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Abstract. An  accurate  knowledge  of  snow  depth  distributions in  mountain  catchments  is  critical  for

applications in hydrology and ecology. Recently, a method was proposed to map snow depth at meter-scale

resolution from very-high resolution stereo satellite imagery (e.g., Pléiades) with an accuracy close to 0.5 m.

However, the validation was limited to probe measurements and UAV photogrammetry, which sampled a

limited fraction of the topographic and snow depth variability.  We  improve upon this  evaluation using

accurate maps of the snow depth derived from Airborne Snow Observatory laser scanning measurements in

the Tuolumne river basin, USA. We find a good agreement between both datasets over a snow-covered area

of 138 km² on a 3 m grid with a positive bias for Pléiades snow depth of 0.08 m, a root-mean-square error of

0.80  m and  a  normalized  median  absolute  deviation  of  0.69  m.  Satellite  data  capture  the  relationship
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between snow depth and elevation at the catchment scale, and also small-scale features like snow drifts and

avalanche deposits of a typical scale of tens of meters. The random error at the pixel level is lower on snow-

free areas than on snow-covered areas, but it is reduced by a factor of two (NMAD approximately of 0.40 m

for snow depth) when averaged to a 36 m grid. We conclude that satellite photogrammetry stands out as a

convenient method to estimate the spatial distribution of snow depth in high mountain catchments. 
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 1 Introduction

The snow depth or height of the snowpack (symbol: HS, Fierz et al. 2009) is a key variable for both water

resource management and avalanche forecasting in mountain regions. However, determination of the spatial

distribution of HS in complex terrain remains challenging due to its high spatial variability at horizontal

scales below 100 m (Deems et al. 2006, Fassnacht and Deems, 2006). Current approaches to map HS are

either based on sparse in situ measurements (Lopez-Moreno et al., 2011, Sturm et al., 2018), area limited

unmanned aircraft vehicle (UAV) campaigns (Bühler et al., 2016, De Michele et al., 2016, Harder et al.,

2016, Redpath et al., 2018), terrestrial laser scanning (Prokop et al., 2008, Fey et al. 2019) or costly airborne

campaigns (Bühler et al., 2015, Dozier et al., 2016, Painter et al., 2016). 

Recently a method was introduced to retrieve HS maps from satellite data at metric resolution, typically 1 to

4 m (Marti et al., 2016, McGrath et al., 2019, Shaw et al., 2019). The method is based on the differencing of

snow-on  (winter)  and  snow-off  (in  general  end-of-summer)  digital  elevation  models  (DEM)  that  are

generated from very high-resolution satellite stereo imagery (e.g. Pléiades, DigitalGlobe/Maxar WorldView-

1/2/3  and  GeoEye-1).  The  method  was  first  tested  using  two Pléiades  stereo  triplets  over  the  Bassiès

catchment in the Pyrenees (Marti et al., 2016). The snow-on and snow-off DEMs were generated using the

Ames Stereo Pipeline (ASP, Shean et al., 2016, Beyer et al., 2018) and co-registered before differencing

(Berthier et al. 2007). The accuracy of the method was evaluated using 451 probe measurements of snow

depth.  The HS satellite-derived map was also compared to one obtained from a UAV photogrammetric

survey over a small  portion of  the  catchment (3.1 km²).  The results  showed that  snow depth could be

retrieved from Pléiades images with an accuracy of roughly ~0.5 m (standard deviation of residuals 0.58 m

for a pixel  size of 2 m),  suggesting that  the method had the potential  to become a viable alternative to

airborne campaigns in mountain catchments with the benefits of a space based platform: access to any point

on the globe and lower cost for the end-user. Besides Marti et al. (2016), HS maps from stereo satellite

images were evaluated in two recent studies, against terrestrial laser scanning data over a small area (<1

km²) (Shaw et al., 2019) or against ground penetrating radar measurements, which were limited to roughly

50 km² of relatively flat terrain (McGrath et al., 2019). 

However, these works provided only a partial validation of the method since the reference data did not

homogeneously sample the topographic and HS variability of the study area. For example in Marti et al.

(2016), accumulation due to snow drifts on the lee side of high-elevation ridges were not surveyed for safety

reasons.  The  sampling  depth  was  also  limited  to  3.2  m,  which  was  the  length  of  the  snow  probes.

