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Abstract. The standard viscous-plastic (VP) sea ice model with an elliptical yield curve and normal flow rule does not simulate

fracture angles below 30◦ in uni-axial compression, in stark contrast with observations of Linear Kinematic Features (LKFs)

in the Arctic Ocean. In this paper, we remove the normality constraint in the standard VP model and study its impact on

the fracture angle in a simple uni-axial compressive loading test. To this end, we introduce a plastic potential independent

of the yield curve that defines the post-fracture deformations or flow rule. The numerical experiments show that the fracture5

angle strongly depends on the flow rule details. For instance, a plastic potential with an ellipse aspect ratio smaller than that

of the standard ellipse gives fracture angles that are as low as 22◦. A newly adapted theory – based on one developed from

observations of granular material – predicts numerical simulations of the fracture angles for plastic materials with a normal

or non-normal flow rule with a root-mean-square error below 1.3◦. Implementing an elliptical plastic potential in the standard

VP sea ice model requires only minor modifications. The modified rheology, however, takes longer to solve numerically for a10

fixed level of numerical convergence. In conclusion, the use of a plastic potential addresses several issues with the standard VP

rheology: the fracture angle can be reduced to values within the range of satellite observations and it can be decoupled from the

exact shape of the yield curve. Furthermore, a different plastic potential function will be required to change the post-fracture

deformation along the fracture lines (convergence or divergence) and to make the fracture angle independent on the confining

pressure (as in observations).15

1 Introduction

Sea ice plays a significant role in the energy budget of the climate system and therefore has a strong influence on future climate

projections. Linear Kinematic Features (LKFs), narrow lines of deformation observed in the Arctic sea ice cover, emerge

in high-resolution simulations (Kwok, 2001; Hutchings et al., 2005). LKFs in the Arctic sea ice cover influence the Earth20

system in many ways: heat and matter exchange take place primarily over open water (Badgley, 1965). Salt rejection during

ice formation in leads creates dense water and influences the thermohaline circulation (Nguyen et al., 2011, 2012; Itkin et al.,
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2015). The ice strength locally depends on the ice thickness, which in turn is affected by sea ice fracture with thermodynamical

growth in opening leads and with local dynamical growth during ridge formation.

In granular media like sea ice (Overland et al., 1998), deformation is localized along pairs of LKFs (Anderson, 1942;25

Erlingsson, 1988). Note, that in this study, we consider sea ice to be granular not only in the marginal ice zone, but also in pack

ice, where ice floes are densely packed. The intersection angles between the LKFs influence the deformation field; thus, the

local sea ice strength and the emergent sea ice anisotropy (Aksenov and Hibler, 2001). This anisotropy then influences future

deformation and fracture line orientation, which will have impacts on the local sea ice mass balance. Therefore, reproducing

the LKFs patterns, density, and orientation is important for accurate sea ice and climate projections at high-resolution.30

LKFs have been studied for several decades using observations (Stern et al., 1995; Kwok, 2001; Schulson and Hibler, 2004;

Weiss et al., 2007) and numerical models (Spreen et al., 2017; Hutter et al., 2018). In viscous-plastic (VP) sea ice models, LKFs

are created because the ice is modeled as a highly viscous material between narrow zones of plastic deformation (Hutchings

et al., 2005). This behaviour has been argued to be the reason why temporal intermittency and spatial localization are low in

VP models, leading to a spatial and temporal scaling of LKFs that is different from observations (Rampal et al., 2016). New35

models have been designed to represent sea ice fracture, for example, brittle models with a damage parameter that keeps the

memory of previous fracture (Rampal et al., 2016; Dansereau et al., 2016), or anisotropic viscous-plastic rheologies models

(Wilchinsky and Feltham, 2006; Heorton et al., 2018). Still, as of today, the viscous-plastic rheology with elliptical yield curve

and normal flow rule (Hibler, 1979) is the de facto standard rheology. For example, of the 33 Global Climate Models from the

Climate Model Inter-comparison Project 5 (CMIP5), 30 use the standard VP rheology with an elliptical yield curve and normal40

flow rule (Stroeve et al., 2014).

Some of the criticised issues of the standard VP rheology have been addressed. For example, high-resolution VP models also

reproduce observed intermittency and spatial localization, even without brittle fracture dynamics; and the origin of intermit-

tency remains an open question (Bouchat and Tremblay, 2017; Hutter et al., 2018; Bouchat et al., 2020, submitted manuscript).

However, the distribution of intersection angles between LKFs in the Radarsat Geophysical Processor System (RGPS) dataset45

and the standard sea ice VP model with an elliptical yield curve with ellipse ratio e= 2 (Hibler, 1979) dot not agree (Hutter

et al., 2019).

The orientation of LKFs has been the subject of many studies in the field of engineering and granular materials (called shear

bands in this field). Two classical solutions coexist and set two limit angles for the orientation of fractures: the Coulomb angle

(static behaviour) and the Roscoe angle (dynamic behaviour). The Coulomb angle of fracture θC between the fracture line and50

the first principal stress is determined from the Mohr-Coulomb criterion. It is a function only of the internal angle of friction φ

(Coulomb, 1773; Mohr, 1900):

θC =
π

4
− φ

2
. (1)

Roscoe (1970) challenged the coulombic theory by considering the case of dilatant material and found from experiments with

sand that the dilatancy angle δ is the main parameter determining the orientation of shear bands (see Fig. 6 in Tremblay and55
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Mysak, 1997, for a definition of the dilantancy angle δ in the context of sea ice modeling.). The Roscoe angle of fracture is

θR =
π

4
− δ

2
. (2)

A general theory derived from experiments with sand that takes into account both the angle of friction and the angle of dilation

combines the Coulomb and Roscoe angles as (Arthur et al., 1977; Vardoulakis, 1980):

