin-ice thickness (TIT) from MODIS IST for MOD/MYD02
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Figure 3. Examplary Exemplary generation of labeled training data with reference Sentinel-1 A/B calibrated backscatter image (in dB; a),

MOD02 derived ice-surface temperature (in K; b), an exemplary subset of exemplary results nine clusters out of the 35 total clusters from

the used Autoencoder and Fuzzy C-Means Clustering before (c) and after (d) manual categorization and quality control (d; thin-ice/open-

water, TOW; clouds, CLD; sea ice, ICE), as well as the final training based on the generalizing NN (e), and the corresponding ice-surface

temperature of resulting classification based on the selected example cluster subsets final OSCD algorithm (in ; df). HereLand-ice (dark gray) and ice-

shelf (light gray) overlays originate from Rtopo-2 (Schaffer et al., 2016). In (c), clusters 3, 7, 18, 20 and 23 24 were categorized as ’cloud’;

clusters 13 1, 3, 25, 28, and 14 30 as ’open-water/thin-ice’; and cluster clusters 19 and 33 as ’sea ice’.Land-ice (dark gray) and ice-shelf (light gray)

overlays originate from Rtopo-2 (Schaffer et al., 2016).

und and MOD/MYD29 data using a surface-energy-balance model together with the ERA-Interim 2m air temperature, the 10m

wind-speed components, the mean sea-level pressure, and the 2m dew-point temperature (Dee et al., 2011).

The surface-energy-balance model utilizes the inversely proportional relation between IST and the thickness of thin sea190

ice (Yu and Rothrock, 1996; Drucker et al., 2003). Generally, thinner ice features a higher IST than thicker ice as the influence from the warm ocean is

diminished. The net positive flux towards the atmosphere between the warm ocean and the cold atmosphere is equalized from

the conductive heat flux through the ice. From the conductive heat flux TIT is derived. A detailed description of the retrieval

procedure as well as all equations and necessary assumptions are thoroughly described in Paul et al. (2015) as well as Adams

et al. (2013). For ice thicknesses between 0.0m and 0.2m, Adams et al. (2013) state an average uncertainty of ±4.7 cm.195
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2.3 Initial training data generation

The availability and quality of labeled training data is are of utmost importance for the training of any supervised machine-

learning algorithm. However, available spatio-temporal high-resolution cloud information over nighttime sea ice is practically

non-existent. Therefore, we had to derive our own labeled training data using co-located MODIS and S1-A/B data to manually

identify cloud, sea-ice as well as open-water/thin-ice pixels, respectively . (Fig. 2A).200

To reduce manual effort and uncertainty to a minimum, we employ a mix of dimension reduction and unsupervised clustering

before the final manual classificationcategorization.

First, we selected up to 13 MODIS swaths in close temporal proximity for each of the six 22 S1-A/B reference swaths (Top six

in Tab. 2), i.e. in a temporal range of ±236h around the S1-A/B swath. We chose the best temporal match based sensor

zenith angle (65% of the study area feature an angle ≤35 ◦) and swath coverage of our study area (≥90%). In this way,205

the data represent rather easy to distinguish configurations of cloud, sea-ice and open-water/thin-ice pixels with favorable

geometries for manual categorization.

Secondly, in addition to the textural parameters from the GLCM (Tab. 1), we wanted to add a temporal component to the

parameter mix. We therefore added the IST of two swaths acquired before and after the current swath, respectively. These four

swaths were taken from the pool of selected MODIS swaths and arranged in temporal patterns before and after the best210

match. Additionally, we added the time-normalized IST difference between all these neighboring swaths.

From here, we take advantage of the AE dimension reduction capabilities (Fig. 2). Hence, instead A). Instead of using the total

number of 39 33 input parameters for the FCM with probably only mediocre results (Tab. 1), we cluster the encoded infor-

mation from the three bottle-neck layer neurons for all pre-selected and pre-processed MODIS swathsswath-wise for all MODIS co-locations.

Subsequently, the FCM soft-clusters similar pixels per swath into 35 clusters before we manually categorize these clusters into215

one of the three classes ’cloud’, ’sea ice’, or ’open water/thin ice’. An exemplary sequence of this procedure is shown in Figure

3. a-d.

