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Abstract. The standard viscous-plastic (VP) sea ice model with an elliptical yield curve and
:
a
:
normal flow rule

::
has

::
at
:::::

least

:::
two

::::::
issues.

::::
First,

::
it does not simulate fracture angles below 30◦ in uni-axial compression, in stark contrast with observations of

Linear Kinematic Features (LKFs) in the Arctic Ocean.
::::::
Second,

:::::
there

::
is

:
a
:::::
tight,

:::
but

:::::::::
unphysical

::::::::
coupling

:::::::
between

:::
the

:::::::
fracture

:::::
angle,

:::::::::::
post-fracture

:::::::::::
deformation,

:::
and

::::
the

:::::
shape

::
of

:::
the

:::::
yield

::::::
curve.

::::
This

::::
tight

::::::::
coupling

::::
was

::::::::
identified

::
as

::::
the

::::::
reason

:::
for

:::
the

::::::::::::
overestimation

::
of

:::::::
fracture

::::::
angles.

:
In this paper, we remove

::::
these

:::::
issues

:::
are

:::::::::
addressed

::
by

:::::::::
removing the normality constraint5

::
on

:::
the

::::
flow

::::
rule in the standard VP modeland study its impact on the fracture angle in a simple .

::::
The

::::
new

::::::::
rheology

:
is
::::::

tested

::
in

::::::::
numerical

:
uni-axial compressive loading test

::::::
loading

::::
tests. To this end, we introduce a plastic potential independent of the

yield curve that
::
an

::::::::
elliptical

:::::
plastic

::::::::
potential

:::
—

:::::
which

:
defines the post-fracture deformations

:
, or flow rule .

::
—

::
is

:::::::::
introduced

:::::::::::
independently

:::
of

::
the

::::::::
elliptical

::::
yield

::::::
curve.

:::
As

:
a
:::::::::::
consequence,

:::
the

:::::::::::
post-fracture

::::::::::
deformation

::
is

:::::::::
decoupled

::::
from

:::
the

::::::::::
mechanical

::::::
strength

:::::::::
properties

::
of

:::
the

:::
ice.

:
The numerical experiments show that the fracture angle strongly depends on the flow rule details.10

:::
We

::::
adapt

:::
the

::::::::
Roscoe’s

:::::
angle

::::::
theory,

:::::
which

::
is

:::::
based

::
on

:::::::::::
observations

::
of

:::::::
granular

::::::::
materials,

::
to

:::
the

::::::
context

::
of

:::
sea

:::
ice

:::::::::
modeling.

::
In

:::
this

::::::::::
framework,

::
the

:::::::
fracture

::::::
angles

::::::
depend

:::
on

::::
both

::::
yield

:::::
curve

:::
and

::::::
plastic

:::::::
potential

::::::::::
parameters.

::::
This

::::
new

::::::::::
formulation

:::::::
predicts

::::::::
accurately

:::
the

::::::
results

::
of

::::
the

::::::::
numerical

:::::::::::
experiments

::::
with

:
a
:::::::::::::::
root-mean-square

:::::
error

:::::
below

:::
1.3◦

:
.
:::
The

::::
new

::::::::
rheology

::::::
allows

:::
for

:::::
angles

:::
of

:::::::
fracture

::::::
smaller

::::
than

:::
30◦

::
in
::::::::

uni-axial
::::::::::::

compression.
:
For instance, a plastic potential with an ellipse aspect ratio

smaller than that of the standard ellipse gives fracture angles that are
:::
two

::::
(i.e.,

:::
the

::::::
default

:::::
value

::
in

:::
the

:::::::
standard

:::::::::::::
viscous-plastic15

::::::
model)

:::
can

::::
lead

::
to
:::::::

fracture
::::::

angles
:
as low as 22◦. A newly adapted theory – based on one developed from observations of

granular material – predicts numerical simulations of the fracture angles for plastic materials with a normal or non-normal flow

rule with a root-mean-square error below 1.3. Implementing an elliptical plastic potential in the standard VP sea ice model

requires only minor modifications . The
::::
small

:::::::::::
modifications

:::
to

:::
the

:::::::
standard

:::
VP

::::::::
rheology.

::::
The

:::::::::
momentum

:::::::::
equations

::::
with

:::
the

modified rheology, however, takes longer
:::
are

::::
more

:::::::
difficult

:
to solve numericallyfor a fixed level of numerical convergence.20

In conclusion, the use of a plastic potential addresses several issues with the standard VP rheology : the fracture angle can

be reduced to values
:::
The

::::::::::
independent

::::::
plastic

::::::::
potential

::::::
solves

:::
the

:::
two

::::::
issues

::::
with

:::
VP

::::::::
rheology

:::::::::
addressed

::
in

::::
this

:::::
paper:

:::
in

:::::::
uni-axial

:::::::
loading

:::::::::::
experiments,

:
it
::::::

allows
:::
for

:::::::
smaller

:::::::
fracture

::::::
angles,

::::::
which

:::
fall

:
within the range of satellite observationsand

it can be decoupled from the exact ,
::::
and

::
it

::::::::
decouples

:::
the

:::::
angle

::
of

:::::::
fracture

::::
and

:::
the

:::::::::::
post-fracture

::::::::::
deformation

:::::
from

:::
the shape

of the yield curve. Furthermore, a different plastic potential function will be required to change
:::
The

::::::::::
orientation

::
of

:
the post-25

fracture deformation along the fracture lines (convergence or divergence)and to make the fracture angle independent on the
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confining pressure (as in observations).
:::
and

:::::::::::
divergence),

:::::::
however,

::
is
::::
still

:::::::::
controlled

::
by

:::
the

:::::
shape

:::
of

:::
the

::::::
plastic

:::::::
potential

::::
and

::
the

:::::::
location

:::
of

:::
the

::::
stress

:::::
state

::
on

:::
the

:::::
yield

:::::
curve.

::
A

:::::::::::
non-elliptical

::::::
plastic

:::::::
potential

::::::
would

::
be

:::::::
required

::
to
:::::::
change

:::
the

:::::::::
orientation

::
of

::::::::::
deformation

:::
and

::
to
::::::
match

::::::::::
deformation

:::::::
statistics

:::::::
derived

::::
from

:::::::
satellite

::::::::::::
measurements.

:

1 Introduction30

Sea ice plays a significant role in the energy budget of the climate system and therefore has a strong influence on future cli-

mate projections.
:::
Sea

:::
ice

::::::::
dynamics

:::
are

:::::::::
dominated

:::
by

:
Linear Kinematic Features (LKFs), narrow lines of deformation

:::
that

::
are

:
observed in the Arctic sea ice cover,

:::
and

::::
also emerge in high-resolution simulations (Kwok, 2001; Hutchings et al., 2005).

LKFs in
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Kwok, 2001; Hutchings et al., 2005; Hutter et al., 2018; Koldunov et al., 2019; Heorton et al., 2018).

:::::
LKFs

:::
can

:::::
form

::
in

:::::::::
divergence,

:::::::
creating

::::::::
stretches

::
of

:::::
open

:::::
water

::
or

:::::
leads,

::
or

::
in
:::::::::::
convergence,

:::::::
creating

:::::
piles

::
of

:::
ice

::
or

::::::
ridges

:::::::::::::::
(Stern et al., 1995)

:
.35

:::::
LKFs

::
in the Arctic sea ice cover influence the Earth system in many ways: heat and matter exchange take place primarily over

open water (Badgley, 1965). Salt ,
:::
salt

:
rejection during ice formation in leads creates dense water and influences the thermoha-

line circulation (Nguyen et al., 2011, 2012; Itkin et al., 2015). The ice strength locally
:::::::::::::::::::::::::::::::::::::
(Nguyen et al., 2011, 2012; Itkin et al., 2015)

:
.
:::::::
Locally,

:::
the

::
ice

:::::::
strength

:
depends on the ice thickness,

:::
sea

:::
ice

::::
state

::::
(e.g.,

:::::::::
thickness,

:::::::::::::
concentration), which in turn is affected

by sea ice fracture with thermodynamical growth in opening
::::::
opened

:
leads and with local dynamical growth during ridge40

formation.

In granular media like sea ice (Overland et al., 1998), deformation is localized along pairs of LKFs (Anderson, 1942;

Erlingsson, 1988). Note, that in this study, we consider sea ice to be granular
::
of

:::::::
granular

::::::
nature not only in the marginal ice

zone, but also in pack ice, where ice floes are densely packed.
:::
For

:::
this

:::::::
reason,

:::
we

:::
can

::::::::
consider

:::
the

:::::::
creation

::
of

:::
an

::::
LKF

:::
as

:
a
::::::
process

::::
that

:::::::
involves

::::
both

:::::::
fracture

::::
and

::::::
friction

:::::::::::::::::::::::::::
(Wilchinsky and Feltham, 2011).

:
The intersection angles between the LKFs45

influence
::::
have

::
an

::::::::
influence

:::
on the deformation field ; thus,

:::
and,

::::::
hence,

:::
on the local sea ice strength and the emergent sea ice

anisotropy (Aksenov and Hibler, 2001). This anisotropy,
:::::
which

:::::::
emerges

:::
as

:::
sea

::
ice

::::::::
develops

::::
weak

::::
and

:::::
strong

:::::
areas

:::::
along

:::::
LKFs

::
as

::::
leads

::
or
::::::
ridges

::::
form

:::::::
locally, then influences future deformation and fracture line orientation , which will have impacts

::::
with

:::::
effects

:
on the local sea ice mass balance. Therefore, reproducing the LKFs patterns, density, and orientation is important for

accurate sea ice and climate projections at high-resolution.50

::::
This

::::
paper

:::::::
focuses

::
on

:::
VP

:::::::::
rheologies.

::::::::
Different

::::::
models

::::::::
represent

:::
sea

:::
ice

::::::::
dynamics

::::
with

:::::::
different

:::::::
relations

::::::::
between

::::
stress

::::
and

::::::
strains,

:::
for

:::::::
example,

:::
the

:::::::::::::
Viscous-Plastic

:::::::::::::::
(VP, Hibler, 1977)

:
,
::::::::::::
Elastic-Plastic

::::::::::::::::::
(EP, Coon et al., 1974)

:
,
::::::::::::::::::::::
Elastic-Anisotropic-Plastic

:::::::::::::::::::::::
(EAP, Tsamados et al., 2013)

:
,
::
or

:::::::::::::::::::
Maxwell-Elasto-Brittle

::::::::::::::::::::::::::
(MEB, Dansereau et al., 2016)

:::::::::
rheologies.

::
In

:::::
these

::::::::
different

::::::
classes

::
of

::::::
models,

:::::::
various

::::::::
rheologies

::::
can

::
be

::::::::
specified.

::
In

:
a
:::
VP

::::::::
rheology,

::
a
::::
yield

:::::
curve

:::
and

::::::
plastic

:::::::
potential

:::::
(flow

::::
rule)

:::::
must

::
be

:::::::
defined.

:::
The

:::::
yield

:::::
curve

::::::
defines

:::
the

:::::
stress

::::::
criteria

:::
for

:::
the

::::::::
transition

::::
from

:::::
small

::::::
viscous

:::::::::::
deformations

::
to
:::::
large

::::::
plastic

:::::::::::
deformations.