θA =
π

4
− 1

4
(φ+ δ). (3)60

Tremblay and Mysak (1997) used this general theory to design their sea ice rheology. Vermeer (1990) proposed a theoretical

framework based the grain size and showed that the angle of fracture in most experiments lie between the two extremes:

θC ≤ θ ≤ θR, with δ < φ in granular materials like sand. If φ= δ then θR = θC = θA, and the flow rule is normal to the yield

curve. In other words, the principal axes of stress and the principal axes of strain are coaxial. This condition, however, is not

generally satisfied for granular materials (Balendran and Nemat-Nasser, 1993). Experiments with sand have shown differences65

between φ and δ of the order of 30◦ (Vardoulakis and Graf, 1985; Bolton, 1986). Note that both mechanisms, friction and

dilatancy, are not radically different: a larger dilatancy angle implies a larger grain size, more contact normals, hence more

friction. Ringeisen et al. (2019) used the theory of the internal angle of friction with a normal flow rule in their appendix B to

link fracture angles to rheology.

The fracture angles with the standard sea ice rheology cannot be smaller than 30◦ in uni-axial compression, even by changing70

the ellipse aspect ratio e (Ringeisen et al., 2019). This minimum angle is in conflict with observations that report fracture angles

(half of the intersection angles) generally below 30◦. Observations report fracture angles of 14◦ (Marko and Thomson, 1977),

15± 1.5◦ (Erlingsson, 1988), 17◦ to 18◦ (Cunningham et al., 1994), 24◦ (µ= 0.9, Weiss and Schulson, 2009), and 20◦ to

25◦ (Hutter and Losch, 2020). Further, uni-axial compression experiments (Ringeisen et al., 2019) showed that: (1) the angle

of fracture is a function of the gradient of shear strength to compressive strength set by the ellipse aspect ratio, (2) the ellipse75

aspect ratio determines the divergence along the LKFs, and (3) the fracture angle is a function of the confining pressure. These

three properties of the standard VP rheology do not comply with the theory and observations of granular media behaviour,

namely that shear band orientations and divergent/convergent motion at the slip lines are a function solely of the shear strength

of the material and orientation of the contact normals (or dilatation angle). This unphysical behaviour of the standard VP

rheology is connected to the shape of the yield curve in conjunction with a normal flow rule.80

The flow rule has the advantage that it can be observed with remote sensing methods, contrary to stress which need in-situ

measurements. The ratio of shear and divergence along the LKFs allows to infer the dilatancy angle. Observations show that

most of the deformation takes place in shear, with 98% of deformations showing more shear than divergence or convergence

(Stern et al., 1995). The ellipse ratio of the standard model can be modified to fit this distribution (Bouchat and Tremblay,

2017). Also, laboratory experiments with first-year ice showed that flow rules are non-normal during brittle failures (Weiss85

et al., 2007). Separating the link between the fracture angle and the flow rule from the yield curve is necessary to design

rheologies that are consistent with observed sea ice deformation.

This paper focuses on VP rheologies. Different models represent sea ice dynamics with different material properties, for ex-

ample, Viscous-Plastic (VP, Hibler, 1977), Elastic-Plastic (EP, Coon et al., 1974), or Maxwell-Elasto-Brittle (MEB, Dansereau
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et al., 2016). In these different classes of models, various rheologies can be defined. In a VP rheology, a yield curve and plastic90

potential (flow rule) must be defined. The yield curve defines the stress criteria for the transition from small viscous deforma-

tions to large plastic deformations. The plastic potential determines the ensuing post-fracture deformation, called the flow rule.

The flow rule is normal to the plastic potential (Drucker and Prager, 1952). The plastic potential can be set independently, or

be equal to the yield curve. In the latter case, the flow rule is also perpendicular to the yield curve and is called a normal-flow

rule or associated flow rule. Several yield curves have been used in sea ice models, some with a normal flow rule (Hibler, 1979;95

Zhang and Rothrock, 2005) and some with a non-normal flow rule (Ip et al., 1991; Tremblay and Mysak, 1997; Hibler and

Schulson, 2000; Wang, 2007). It is important to note that two models with the same material properties sharing the same yield

curve but with different flow rules are two different rheologies.

In this paper, we investigate the effects of a non-normal flow rule on fracture angles and present a generalized framework

to use with viscous-plastic material with any flow rules (normal or non-normal). To this end, we introduce a plastic potential100

independent from yield curve. The new model is tested in simple uni-axial loading experiments where the relationship between

fracture angle and flow-rule can be easily identified.

The paper is structured as follows. Section 2 describes the model (2.1), the new rheology (2.2), and a general theory linking

the fracture angles and a general flow rule (2.3). The sections 3 and 4 describe the idealized experimental setup and the results.

Section 5 discusses these results and their implication on current and future rheologies. Conclusions follow in section 6.105

2 Sea ice Model and rheology

2.1 Building the sea ice VP constitutive equations

We consider sea ice as a 2D viscous-plastic material. The ice velocities are calculated from the sea ice momentum equations:

ρh
∂u

∂t
=−ρhf k×u+ τ a + τ o− ρh∇φ(0) +∇ ·σ, (4)

where ρ is the ice density, h is the grid cell averaged sea ice thickness,u is the ice drift velocity field, f is the Coriolis parameter,110

k is the vertical unit vector, τ a is the surface air stress, τ o is the ocean drag, ∇φ(0) is acceleration from the gradient of sea

surface height, and σ is the vertically integrated internal ice stress tensor defined by the sea ice VP constitutive equations.