For this task of dimension reduction, we trained and subsequently used the encoder part of our autoencoder based

on a setting featuring a decreasing number of neurons per hidden layer of 32, 16, and 8 down to the bottle-neck layer

containing three neurons. The decoder part is built symmetrically to the encoder but in reversed order. We used a mean220

squared error loss function and trained for 50 epochs using a batch size of 2048 with the adam optimizer (Kingma and

Ba, 2014) for all available co-located MODIS/S1-A/B combinations. For a detailed explanation of these technical terms,

please see Goodfellow et al. (2016).

In order to reduce uncertainty in the training data, we constrained the manual classification to ’obvious’ cases (e.g. ’cold’

continuous patches over otherwise ’warm’ polynyas and adjacent sea-ice categorized as ’clouds), which results in not every225

MOD/MYD02 swath being fully classified at this stage . (Fig. 3d).

We used a subset (n=11) of all available co-located MODIS swaths (n=52) in order to i) keep the manual categorization computationally and humanly manageable and ii)

represent rather easy to distinguish configurations of cloud, sea-ice and open-water/thin-ice pixels with favorable geometries (e. g., low sensor zenith angles). To increase the

variability of the feature space in our labeled training data set, we selected the neighboring four swaths randomly from a pool of MOD/MYD02 swaths with a maximum time
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difference of ±24 to the current MODIS swath. However, we manually classified two combinations of the randomly selected temporal neighbors and applied these results to up to230

25 random combinations for each of the 11 swaths. This increased the overall temporal variability of our training data set substantially.

Finally, from our manual categorization, we only use pixels with a an FCM probability (i.e., the membership score) above

0.6 for ’open-water/thin-ice’ pixels, 0.65 for ’sea-ice’ pixels as well as 0.65 for ’cloud’ pixels . (Fig. 3d). As ’sea-ice’/’cloud’

pixels are harder to identify, we chose a stricter probability threshold for those two classes. Due to the large temperature

range present in Antarctic clouds, we arbitrarily separated our ’cloud’ class internally into ’cold’ (<235K), ’intermediate’, and235

’warm’ (>250K) clouds. This separation lead to an improved general classification result for the supervised learning algorithmsthrough

the neural network later on. All ice-shelf areas are excluded from our analysis to avoid any additional misclassifications due

to the substantially different temperature regime.

Through this procedure, we created an initial labeled training data set consisting of about 8.23.5× 106 data points .

2.4 Training of classifier candidates240

While some general rules of thumb exist for the setup of NN and RF, the process of finding the best setup is iteratively based on training with varying setups and subsequent assessing

of the resulting accuracy based on validation data. Therefore, before training any classifier, we separated our 8.2× labeled training data points into a for the 33 predictors

(Tab. 1). For the purpose of training the NN, we divided the data into a training/calibration and a validation part using randomly

selected 75 /25 of the total data points, respectively data set (Fig. 2).

For classifier-candidate training, we use the following variations for the setup of our NN: the activation functions (ReLUB). As a random split would potentially245

lead to highly auto-correlated neighboring pixels, we decided for a swath-wise split with 16 swaths used for training/TanH;

either constant for all hidden layers in a NN or combinations of them), the number of hidden layers (2-4) as well as the number of neurons (10, 20 or 25; either constant for all layers

or decreasing per layer) in each hidden layer, and the number of trainingepochs (10-50). For the setup of the RF classifiers we change:

– the number of trees in each RF (25-40); while at the same time

– using a constantm of 3 for selection of split parameters during decision-tree growth.250

For both classifiers, we varied and limited the input parameters for both classifier types calibration and six swaths used for validation plus additional

two swaths for an additional analysis (Tab. 12).

2.4 Validation and final Final training data generation

From assessing the classification accuracy on the validation data set as well as visual screening it became apparent that all of the classifier candidates showed biases towards either

one or several of ’open-water/thin-ice’ , ’sea-ice’ or ’cloud’ classes. This likely results from either a higher degree of complexity in the data that can not represented in the current255

classifier setups or a lack of representation of the overall variability in the data.