::::
The55

:::::
plastic

::::::::
potential

:::::::::
determines

:::
the

:::::::
ensuing

:::::::::::
post-fracture

:::::::::::
deformation,

:::::
called

:::
the

::::
flow

::::
rule.

::::
The

::::
flow

::::
rule

::
is

::::::
normal

::
to

:::
the

::::::
plastic

:::::::
potential

::::::::::::::::::::::
(Drucker and Prager, 1952)

:
.
::::
The

:::::
plastic

::::::::
potential

:::
can

::
be

:::
set

::::::::::::
independently,

::
or

:::
be

::::
equal

::
to
:::
the

:::::
yield

:::::
curve.

::
In

:::
the

:::::
latter

::::
case,

:::
the

::::
flow

::::
rule

::
is

::::
also

::::::::::::
perpendicular

::
to

:::
the

:::::
yield

:::::
curve

:::
and

::
is
::::::
called

:
a
:::::::::::
normal-flow

:::
rule

:::
or

:::::::::
associated

::::
flow

::::
rule.

:::::::
Several

::::
yield

::::::
curves

::::
have

:::::
been

::::
used

::
in

:::
sea

:::
ice

:::::::
models,

:::::
some

::::
with

::
a

::::::
normal

::::
flow

::::
rule

:::::::::::::::::::::::::::::::::::
(Hibler, 1979; Zhang and Rothrock, 2005)

:::
and
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::::
some

::::
with

::
a
::::::::::
non-normal

::::
flow

:::
rule

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Ip et al., 1991; Tremblay and Mysak, 1997; Hibler and Schulson, 2000; Wang, 2007).

::
It

::
is60

::::::::
important

::
to

::::
note

:::
that

::::
two

::::::
models

::::
with

:::
the

:::::
same

:::::::
material

::::::::
properties

:::::::
sharing

:::
the

::::
same

:::::
yield

:::::
curve

:::
but

::::
with

:::::::
different

::::
flow

:::::
rules

::
are

::::
two

:::::::
different

::::::::::
rheologies,

:::
and

::::
may

::::::
behave

:::::::::
differently

::::::
during

:::
the

:::::::
creation

::
of

:::::
LKFs.

:

LKFs have been studied for several decades using
:::
with

:
observations (Stern et al., 1995; Kwok, 2001; Schulson and Hibler,

2004; Weiss et al., 2007) and numerical models (Spreen et al., 2017; Hutter et al., 2018). In viscous-plastic (VP) sea ice

models, LKFs are created because the ice is modeled as a highly
::
an

::::::::
extremely

:
viscous material between narrow zones of65

plastic deformation (Hutchings et al., 2005). This behaviour
:::::::
behavior has been argued to be the reason why

:::
for

:::
low

:
temporal

intermittency and spatial localization are low in VP models, leading to a spatial and temporal scaling of LKFs that is different

from observations (Rampal et al., 2016). New models have been designed to represent sea ice fracture, for example, brittle

models with a damage parameter that keeps the memory of previous fracture (Rampal et al., 2016; Dansereau et al., 2016)

:::::::::::::::::::::::::::::::::::::::::::::::::::
(Dansereau et al., 2016; Rampal et al., 2016; Girard et al., 2011), or anisotropic viscous-plastic rheologies models (Wilchinsky70

and Feltham, 2006; Heorton et al., 2018). Still, as of today, the viscous-plastic rheology with elliptical yield curve and normal

flow rule (Hibler, 1979) is the de facto standard rheology. For example, of the 33 Global Climate Models from
:::::
global

:::::::
climate

::::::
models

::
of

:
the Climate Model Inter-comparison Project 5 (CMIP5), 30 use the standard VP rheology with an elliptical yield

curve and normal flow rule (Stroeve et al., 2014).

Some of the criticised issues of
::::
above

::::::
issues

:::::
related

::
to

:
the standard VP rheology have

::::::
already been addressed. For example

:::::::
instance,75

high-resolution VP models also reproduce observed intermittency and spatial localization, even without brittle fracture dynam-

ics; and the origin of intermittency remains an open question (Bouchat and Tremblay, 2017; Hutter et al., 2018; Bouchat et al., 2020, submitted manuscript)

::::::::::::::::::::::::::::::::::::::::
(Bouchat and Tremblay, 2017; Hutter et al., 2018). However, the distribution of intersection angles between LKFs in the Radarsat

Geophysical Processor System (RGPS) dataset and the
:::::
angles

::
of

:::::::
fracture

::
—

::::::
defined

:::
as

:::
half

::
of
:::

the
::::::::::
intersection

:::::
angle

:::
—

::
in

:::
the

standard sea ice VP model with an elliptical yield curve with ellipse ratio e= 2 (Hibler, 1979) dot not agree (Hutter et al., 2019)80

:::
and

:::
the

:::::::
Radarsat

:::::::::::
Geophysical

::::::::
Processor

::::::
System

:::::::
(RGPS)

::::::
dataset

:::
still

:::
do

:::
not

:::::
agree

::::::::::::::::::::::::::::::::::::
(Hutter et al., 2019; Hutter and Losch, 2020)

.

The orientation of LKFs has been the subject of many studies
:
is

:
a
::::
well

::::::
studied

:::::::
subject in the field of engineering and granular

materials (
:::::
LKFs

:::
are called shear bands in this field). Two classical solutions coexist and set two limit angles for the orientation

of fractures: the Coulomb angle (static behaviour
:::::::
behavior) and the Roscoe angle (dynamic behaviour

:::::::
behavior). The Coulomb85

angle of fracture θC between the fracture line and the first principal stress is determined from the Mohr-Coulomb
::
by

:::
the

:::::::::::::
Mohr–Coulomb criterion. It is a function only of the internal angle of friction φ (Coulomb, 1773; Mohr, 1900):

θC =
π

4
− φ

2
. (1)

Roscoe (1970) challenged the coulombic theory
:::
this

:::::::
concept

:
by considering the case of dilatant material and found from

experiments with sand that the dilatancy angle δ is the main parameter determining the orientation of shear bands (see Fig. 6 in90

Tremblay and Mysak, 1997, for a definition of the dilantancy angle δ in the context of sea ice modeling.).
::::::::
Dilatancy

:::::
refers

::
to

:::::::::
divergence

:::::
along

::::
shear

:::::
bands

:::
or

:::::
LKFs.

::::
This

:::::::::
divergence

::
is
::
a

:::::::
function

:
is
::
a
:::::::
function

::
of

:::
the

::::::::::
distribution

::
of

::::::
contact

::::::
points

:::::::
between

::::::::
individual

::::
floes

::
at
:::
the

::::::::
sub-grid

:::::
scales.

::
A
:::::::
positive

:::::
angle

:::
of

::::::::
dilatancy

::
is

:::::::::
associated

::::
with

::::::
contact

:::::
points

::::
that

:::
(on

::::::::
average)

::::::
oppose
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::
the

:::::::::::
macroscopic

:::::
shear

::::::
motion

:::
and

:::::
create

::::::::::
divergence

::::
along

:::
the

:::::
shear

:::::
band;

:::::
while

:::::::
negative

::::::::
dilatancy

:
is
:::::::::
associated

::::
with

:
a
:::::::
closing

::
of

:::
the

::::
shear

::::
line

:::::::
(ridging

::
in

:::
the

::::
case

::
of

:::
sea

::::
ice). The Roscoe angle of fracture is

::::::
defined

:::
as:95

θR =
π

4
− δ

2
. (2)

A general theory derived from experiments with sand that takes into account both the angle of friction and the angle of dilation

combines the Coulomb and Roscoe angles as (Arthur et al., 1977; Vardoulakis, 1980):

θA =
π

4
− 1

4
(φ+ δ)., (3)

:::::
where

:::
θA ::

is
:::::
called

:::
the

::::::
Arthur

::::::
angle. Tremblay and Mysak (1997) used this general theory to design their sea ice rheology.100

Vermeer (1990) proposed a theoretical framework based
::
on the grain size and showed that the angle of fracture in most

experiments lie
:::
falls

:
between the two extremes: θC ≤ θ ≤ θR, with δ < φ in granular materials like sand

::::
sands. If φ= δ then

θR = θC = θA, and the flow rule is normal to the yield curve. In other words,
::
for

::::::
φ= δ,

:
the principal axes of stress and

the principal axes of strain are coaxial. This condition, however, is not generally satisfied for granular materials (Balendran

and Nemat-Nasser, 1993). Experiments with sand have shown differences between φ and δ of the order of 30◦ (Vardoulakis105

and Graf, 1985; Bolton, 1986). Note that both mechanisms, friction and dilatancy, are not radically different: a larger dilatancy

angle implies a larger grain size, more contact normals
:::::::
opposing

:::
the

::::
flow, hence more friction . Ringeisen et al. (2019) used the

:::::::::::::
(Vermeer, 1990)

:
.
:::
The

:
theory of the internal angle of friction

:::
can

::
be

::::
used

::
to

:::
link

:::::::
fracture

::::::
angles

::
to

::::::::
rheologies

:
with a normal flow

rule in their appendix B to link fracture angles to rheology.
:::::::::::::::::::::::::::::
(Ringeisen et al., 2019, Appendix B)

:
.
:::
The

::::::
effects

::
of

::
a
::::::::::
non-normal

::::
flow

:::
rule

:::
for

::::::
sea-ice

:::::::::
rheologies

:::::::::::::::::::::::::::::::::::::::::::::::::::
(as in e.g., Hibler and Schulson, 2000; Hutchings et al., 2005)

::
on

:::
the

:::::::
fracture

:::::
angles

:::::
have

:::
not110

::::
been

::::::::
explored.

:::::::::
Therefore,

::
it

::
is

::::::::
unknown

::::::
which

::
of

:::
the

:::::
three

:::::::
theories

:::::::::
(Coulomb,

:::::::
Roscoe,

:::::::
Arthur)

:::::::
provide

:::
the

::::
most

::::::::
accurate

::::::::
prediction

:::
for

:::
this

:::::
case.

The fracture angles with the standard sea ice
:::
VP

:
rheology cannot be smaller than 30◦ in uni-axial compression, even by

changing the ellipse aspect ratio e
:
,
::
as

::::::
shown

:::
by

::::::::
idealized

::::::::::
experiments

::::
and

:::::
theory

:
(Ringeisen et al., 2019). This minimum

angle is in conflict with observations that report fracture angles (half of the intersection angles) generally below 30◦. Obser-115

vations report fracture angles of 14◦ (Marko and Thomson, 1977), 15± 1.5◦ (Erlingsson, 1988), 17◦ to 18◦ (Cunningham

et al., 1994), 24◦ (µ= 0.9, Weiss and Schulson, 2009), and
:::
and

:
a
:::::

clear
:::::
peak

::
in

:::
the

::::::::::
distribution

::
of

::::::
angles

::::::::
between 20◦ to

25◦ (Hutter and Losch, 2020). Further, uni-axial compression experiments (Ringeisen et al., 2019) showed that: (1) the an-

gle of fracture is a function of the gradient of shear strength
::::
with

::::::
respect

:
to compressive strength set by the ellipse aspect

ratio
:::
(i.e.,

:::
the

:::::
slope

:::
of

:::
the

:::::
yield

::::::
curve), (2) the ellipse aspect ratio determines the divergence along the LKFs, and (3) the120

fracture angle is a function of the confining pressure.
::
In

:::::::::::::::::::
Ringeisen et al. (2019),

:::
the

:::::::::::
confinement

::::
was

::::::::
achieved

:::
by

::::::
adding

::::::
thinner

:::
ice

::
on

::::::
either

::::
side

::
of

::
an

:::
ice

::::
slab

:::::::::
subjected

::
to

::::::::
uni-axial

:::::::
loading.