The constitutive equations link the stress tensor σ to the deformation tensor ε̇ and the state variables χ (ice thickness, ice

strength, ice concentration, etc.). The components of the strain rate tensor are computed from the velocities as ε̇ij = ∂ui

∂xj
. The

constitutive equations then have the form:115

σ = f(ε̇,χ). (5)

In an ideal plastic model, the stresses are independent of the strain rates; in the VP model the stresses are independent of

the strain rates for large deformation events (the plastic states with stresses on the yield curve) and they depend on the strain

rates for small deformations (the viscous states with stresses inside the yield curve). It is this set of equations that defines the

rheology of sea ice and determines the fracture pattern and the opening or closing along the fractures.120
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Figure 1. Schematic yield curve F (blue) and plastic potential G (red) for a normal (a) and non-normal (b) flow rule. The flow rule (orange)

for a given stress on the yield curve is normal to the plastic potential (red) for the same σI. Note that the stress and strain invariant axes are

assumed to coincide.

One of the state variables in the model is the maximal compressive strength P . This variable represents the maximal com-

pressive stress that sea ice can bear in uniform compression before ridging. We use the simple standard relationship (Hibler,

1979):

P = P ?he−C
∗(1−A), (6)

where C? is a free parameter (typically C? = 20), h is the mean ice thickness, A is the fractional sea ice area cover in a grid125

cell, and P ? is the ice strength of 1 m ice at 100% concentration (A= 1). Some other state variables are a function of P ; for

instance, the tensile strength T is usually defined as T = kt ·P , where the tensile factor kt > 0 (König Beatty and Holland,

2010). Others are not, such as the ellipse aspect ratio (Hibler, 1979) or the internal angle of friction (Ip et al., 1991). The

equation for the yield curve in a VP model is written in terms of the state variables.

For two-dimensional sea ice, stress is a rank two tensor; thus, it has four components. The yield curve represents the stress130

states that are deforming plastically while enclosing the states of stress for slow viscous deformations. We express the yield

curve as a function of the stresses σij and the state variables χ:

F (σij ,χ) = 0. (7)

The yield curve can be represented in principal stress (σ1 and σ2) or stress invariants space (σI and σII). Figure 1 shows an

arbitrary yield curve in stress invariants space. Although equation (7) determines if the deformation is plastic or viscous, it135

does not determine how the ice will deform after fracture. In order to obtain a closed system of equations, we define a plastic

potential that defines the flow rule.
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The plastic potential determines the direction of deformation for stress states on the yield curve. Just as the yield curve, the

plastic potential can be written as:

G(σij ,χ) = 0. (8)140

The direction of the deformation, called the flow rule, is perpendicular to the plastic potential. This is shown in red on Fig. 1b

and mathematically expressed by

∂G

∂σij
(σij ,χ) = λε̇ij , (9)

where λ > 0 is the unknown flow rate. The flow rule is applied for stress states on the yield curve at the same compressive

stresses (orange arrows in Fig. 1b). If the plastic potential and the yield curve are the same (G= F ), the flow rule is called an145

associative or normal flow rule, as the flow rule is also perpendicular to the yield curve (see Fig. 1a).

Using Eq. (7) and Eq. (9), we can write a system of 5 equations (four from Eq. 9 and one from Eq. 7) for 5 unknowns (σ11,

σ22, σ12, σ12, λ). Solving this system of equations allows us to write the constitutive equations for the sea ice model as function

of the components of the strain-rate (ε̇11, ε̇22, ε̇12, ε̇21) and the state variables χ.

After deriving these constitutive equations, we assume that the stress and strain rate tensors are symmetric, that is, σ12 =150

σ21 and ε̇ij = 1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
. The symmetry follows from ignoring the rotation in an isotropic medium. Note that we first

need to solve this system of equations without using the symmetry condition: the symmetry condition is only invoked at the

end. Applying the symmetry before solving the system of equation changes the nature of the initial tensor, and the resulting

constitutive equations would be different.

An ideal plastic model, with the stresses independent of the strain rates, has a singularity because the non-linear viscosities155

tend to infinity as the strain rates tend to zero. Hibler (1977) solved this issue with a regularization that limits the value of the

bulk and shear viscosities ζ and η to a maximum value. When the viscosities are capped to their maximum values, the stresses

are linearly related to the strain rates and the material behaves as a viscous material.

2.2 Elliptical yield curve with non-normal flow rule

We now build a rheology with an elliptical yield curve and a non-normal flow rule, that is, we use a plastic potential G that is160

different from the yield curve F . We use a different, but still elliptical plastic potential for simplicity: this choice only requires

only minor modifications to a typical VP sea ice model. We define the yield condition F and the plastic potential G as a

function of the state variables χ: the ice compression strength P , the ice tensile strength T = ktP (König Beatty and Holland,

2010), the yield curve’s ellipse ratio eF , and the plastic potential’s ellipse ratio eG by

X(σI,P,eX ,kt) =

(
σI + P (1−kt)

2
P (1+kt)

2

)2

+

(
σII

P (1+kt)
2eX

)2

− 1 = 0, (10)165

for X = F,G for the yield curve or the plastic potential. Using Eq. (10), we write σII as a function of σI as:

σII,X =
1
eX

√
P 2kt−σ2

I −σIP (1− kt)). (11)

6

https://doi.org/10.5194/tc-2020-153
Preprint. Discussion started: 23 June 2020
c© Author(s) 2020. CC BY 4.0 License.



σI

σII

eG = a
bG

eF = a
bF

−P T

ε̇I

ε̇II

bF

bG

a

Figure 2. Elliptical yield curve with a non-normal flow rule, a yield curve ellipse aspect ratio eF = 2 (blue) and a plastic potential ellipse

aspect ratio eG = 4 (red). The gray and orange arrows show the normal and non-normal flow rules, respectively.