As mentioned, the initial training data set is based solely on ’obvious’ cases that were manually categorized. This

procedure lead to only few data points per swath (Fig. 3d). In order to increase (at least almost) fully classify all co-located

MODIS swaths and thereby extend our training data sample size to fully represent more different configurations of ’cloud’, ’sea-ice’, and ’open-waterset,

two simple intermediate classifiers were trained to represent their respective initial training data set (i.e., calibration/thin-ice’260
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pixels, we selected eight classifier candidates with the highest accuracy (5×NN, 3×RF) and used them to classify all of our co-located MODIS swaths (n= 52). Here, we randomly

selected three temporal neighbor combinations for each of the 52 swaths. validation) as best as possible (Fig. 2C).

In this way, With this, we are able to extend our training data set by identifying and classifying additional similar data

points in the complete set of collocated MODIS swaths, that were previously not categorized. However, based on the

class probabilities provided by the two NN and through visual screening, we excluded ambiguous pixels from the final265

training data set (Fig. 3e). In this way, we increased our total variability in the training data (while keeping it computationally manageable), as well as get a

statistically substantiated classification of almost the complete swaths - in contrast to the partially categorized swaths through

manual classification used before . Furthermore, we reduced the number of input predictors to 45 by removing consistently less important predictors through using the

RF importance metric (Tab. 1(Fig. 2C).

An ensemble combination of the best classifier results was used for the final training data, based on the probability estimates provided by the RF/NN classifiers as well as again270

manual visual screening.

All RF classifiers featured frequent rather close decisions in their resulting classifications, i.e. mid range probabilities. This likely originated from comparably few trees in the

RF classifiers. However, larger numbers of tree could not be realized with the given computing power.

Through this procedure, we created our final labeled training data set of about 17.010.0× 106 and 3.1× 106 data points

comprising 45 the 33 different predictors/parameters for calibration and validation, respectively (Tab. 1).275

2.5 Training of the final classifier

Normalized confusion matrix for the final deep NN classifier between reference (R; columns) and prediction (P; rows) of the NN for the five classes of open-water/thin-ice pixels

(OWT), sea-ice pixels (ICE) as well as the three temperature-dependent cloud sub-classes (CLD); (w)arm, (i)ntermediate, and (c)old. ↓P/R→OWT CLDcold CLDintm CLDwarm

ICE OWT 0.95 0.00 0.00 0.01 0.01 CLDc 0.00 0.93 0.00 0.00 0.00 CLDi 0.00 0.05 0.95 0.02 0.04 CLDw 0.02 0.00 0.01 0.91 0.03 ICE 0.03 0.02 0.04 0.06 0.92

This We used this final training data set , we again randomly split into calibration/validation data using 75 /25 of the total data points, respectively to train280

our final classifier (Fig. 2).

As we could not increase the number of trees in the RF classifiers due to computing limitations, we settled for a NN as our final classifier type. All final classifier candidates are

using ReLUactivation functions only, logarithmic loss function, a D). This NN consists of six hidden layers containing 20 neurons each with

leaky rectified linear unit (leaky ReLU) activation functions, while using a fixed batch size of 100, and a total of 15 training epochs.

The only parameter we change for assessing the accuracy between different classifier candidates is the number of fully-coupled hidden layers (4-8), with each consisting 2048,285

a learning rate of 1× 10−4, a dropout rate of 20neurons per hidden layer.

The best result was achieved with a setup of six hidden layers (Table ??) , featuring an overall accuracy of 93.2% , i.e. as well as L2 regularization (Goodfellow

et al., 2016). Furthermore, we used categorical cross-entropy loss and again the adam optimizer (Kingma and Ba, 2014).

Our final open-water/thin-ice, sea-ice, cloud discrimination (OSCD) classifier features an accuracy (the ratio of correctly290

classified pixels (3,961,579) to the total number of samples(4,252,193) in the ) of 90.8%/84.3% on the calibration/validation data set,

respectively. For our comparisons and the results, we always merged all cloud sub-classes to a single cloud class . (Fig. 2E

and 3f).
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Table 3. Summary of polynya area (PA; in km2) estimates between S1-A/B (PAS1), OSCD (PAOSCOSCD), and MOD/MYD29 (PAM29)

data. PA estimates in parenthesis correspond to the PA retrieved from MODIS for the S1-A/B polygon in Figures 4/5.