Furthermore, the areas with steep slopes were under-sampled. Half of the points sampled in the field were on

slopes lower than 10° while the terrain median slope in this catchment is ~30°. This lack of validation data

in steep slope areas was an important limitation of this study since DEMs from stereoscopic images are

known to be less accurate on steep slopes due to a higher sensitivity to horizontal error and to local image

3

5

35

40

45

50

55

60

65



distortion (Lacroix, 2016; Shean et al., 2016). In addition, snow probe measurements may fail to represent

the mean HS at the scale of a 2 m pixel especially in mountain terrain (Fassnacht et al., 2018). Furthermore,

the impact of the photogrammetric software configuration on the accuracy of the HS map has never been

evaluated. The semi-global matching algorithm (Hirschmüller, 2005) was for instance added to the catalogue

of algorithms that can be used to derive the disparity map from stereo images in ASP and has never been

used with satellite images to derive HS. This algorithm is expected to perform better in low texture terrain

(Bühler  et  al.,  2015;  Shean et  al.,  2016,  Harder  et  al.,  2016,  Beyer  et  al.,  2018) and therefore has  the

potential to reduce the amount of missing values in the snow depth map.

Given  the  aforementioned  limitations,  we  present  a  more  comprehensive  validation  study  by  taking

advantage of the NASA Airborne Snow Observatory (ASO) campaigns in the Sierra Nevada, USA. In this

area ASO routinely acquires HS measurements by airborne laser scanning (ALS). We used two Pléiades

stereo triplets over the Tuolumne river basin (snow-on and snow-off). The snow-on triplet was acquired on

01 May 2017, the day before the ASO flight and close to the accumulation peak. The ASO product was used

as a reference as it should exhibit no bias and was found to have an accuracy roughly an order of magnitude

better than Pleiades HS maps (Painter et al., 2016). We use it to test the impact of the DEM processing

options,  the  stereo images acquisition geometry and the HS map resolution on the accuracy of  HS.  In

addition we are able to evaluate an error model (Rolstad et al., 2009), which would enable us to calculate the

error of Pléiades HS maps in other study areas where no reference datasets are available.

2 Study site

The study site is located in the Tuolumne river basin in the Sierra Nevada mountain range, California, USA

(Fig. 1). The Tuolumne river supplies water to the agricultural plain of the Great Valley and the densely

populated area of San Francisco. The region recently experienced a five-year drought from 2012 to 2016

(Roche et al., 2018), increasing the interest for water resources monitoring. The ASO flights cover 1100 km²

in the basin while this study focuses on a 280 km² subzone which was selected to cover a large elevation

range.  The  elevation  within  this  subzone  ranges  from  1800  m  a.s.l.  to  3500  m  a.s.l..  Typical  winter

accumulation can reach several meters at high elevations (Painter et al., 2016). The 2016-2017 winter was

characterized by near record snow accumulation that has been referred to as the snowpocalypse (Painter et

al., 2017). 
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Figure 1. The Tuolumne basin is located in California, USA (a). Pléiades images footprint (red polygon) in

Tuolumne basin (blue line) (b). The terrain elevation in the background is the snow-off digital elevation

terrain from ASO used in the co-registration step.
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3 Data

3.1 Pléiades images

The study area is too large to be imaged by Pléiades in tri-stereo mode with a single scene, hence the area

was imaged in two strips which overlapped by 3 km in winter and 1.5 km in summer in the along-track

direction.  The  snow-on triplets  were  both  acquired  on  01  May 2017,  while  the  snow-off  triplets  were

acquired on 8 August 2017 and 13 August 2017 (Fig. 1, Table 1, images ID in Table S1). The imaged area

covers 280 km²  in total.  Images were acquired in panchromatic and multispectral  mode with incidence

angles along track between -7° and 9°. The base to height (B/H) ratio of successive pairs is around 0.1

(Table 1). The panchromatic images have a resolution of 0.5 m at nadir and are used to calculate the DEMs.

For the snow-on acquisition, we requested to reduce the number of time domain integration (TDI) lines used

to image the scene. This is recommended to curb image saturation over sun-exposed snow surfaces (Berthier

et al., 2014). As a result, there  are no saturated pixel in the images of this study.  Pléiades multispectral

images have a resolution of 2 m. We only use the multispectral image that was acquired closest to the nadir

view angle to compute the multispectral orthoimage.  Pléiades images were obtained at no cost for French

scientists through the DINAMIS program (https://dinamis.teledetection.fr/). It is also opened to European

scientists working in public research institutions. Otherwise Pléiades images can be ordered from Airbus

Defense and Space.