Following Hibler (1977, 1979), we derive the constitutive equations σij :

σij = 2ηε̇ij + (ζ − η) ε̇kkδij −
P (1− kt)

2
δij , (12)

where the shear and bulk viscosities η and ζ are defined by:170

ζ =
P (1 + kt)

2∆
and η =

ζ

e2G
=
P (1 + kt)

2e2G∆
(13)

with

∆ =

√
(ε̇11− ε̇22)2 +

e2F
e4G

((ε̇11− ε̇22)2 + 4ε̇212). (14)

Figure 2 shows an example of yield curve and plastic potential, with the resulting flow rule. For eG > eF , the absolute value

of the divergence is smaller and the shear strain rate is larger compared to a normal flow rule (eG = eF ) and vice versa for175

eG < eF .

2.3 Linking fracture and flow rule

In this section, we generalize the theory linking the rheological model and the fracture angles in simple uni-axial compressive

test (Ringeisen et al., 2019) to materials with a non-associated flow rule. To this end, we follow the theory of Roscoe (1970)

where the angle of fracture depends uniquely on the angle of dilatancy of a granular material.180

Figure 3 illustrates the case of an arbitrary yield curve with an arbitrary plastic potential. The figure shows the geometrical

construction that links the angle of dilatancy δ to the slope of the plastic potential tan(γG):

sin(δ) = tan(γG) =−∂σII,G

∂σI
. (15)
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τ
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2

σp
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σp
II
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τp
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δ2θ

θ = π
4 − δ
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Figure 3. Link between fracture angle and yield curve: a) Arbitrary yield curve F (blue) and plastic potential G (red) in stress invariants

space. The plastic potential and yield curve intersect at a stress state p for illustration purposes only. The orange arrow is perpendicular to G,

but non-normal to the yield curve F . The tangent to the plastic potential G at point p has a slope µG = tan(γG) and intersects the σI-axis

at point q (thin red line). For reference, the normal and tangent to the yield curve F are shown as a thin blue arrow and line. Mohr’s circle

of stress for this stress state (blue) has a radius of σp
II an centers on σp

I on the σI axis. Gray dashed lines show the principal stress axes. b)

Mohr’s circle for the fracture state p in a) in the fracture plane of reference (σ,τ) of center σp
I and radius σp

II. The thin red line is the tangent

to the Mohr’s circle that passes through the point q on the σ axis. By this geometrical construction, sin(δ) = tan(γG) = µG (for |µG| ≤ 1).

δ is called the dilatancy angle. Again for comparison, the transparent blue lines show the corresponding construction for a normal flow rule

from panel a).

Note that the minus sign above was included in the derivative of the yield curve in Eq. (B1) and (B2) of Ringeisen et al. (2019).

This equation agrees with the definition of Roscoe (1970) sin(δ) = ε̇I
ε̇II

, because the ratio of ε̇I to ε̇II is equal to the slope of185

the plastic potential −∂σII,G
∂σI

, as the flow rule is perpendicular to the plastic potential. Figure 3 also shows the normal flow

rule, which, in agreement with the coulombic theory, would lead to different fracture angles (light blue lines). From Fig. 3, the

fracture angle can be written as:

θ =
π

4
− δ

2
. (16)

Substituting Eq. (15) in the equation above, the relationship between the fracture angle and the plastic potential becomes190

θ(σI) =
1
2

[
π

2
− arcsin

(
−∂σII,G

∂σI
(σI)

)]
=

1
2

arccos
(
−∂σII,G

∂σI
(σI)

)
. (17)

8

https://doi.org/10.5194/tc-2020-153
Preprint. Discussion started: 23 June 2020
c© Author(s) 2020. CC BY 4.0 License.



We calculate the fracture angles for the elliptical yield curve with non-normal flow rule in uni-axial compression along the

y axis. In this case, σ11 = σ12 = 0, σ22 < 0, and the principal stresses and stress invariants can be written as:

σ1 =
1
2

(
σ11 +σ22 +

√
(σ11−σ22)2 + 4σ2

12

)
= 0, (18)195

σ2 =
1
2

(
σ11 +σ22−

√
(σ11−σ22)2 + 4σ2

12

)
= σ22. (19)

σI =
σ1 +σ2

2
=
σ22

2
(20)

σII =
σ1−σ2

2
=−σ22

2
=−σI. (21)

From Eq. 21, the maximum shear stress σpII,F in the fracture plane in uni-axial compression can be expressed as

σpII,F (σpI ) =−σpI , (22)200

where p indicates the stress state at the fracture. Figure 4 shows the stress trajectory in principal stress space for uni-axial

compression. It also shows how the flow rule changes for the same stress state when using two different elliptical plastic

potentials.

In the following, we use the normalized stress invariants σ′I = σI
P and σ′II = σII

P to simplify the notation. The slope of yield

curve or the plastic potential depends only on eF and eG, but not on P . Substituting Eq. (11), σ′I, and σ′II in Eq. (22), we obtain,205

σ′pII =−σ′pI =
1
eF

√
kt−σ′pI (σ′pI + 1− kt), (23)

and solve the first stress invariant σpI on the fracture plane in uni-axial compression

σ′pI =
(kt− 1)−

√
(1− kt)2 + 4kt(1 + e2F )
2(1 + e2F )

. (24)

The slope of the tangent at σpI to the plastic potential is given by the derivative of Eq. (11):210

∂σ′II,G
∂σ′I

(σ′pI ) =
1

2eG
−2σ′pI − 1 + kt√

kt−σ′pI (σ′pI + 1− kt)
. (25)

Substituting Eq. (24) into Eq. (25), yields

∂σ′II,G
∂σ′I

∣∣∣∣
σ′pI

=
1

eGeF


1− (1 + e2F )

1 +
√

1 + 4 kt

(1−kt)2
(1 + e2F )