Example PAS1 PAOSC OSCD PAM29

Fig. 4a-d 4235 903 6472 (4074106 (0) 5134 (1823714 (0)

Fig. 4e-h 2224 2586 (21295620 (2136) 3146 (21316897 (2122)

Fig. 4i-l 380 484 (366989 (355) 47 (1843 (16)

Fig. 5a-d 1093 1037 (880892 (601) 962 (920841 (577)

Fig. 5e-h 1448 1314 (12201945 (858) 730 (7223366 (534)

Fig. 5i-l 1425 2172 (14141748 (1407) 1019 (2571502 (245)

3 Results and Discussion

In the following, we describe and discuss the results from using our open-water/thin-ice, sea-ice, cloud discrimination295

(OSCD) product in comparison to the reference MOD/MYD29 sea-ice product on the basis of a thin-ice thickness (TIT)

estimates on i) a swath-to-swath basis, ii) on the basis of daily composites of all available swaths per day, and iii) a

comparison of overall achieved coverage over a year (Fig. 2F).

3.1 Swath-based comparison

In the following, we describe and discuss the results using the final NN classifier for our open-water/thin-ice, sea-ice, cloud discrimination (OSCD) product in comparison to the300

reference MOD/MYD29 sea-ice product.

Representative comparisons between resulting thin-ice thickness (TIT ) TIT from OSCD and MOD/MYD29 swaths reveal sub- stantial

substantial differences, especially in the high-temperature polynya and thin-ice areas (PA; Figs. 4&5)).

The S1-A/B reference data always feature a polynya signal in all our examples (Figs. 4a,e,i&5a,e,i) and these are (at least

partially) represented by a warm IST anomaly in the MODIS data (Figs. 4b,f,j&5b,f,j). While for some examples the difference305

in resulting TIT between OSCD and MOD/MYD29 is comparably small or negliable (Figs. 4g/h & 5c/d), substantial differences

appear for other examples (Figs. 4c,k/4d,l & 5g,k/5h,l).

For a better comparison, the polynyas were hand-picked for the respective S1-A/B and MODIS data in Figures 4&5. The

corresponding absolute polynya areas are summarized in Table 3. In addition to the corresponding respective numbers for each

polynya, the corresponding area covered in the S1-A/B extent is given in parenthesis. While there is a bit of some uncertainty310

due to the different grid resolution resolutions (25m vs. 1 km) as well as acquisition-time difference and subsequent changes

due to sea-ice drift, this allows for a good quantification of the impact of misclassified cloud cover erroneously classified cloud cover

on the estimated TIT.

While there are correct and also corresponding cloud classifications in both MODIS products, the applied MODIS cloud

mask in the MOD/MYD29 product tends towards additionally masking out strong positive temperature anomalies (Figs. 4d315
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Figure 4. Compilation of exemplary co-located S1-A/B calibrated backscatter (in dB) and MODIS swaths of ice-surface temperature (IST;

in K) and derived thin-ice thickness (TIT; in m) data (Tab. 3). Gray/green overlays highlight the ice-shelf extent. Manually picked S1-A/B

reference polynya extent is outlined by a dashed red line in all panels.

l&5h,l). This happens frequently in the center of the primary polynya around 27.4 ◦W and 76 ◦S and leads to substantial

differences in PA estimates (Tab. 3).

Due to the strong temperature gradient between the warm ocean and the cold atmosphere, turbulent exchange of sensible

and latent heat is large and can potentially lead to the formation of sea fog and thin, low cloud cover (Gultepe et al., 2003).
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Figure 5. Additional compilation of exemplary co-located S1-A/B and MODIS swaths in the same setup as Figure 4. Gray/green overlays

highlight the ice-shelf extent. Manually picked S1-A/B reference polynya extent is outlined by a dashed red line in all panels.