:
These three properties of the standard VP rheology

do not comply with the theory and observations of granular media behaviour
:::::::
behavior, namely that shear band orientations

and divergent /
::
or

:
convergent motion at the slip lines are a function solely

::::::
mainly

:
of the shear strength of the material and

orientation of the contact normals (or dilatation angle)
:::::::
dilatancy

::::::
angle),

::::
and

:::
that

:::
the

::::::::
confining

:::::::
pressure

:::
has

::::
only

::
a

::::::
limited

:::::
effect125

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Alshibli and Sture, 2000; Han and Drescher, 1993; Desrues and Hammad, 1989). This unphysical behaviour

:::::::
behavior

:
of the

standard VP rheology is connected to the shape of the yield curve in conjunction with a normal flow rule.
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The flow rule has the advantage that it can be observed with remote sensing methods, contrary to stress which need
::
in

::::::
contrast

::
to
:::::::::
observing

:::::
stress

:::::
which

:::::::
requires in-situ measurements. The ratio of shear and

::
to divergence along the

::::
shear

::::::
bands

::
or

LKFs allows to infer the dilatancy angle . Observations
::
of

:::::::
granular

::::::::
material.

:::::::::::
Observations

::
of

:::
sea

:::
ice

::::
drift

::
in
:::
the

::::::
Arctic

:
show130

that most of the deformation takes place in shear, with
:::
that

::
is,

:
98% of deformations showing

::::::::::
deformation

:::::
show more shear than

divergence or convergence (Stern et al., 1995). The ellipse ratio of the standard model can be modified to fit this distribution

(Bouchat and Tremblay, 2017). Also, laboratory experiments with first-year ice showed that flow rules are non-normal during

brittle failures (Weiss et al., 2007). Separating the link between the fracture angle and the flow rule from the yield curve is

necessary to design
:::
VP rheologies that are consistent with observed sea ice deformation.135

This paperfocuses on VP rheologies. Different models represent sea ice dynamics with different material properties, for

example, Viscous-Plastic (VP, Hibler, 1977), Elastic-Plastic (EP, Coon et al., 1974), or Maxwell-Elasto-Brittle (MEB, Dansereau et al., 2016)

. In these different classes of models, various rheologies can be defined. In a VP rheology, a yield curve and plastic potential

(flow rule ) must be defined. The yield curve defines the stress criteria for the transition from small viscous deformations to large

plastic deformations. The plastic potential determines the ensuing post-fracture deformation, called the flow rule. The flow rule140

is normal to the plastic potential (Drucker and Prager, 1952).The plastic potential can be set independently, or be equal to the

yield curve.In the latter case, the flow rule is also perpendicular to the yield curve and is called a normal-flow rule or associated

flow rule. Several yield curves have been used in sea ice models, some with a normal flow rule (Hibler, 1979; Zhang and Rothrock, 2005)

and some with a non-normal flow rule (Ip et al., 1991; Tremblay and Mysak, 1997; Hibler and Schulson, 2000; Wang, 2007).

It is important to note that two models with the same material properties sharing the same yield curve but with different flow145

rules are two different rheologies.

In this paper, we investigate the effects of a
:
,
::
we

:::::::::
investigate

:::
the

::::::
effects

::
of

::
a
::::::::::
non-normal

::::
flow

:::
rule

:::
on

::::::
fracture

::::::
angles.

::::
We

:::
use

::
the

:
non-normal flow rule on fracture angles and present a generalized framework to use with

:::
flow

::::
rule

::
as

:
a
::::::
means

::
of

:::::::::
separating

::
the

:::::
state

::
of

:::::
stress

:::
(at

::::::
failure)

:::
and

:::
the

:::::::::::
post-fracture

:::::::::::
deformation.

:::
To

:::
this

::::
end,

:::
we

:::::
study

:::
the

::::::::::
non-normal

::::
flow

:::
rule

::
in

:::
the

:::::::
context

::
of

:::
the

:::::::
standard

:::
VP

::::::::::
rheological

:::::
model

:::::
using

::
a

::::::
similar

:::::
shape

:::
for

:::
the

::::::
plastic

:::::::
potential

::::
(i.e.,

:::
an

::::::
ellipse)

:::::::
because

:::
(1)

:::
the

::::::
ellipse

::
is150

:::::
widely

:::::
used

::
in

:::
the

::::::::::
community,

::::
and

:::
(2)

::
its

::::::::
behavior

::
is

::::
well

::::::::::
documented

:::::::::
(compared

::
to
:::::

other
::::::::
models),

::::::::
providing

::
a

::::
solid

:::::
basis

::
for

:::::::::::
comparison.

:::
For

::::
these

::::
two

:::::::
reasons,

:::
we

:::
use

:::
the

:::::::
elliptical

:::::
yield

:::::
curve

::::::
despite

:::
the

:::
fact

::::
that

:
it
::
is
:::
not

:::
the

:::::
most

:::::::::
appropriate

:::::
yield

::::
curve

::
to
::::::
model

:::
sea

:::
ice

::
as

:
a
:::::::
granular

:::::::
material

::::
like

:::
sea

:::
ice.

::::
This

:::::
paper

::::::::
provides

:
a
::::
new

:::::::::
generalized

:::::::::
theoretical

::::::::::
framework

::
for

::::
any

viscous-plastic material with any flow rules (normal or non-normal ). To this end, we introduce a plastic potential independent

from yield curve. The new model is tested
:::
flow

::::::
rules.

::::::::
Following

:::::::::::::::::::
Ringeisen et al. (2019)

:
,
:::
we

:::
test

::::
the

::::
new

:::::
model

:
in simple155

uni-axial loading experiments where the relationship between fracture angle and flow-rule can be easily identified.

The paper is structured as follows. Section 2 describes the model (2.1), the new rheology (2.2), and a general theory linking

the fracture angles and a general flow rule (2.3). The sections 3 and 4 describe the idealized experimental setup and the results.

Section 5 discusses these results and their implication on current and future rheologies. Conclusions follow in section 6.
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2 Sea ice Model and rheology160

2.1 Building the sea ice VP constitutive equations

We consider sea ice as a 2D viscous-plastic material. The ice velocities are calculated from the sea ice momentum equations:

ρh
∂u

∂t

∂u

∂t
:::

=−ρhf k×u+ τ a + τ o− ρh∇φ(0)φs
::

+∇ ·σ, (4)

where ρ is the ice density, h is the grid cell averaged sea ice thickness, u is the ice drift velocity field, f is the Coriolis

parameter, k is the vertical unit vector, τ a is the surface air stress, τ o is the ocean drag, ∇φ(0)
::::
∇φs:is acceleration from the165

gradient of sea surface height, and σ is the vertically integrated internal ice stress tensor defined by the sea ice VP constitutive

equations. The constitutive equations link the stress tensor σ to the deformation tensor ε̇
:::::
define

:::
the

::::::::
vertically

:::::::::
integrated

:::::
stress

:::::
tensor

::
σ

::
as

:::::::
function

::
of

:::
the

:::::
strain

:::
rate

::::::
tensor

:̇
ε and the state variables χ (

:::
e.g.,

:
ice thickness, ice strength, ice concentration, etc.).

The components of the strain rate tensor are computed from the velocities as ε̇ij = ∂ui

∂xj
. The constitutive equations then have

the form:170

σ = f(ε̇,χ). (5)

In an ideal plastic model, the stresses are independent of the strain rates; in the VP model the stresses are independent of

the strain rates for large deformation events (the plastic states with stresses on the yield curve) and they depend on the strain

rates for small deformations (the viscous states with stresses inside the yield curve). It is this set of equations that defines the

rheology of sea ice and determines the fracture pattern and the opening or closing along the fractures.175

One of the state variables in the model is the maximal
::::::::
maximum

:
compressive strength P . This variable represents the

maximal
:::::::::
maximum compressive stress that sea ice can bear in uniform compression before ridging. We use the simple standard

relationship (Hibler, 1979):

P = P ?he−C
∗(1−A), (6)

where C? is a free parameter (typically C? = 20), h is the mean ice thickness, A is the fractional sea ice area cover in a grid180

cell, and P ? is the ice strength of 1 m ice at 100% concentration (A= 1). Some other state variables are a function of P ; for

instance, the tensile strength T is usually defined as T = kt ·P , where the tensile factor kt > 0 (König Beatty and Holland,

2010). Others are not, such as the ellipse aspect ratio (Hibler, 1979) or the internal angle of friction (Ip et al., 1991). The

equation for the yield curve in a VP model is written in terms of the state variables.

For two-dimensional sea ice, stress is a rank two tensor; thus, it has four components. The yield curve represents the185

stress states that are deforming
:::
for

:::::
which

::::
sea

:::
ice

:::::::
deforms

:
plastically while enclosing the states of stress for slow viscous

deformations
::::
stress

:::::
states

:::
for

:::::
which

:::
sea

:::
ice

::::::
slowly

:::::::
deforms

::::::::
viscously. We express the yield curve as a function of the stresses

σij and the state variables χ:

F (σij ,χ) = 0. (7)
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σI

σII

ε̇I

ε̇II

b)

G

F

σI

σII

ε̇I

ε̇II

a)

G = F

Figure 1. Schematic yield curve F (blue) and plastic potential G (red) for a normal (a) and non-normal (b) flow rule. The flow rule (orange)

for a given stress on the yield curve is normal to the plastic potential (red) for the same σI. Note that the stress and strain invariant axes are

assumed to coincide.

The yield curve can be represented in principal stress (σ1 and σ2) or stress invariants space (σI and σII). Figure 1 shows an190

arbitrary yield curve in stress invariants space. Although equation (7) determines if the deformation is plastic or viscous, it

does not determine how the ice will deform after fracture. In order to obtain a closed system of equations, we define a plastic

potential that defines the flow rule.

The plastic potential determines the direction of deformation for stress states on the yield curve.
:::
The

::::
flow

:::
rule

:::::::::
represents

:::
the

:::::::
direction

::
of

::::::::::
deformation

::
in
:::
the

::::
grid

::::
cell.

:::
The

:::::::::
orientation

:::
of

::
the

::::
flow

::::
rule

::
in

:::
the

:::::::::
coordinate

::::::
system

::::::
(ε̇I,ε̇II),::

as
::::::
shown

::
in

::::::
orange

::
in195

:::
Fig.

::
1,

::::::::
indicates

::
if

::
the

::::
grid

::::
cell

:::::::
deforms

::
in

::::::::::
convergence

:::::::
(ε̇I < 0)

::
or

:::::::::
divergence

::::::::
(ε̇I > 0),

:::
and

:::::
shear

::::
(ε̇II).:Just as the yield curve,

the plastic potential can be written as:

G(σij ,χ) = 0. (8)

The direction of the deformation, called the flow rule, is perpendicular to the plastic potential. This is shown in red on Fig. 1b

and mathematically expressed by200

∂G

∂σij
(σij ,χ) = λε̇ij , (9)

where λ > 0 is the unknown flow rate. The flow rule is applied for stress states on the yield curve at the same compressive

stresses (orange arrows in Fig. 1b). If the plastic potential and the yield curve are the same (G= F ), the flow rule is called an

associative
::::::::
associated or normal flow rule, as the flow rule is also perpendicular to the yield curve (see Fig. 1a).