 . (26)

or for zero tensile strength (kt = 0),

∂σ′II,G
∂σ′I

∣∣∣∣
σ′pI ,kt=0

=
1

2eF eG
(1− e2F ). (27)215
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Figure 4. Trajectory of maximum normal stress (red arrow) in a uni-axial loading test experiment in a material with two different elliptical

yield curves (blue) and plastic potentials (dashed orange and dash-dotted teal). The orange and teal arrows show the flow rule normal to the

plastic potential of the same colour for the same stress state. For eG < eF , the ratio of divergence to shear increases. The opposite is true for

eG > eF . A similar figure in principal stress space is presented in Ringeisen et al. (2019)

The fracture angle can finally be written as a function of eG and eF from Eq. (17):

θe,nn(eF ,eG) =
1
2

arccos
(

1
2eF eG

(e2F − 1)
)
. (28)

As expected, for eF = eG = e we recover the fracture angle derived in Ringeisen et al. (2019):

θe,n(e) =
1
2

arccos
[

1
2

(
1− 1

e2

)]
. (29)

3 Experimental setup and numerical scheme220

Following Ringeisen et al. (2019), we load a rectangular ice floe of 8 km by 25 km with a thickness of h= 1m and a sea ice

concentration of A= 1.0 (see Fig. 5). The numerical domain has the dimensions Lx = 10km and Ly = 25km. At y = 0, we

use a closed, solid boundary with a no slip condition (i.e., u= v = 0). At x= 0 and Lx, we use Neumann boundary conditions:

∂A

∂x

∣∣∣∣
x=0,Lx

=
∂h

∂x

∣∣∣∣
x=0,Lx

=
∂u

∂x

∣∣∣∣
x=0,Lx

=
∂v

∂x

∣∣∣∣
x=0,Lx

= 0. (30)225
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On the left and right sides of the domain (x < 1km and x > 9km), we have open water between the ice floe and the boundary

to ensure that the boundaries have no effect on the simulation. At (y = Ly), we use a Dirichlet boundary condition for ice

velocity (v the velocity in y-direction increasing linearly in time simulating an axial loading test) and a Neumann boundary

condition for ice thickness and concentration :

v(t)|y=Ly
= av · t , u(t)|y=Ly

= 0 ;
∂A

∂y

∣∣∣∣
y=Ly

=
∂h

∂y

∣∣∣∣
y=Ly

= 0 (31)230

with av =−5 · 10−4 ms−2. The grid spacing of the domain is 25 m, and the timestep is 0.1 s.

The non-linear momentum equations are integrated using a Picard solver with 15 000 non-linear (or outer-loop) iterations

(Losch et al., 2010). For the linearized problem within each iteration, we use a line successive (over-)relaxation (LSR) method

(Zhang and Hibler, 1997), with a tolerance criterion of |uk−uk−1|max < 10−11 ms−1, where k is the linear iteration index. We

use an inexact approach with only a maximum of 200 linear iterations for the linearized equations; the linearized system does235

not reach the tolerance criterion for the first non-linear iterations, but does so as the non-linear system approaches a converged

solution. We chose a very small tolerance and residual norm for the solution of the linear and non-linear problem in order to

simulate a clean fracture with a well defined fracture angle - for comparison with theory and observations. These criteria are

much stricter than common recommendations for Arctic sea ice simulations (e.g. Lemieux and Tremblay, 2009). We expect

modeling sea ice with a non-normal flow rule to be more challenging than with a normal flow rule. The non-coaxiality of the240

deviatoric stress and strain rate introduces more complexity because Drucker’s postulate for stability is not respected (Vermeer

and De Borst, 1984; Balendran and Nemat-Nasser, 1993). This particular uni-axial loading experiment is also complex to solve

numerically because the forcing is localized on the boundary, in contrast to real geophysical system integrations where wind

and ocean currents are acting over the entire surface of the ice.

The intersection angles between the LKFs are measured with the Measure Tool from the GNU Image Manipulation Program245

(GIMP, version 2.8.16, gimp.org). The first 5 seconds of simulations are used to define the sea ice fracture and calculate the

fracture angle. The angle of each fracture lines is measured and used to compute the average fracture angle and the standard

deviation σ =
√

VAR. Note that the fracture angles do not depend on resolution, scale, geometry, or boundary conditions (see

Ringeisen et al., 2019, their Sec. 3.2 ). We do not use a replacement pressure scheme (Ip et al., 1991; Ip, 1993), because it has

no influence with the angle of fracture (not shown).250

4 Results

We study the evolution of the fracture angle θ when the plastic potential changes while the yield curve stays the same (see

Fig. 4 for details). In this manner, the ice breaks for the exact same stress state but with a different flow rule. For simplicity, we

test here the elliptical yield curve without tensile strength (kt = 0).

Figure 6 shows the fracture pattern for the standard yield curve ellipse ratio eF = 2.0 and three values of the plastic potential255

ellipse ratio eG = 1.4, 2.0, and 4.0. Following observations and laboratory experiment, the ice fractures have a diamond shape

pattern (Erlingsson, 1988; Wilchinsky et al., 2010). With a normal flow rule (eG = 2.0), single pairs of fracture lines with one
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0

Figure 5. Model domain with a solid wall at y = 0 (red), Dirichlet boundary conditions with u = 0 at y = 0 and prescribed velocities

at y = Ly . Open boundaries at x= 0,Lx (green) with Neumann boundary conditions. For the conservation of mass, ice thickness and

concentration equations (h, A) Neumann boundary conditions are used on all boundaries. θ is the measured fracture angle with respect to

the vertical; the blue line represents an LKF.