(Gultepe et al., 2003; Fraser et al., 2009). However, the temperature texture in the open-water/thin-ice areas appear to be320

homogeneous, and is likely not to be affected by either sea fog or clouds to the extent suggested by the MOD/MYD29 product

through the MODIS cloud mask.
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Figure 6. Daily polynya area difference in ×103km2 using swath-wise pixel averages featuring a thin-ice thickness (TIT) ≤0.2m be-

tween OSCD and MOD/MYD29. Difference is calculated by subtracting MOD/MYD29 from OSCD; results with OSCD≥MOD/MYD29

are shown in blue; results with OSCD<MOD/MYD29 in red. Orange vertical bars highlight days with S1-A/B swath coverage used for cal-

ibration/training of the OSCD algorithm. Green vertical bars show additional S1-A/B swaths used for validation between products (Figures

4/5). The top-left corner features a scatterplot of the daily polynya are with MOD/MYD29 against OSCD. Additional information about

the S1-A/B swaths is provided in Table 2.

3.2 Daily-composite-based comparison

Based on median TIT of all available MODIS swaths per day, daily polynya area (PA) was calculatedcomputed (Paul et al.,

2015), and the difference between OSCD and MOD/MYD29 estimated calculated (i.e. OSCD minus MOD/MYD29; Fig. 6).325

Larger estimates Scattering of OSCD and MOD/MYD29 daily PA estimates against each other reveals a general tendency

towards larger PA estimates in MOD/MYD29 appear to dominate data (Fig. 6; top-right Scatterplot inlet). However, there is also

a strong seasonality in this MOD/MYD29 bias, which dominates from 1 April 2017 to mid May 2017, while OSCD estimates

are in general predominately larger or equal to MOD/MYD29 between mid May and 30 September 2017. 2017 (Fig. 6). For the year

2017, about 72.364%/56.050.0%/26.627% of the absolute daily median PA differences are below 1000 km2/500 km2/100 km2,330

respectively.

On average, OSCD estimates the daily polynya area (PA) between 1 April and 30 September 2017 to be 2.791.88×103 km2 in

contrast to 2.752.69×103 km2 using MOD/MYD29 data (not shown). This corresponds to an average of 2about 44% smaller

daily mean PA for OSCD compared to MOD/MYD29. From our comparisons based on swath data and the sometimes substantial differences we have

found (Figs. 4&5), this appears to be a very small difference. An explanation could be that the composites counterbalance the individual shortcomings in the swath data from335

misclassification of thin ice as cloud cover in the MOD/MYD29 product.
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Figure 7. Compilation of S1-A swaths acquired at 16/18 May 2017 (a/b; calibrated backscatter in dB), the daily median ice-surface temper-

ature (IST; in KK) composite of 17 May 2017 from all available MODIS swaths (c), as well as the resulting daily median thin-ice thickness

(TIT; in mm) composites for the OSCD (d) and MOD/MYD29 (e) products for 17 May 2017, respectively. Red dashed line outlines the

polynya on 18 May 2017 in S1-A.

However, especially during freeze-up (i.e. between 1 April 2017 and mid May 2017), the differences are oftentimes very

large (16.614.9×103 km2 on 17 May 2017) and towards MOD/MYD29. To analyze this, we want to conduct a more detailed

analysis of OSCD and MOD/MYD29 daily median TIT (Figs. 7&8).

Unfortunately, no S1-A/B swath was acquired over the BIS area for 17 May 2017. However, S1-A/B swaths were acquired340

the day before and after (Tab. 2and Fig. 6).

From the S1-A/B data (Fig. 7a/b), the existence of open water and/or thin ice very close to the ice-shelf edge around 27.4 ◦W

and 76 ◦S for 18 May 2017 is evident.

The lack of any distinguishable clearly distinguishable positive temperature anomaly features in the MODIS daily median IST

composite (Fig. 7c) as well as the general texture of rather smooth temperature gradients patches are both signs for a persistently345

present cloud cover during 17 May 2017.