3.2 ALS data from the Airborne Snow Observatory (ASO)

A snow-off DEM on 13 October 2015 and a snow depth map on 2 May 2017 from the ASO are used for

comparison with the Pléiades products (Fig. 1, Table 1). The ASO program, operating since 2012, provides

snow depth, Snow Water  Equivalent  (SWE),  and  snow albedo maps  over  full  mountain  watersheds to

support  scientific  campaigns  and  operational  water  management (Painter  et  al.,  2016).  The  ASO laser

scanning  system measures  the  distance  between  the  target  and  aircraft,  and  is  combined  with  aircraft

position and orientation measurements to generate a collection of reflection points – a “point cloud”. Ground

points are aggregated to a 3 m grid to derive a gridded DEM (Painter et al., 2015).  Snow depth maps are

obtained from the difference of a snow-on and snow-off DEM in unforested areas The values on the snow-

free areas are used to bias-correct the snow-on elevations and are set to zero. From comparison with 80 in-

situ manual measurement, no bias is observed on the HS maps and the root mean square error (RMSE) per

pixel at a 3 m resolution is 0.08 m (Painter et al., 2016). For the evaluation of Pléiades HS map, we excluded

25 km² near the catchment divide in the north-east part of the study area because we observed art ifacts in the

ASO HS map probably due to issues with the aircraft position and orientation data.
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Table 1. Summary of the data used in this study. The base-to-height ratio (B/H) between the front-nadir (F-

N), nadir-back (N-B) and front-back (F-B) pair of images is given for the stereo images.

Type Source Zone Date
Horizontal

resolution

B/H

(F-N|N-B|F-B)
Snow

on/off

Digital terrain

model

Airborne laser scanning

(ASO)

North+South 2015-10-13 3.0 m - Off

Snow depth map Airborne laser scanning

(ASO)

North+South

(minus 25 km²)

2017-05-02 3.0 m - On

Tri-stereo images Satellite optical images

(Pléiades)

South 2017-05-01 PAN: 0.5 m

MS: 2.0 m

0.12|0.12|0.23 On

Tri-stereo images Satellite optical images

(Pléiades)

North 2017-05-01 PAN: 0.5 m

MS: 2.0 m

0.12|0.12|0.23 On

Tri-stereo images Satellite optical images

(Pléiades)

South 2017-08-08 PAN: 0.5 m

MS: 2.0 m

0.12|0.08|0.20 Off

Tri-stereo images Satellite optical images

(Pléiades)

North 2017-08-13 PAN: 0.5 m

MS: 2.0 m

0.11|0.11|0.22 Off

4. Methods

4.1 Workflow for calculation of Pléiades snow depth maps

Figure 2 presents the workflow we developed to produce HS maps from Pléiades images using ASP version

2.6.2 (Shean et al. 2016, Beyer et al., 2018) and the Orfeo Toolbox (Grizonnet et al., 2017). We detail below

the calculation of the DEMs, the HS maps and the land cover classifications.

4.1.1 DEM calculation

A DEM is computed with the Ames Stereo Pipeline (ASP) using two utilities: stereo and point2dem. All the

options of point2dem were set to their default values. We use an iterative approach to obtain a refined point

cloud with stereo and a DEM with point2dem from each triplet of stereo images. The first iteration uses L1B

input images to  produce a  coarse DEM at 50 m resolution. During the second iteration, the L1B input

images are orthorectified using this coarse DEM with the ASP utility mapproject. The orthorectified images

are  then processed to obtain a fine DEM at 3 m resolution.  The options of the  stereo  command for this

second run were empirically adjusted as explained in Sect. 4.1.2.  This  iterative processing was  shown to

improve computation time and reduce artifacts in the final DEM (Shean et al., 2016, Beyer et al., 2018). The

output DEM resolution and coordinate system was defined to match those of the ASO product (UTM 11

north, WGS 84).
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4.1.2. Photogrammetric processing of the images

First, stereo generates a dense disparity map (i.e.. the pixel displacement between the two images of a stereo

pair)  using image correlation.  The disparity map is  used to calculate a point  cloud with a triangulation

algorithm. Then, point2dem interpolates the point cloud on a regular grid (Shean et al., 2016, Beyer et al.,