unique fracture angle, large deformation along the LKFs, and smaller deformations (by several orders of magnitude) within

diamond-shape floes are simulated. With the non-normal flow rule (eG = 1.4 and eG = 4) we make three observations:

1. Asymmetric secondary fracture lines appear, in contrast to the normal flow rule simulation. We attribute the asymmetry260

and presence of secondary fractures to the lack of full numerical convergence associated with the violation of Drucker’s

principle, or the non-normality of the flow rule (the ratio of divergence to shear strain rate differs from that of the shear

to normal stress). For instance, the grid-cell average residual norm (R) decreases by four orders of magnitude for the

normal flow rule compared with two orders of magnitude for the non-normal flow rule for the same number of non-linear

iterations (15 000); specifically to R= 8× 10−4 for eG = eF = 2 to R= 6× 10−2 for eG = 1.4 and eF = 2. Note that265

a Jacobian-free Newton-Krylov (JFNK) solver with a quadratic local numerical convergence does not perform better

because the global convergence is poor with a combination of localized forcing and high grid resolution (Losch et al.,

2014; Williams et al., 2017).
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Figure 6. Diamond-shaped fracture pattern for eF = 2.0 and three different values of eG after five seconds of simulation. For the non-normal

flow rule (panels a and c), there are primary and secondary fracture lines, in contrast to the normal flow rule (panel b) where single pair of

fracture lines are simulated. The fracture angles are 29.92±1.28◦ for eG = 1.4, 34.3±0.25◦ for eG = 2.0, and 40.7±0.94◦ for eG = 4.0.

The error corresponds to two standard deviation (2σ) of the measured fracture angles.

2. The width and activity of the LKFs is also affected by the flow rule. With eG = 1.4, the lines are thinner, the shear along

the LKFs is smaller and there is little shear between the fracture lines. With eG = 4.0, the fracture lines are broader, the270

shear along the LKFs is higher and there is more shear between the fracture lines. With eG = 1.4 the flow rule at the

fracture is mainly in divergence, while for eG = 4.0, the flow rule is mainly in shear and there is more stress transmitted

to the ice in between the fracture lines.

3. The fracture angle changes as the plastic potential changes. The angles are wider with eG = 4 than eG = 1.4. The effect

of flow rule orientation on the fracture angles is discussed below.275

We now present results from four sets of simulations with fixed yield curve ellipse ratios at eF = 0.7, 1.0, 2.0, 4.0. For each

of these, we test the sensitivity of the results to changes in the plastic potential ellipse ratio eG. The choice of yield curve

ellipse ratios eF are: the standard value of (Hibler, 1979), values suggested by Bouchat and Tremblay (2017) and Dumont et al.

(2009), and an extreme value resulting in a very small shear strength and smaller fracture angles.

Figure 7a shows how the fracture angles evolve as the plastic potential ellipse ratio eG changes for each of the four values of280

eF . There is a clear dependence of the fracture angles on the relative eccentricity of the plastic potential and yield curve. For

eG > eF , the shear strain rate increases along the LKFs and the fracture angle tend toward 45◦ as eG increases, in agreement

with the theory (Eq. 17). For eG < eF , the flow rule implies more divergence (for eF > 1, or convergence for eF < 1) and less
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Figure 7. a) Fracture angles as function of the plastic potential ellipse ratio eG for different yield curve ellipse ratios (eF = 0.7, 1.0, 2.0, and

4.0). The markers with ranges are the mean and variation (2σ) of the fracture angles. The dashed lines show the prediction from the theory

(Eq. 28). The R2 between theory and modeled angles for eF = 0.7, 2.0, and 4.0 are 0.97, 0.95, and 0.97. b) Theoretical predictions of the

fracture angle as function of eF with a constant eG. The black dotted line for the normal flow rule (eF = eG), is indicated for reference.

shear along the LKFs, and the fracture angles move away from 45◦ as eG decreases. More generally, for eF < 1, the fracture

angle increases with increasing convergence along the LKFs as eG decreases. For eF > 1, the fracture angle decreases with285

increasing divergence as eG becomes smaller. For eF = 1 (a circular yield curve), the fracture angles are independent of eG

because the fracture takes place at the peak of the yield curve and the flow rule is not affected by changes of the plastic potential

ellipse ratio (eG).

The coloured dashed lines in Fig. 7 show the fracture angles θe,nn(eF ,eG) predicted by Eq. (28). The coefficient of de-

termination R2 and the root-mean-square error (RMSE) between the simulated angle of fracture and theoretical predictions290

are 0.974 and 0.37◦ for eF = 0.7, 0.953 and 1.22◦ for eF = 2.0, and 0.968 and 0.47◦ for eF = 4.0. The RMSE is 0.37◦ for

eF = 1.0, R2 being inapplicable. That is, the theory predicts the fracture angles accurately. This result shows that the flow rule

plays a major part in the simulated fracture angle for a given rheology. The black dashed line show the evolution of the fracture

angle with a normal flow rule (eG = eF , Eq. (29)).

For completeness, Figure 7b also show the theoretical predictions for a constant plastic potential ellipse ratio eG as the yield295

curve ellipse ratio eF changes. The modeled angles for eG = 4.0 are shown as an example. The fracture angles become smaller

as the eF increase. Yield curve ellipse ratio smaller than eF = 1 do not create fracture angles below 45◦.
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5 Discussion

The idealized experiments using the elliptical yield curve with a non-normal flow rule show that the type of deformation and the

fracture angle are intimately linked with the shape of plastic potential. We observe that a yield curve ellipse ratio eF < 1 does300

not allow for fracture angles smaller than 45◦ in uni-axial compression when using an elliptical plastic potential, irrespective of

the plastic potential elliptical aspect ratio. To reduce the fracture angles with yield curve ellipse ratios eF > 1, one needs to use

plastic potential ellipse ratios eG smaller than the yield curve ellipse ratio, that is, eG < eF . The numerical experiments show

that the use of a plastic potential in a viscous-plastic model allows separating the yield criterion from the resulting deformation

(flow rule). This allows to decouple the mechanical strength properties of the material (ice) from its post-fracture behaviour.305

The results illustrate clearly how the yield curve defines the stress for which the ice will deform, that is, the transition between

viscous and plastic deformation, and how the relative shape of the plastic potential with respect to the yield curve defines both

the type of deformation (convergence or shear) along the fracture line and the fracture angle. The resulting fracture angles are

in excellent agreement with the Roscoe angle predictions (Roscoe, 1970).