Using Eq. (7) and Eq. (9), we can write a system of 5 equations (four from Eq. 9 and one from Eq. 7) for 5 unknowns (σ11,205

σ22, σ12, σ12, λ). Solving this system of equations allows us to write the constitutive equations for the sea ice model as function

of the components of the strain-rate (ε̇11, ε̇22, ε̇12, ε̇21) and the state variables χ.
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After deriving these constitutive equations, we assume that the stress and strain rate tensors are symmetric, that is, σ12 =

σ21 and ε̇ij = 1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
. The symmetry follows from ignoring the rotation in an isotropic medium. Note that we first

need to solve this system of equations without using the symmetry condition: the symmetry condition is only invoked at the210

end. Applying the symmetry before solving the system of equation changes the nature of the initial tensor, and the resulting

constitutive equations would be different.

An ideal plastic model, with the stresses independent of the strain rates, has a singularity because the non-linear viscosities

tend to infinity as the strain rates tend to zero. Hibler (1977) solved this issue with a regularization that limits the value of

the bulk and shear viscosities ζ and η to a maximum value. When the viscosities are capped to their maximum values, the215

stresses are linearly related to the strain rates and the material behaves as a viscous material.
::
VP

:::::::
sea-ice

::::::
models

:::::::
typically

::::
cap

::
the

::::::::
viscosity

::
at

ζmax =
1

2∆min
·P =

(
2.5× 108 s

)
·P

::::::::::::::::::::::::::::::

(10)

:::
and

:::::::::::
ηmax = ζmax

e2G ::
to

::::::::
regularize

:::
the

::::::::::
momentum

:::::::::
equations.

:::::
When

:::
this

::::::::::::
regularization

::
is

::
in

::::::
effect,

:
ζ
::::
and

:
η
:::
are

:::::::::::
independent

::
of

:::
the

::::::::::
deformation

::::
field

:::
(∆)

::::
and

::
the

:::::
stress

:::::::::
divergence

:::::::
reduces

:::
to

::::::::
harmonic

::::::::
viscosity

::::
with

:::::::
constant

::::::::::
coefficients.

::::::::::::::::::
∆min = 2× 10−9 s−1220

:::::::::::::::::
(Hibler, 1979, 1977)

:::::::
translates

:::
to

:
a
::::::::::
deformation

:::::
time

::::
scale

::
of

::::::
almost

:::
16

:::::
years.

:::::::::
Therefore,

:::::::
viscous

:::::::::::
deformations

:::
are

::::
slow

::::
and

::::::::
negligible

::::
with

::::::
respect

::
to

:::
the

::::::
plastic

:::::::::::
deformations

:::
that

:::::::
operate

::
on

::::::::
synoptic

::::
time

:::::
scale,

:::
and

:::
VP

:::::::::
rheologies

:::
can

::
be

::::::::::
considered

::
as

::::
ideal

::::::
plastic.

::::
The

::::::
viscous

::::::::
behavior

:::
can

::
be

:::::
seen

::
as

:
a
:::::::::::
consequence

::
of

::::::::::
regularizing

:::
the

:::::::::
viscosities

:::::
rather

::::
than

:::
an

:::::::::::::
implementation

::
of

:
a
:::::::
physical

::::::::
behavior.

:

2.2 Elliptical yield curve with non-normal flow rule225

We now build a rheology with an elliptical yield curve and a non-normal flow rule, that is, we use a plastic potential G that

is different from the yield curve F .
::
By

:::::
doing

::::
this,

:::
we

::::
will

::::::
change

:::
the

:::::::::
orientation

::
of

:::
the

::::
flow

:::::
rule,

::::::
without

::::::::
changing

:::
the

:::::
yield

::::
stress

:::::
state

::::
(see

:::
Fig.

::
2
::::
and

:::
Fig.

::
4
:::
for

:::::
some

:::::::::
examples).

:
We use a different, but still elliptical plastic potential for simplicity:

this choice only requires only minor modifications to a typical VP sea ice model. We define the yield condition F and the

plastic potential G as a function of the state variables χ: the ice compression strength P , the ice tensile strength T = ktP230

(König Beatty and Holland, 2010), the yield curve’s ellipse ratio eF , and the plastic potential’s ellipse ratio eG by

X(σI,P,eX ,kt) =

(
σI + P (1−kt)

2
P (1+kt)

2

)2

+

(
σII

P (1+kt)
2eX

)2

− 1 = 0, (11)

for X = F,G for the yield curve or the plastic potential. Using Eq. (11), we write σII as a function of σI as:

σII,X =
1

eX

√
P 2kt−σ2

I −σIP (1− kt)). (12)

Following Hibler (1977, 1979), we derive the constitutive equations σij :235

σij = 2ηε̇ij + (ζ − η) ε̇kkδij −
P (1− kt)

2
δij , (13)
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σI

σII

eG = a
bG

eF = a
bF

−P T

ε̇I

ε̇II

bF

bG

a

Figure 2. Elliptical yield curve with a non-normal flow rule, a yield curve ellipse aspect ratio eF = 2 (blue) and a plastic potential ellipse

aspect ratio eG = 4 (red). The gray and orange arrows show the normal and non-normal flow rules, respectively.

where the shear and bulk viscosities η and ζ are defined by:

ζ =
P (1 + kt)

2∆
and η =

ζ

e2G
=
P (1 + kt)

2e2G∆
(14)

with

∆ =

√
(ε̇11− ε̇22)2 +

e2F
e4G

((ε̇11− ε̇22)2 + 4ε̇212). (15)240

Figure 2 shows an example of yield curve and plastic potential, with the resulting flow rule. For eG > eF , the absolute value

of the divergence is smaller and the shear strain rate is larger compared to a normal flow rule (eG = eF ) and vice versa for

eG < eF .

2.3 Linking fracture and flow rule

In this section, we generalize the theory linking the rheological model and the fracture angles in simple uni-axial compressive245

test (Ringeisen et al., 2019) to materials with a non-associated flow rule. To this end, we follow the theory of Roscoe (1970)

where the angle of fracture depends uniquely on the angle of dilatancy of a granular material.
:::::
Based

::
on

:::::::::
laboratory

:::::::::::
experiments,

::::::::::::
Roscoe (1970)

:::::
states

:::
that

:::
the

:::::::
velocity

::::::::::::
characteristics

::::
(the

:::::::::
post-failure

:::::::::::
deformation)

:::::
seem

::
to

::
be

:
a
:::::
better

::::::::
predictor

::::
than

:::
the

:::::
stress

::::::::::::
characteristics

:::
(the

:::::
stress

::
at
:::::::
failure)

:::
for

::
the

::::::::::
orientation

::
of

:::::
shear

:::::
bands

::
in

:::::::
granular

::::::::
materials.

:

Figure 3 illustrates the case of an arbitrary yield curve with an arbitrary plastic potential. The figure
::
To

:::::
adapt

:::
the

:::::::
Roscoe250

:::::
angles

::
to
::::

sea
:::
ice

:::::::::
modeling,

:::
we

:::::::
proceed

::
as

:::::::
follows:

:::
(1)

::::
the

:::::
stress

::::
state

:::
on

:::
the

:::::
yield

:::::
curve

:::::
(point

::
p

::
on

::::
Fig.

:::
3a)

:::::::
defines

:::
the

::::::
position

::::
and

:::
size

:::
the

:::::::
Mohr’s

::::
circle

::
at
:::::::
fracture

:::::
(blue

:::::
circle

::
on

::::
Fig.

:::
3b),

:::
(2)

:::
the

:::::
slope

::
of

:::
the

:::::
plastic

::::::::
potential

:::::::::
determines

:::
the

:::::
point

::
on

:::
the

:::::::
Mohr’s

:::::
circle

:::::
where

:::::::::::
deformation

::::
takes

::::::
place,

:::
that

:::
is,

:::
the

:::::
slope

:::::::
directly

:::::::
predicts

:::
the

:::::::
fracture

:::::
angle

:
θ
:::
as

:
a
:::::::
function

:::
of

::
the

::::::::
dilatancy

:::::
angle

::
δ

::::
(per

::::::
Roscoe

::::::
theory,

::::
Fig.

:::
3b).

::::
For

:::
the

::::::
special

::::
case

::
of

::::::::
uni-axial

:::::::::::
compression,

:::
we

:::
(A)

:::::::::
determine

:::
the

:::::
stress

9



::::
state

::
on

:::
the

:::::
yield

:::::
curve

:::
for

:::::::
uni-axial

:::::::::::
compression

::
as

::
a

:::::::
function

::
of

:::
the

:::::
yield

:::::
curve

:::::
ellipse

:::::
ratio

:::
eF ,

:::
and

::::
(B)

:::::::
compute

:::
the

:::::
slope255

::
of

:::
the

::::::
plastic

:::::::
potential

::
at
::::
that

:::::
stress

::::
state

:::
as

:
a
::::::::
function

::
of

:::
the

::::::
plastic

:::::::
potential

::::::
ellipse

:::::
ratio

:::
eG.

:::::::
Finally,

:::
we

:::::::
combine

:::
(2)

::::
and

:::
(B)

::
to

:::::::
compute

:::
the

:::::::::
theoretical

:::::::::
prediction

:::
for

:::
the

:::::::
fracture

:::::
angle

::
as

::
a

:::::::
function

::
of

::::::
ellipse

:::::
ratios

:::
eG:::

and
::::
eF .

::::::
Figure

:
3
:
shows the

geometrical construction that links the angle of dilatancy δ to the slope of the plastic potential tan(γG):

sin(δ) = tan(γG) =−∂σII,G
∂σI

. (16)

Note that the minus sign above was included in the derivative of the yield curve
::::::
function

:
in Eq. (B1) and (B2) of Ringeisen260

et al. (2019). This equation agrees with the definition of Roscoe (1970) sin(δ) = ε̇I
ε̇II

, because the ratio of ε̇I to ε̇II is equal to the

slope of the plastic potential −∂σII,G

∂σI
, as the flow rule is perpendicular to the plastic potential. Figure 3 also shows the normal

flow rule, which, in agreement with the coulombic theory, would lead to different fracture angles (light blue lines). From Fig. 3,

the fracture angle can be written as:

θR
:

=
π

4
− δ

2
. (17)265

Substituting Eq. (16) in the equation above, the relationship between the fracture angle and the plastic potential becomes

θ(σI) =
1

2

[
π

2
− arcsin

(
−∂σII,G

∂σI
(σI)

)]
=

1

2
arccos

(
−∂σII,G

∂σI
(σI)

)
.

θR(σI)
:::::

=
1

2

[
π

2
− arcsin

(
−∂σII,G

∂σI
(σI)

)]
::::::::::::::::::::::::::::

(18)

=
1

2
arccos

(
−∂σII,G

∂σI
(σI)

)
.