2018). We compared three sets of options in stereo. These set of options were empirically selected but do

not cover all the options available in ASP. The first set of options is the one used by Marti et al. (2016). This

set  uses  the  local-search window stereo algorithm and the normalized cross-correlation parametric  cost

function  with  windows  of  25x25  pixels  (these  options  hereafter  called  Local-Search).  The  sub-pixel

refinement algorithm uses an affine method. The two other sets of options use the semi-global matching

stereo algorithm (SGM, Hirschmüller, 2005) combined with two different cost functions. The semi-global

matching is often used with non-parametric cost functions. Here we compare the two non-parametric cost

functions implemented in ASP: the binary census transform (options hereafter called SGM-binary) and the

ternary census transform (hereafter called SGM-ternary). The sub-pixel refinement is operated during the

SGM correlation  with  the  option  Poly4 of  ASP.  We  evaluated  the  three  sets  of  options  based  on  the

completeness of the maps and the agreement of the snow depth with the ASO using the mean bias, NMAD

and RMSE of the residuals. The complete options are available in supplement (Table S2).

The SGM algorithm (Hirschmüller, 2005) differs from local-search window algorithm during the disparity

map calculation. The local-search algorithm calculates the disparity for each pixel independently. The SGM

algorithm optimizes the disparity over the whole image by assuming that disparity from neighboring pixels

is  likely to  be close.  This  introduces  more continuity in  the  disparity  map and then in  the  DEM. The

matching of subsets of the images of a stereo-pair is measured with a cost function. The binary and ternary

census transforms are two cost functions that convert a kernel centered on a pixel into a binary number. For

the binary census transform, each pixel of the kernel is compared to the central pixel of the kernel and gives

1 if it is superior to it, 0 otherwise. All the digits are concatenated in a binary number associated with the

central pixel. For the ternary census transform, each comparison of a pixel with the central pixel can give

three different values: 00,01,11 depending on whether it is smaller, within, or greater than a buffer centered

on the central pixel value.

4.1.3 Comparison of bi- and tri- stereo images for DEM calculation

We calculated five DEMs from each stereo triplet by selecting a pair of images (front-nadir, nadir-back,

front-back)  or  the  complete  triplet  (front-nadir-back,  nadir-front-back).  This  provided  combinations  of

different B/H (called image geometry further in the article), ranging between 0.08 and 0.23 (Table 1). The

three  sets  of  options  of  stereo  were  tested  on  these  different  geometries.  In  the  tri-stereo  case,  ASP
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calculates two disparity maps and performs a joint triangulation when calculating the point-cloud. In the first

tri-stereo case (front-nadir-back), ASP calculates a disparity map between the front and the nadir image and

between the front and the back image. In the second case (nadir-front-back), ASP calculates a disparity map

between the nadir and the front image and between the nadir and the back image. The order of the images

matters in the tri-stereo case since the B/H is different between front-nadir and front-back, or nadir-back and

front-back. We did not evaluate the third possible tri-stereo combination  (back-nadir-front) as we expect

results to be similar to the front-nadir-back case.

4.1.4 Snow depth (HS) maps 

We co-registered the Pléiades DEMs to the ASO snow-off DEM to enable a pixel-wise comparison between

both datasets.  We first  co-registered the Pléiades  snow-off DEM to the ASO snow-off  DEM. We then

separately  co-registered  the  Pléiades  snow-on  DEM  to  the  Pléiades-registered  snow-off  DEM  before

computing the difference between the Pléiades snow-on and Pléiades snow-off DEMs (hereafter referred to

as dDEM). The north and south Pléiades dDEMs were mosaiced and the north dDEM value was preserved

in the overlapping area. The co-registration vectors were calculated using the algorithm by Nuth and Kääb

(2011) on areas where no elevation change is expected (i.e. stable terrain). The stable terrain areas, which

are  snow free terrain  without trees, were determined by a supervised classification of the Pléiades multi-

spectral images into a land cover map (see 4.1.5). From the same land cover map, the Pléiades dDEM values

were set to zero in snow-free areas to obtain the HS map. Pléiades HS values below -1 m and above 30 m

were set to no data to exclude unrealistic outliers based on expert judgment and considering the minimal

value that Pléiades HS could reach for actual HS close to zero.

4.1.5 Land cover classification 

Snow covered areas and stable terrain were analysed separately, and their location determined with a land

cover supervised classification calculated from the multi-spectral images. The winter and summer scenes

were classified into four categories: snow, forest, open water and stable terrain, the latter corresponding to

snow-free areas with low vegetation or bare rock. First, we orthorectified the nadir multi-spectral images

using  mapproject on  their  corresponding  DEM.  For  each  image,  we  manually  extracted  training  data

covering 0.1-1.0 km2 from a composite image of red, green, blue, near-infrared bands and the derived NDVI.