Understanding the link between rheology and fracture angle is necessary for choosing or designing a rheology that is capable310

of reproducing the observed angle of intersection between LKFs and consequently the emerging anisotropy. In principle, it

may be possible to solve several inconsistencies of the standard elliptical yield curve with a normal flow rule Ringeisen et al.

(discussed in 2019) by using a plastic potential that is independent of the yield curve, namely:

1. In the standard VP model with elliptical yield curve and normal flow rule, adding shear strength increases the fracture

angle, contrary to granular matter theory (Coulomb, 1773). This behaviour is linked to the shape of the elliptical yield315

curve. In principle, we can decrease the fracture angle with increasing shear strength (eF decreasing) by decreasing

eG, but only if eF > 1. When doing this, the flow rule becomes very non-normal, making the numerical convergence

difficult.

2. The angle of fracture in the standard VP model changes with confining pressure unlike laboratory experiments with

granular materials (e.g. sand) where the fracture angle is relatively insensitive to the confining pressure (Alshibli and320

Sture, 2000). This behaviour cannot be eliminated with an elliptical plastic potential, as the normal stresses along the

LKFs increases with confining pressure and the flow rule changes from divergence to convergence. A different plastic

potential function would change this behaviour. However, this would make the model implementation and numerical

convergence more difficult. However, we note that a 3D granular material like sand cannot release stress by ridging as

sea ice does. A 2D material, such as sea ice, can ridge and “escape to the 3rd dimension” after fracture.325

3. In the standard VP model with a normal flow rule, the divergence and convergence are set by the ellipse ratio of the yield

curve, and thus by the relative amounts of compressive and shear stress. The plastic potential ellipse ratio eG changes the

flow rule but does not change the sign of the divergence along the LKFs which is solely determined by the yield curve

ellipse ratio eF . With the elliptical plastic potential, convergent motion remains convergent and only the ratio of shear to
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convergence changes. To change this behaviour, a different shape of plastic potential is required, for example a teardrop330

plastic potential.

4. The fracture angles in the standard VP models are larger than observed. Using a non-normal flow rule allows us to change

the fracture angle in uni-axial compression to values below 30◦; something that is not possible with a normal flow rule

(Ringeisen et al., 2019).

Other yield curves have been used in previous studies; for instance, the Mohr–Coulomb, the Coulombic yield curve, or the335

teardrop yield curves. The use of a plastic potential in conjunction with these yield curves may also prove useful in solving

these issues. A detailed analysis of the simulations using the family of Mohr–Coulomb and Teardrop yield curves is beyond

the scope of this work and will be presented in a subsequent study. Below, we apply knowledge gained from the simulations

presented above, and discuss how alternative yield curves may address deficiencies in the standard VP rheology.

It is possible to include different (non-normal) flow rules with the Mohr–Coulomb family of yield curve. The Mohr–Coulomb340

yield curve with a pure shear flow rule (Ip et al., 1991) would create fracture angle approximately equal to 45◦, independently

of the slope of the yield curve. It corresponds to the case eG� eF , hence δ ' 0 and θ = 45◦, as shown in Fig. 7). This

contradicts the Coulomb angle theory, which predicts an angle of fracture that depends solely on the internal angle of friction

(Eq. 1). Including an angle of dilatancy with a Mohr–Coulomb yield curve (Tremblay and Mysak, 1997) would allow for

different angles of fracture with shear and divergence or convergence along the LKFs depending on δ. Such fracture angle and345

divergence would be independent of the shear strength and the confining pressure in agreement with Roscoe’s angle of fracture.

Such a rheology could potentially solve the all four issues. It is also important to note that the Mohr–Coulomb yield curves do

not satisfy the convexity requirements of Drucker’s postulate of stability. Mohr–Coulomb yield curves in plastic earth mantle

models showed different fracture angles corresponding to the Coulomb angle, Roscoe angle, and the intermediate Arthur

angles (Buiter et al., 2006; Kaus, 2010; Mancktelow, 2006). However, such geological models are usually incompressible, and350

making inferences for the compressible formulation of sea ice models is difficult. The investigation of the fracture angles with

Mohr–Coulomb yield curves is left for future work.

The Coulombic yield curve uses the two straight limbs from the Mohr–Coulomb yield curve and an elliptical cap of the

standard VP rheology for large compressive stresses (Hibler and Schulson, 2000). In this rheology, the flow rule over the two

straight limbs is defined by the elliptical yield curve; that is, the ellipse serves as a plastic potential for the Mohr-Coulomb355

yield curve. The Coulombic yield curve leads to unrealistic and asymmetrical fracture lines i) when the stress states lie at

the non-differentiable intersection between the straight limbs and the elliptical cap (Ringeisen et al., 2019), and ii) when the

stress states lie on the two straight limbs with the non-normal flow rule. Note that straight and symmetric fracture lines in this

rheology are only possible when all the stress states are located on the Mohr–Coulomb limbs and the flow rule at the fracture

line is near-normal, that is, at the location where the normal to the ellipse plastic potential is nearly perpendicular to the limbs360

of the Mohr–Coulomb yield curve (Ringeisen et al., 2019).