:::::::::::::::::::::::

(19)270

We calculate the fracture angles for the elliptical yield curve with non-normal flow rule in uni-axial compression along the

y axis. In this case, σ11 = σ12 = 0, σ22 < 0, and the principal stresses and stress invariants can be written as:

σ1 =
1

2

(
σ11 +σ22 +

√
(σ11−σ22)

2
+ 4σ2

12

)
= 0, (20)

σ2 =
1

2

(
σ11 +σ22−

√
(σ11−σ22)

2
+ 4σ2

12

)
= σ22. (21)275

σI =
σ1 +σ2

2
=
σ22
2

(22)

σII =
σ1−σ2

2
=−σ22

2
=−σI. (23)

From Eq. 23, the maximum shear stress σpII,F in the fracture plane in uni-axial compression can be expressed as

σpII,F (σpI ) =−σpI , (24)

where p indicates the stress state at the fracture. Figure 4 shows the stress trajectory in principal stress space for uni-axial280

compression. It also shows how the flow rule changes for the same stress state when using two different elliptical plastic

potentials.
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Figure 3. Link between fracture angle and yield curve: a)
::
(a) Arbitrary yield curve F (blue) and plastic potential G (red) in stress invariants

space. The plastic potential and yield curve intersect at a stress state p for illustration purposes only. The orange
::
red arrow is perpendicular

to G, but non-normal to the yield curve F . The tangent to the plastic potential G at point p has a slope µG = tan(γG) and intersects the

σI-axis at point q (thin red line). For reference, the normal and tangent to the yield curve F are shown as a thin blue arrow and line. Mohr’s

circle of stress for this stress state (blue) has a radius of σpII an centers on σpI on the σI axis. Gray dashed lines show the principal stress

axes. b)
::
(b) Mohr’’s circle for the fracture state p

:
p in a)

::
(a)

:::
(for

::::::
normal in

:::
blue

::::
and

::
for

:::::::::
non-normal

::::
flow

:::
rule

::
in

::::
red)

:
in
:

the fracture plane

of reference (σ,τ)
::
(σ,

::
τ )

:
of center σpI and radius σpII. The thin red line is the tangent to the Mohr’s circle that passes

::::::
passing through the

point q on the σ axis. By this geometrical construction, sin(δ) = tan(γG) = µG (
:::
Only

::::
valid

:
for |µG| ≤ 1). δ is called the dilatancy angle.

Again for comparison
:::
with

:::::
panel

::
(a), the transparent blue lines show

:::
and

:::
dots

::::::
depicts the corresponding construction for

::::
case

:
of
:::

the
::::::
normal

:::
flow

:::
rule

::::
(i.e.,

:::::::
G= F ).

:::::
When

::::::::
considering

:::
the

:::::
plastic

::::::::
potential,

::
the

:::::
angle

::
of

::::::
fracture

:
is
::::::
written

::
as

::
of

:::
the

:::::::
dilatancy

::::
angle

:
δ
::
as
:::::::::
θ = π

4
− δ

2
.
:::
By

::::::::
comparison

:::::
again,

:::::
δ = φ

::
in

:::
the

:::
case

::
of

:
a normal flow rule from panel a)

:::
and

:::
the

:::::
Roscoe

::::::
theory

:::::::::
(θ = π

4
− δ

2
)
::::::
reduces

::
to

:::
the

::::::::::::
Mohr–Coulomb

:::::
theory

:::::::::
(θ = π

4
− φ

2
).

In the following, we use the normalized stress invariants σ′I = σI

P and σ′II = σII

P to simplify the notation. The slope of
:::
the

yield curve or the plastic potential depends only on eF and eG, but not on P . Substituting Eq. (12), σ′I, and σ′II in Eq. (24), we

obtain,285

σ′pII =−σ′pI =
1

eF

√
kt−σ′pI (σ′pI + 1− kt), (25)

and solve the first stress invariant σpI on the fracture plane in uni-axial compression

σ′pI =
(kt− 1)−

√
(1− kt)2 + 4kt(1 + e2F )

2(1 + e2F )
. (26)

11
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Figure 4. Trajectory of maximum normal stress (red arrow) in a uni-axial loading test experiment in a material with two different elliptical

yield curves (blue) and plastic potentials (dashed orange and dash-dotted teal). The orange and teal arrows show the flow rule normal to the

plastic potential of the same colour for the same stress state. For eG < eF , the ratio of divergence to shear increases. The opposite is true for

eG > eF . A similar figure in principal stress space is presented in Ringeisen et al. (2019)

The slope of the tangent at σpI to the plastic potential is given by the derivative of Eq. (12):

∂σ′II,G
∂σ′I

(σ′pI ) =
1

2eG

−2σ′pI − 1 + kt√
kt−σ′pI (σ′pI + 1− kt)

. (27)290

Substituting Eq. (26) into Eq. (27), yields

∂σ′II,G
∂σ′I

∣∣∣∣
σ′pI

=
1

eGeF

1− (1 + e2F )

1 +
√

1 + 4 kt
(1−kt)2 (1 + e2F )

 . (28)

or for zero tensile strength (kt = 0),

∂σ′II,G
∂σ′I

∣∣∣∣
σ′pI ,kt=0

=
1

2eF eG
(1− e2F ). (29)

The fracture angle can finally be written as a function of eG and eF from Eq. (18):295

θe,nn(eF ,eG) =
1

2
arccos

(
1

2eF eG
(e2F − 1)

)
. (30)

12



As expected, for eF = eG = e we recover the fracture angle derived in Ringeisen et al. (2019):

θe,n(e) =
1

2
arccos

[
1

2

(
1− 1

e2

)]
. (31)

3 Experimental setup and numerical scheme

Following Ringeisen et al. (2019), we load a rectangular ice floe of 8 km by 25 km with a thickness of h= 1m and a
:::::::
uniform300

:::::::
thickness

:::
of

:::::::
h= 1m

:::
and

::
a
:::::::
uniform sea ice concentration of A= 1.0

:::::::::
A= 100%

:
(see Fig. 5). The numerical domain has the

dimensions Lx = 10km and Ly = 25km. At y = 0, we use a closed, solid boundary with a no slip condition (i.e., u= v = 0).

At x= 0 and Lx, we use Neumann boundary conditions:

∂A

∂x

∣∣∣∣
x=0,Lx

=
∂h

∂x

∣∣∣∣
x=0,Lx

=
∂u

∂x

∣∣∣∣
x=0,Lx

=
∂v

∂x

∣∣∣∣
x=0,Lx

= 0. (32)

On the left and right sides of the domain (x < 1km and x > 9km), we have open water between the ice floe and the boundary305

to ensure that the boundaries have no effect on the simulation. At (y = Ly), we use a Dirichlet boundary condition for ice

velocity (v the velocity in y-direction increasing linearly in time simulating an axial loading test) and a Neumann boundary

condition for ice thickness and concentration :

v(t)|y=Ly
= av · t , u(t)|y=Ly

= 0 ;
∂A

∂y

∣∣∣∣
y=Ly

=
∂h

∂y

∣∣∣∣
y=Ly

= 0

310

v(t)|y=Ly
= av · t , u(t)|y=Ly

= 0
::::::::::::::::::::::::::::

(33)

∂A

∂y

∣∣∣∣
y=Ly

=
∂h

∂y

∣∣∣∣
y=Ly

= 0

:::::::::::::::::::::

(34)

with av =−5 · 10−4 ms−2. The grid spacing of the domain is 25 m, and the timestep is 0.1 s.
:::
For

:::::::::
simplicity,

::::
the

:::::::
Coriolis

::::::::
parameter

::::::
f = 0.

The non-linear momentum equations
::
(4)

:
are integrated using a Picard solver with 15 000 non-linear (or outer-loop) iterations315

(Losch et al., 2010). For the linearized problem within each
::::::::
non-linear

:
iteration, we use a line successive (over-)relaxation

(LSR) method (Zhang and Hibler, 1997), with a tolerance criterion of |uk −uk−1|max < 10−11 ms−1, where k is the linear

iteration index. We use an inexact approach with only a maximum of 200 linear iterations for the linearized equations; the

linearized system does not reach the tolerance criterion for the first non-linear iterations, but does so as the non-linear system

approaches a converged solution. We chose a very small tolerance and residual norm for the solution of the linear and non-320

linear problem in order to simulate a clean fracture with a well defined fracture angle -
::
—

:
for comparison with theory and

observations. These criteria are much stricter than common recommendations for Arctic sea ice simulations (e.g. Lemieux

and Tremblay, 2009). We expect modeling sea ice
:::
that

:::::::::
numerical

:::
sea

:::
ice

::::::
models

:::
are

::::::::::::::
computationally

:::::
more

::::::::::
challenging with

a non-normal flow rule to be more challenging than with a normal flow rule. The non-coaxiality of the deviatoric stress and

13
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Figure 5. Model domain with a solid wall at y = 0 (red), Dirichlet boundary conditions with u= 0 at y = 0 and prescribed velocities

at y = Ly . Open boundaries at x= 0,Lx (green) with Neumann boundary conditions. For the conservation of mass, ice thickness and

concentration equations (h, A) Neumann boundary conditions are used on all boundaries. θ is the measured fracture angle with respect to

the vertical; the blue line represents an LKF.

strain rate
:::::::::::
non-normality

::
of

:::
the

::::
flow

::::
rule

:::::::
relative

::
to

:::
the

::::
yield

:::::
curve

:
introduces more complexity because Drucker’s postulate325

for stability is not respected
::::::
stability

::::::::
postulate

::
is

:::
not

:::::::
satisfied

:
(Vermeer and De Borst, 1984; Balendran and Nemat-Nasser,

1993). This particular uni-axial loading experiment is also complex to solve numerically because the forcing is localized on the

boundary, in contrast to real geophysical system integrations where wind and ocean currents are acting over the entire surface

of the ice.

The intersection angles between the LKFs are measured with the Measure Tool from the GNU Image Manipulation Program330

(GIMP, version 2.8.16, gimp.org). The first 5 seconds of simulations are used to define the sea ice fracture and calculate the

fracture angle. The angle of each fracture lines is measured and used to compute the average fracture angle and the standard

deviationσ =
√

VAR. Note that the fracture angles do not depend on resolution, scale, geometry, or boundary conditions (see

Ringeisen et al., 2019, their Sec. 3.2 ). We do not use a replacement pressure scheme (Ip et al., 1991; Ip, 1993), because it has

no influence with the angle of fracture (not shown).335
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4 Results

We study the evolution of the fracture angle θ when the plastic potential changes while the yield curve stays the same (see

Fig. 4 for details). In this manner, the ice breaks for the exact same stress state but with a different flow rule. For simplicity, we

test here the elliptical yield curve without tensile strength (kt = 0).