However, the relatively high temperatures of some of these potential clouds lead to an erroneous calculation of TIT and

subsequent daily median TIT composite with an erroneously much larger polynya area (PA) for MOD/MYD29 compared

to OSCD (Fig. 7d/e). Nonetheless, also OSCD features TIT estimates from cloud artifacts in the NW around 29.5 ◦W and

74-74.5 ◦S as well as in the area of the primary BIS polynya.350

The individual swaths used for the computation of the both composites underline the absence of any pronounced positive

temperature anomalies corresponding to open-water/thin-ice features (Fig. 8a-ha-g).

The While cold clouds are reliably identified, the inability of the MODIS cloud mask to reliably identify these also reliably identify

warm cloud patterns results in the computation of TIT in large patches West of BIS (Fig. 8q-xq-u). Conversely, these false

computations are not present or at least much reduced in the OSCD data (Fig. 8i-pj-n). However, while a small area West of355

the tip of the BIS around 28 ◦W and 75.5 ◦S corresponds well to the polynya signal in the S1-A data (Fig. 7b), the majority of

TIT estimates appear to be cloud artifacts (Fig. 8pn).
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Figure 8. Compilation of MODIS swaths used for the computation of the data shown in Figure 7: swath-based ice-surface temperature (IST

in KK; a-ha-g), resulting swath-wise thin-ice thickness (TIT in mm) using OSCD (i-ph-n) and MOD/MYD29 (q-xo-u) data, respectively.Due to

space limitations, we excludes a total of four MODIS swaths in this Figure that were used in the daily computations.

Two reasons can, therefore, explain the good overall agreement in daily median PA valuesFrom our analysis of the swath-based and daily-composite

comparisons, three major take home messages can be summarized:

1. Erroneous TIT estimates due to (especially) warm cloud-cover artifacts resulting from false-negative classifications360

in the MOD/MYD29 data increase the overall estimated PA ; and substantially. These false-negative classifications are

reduced in the OSCD data.

2. Over the course of one day, the frequent MODIS coverage as well as the rapid growth rate of very thin ice potentially leads to rather sufficient coverage in the False-

positive clouds classifications over positive ice-surface temperature anomalies in the MOD/MYD29 productdata re-

duce the products capability to estimate PA spatially and temporarily correct. These false-positive classifications365

are also reduced in the OSCD data.
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Figure 9. Comparison of per-pixel thin-ice occurrence based on all available swaths from 1 April to 30 September 2017 between the use

of MOD/MYD29 (a) and OSCD data (b), respectively. White/Green dashed line marks lines mark the core polynya BIS region as well as the

primary BIS polynya area, respectively, used for analysis in the textfurther analyses.

3. Eliminating the thinnest sea ice fraction of the thin-ice spectrum due to false-positive classifications potentially leads

to a ’thick’ thin-ice bias during the daily composite procedure.

This The combined effect leads to spatially misplaced TIT estimates, likely not resolving the correct shape and (sub-)daily thick-

ness distribution of the open-water/thin-ice areas. Studies such as Paul et al. (2015) and Preußer et al. (2019), therefore,370

try to mitigate the effect of points 1&2 by introducing pre-defined masks.

3.3 Coverage comparison

While the annual average daily PA appears to be consistent between OSCD and MOD/MYD29 data, In order to pick up on the last point, we would like to

analyze the per-swath coverage of thin ice in more detail as this also influences the sub-daily TIT distribution and, therefore,

the thickness distribution of the resulting daily composite. It appears that the per-swath thin-ice occurrence frequency is375

much higher in the OSCD data compared to the MOD/MYD29 data (Fig. 9).

Especially in the very active part of the polynya with frequent thin-ice occurrences around 27Quantifying the differences in the outlined sub regions

(Fig 9; white/green dashed outlines), results in a 10 and 76%/20 , OSCD produces a much % (BIS area/primary BIS polynya) higher

detection-rate of thin-ice pixels over all MODIS swaths between 1 April 2017 and 30 September 2017 in the OSCD data

(Fig 9b).380

For the core polynya region (Green dashed outline ; This improved coverage likely leads to a higher quality daily composite, as the

impact from outliers is reduced. It admittedly sounds counter-intuitively at first to have improved coverage (Fig. 9) with at

the same time substantially less average PA (Fig. 6). This effect can be explained from the difference between swath and

daily-composite data. Here, the increase in coverage mainly focuses around the primary polynya at BIS (green outline in
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Figure 10. Comparison of binned thin-ice-thickness classes with a bin size of 2 cm based on all available swaths from 1 April to 30

September 2017 between the use of MOD/MYD29 (red) and OSCD (blue) data (b) for the primary BIS polynya (blue dashed outline in

Fig. 9).