The teardrop yield curve with a normal flow rule (Rothrock, 1975; Zhang and Rothrock, 2005) is divergent for a wide

range of normal stresses and for all practical purposes consists of a continuously differentiable version of the Coulombic yield
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curve. This asymmetry between divergent and convergent deformation for different normal stresses decreases the effect of

confinement on the fracture angle – issue 2 – and reduces the fracture angle for any confinement pressure – issue 4. This yield365

curve does not address issue 1, because adding shear strength in the tear-drop yield curve also increases the fracture angle.

The main disadvantage of a non-normal flow rule is the slower numerical convergence. Solving the momentum equation ac-

curately requires more solver iterations and failure to converge is more frequent than for standard normal-flow-rule rheologies.

In our simulations, this numerical issue manifests itself by the presence of multiple and asymmetrical fracture lines despite

the fact that our experiments are entirely symmetrical. The fracture lines with a normal flow rule are symmetrical and come in370

pairs (Ringeisen et al., 2019). The poorer numerical convergence in practice will go unnoticed in high-resolution simulations

using realistic geometries, since the number of iterations typically used (O(10)) is much smaller than that required for full

convergence. On the upside, at each time-step, a new iteration typically use the solution from the previous timestep as initial

conditions. This, together with slowly varying forcing in space and time, the number of solver iterations per forcing cycle is

large, in contrast to the fast changing forcing in this study. Whether this behaviour (asymmetry and multiple fracture lines) will375

also be present in realistic simulation using spatially and temporally varying wind forcing remains to be tested.

The following criteria should be considered when building a new rheology. The spatial and temporal scaling of sea-ice

deformation should agree with observations (Bouchat and Tremblay, 2017; Hutter et al., 2018); the flow rule should reproduce

the correct divergence along LKFs (Stern et al., 1995); the yield curve includes some tensile strength (Coon et al., 2007)

and reproduces observed distributions of internal stress when ice deforms (Weiss and Schulson, 2009); the distribution of380

fracture angles should agree with observations (Marko and Thomson, 1977; Erlingsson, 1988; Cunningham et al., 1994; Hutter

et al., 2019); the sea ice mechanical strength properties (yield curve) and deformation (flow rule) should vary in time and

space depending on the time-varying distribution of the contact normals and floe size distributions, as per observations and

laboratory or numerical experiments (Overland et al., 1998; Hutter et al., 2019; Horvat and Tziperman, 2017; Roach et al.,

2018; Balendran and Nemat-Nasser, 1993; Dansereau et al., 2016).385

Although high spatial resolution observations from satellite are available from optical instruments (e.g., from the Landsat

or Sentinel programs), higher temporal resolution of sea ice deformation and flow size distributions are still lacking. So is the

combined knowledge of the failure stresses and their associated deformation of sea ice as a 2D granular material. Sea ice float-

ing on the ocean surface can “escape” vertically when ridging under confined compression (Hopkins, 1994). This behaviour

differs from laboratory test that use axial symmetry and general knowledge about 3D granular material like sand. Generally,390

information about sea ice resistance in different configurations (e.g., confinement) and the resulting fracture angles and defor-

mation (ridging or opening) is also still missing, although laboratory scale experimental results are available Weiss et al. (2007);

Schulson et al. (2006); Weiss and Schulson (2009). The sea ice flow size distribution varies in time (summer/winter) and space

(marginal ice zone/central Arctic) (Rothrock and Thorndike, 1984). These variations change the mechanical properties (e.g.,

distribution of contact normals) and thermodynamic properties (e.g., lateral melt) of sea ice (Horvat and Tziperman, 2017).395

Consolidated observations of these two physical processes are needed to design new rheologies for high-resolution climate

modelling.
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6 Conclusions

The flow rule, which dictates the post-fracture deformation, has a fundamental effect on the orientation of fractures lines in a

viscous-plastic sea ice model. To test this, we added an elliptical plastic potential (allowing for a non-normal flow rule) to the400

standard viscous plastic rheology with an elliptical yield curve. We tested this new rheology with numerical experiments in

uni-axial compression using the standard viscous-plastic model of Hibler (1979). The modeled fracture angles are in agreement

with the Roscoe angle, a theory based on experiments with granular materials that includes an angle of dilatancy (Roscoe, 1970;

Tremblay and Mysak, 1997). This new rheology partially solves issues raised in an earlier study (Ringeisen et al., 2019). The

use of a plastic potential or non-normal flow rule allows for the simulations of smaller fracture angles between pairs of Linear405

Kinematic Features, in agreement with satellite observations. The fracture angles, however, still depend on the confinement

pressure, and the elliptical plastic potential does not modify the direction of deformation at the fracture lines (convergence

or divergence), only the ratio of divergence relative to shear. The momentum equations for a rheological model with a non-

normal flow rule are more difficult to solve numerically, and produce multiple lines of fractures that are asymmetrical (despite

symmetry of the problem), in contrast with a model with a normal flow rule. Understanding the effect of the flow rule on the410

fracture angle is necessary to design VP rheologies for high-resolution sea-ice modeling that both reproduce fracture angles

and deformation along the fracture lines, and the behaviour of sea ice as a granular material.

Designing a rheology for high-resolution simulation requires information on sea ice fracture angles and sea ice strength in

a wide range of stress conditions (i.e., compression with or without confinement, pure shear, tension), yet unavailable at high

temporal and spatial resolution. The observations of the Multidisciplinary drifting Observatory for the Study of Arctic Climate415

(MOSAiC, Dethloff et al., 2016) in 2019/2020 may provide valuable data from continuous ice radar imaging, stress sensors,

and arrays of drift buoys that will greatly help improve sea ice model dynamics.
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