Figure 6 shows the fracture pattern for the standard yield curve ellipse ratio eF = 2.0 and three values of the plastic po-340

tential ellipse ratio eG = 1.4, 2.0, and 4.0. Following observations and laboratory experiment, the ice fractures have
:::
The

:::::::
fractures

:::::
form a diamond shapepattern (Erlingsson, 1988; Wilchinsky et al., 2010)

:
,
::::::
similar

::
to
::::

the
::::::
shapes

::::::::
observed

::
at

:::::
large

:::::
scales

:::::::::::::::
(Erlingsson, 1988)

:
,
:
in
:::::::::
laboratory

::::::::::
experiments

::::::::::::::
(Schulson, 2001)

:
,
:::
and

:::::::
modeled

::::
with

:::::
DEM

::::::
models

:::::::::::::::::::::
(Wilchinsky et al., 2010)

::
or

::::
other

::::::::::
continuous

:::
sea

:::
ice

::::::
models

:::::::::::::::::::::::::::::::::::::
(Ringeisen et al., 2019; Heorton et al., 2018). With a normal flow rule (eG = 2.0), single

pairs of fracture lines with one unique fracture angle, large deformation along the LKFs, and smaller deformations (by several345

orders of magnitude) within diamond-shape floes are simulated. With the non-normal flow rule (eG = 1.4 and eG = 4) we

make three observations:

1. Asymmetric secondary fracture lines appear, in contrast to the normal flow rule simulation. We attribute the asymmetry

and presence of secondary fractures to the lack of full numerical convergence associated with the violation of Drucker’s

principle, or the non-normality of the flow rule (the ratio of divergence to shear strain rate differs from that of the shear to350

normal stress). For instance, the grid-cell average residual norm
::
L2:::::

norm
::
of

:::
the

:::::::
residual (R)

::
in

:::
the

:::::::::
non-linear

::::::::
equations

decreases by four orders of magnitude for the normal flow rule compared with two orders of magnitude for the non-

normal flow rule for the same number of non-linear iterations (15 000); specifically to R= 8×10−4 for eG = eF = 2 to

R= 6× 10−2 for eG = 1.4 and eF = 2. Note that a Jacobian-free Newton-Krylov (JFNK) solver with a quadratic local

numerical convergence does not perform better because the global convergence is poor with a combination of localized355

forcing and high grid resolution (Losch et al., 2014; Williams et al., 2017).

2. The width and activity of the LKFs is also affected by the flow rule. With eG = 1.4, the lines are thinner, the shear along

the LKFs is smaller and there is little shear between the fracture lines. With eG = 4.0, the fracture lines are broader, the

shear
::::
strain

::::
rate along the LKFs is higher and there is more shear between the fracture lines. With eG = 1.4 the flow rule

::::::::::
deformation at the fracture is mainly in divergence, while for eG = 4.0, the flow rule

::::::::::
deformation is mainly in shear and360

there is more stress transmitted to the ice in between the fracture lines.

3. The fracture angle changes as the plastic potential changes. The angles are wider with eG = 4 than eG = 1.4. The effect

of flow rule orientation on the fracture angles is discussed below.

We now present results from four sets of simulations with fixed yield curve ellipse ratios at eF = 0.7, 1.0, 2.0, 4.0. For each

of these, we test the sensitivity of the results to changes in the plastic potential ellipse ratio eG. The choice of yield curve365

ellipse ratios eF are: the standard value of (Hibler, 1979), values suggested by Bouchat and Tremblay (2017) and Dumont et al.

(2009), and an extreme value resulting in a very small shear strength and smaller fracture angles.
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Figure 6. Diamond-shaped fracture pattern
:
in
:::

the
::::
shear

::::::::::
deformation

::::
field

::
ε̇II:for eF = 2.0

:::::::
eF = 2.0

:
and three different values of eG after

five seconds of simulation. For the non-normal flow rule (panels a and c), there are primary and secondary fracture lines, in contrast to the

normal flow rule (panel b) where single pair of fracture lines are simulated. The fracture angles are 29.92±1.28◦ for eG = 1.4, 34.3±0.25◦

for eG = 2.0, and 40.7± 0.94◦ for eG = 4.0. The error corresponds to two standard deviation (2σ) of the measured fracture angles.

Figure 7a shows how the fracture angles evolve as the plastic potential ellipse ratio eG changes for each of the four values

of eF . There is a clear dependence of the fracture angles on the relative eccentricity of the plastic potential and yield curve.

For eG > eF , the shear strain rate increases along the LKFs
:::
(see

::::
Fig.

::::
6c) and the fracture angle

::::::
angles tend toward 45◦370

as eG increases, in agreement with the theory (Eq. 18). For eG < eF , the flow rule implies more divergence (for eF > 1,

or convergence for eF < 1) and less shear along the LKFs
::::
(see

:::
Fig.

::::
6a), and the fracture angles move away from 45◦ as

eG decreases. More generally, for eF < 1, the fracture angle increases with increasing convergence along the LKFs as eG

decreases. For eF > 1, the fracture angle decreases with increasing divergence as eG becomes smaller
::::::::
decreases. For eF = 1 (a

circular yield curve), the fracture angles are independent of eG because the fracture takes place at the peak of the yield curve375

and the flow rule is not affected by changes of the plastic potential ellipse ratio (eG).

The coloured dashed lines in Fig. 7
:
a
:
show the fracture angles θe,nn(eF ,eG) predicted by Eq. (30). The coefficient of deter-

mination R
:
r2 and the root-mean-square error (RMSE) between the simulated angle of fracture and theoretical predictions are

0.974
::::
0.97 and 0.37◦ for eF = 0.7, 0.953

:::
0.95

:
and 1.22◦ for eF = 2.0, and 0.968

::::
0.97 and 0.47◦ for eF = 4.0. The RMSE is

0.37◦ for eF = 1.0, R
:
r2 being inapplicable. That is, the theory predicts the fracture angles accurately. This result shows that the380

flow rule plays a major part
::::
role in the simulated fracture angle for a given rheology. The black dashed line show the evolution

::::::
change of the fracture angle with a normal flow rule (eG = eF , Eq. (31)

::
31).

16



(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

10

20

30

40

50

60

70

80

Plastic potential ellipse ratio eG

F
ra
ct
u
re

an
gl
e
θ
[◦
]

eF = 0.7
eF = 1.0
eF = 2.0
eF = 4.0
eG = eF
Roscoe
Coulomb

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

10

20

30

40

50

60

70

80

Yield curve ellipse ratio eF

F
ra
ct
u
re

an
gl
e
θ
[◦
]

eG = eF
eG = 0.7
eG = 1.0
eG = 2.0
eG = 4.0

Figure 7. a)
:::
(a) Fracture angles as

:
a function of the plastic potential ellipse ratio eG for different yield curve ellipse ratios (eF = 0.7, 1.0,

2.0, and 4.0). The markers with ranges are the mean and variation (2σ)
::
two

:::::::
standard

::::::::
deviations

:
of the fracture angles. The dashed lines

show the prediction from the theory
::::::
Roscoe

::::
angle

:
(Eq. 30). The R

:::::
arrows

::::
mark

:::
the

:::::::
Coulomb

:::::
angles

::
as

:
a
:::::::
function

::
of

:::
eF ,

:::::
which

::
are

:::::::
constant

:::
with

::::::
respect

::
to

:::
eG.

:::::
Colors

::::::
indicate

:::
the

::::
value

::
of

:::
eF ::

for
::::
lines

:::
and

:::::::
markers.

:::
The

:
r2 between theory and modeled angles for eF = 0.7, 2.0, and

4.0 are 0.97, 0.95, and 0.97. b) Theoretical predictions of the
::
(b)

:::::
Roscoe

:
fracture angle

:::::::
computed

::::
from

:::
Eq.

::::
(30) as

:
a function of eF with a

constant eG,
:::
for

::::::::
illustration.

::
As

::
eF:::::::

changes,
:::
both

:::
the

::::
stress

::::
state

:::
and

:::
the

:::
flow

::::
rule

:::::
change

::::
(see

:::
Fig.

::
4),

:::::::
resulting

::
in

:
a
::::
more

:::::::
complex

:::::::
behavior.

The black dotted line for the normal flow rule (eF = eG) , is indicated
::::
drawn

:
for reference.

For completeness, Figure 7b also show the theoretical predictions for a constant plastic potential ellipse ratio eG as the

::
for

:::::::
varying

:
yield curve ellipse ratio

:::::
ratios eF changes. The modeled angles for eG = 4.0 are shown as an example. The .

::::
The

fracture angles become smaller as the eF increase
:::::::
increases. Yield curve ellipse ratio smaller than eF = 1 do not create fracture385

angles below 45◦.

5 Discussion

The idealized experiments using the elliptical yield curve with a non-normal flow rule show
::::::
confirm

:
that the type of deformation

and the fracture angle are intimately linked with the shape of
::
the

:
plastic potential. We observe that

:
,
::::::::::
irrespective

::
of

:::
the

::::::
plastic

:::::::
potential

::::::::
elliptical

:::::
aspect

:::::
ratio,

:
a yield curve ellipse ratio eF < 1 does not allow for fracture angles smaller than 45◦ in uni-390

axial compressionwhen using an elliptical plastic potential, irrespective of the plastic potential elliptical aspect ratio. To reduce

the fracture angles with yield curve ellipse ratios eF > 1, one needs to use plastic potential ellipse ratios eG smaller than

the yield curve ellipse ratio
::
are

::::::::
required, that is, eG < eF . The numerical

::::::::
idealized experiments show that the use of

:::
with

:
a

plastic potential in a viscous-plastic model allows separating
::
we

:::
can

:::::::
separate

:
the yield criterion from the resulting deformation

(flow rule). This allows to decouple
:::::::::
decoupling

:
the mechanical strength properties of the material (ice) from its post-fracture395
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behaviour
:::::::
behavior. The results illustrate clearly how the yield curve defines the stress for which the ice will deform, that is, the

transition between viscous and plastic deformation, and how the relative shape of the plastic potential with respect to the yield

curve defines both the
::::::
fracture

:::::
angle

:::
and

:::
the

:
type of deformation (convergence or shear) along the fracture lineand the fracture

angle. The resulting fracture angles are in excellent agreement with the Roscoe angle predictions (Roscoe, 1970).

Understanding the link between rheology and fracture angle is necessary for choosing or designing a rheology that is ca-400

pable of reproducing the observed angle of intersection between
::::::::::
intersection

:::::
angles

:::::::
between

:::::
pairs

::
of

:
LKFs and consequently

the emerging anisotropy. In principle, it may be possible to solve
::
A

::::::::::
independent

::::::
plastic

:::::::
potential

:::::
may

::::::
resolve several incon-

sistencies of the standard elliptical yield curve with a normal flow rule Ringeisen et al. (discussed in 2019) by using a plastic

potential that is independent of the yield curve
:::::::::::::::::::::::::::::
(discussed in Ringeisen et al., 2019), namely:

1. In the standard VP model with
::
an elliptical yield curve and normal flow rule, adding shear strength increases the fracture405

angle, contrary
:
in
::::::::::::

contradiction to granular matter theory (Coulomb, 1773). This behaviour
:::::::
behavior is linked to the

::::::
specific

:
shape of the elliptical yield curve

:::
with

::
a
::::::::
maximum

:::::
shear

:::::
stress

::
at

::::
P/2

:::
and

:::
an

::::::::
ascending

::::
and

:
a
::::::::::
descending

:::
part.

In principle, we can decrease the fracture angle with increasing shear strength (eF decreasing) by decreasing eG, but

only if eF > 1. When doing this, ,
:::
but

:::::
then the flow rule becomes very non-normal

:
is

:::
far

::::
from

::::::::
“normal”, making the

numerical convergence difficult.410

2. The
::::::
Because

::
of

:::
the

::::::::
elliptical

::::
shape

:::
of

::
the

:::::
yield

:::::
curve,

:::
the angle of fracture in the standard VP model changes with confin-

ing pressure
::::::::::::::::::::::::::::::::::
(Ringeisen et al., 2019, Sec. 3.2.2, Fig. 8) unlike laboratory experiments with granular materials (e.g.