Fig. 9), use of OSCD results in a substantial 31. However, the substantial decrease in daily PA results from reducing the false-negative385

classifications of warm clouds as sea ice, primarily off the BIS edge to the West. These misclassification-related TIT

estimates push the resulting average PA for the MOD/MYD29 data.

Based on our analysis in Subsections 3.1 and 3.2, we drew assumption that these additional thin-ice occurrences likely

feature very thin ice, therefore, reducing the a potential ’thick’ thin sea-ice bias in the MOD/MYD29 data. This is evident

from Figure 10. Here, the TIT occurrence frequency based on 2 increase in coverage cm bins for all available swaths between 1390

April 2017 and 30 September 2017. The improved coverage likely leads to a higher quality daily composite,as the impact from outliers is reduced. This will likely play

2017 are shown for MOD/MYD29 and OSCD data. Thickness classes between 0 cm and 20 cm are much more frequent in

OSCD data (402,724; Fig. 10) compared to the MOD/MYD29 standard product (211,021; Fig. 10). The largest difference

between both products, however, is the overall higher occurrence frequency of the thinnest ice fractions (between 0 cm

and 10 cm) in the OSCD data compared to MOD/MYD29. As assumed before, there is a ’thick’ thin-ice bias present in395

the MOD/MYD29 data, which potentially plays an important role especially in the estimation of sea-ice production based on

daily composites.

Despite great care during the manual categorization, uncertainty remains due to the lack of measured ground-truth data for

the training-data generation.

However, the underlying statistical basis from the unsupervised FCM clustering in combination with a second stage of fully400

classifying all co-located MODIS swaths using RF/NN NN before generating the calibration/validation swath-split final training

data for the OSCD algorithm appears to provide a realistic representation of the present sea-ice conditions in the BIS area.

4 Summary and Outlook

In this study, we present a novel approach to improve the detection of wintertime cloud-cover over Antarctic sea ice and their its

discrimination from sea-ice cover and open-water/thin-ice areas in MODIS thermal-infrared data using a deep neural network.405
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We established a labeled training data set using dimension reduction, unsupervised clustering, and supervised learning

techniques in combination with manual visual screening and categorization. Through this effort, we generated a total of

17.0×13.1×106 data points for 45 33 different predictors.

With this data set, we trained a deep neural network and used it to discriminate between open-water/thin-ice, sea-ice and

cloud-covered areas in the Brunt Ice Shelf region for the freezing period of 2017 (1 April to 30 September). Here, we computed410

the thin-ice thickness up to 0.2m of open-water/thin-ice areas and evaluated the difference in daily polynya area and daily swath

coverage to results using the standard NSIDC MOD/MYD29 sea-ice product.

Based on our approach, we obtain a 2 44% higher lower average polynya area but 3120% higher swath coverage rate . How-

evercompared to the standard MOD/MYD29 product. On the one hand, the polynya area in MOD/MYD29 is likely dominated

through frequent misclassifications false-negative classifications of warm clouds as thin ice, that lead to unrealistically large open-415

water/thin-ice areas, especially during freeze-up. The much higher On the other hand, the much lower coverage rate likely increases

decreases the quality and accuracy of TIT estimates in the daily median TIT composites when using MOD/MYD29 data. Both

factors are reduced in our OSCD data. This also reduces the impact of single outliers on the daily median TIT composites

and, therefore, also increases the quality of derived information such as sea-ice production.

In the future, we plan to create an open-access comprehensive OSCD-based IST/TIT product covering all major Antarctic420

coastal polynyas, as well as providing higher-level parameters such as polynya area, sea-ice production, and associated ocean

salt flux. We expect this data set to be of great use to ocean/sea-ice/ice-shelf model community as well as for potential biological

applications.

Data availability. The generated training data set will be made available through PANGAEA. Sources of all used data sets are referenced in

the text.425
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