:
, sand)

where the fracture angle is relatively insensitive
:::
only

:::::::
weakly

:::::::
sensitive to the confining pressure (Alshibli and Sture, 2000)

. This behaviour
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Han and Drescher, 1993; Desrues and Hammad, 1989; Alshibli and Sture, 2000)

:
.
::::
This

::::::::
behavior can-

not be eliminated with an elliptical plastic potential, as the normal stresses
::::
stress

:
along the LKFs increases with con-415

fining pressure and the flow rule changes from divergence to convergence
::
as

:::
one

::::::
passes

:::
the

:::::::::
maximum

:::::
shear

:::::
stress

::
at

:::
P/2

::::::::::::::::::::
(Ringeisen et al., 2019). A different plastic potential function would change this behaviour

:::::::
behavior. However, this

would make the model implementation and numerical convergence
:::
even

:
more difficult. However, we

::
We

:
note that a

3D granular material like sand cannot release stress by ridging as sea ice does. A 2D material, such as sea ice, can

ridge and “escape to the 3rd dimension” after fracture.
::::::::
Therefore,

:::
we

::::::
expect

::
a

::::::
change

::
in

:::
the

:::::::
fracture

::::::
angles

::
at

:::::
large420

::::::::::
confinement.

::::::::::
Laboratory

::::::::::
experiments

::::
show

::::
this

:::::::
behavior

:::
and

:::::
yield

::::::
stresses

::
in

:::
sea

:::
ice

::::::
change

:::::
above

:
a
::::::
critical

:::::::::::
confinement

::::
ratio

:::::::::::::::::::::::::::::::
(Golding et al., 2010; Schulson, 2002).

::
It

::
is

:::
still

:::
not

:::::
clear

:::::::
whether

::::
these

::::::
results

:::
can

::
be

:::::::::::
extrapolated

::
to

:::
the

::::::::
modeling

:::
sea

::
ice

:::
as

:
a
:::
2D

:::::::
medium

::
at

:::
the

::::::::::
geophysical

:::::
scale,

:::::::
although

::::::
several

::::::::
common

:::::::
features

:::
can

::
be

::::::
found

::::::::::::::
(Schulson, 2002).

:

3. In the standard VP model with a normal flow rule, the divergence and convergence are set by the ellipse ratio of the yield

curve, and thus by the relative amounts of compressive and shear stress. The plastic potential ellipse ratio eG changes the425

flow rule but does not change the sign of the divergence along the LKFs which is solely determined by the yield curve

ellipse ratio eF . With the elliptical plastic potential, convergent motion remains convergent and only the ratio of shear to

convergence changes. To change this behaviour
:::::::
behavior, a different shape of plastic potential is required, for example a

teardrop plastic potential.
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4. The fracture angles in the standard VP models are larger than observed. Using a non-normal flow rule allows us to change430

the fracture angle in uni-axial compression to values below 30◦; something that .
::::
This

:
is not possible with a normal flow

rule (Ringeisen et al., 2019).

Other yield curves

:::
We

::::::
discuss

:::
the

::::::::
elliptical

:::::
yield

:::::
curve

::::
here

:::::::
because

::
it

:::
the

::::
most

:::::::::
commonly

:::::
used

:::
one

::::
and

::
its

::::::::
behavior

::
is

:::::
better

:::::::::::
documented

:::
than

::::
any

:::::
other

:::::
model

::
in
::::
use

::
in

:::
the

::::::::::
community.

::::
This

::::::::
provides

:
a
::::::
known

::::::::
reference

:::
for

::::::::
studying

:::
the

:::
use

::
of

:::::::::::::
non-associated

::::
flow435

::::
rules.

::::
Our

::::
goal

::
is

::
to

:::::::
provide

:
a
::::::::
reference

:::
for

:::
the

::::::
future

::::::::::
development

:::
of

::::::::::::
viscous-plastic

:::::::::
rheologies

::::
with

::::::::::
non-normal

::::
flow

:::::
rules

:::::
rather

::::
than

::::::
suggest

::
a
::::
new

:::
VP

::::::::
rheology.

::::::::::
Alternatives

::
to
::::

the
::::::
elliptic

::::
yield

:::::
curve

:
have been used in previous studies

:::::
before; for

instance, the Mohr–Coulomb, the Coulombic yield curve, or the teardrop yield curves . The use
::::::
(Figure

:::
8).

:::
The

:::::::
concept

:
of a

plastic potential in conjunction with these yield curves may also prove useful in solving these issues
:::
the

:::::
issues

::::::::
described

:::::
above.

A detailed analysis of the simulations using the family of Mohr–Coulomb and Teardrop yield curves is beyond the scope of440

this work and will be presented in a subsequent study. Below, we apply knowledge gained from the simulations presented

above, and discuss
::
use

:::
the

::::::::::
experience

::::
from

:::
our

::::::::::
simulations

::
to

:::::
infer how alternative yield curves may address deficiencies in

the standard VP rheology.

σI

σII

-P T

ε̇I

ε̇IIµ
µ(P + T )

Figure 8.
::::::::
Alternative

::::
yield

:::::
curves

:::
and

::::
flow

:::::
rules:

:::
The

::::::::::::
Mohr–Coulomb

::::
yield

::::
curve

::::
with

::::
shear

::
(a

:::::::::
non-normal)

::::
flow

:::
rule

::::::::::::::::
(blue, Ip et al., 1991)

,
:::
the

:::::::
modified

::::::::
Coulombic

::::
yield

:::::
curve

:::
with

::::::
normal

::::::
(elliptic

::::
part)

:::
and

:::::::::
non-normal

:::::
(linear

::::
part)

:::
flow

::::
rule

::::::::::::::::::::::::::
(orange, Hibler and Schulson, 2000)

:
,

:::
and

::
the

:::::::
teardrop

::::
yield

::::
curve

::::
with

:
a
::::::
normal

:::
flow

::::
rule

::::::::::::::::::::::::
(red, Zhang and Rothrock, 2005).

:::
The

:::::::
elliptical

::::
yield

:::::
curve

:::
with

:::::::
eF = 2.0

::
is
:::::
shown

:::
for

:::::::
reference

:::::
(black

:::
thin

::::
line).

::
P

::
is

::
the

::::::::::
compressive

::
ice

:::::::
strength,

:::
and

::
T

::
the

::::::
tensile

::
ice

:::::::
strength.

It is possible to include different (non-normal) flow rules
::::::::::
Non-normal

::::
flow

::::
rules

::::
can

::
be

::::::::
combined

:
with the Mohr–Coulomb

family of yield curve. The Mohr–Coulomb
::
For

::
a
:::::::::::::::
Mohr—Coulomb yield curve with a pure shear flow rule (Ip et al., 1991)445

would create fracture angle approximately equal to
:::::
double

::::::
sliding

:::
law

::::::::::::::::::::::::::::::::::::
(i.e., pure shear deformation, Ip et al., 1991)

:
,
::
the

:::::::
Roscoe

:::::
theory

:::::::
predicts

::
a

:::::::
fracture

:::::
angle

::
of

::::::::::::
approximately

:
45, independently

:

◦
:::
that

::
is
:::::::::::

independent
:
of the slope of the yield curve. It

corresponds to the case
:::
This

::::::::
behavior

:::
can

::
be

:::::::::
mimicked

:::::
using

::
an

:::::::
elliptical

:::::
yield

:::::
curve

:::
and

::::::
plastic

:::::::
potential

:::
by

:::::
setting

:
eG� eF ,

hence δ ' 0 and θ = 45◦ , as shown in (Fig. 7
:
a). This contradicts the Coulomb angle theory, which predicts an angle of frac-

ture that depends solely
:::::::::
exclusively on the internal angle of friction (Eq. 1). Including

:::::::::
Combining

:
an angle of dilatancy with450
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a Mohr–Coulomb yield curve (Tremblay and Mysak, 1997) would allow for different angles of fracture
::
an

:::::
angle

::
of

:::::::
fracture

::::::::
depending

:::
on

::
δ
::::
that

::
is

:::::::
different

:
with shear and divergence or convergence

:::::
(δ > 0)

:::
or

::::
with

:::::::::::
convergence

::::::
(δ < 0)

:
along the

LKFsdepending on δ. Such
:
.
::::
Such

::
a fracture angle and divergence would be independent of the shear strength and the confin-

ing pressure in agreement with Roscoe’s angle of fracture . Such
::
so

::::
that

::::
such

:
a rheology could potentially solve the all four

issues
::
on

::::
page

:::
18. It is also important to note that the Mohr–Coulomb yield curves do not satisfy the convexity requirements of455

Drucker’s postulate of stability
::::::
stability

::::::::
postulate. Mohr–Coulomb yield curves in plastic earth mantle models showed different

::::
Earth

::::::
mantle

:::::::
models

::::
lead

::
to

:
a
::::::
variety

::
of

:
fracture angles corresponding to the Coulomb angle, Roscoe angle, and the interme-

diate Arthur angles (Buiter et al., 2006; Kaus, 2010; Mancktelow, 2006)
::::::::::::::::::::::::::::::::::::::::::
(Buiter et al., 2006; Kaus, 2010; Mancktelow, 2006).

However, such geological models are usually incompressible
:::::::
designed

:::
for

:::::::::::::
incompressible

:::::::
medium, and making inferences for

the compressible formulation of sea ice models is difficult. The investigation of the fracture angles with Mohr–Coulomb yield460

curves is left for future work.

The Coulombic yield curve uses the two straight limbs from the Mohr–Coulomb yield curve and an elliptical cap of the

standard VP rheology for large compressive stresses (Hibler and Schulson, 2000). In this rheology, the flow rule over the two

straight limbs is defined by the elliptical yield curve; that is, the ellipse serves as a plastic potential for the Mohr-Coulomb

:::::::::::::
Mohr–Coulomb yield curve. The Coulombic yield curve leads to unrealistic and asymmetrical fracture lines

:
(i) when the stress465

states lie at
:::
fall

::::
onto

:
the non-differentiable intersection between the straight limbs and the elliptical cap (Ringeisen et al.,

2019), and
:
(ii) when the stress states lie on

:::
fall

::::
onto the two straight limbs with the non-normal flow rule. Note that straight and

symmetric fracture lines in this rheology are only possible when all the stress states are located on the Mohr–Coulomb limbs

and the flow rule at the fracture line is near-normal, that is, at the location where the normal to the ellipse
::::::
elliptic plastic potential

is nearly perpendicular to the limbs of the Mohr–Coulomb yield curve (Ringeisen et al., 2019).
:::::::::::::::::::::::
Hibler and Schulson (2000)470

::::::
already

:::::::
inferred

:::
that

:::
the

::::
flow

:::
rule

::::
may

::::
have

:::
an

:::::
effect

::
on

:::
the

:::::
angle

::
of

:::::::
fracture,

:::
but

::
the

:::::::
authors

::::::
limited

::::
their

::::
case

::
to

:::
the

:::::::::
framework

::
of

::::::
flawed

::
ice

::::
and

:::
did

:::
not

:::::::
consider

::::::::
Roscoe’s

::::::
theory

::
of

::::::::
dilatancy.

::::
The

:::::::
rheology

:::
of

:::::::::::::::::::::::
Hibler and Schulson (2000)

:::
was

:::::
tested

::
in

:::
an

:::::::
idealized

::::::::::
experiment

::::
more

::::::::
complex

::::
than

::::
ours

:::::::::::::::::::
(Hutchings et al., 2005)

:
,
:::
but

:::
the

:::::
effect

::
of

:::::
using

:
a
::::::::::
non-normal

::::
flow

::::
rule

::::
was

:::
not

:::::::
explored.

::::
The

:::::::::
complexity

:::
of

::::
their

::::
setup

::::
may

::::::
explain

:::
the

::::::::
observed

::::::::
difference

::::::::
between

::::::::
simulated

:::
and

::::::::
predicted

::::::
angles.

::::
Note

::::
that

::
the

::::::::
rheology

::
in

:::::::::::::::::::::::
Hibler and Schulson (2000)

:::
was

::::
built

:::
by

::::::::
changing

::
the

:::::
shape

:::
of

:::
the

::::
yield

:::::
curve

::::::::::
a-posteriori,

:::::
while

:::
the

::::::::
rheology475

::::::::
presented

::::
here

:::::
solves

:::
the

::::::::::
constitutive

::::::::
equations

:::::::::
rigorously.

:

The teardrop yield curve with a normal flow rule (Rothrock, 1975; Zhang and Rothrock, 2005) is divergent for a wide

range of normal stresses and for all practical purposes consists of a continuously differentiable version of the Coulombic

yield curve. This asymmetry between divergent and convergent deformation for different normal stresses decreases the effect

of confinement on the fracture angle – issue
::
—

:::::
issue 2 –

::
on

::::
page

:::
18

::
—

:
and reduces the fracture angle for any confinement480

pressure – issue
::
—

::::
issue

:
4. This yield curve does not address issue 1, because adding shear strength in the tear-drop

:::::::
teardrop

yield curve also increases the fracture angle.

The
::
As

:::
the

:
main disadvantage of a non-normal flow rule is the slower numerical convergence

:::
we

:::::
found

::::
that

::
it

::::
leads

:::
to

:::::
slower

:::::::::::
convergence

::
of

:::
the

:::::::::
numerical

:::::
solver. Solving the momentum equation accurately requires more solver iterations and

failure to converge is more frequent than for standard normal-flow-rule rheologies. In our simulations, this numerical issue485
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manifests itself by the presence of multiple and asymmetrical fracture lines despite the fact that our experiments are entirely

symmetrical.
:::::::::
experiment

::::::::
geometry

::::
and

::::::
forcing

::::
are

::::::
exactly

:::::::::::
symmetrical.

::::
This

::::::::::
asymmetry

::
is

:::
not

::::::::
expected,

::::
and

::
is

:::
not

::::::
found

::::
with

::::::
normal

::::
flow

:::::
rules. The fracture lines with a normal flow rule are symmetrical and come in pairs (Ringeisen et al., 2019).

The poorer numerical convergence in practice
:
In

::::::::
practice,

:::
the

::::::::
numerical

::::::::::
convergence

:::::
issue will go unnoticed in high-resolution

simulations using realistic geometries , since
:::
and

:::
time

:::::::
varying

::::
wind

:::::::
forcing.

::
In

:::::
these

::::::::::
simulations,

::::
while

:
the number of iterations490

typically used (O(10))
::::::
O(10)) is much smaller than that required for full convergence. On the upside, at each time-step, a new

iteration typically use the solution from
:::
uses

:::
the

:::::::
solution

::
of

:
the previous timestep as initial conditions. This

:::
the

:::::
initial

::::::::
estimate.

::::
With

:::
this, together with slowly varying forcing in space and time, the number of solver iterations per forcing cycle is large, in

contrast to the fast changing forcing in this study
:::::
(every

:::::::::
timesteps). Whether this behaviour

:::::::
behavior

:
(asymmetry and multiple

fracture lines) will also be present in realistic simulation using spatially and temporally varying wind forcing remains to be495

tested.

The following criteria should be considered when building a new rheology.
:
:
:
The spatial and temporal scaling of sea-ice

deformation should agree with observations (Bouchat and Tremblay, 2017; Hutter et al., 2018); the flow rule should repro-

duce the correct divergence along LKFs (Stern et al., 1995); the yield curve includes
:::::
should

:::::::
include some tensile strength

(Coon et al., 2007) and reproduces observed distributions of internal stress when ice deforms
::
be

:::::::::
Coulombic

:::
in

:::::
nature

:::
in500

::::::::
agreement

:::::
with

::::::::
observed

:::::::
internal

:::::
stress

:::::::::
invariants

::::
from

:::
ice

::::::
stress

:::::
buoys

:
(Weiss and Schulson, 2009); the distribution of

fracture angles should agree with observations (Marko and Thomson, 1977; Erlingsson, 1988; Cunningham et al., 1994;

Hutter et al., 2019); the sea ice mechanical strength properties (
:::
i.e.,

:
yield curve) and deformation (flow rule

:::
i.e.,

::::
flow

::::
rule

::
for

::::
VP

:::::::::
rheologies) should vary in time and space depending on,

:::
for

::::::::
example,

:
the time-varying distribution of the contact

normalsand
:
, floe size distributions,

::
or

::
a

:::::::
damage

:::::::::
parameter,

:
as per observations and laboratory or numerical experiments505

(Overland et al., 1998; Hutter et al., 2019; Horvat and Tziperman, 2017; Roach et al., 2018; Balendran and Nemat-Nasser, 1993; Dansereau et al., 2016)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Overland et al., 1998; Hutter et al., 2019; Horvat and Tziperman, 2017; Roach et al., 2018; Balendran and Nemat-Nasser, 1993; Dansereau et al., 2016; Plante et al., 2020)

.

Although high spatial resolution observations from satellite are available from optical instruments (e.g., from the Landsat

or Sentinel programs), higher temporal resolution of sea ice deformation and flow size distributions are still lacking. So is the510

combined knowledge of the failure stresses and their associated deformation of sea ice as
::
is

:::
still

::::::::::
unavailable.

::::
The

::::
new

:::::::
Sentinel

::::::::::
constellation

::::
and

:::::
in-situ

:::::::::::
observations

::::
from

:::
the

::::
field

::::::::
program

::::::::
MOSAIC

::::
may

:::::
bridge

::::
this

::::
gap.

:::::
There

::
is

::::
also

:
a
:::::::::
knowledge

::::
gap

::
in

::
the

::::::::
interplay

:::::::
between

:::::
yield

::::::
stresses

::::
and

:::
the

:::::::::::
post-fracture

::::::::::
deformation

::
in a 2Dgranular material.

:::::::
granular

:::::::
material

::::
such

:::
as

:::
sea

:::
ice.

::::
This

:::::::
interplay

::
is

:::::
likely

:::::::
different

::::
than

:::
for

:::
the

::::
well

::::::
studied

::::
case

::
of

:
a
::::
solid

::::::::::::
homogeneous

:::
3D

::::
block

:::
of

::
ice

::::::::::::::::::
(e.g. Schulson, 2002)

:
. Sea ice floating on the ocean surface can “escape” vertically when ridging

:
it

:::::
forms

:::::
ridges

:
under confined compression (Hop-515

kins, 1994). This behaviour
:::::::
behavior differs from laboratory test that use axial symmetry and general knowledge about

::::
with

3D
:
granular material like sand

:::
that

:::
use

::::
axial

:::::::::
symmetry. Generally, information about sea ice resistance in different configura-

tions (e.g., confinement) and the resulting fracture angles and deformation (ridging or opening) is also still missing, although

::::
some

:
laboratory scale experimental results are available Weiss et al. (2007); Schulson et al. (2006); Weiss and Schulson (2009).

The sea ice flow size distribution varies in time (summer/winter) and space (marginal ice zone/central Arctic) (Rothrock and520
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Thorndike, 1984). These variations change the mechanical properties (e.g., distribution of contact normals) and thermodynamic

properties (e.g., lateral melt) of sea ice (Horvat and Tziperman, 2017). Consolidated
::::::::
Designing

:::::
more

:::::::::
appropriate

:::::::::
rheologies

:::
for

::::::::
improved

::::::::::::
high-resolution

:::::::
climate

::::::
models

::::
and

::::
more

::::::::
accurate

:::
sea

:::
ice

::::::::
prediction

:::::::
systems

:::::::
requires

:::::::::::
consolidated observations of

these two physical processesare needed to design new rheologies for high-resolution climate modelling.
:::
still

:::::::
unclear

:::::::
physical

::::::::
processes.

:
525

6 Conclusions

The flow rule, which dictates the post-fracture deformation, has a fundamental effect on the orientation of fractures lines in

a viscous-plastic sea ice model. To test this, we added an elliptical plastic potential (allowing for a non-normal flow rule) to

the standard viscous plastic rheology with an elliptical yield curve
:
,
::::::::
therefore

:::::::::
modifying

:::
the

::::
flow

::::
rule

:::::::
without

::::::::
changing

:::
the

:::::::
yielding

:::::
stress

::::
state. We tested this new rheology with numerical experiments in uni-axial compression using the standard530

viscous-plastic model of Hibler (1979). The modeled fracture angles are in agreement with the Roscoe angle, a theory based

on experiments with granular materials that includes an angle of dilatancy (Roscoe, 1970; Tremblay and Mysak, 1997). This

new rheology partially solves issues raised in an earlier study (Ringeisen et al., 2019). The use of a plastic potential or non-

normal flow rule allows for the simulations
:::::::::
simulation of smaller fracture angles between pairs of Linear Kinematic Features,

in agreement with satellite observations. The fracture angles , however,
:::::::
Because

::
of

:::
the

::::::::
elliptical

:::::
yield

::::::
curve,

:::
the

:::::::
fracture535

:::::
angles

:
still depend on the confinement pressure

::::::::::::::::::
(Ringeisen et al., 2019), and the elliptical plastic potential does not modify

::::
only

:::::::
modifies

:::
the

::::
ratio

:::
of

:::::::::
divergence

::::::
relative

::
to
::::::

shear,
:::
but

:::
not

:
the direction of deformation at the fracture lines (convergence

or divergence), only the ratio of divergence relative to shear. The momentum equations for a rheological model with a non-

normal flow rule are more difficult to solve numerically, and produce multiple lines of fractures that are asymmetrical (despite

::
the

:::::::::::
geometrical symmetry of the problem), in contrast with a model with a normal flow rule. Understanding

:
It
::
is
:::::::::
necessary540

::
to

:::::::::
understand the effect of the flow rule on the fracture angle is necessary to design VP rheologies for high-resolution sea-ice

modeling that both reproduce fracture angles and deformation along the fracture lines , and the behaviour
:::
and

:::
the

::::::::
behavior of

sea ice as a granular material.

Designing a rheology for high-resolution simulation requires information on
:::::::::
simulations

:::::::
requires

::::::::::
information

:::::
about

:
sea

ice fracture angles and sea ice strength in a wide range of stress conditions (i.e., compression with or without confinement,545

pure shear, tension), yet unavailable at high temporal and spatial resolution. The observations of the Multidisciplinary drifting

Observatory for the Study of Arctic Climate (MOSAiC, Dethloff et al., 2016) in 2019/2020 may provide valuable data from

continuous ice radar imaging, stress sensors, and arrays of drift buoys that will greatly help improve sea ice model dynamics.

Code availability. The modified version of MITgcm used in this study is available at https://github.com/dringeis/MITgcm/tree/ell_nnfr
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