A maximum of 33  polygons were manually drawn for the snow class on the winter north image.  These

samples were used to train a  random forest  classifier  with  otbcli_TrainVectorClassifier from the Orfeo

Toolbox. 
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The stable terrain and snow masks were shrunk (morphological erosion) with a radius of two pixels (4 m)

and patches smaller than 30 pixels (270 m²) were removed. The masks were shifted according to the DEM

co-registration vector and then interpolated with the nearest neighbour method onto the ASO grid. Lakes and

snow patches remaining in the summer land cover map were removed from the winter snow mask. Lakes

were manually delineated on snow-off images. This workflow was automated except for the training dataset

which was generated by human interpretation of the images.

Figure 2. Workflow for the processing of the panchromatic and multispectral Pléiades images. Intermediate

products are in the boxes while the processing steps are in italic between the boxes. Text in bold italic

characters indicate steps for which we tested different options. 
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4.2 Evaluation of the snow depth maps

We evaluated the Pléiades HS maps for the area where both the Pléiades (snow mask) and ASO (HS greater

than zero) HS maps had snow. The term  HS residuals  in the rest of the article refers to the difference

between the Pléiades and the ASO HS (Pléiades HS minus ASO HS). We also evaluated the Pléiades dDEM

over stable terrain where we expect no elevation difference over time.  The stable terrain residuals are the

Pléiades dDEMs as ASO products are set to zero over snow-off terrain. The distribution of the residuals was

characterized with the bias (both the mean  and  the median), the root-mean square error (RMSE) and the

normalized median absolute deviation (NMAD) of the residuals. The NMAD is a measure of the dispersion

suited for populations with outliers (Höhle and Höhle, 2009). 

The accuracy of HS maps is often discussed at (or close to) the highest resolution that is allowed by the

sensor (e.g. Nolan et al. 2015, Marti et al., 2016). In practice however, HS maps may be subject to spatial

averaging to assimilate in a snowpack model, to estimate catchment-scale HS or to compare with coarser

satellite products and model output (Painter et al.,  2016; Margulis et al.,  2019; Shaw et al.,  2019). The

accuracy of the mean HS of a set of contiguous pixels is expected to be higher than that of a single pixel but

depends on the spatial correlation of the errors (Rolstad et al., 2009). Hence, we performed an empirical

assessment of the evolution of the accuracy of Pléiades HS as a function of resolution by aggregating the HS

residual map to resolutions ranging between 3 m and 180 m (Berthier et al., 2016; Brun et al., 2017; Miles et

al.,  2018).  An  average  resampling  scheme  was  used,  which  calculates  the  average  value  of  all  valid

contributing pixels. For each resolution, we compared the distribution of the HS residual or measured error

to the standard error that is obtained from the error model of Rolstad et al. (2009).  Using a spherical semi-

variogram model to measure the spatial correlation, Rolstad et al., (2009) estimates the random error of the

spatially averaged residual,𝜎 A , as:

Where 𝜎  is the standard deviation of the elevation difference,lcor is the semi-variogram range or length of

auto-correlation and L is the length of aggregation (half of the pixel spacing). A is the area of aggregation

(pixel area) and is related to  L (A=4∗L ²). This formula assumes no spatial trend in the HS map. We

estimated lcor from a semi-variogram analysis of the HS residuals at the highest resolution (3 m). The value

of  𝜎  was taken as the NMAD of the HS residuals at  the highest  resolution (3 m). We also tested this

equation using the stable terrain residuals to set the value of lcor and 𝜎 . The measured error was taken as the
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NMAD of the aggregated HS residual. By comparing the measured error and the modeled error, we aim at

verifying if i) the error model from Eq. (1) and (2) is valid and ii) its parameters (𝜎 , lcor) can be estimated

from stable terrain residuals only. It is important to evaluate if the stable terrain residuals can be used to

parameterize the error model because that is the only available information in regions without HS reference

data.

5 Results

5.1 Evaluating the impact of bi or tri-stereo images as input

We first investigate the impact of different image geometries on the HS maps, while keeping the stereo

SGM-binary option fixed. The NMAD of the HS residuals with respect to ASO data (Table 2) is larger for

maps from pairs of images with B-H around 0.12 (1.13 m for front-nadir, 1.07 m for nadir-back) than from

pair of images with B/H around 0.20 (0.68 m for front-back) or triplets of images. The NMAD of the snow

depth residuals from the front-nadir-back triplets (0.69 m) is slightly better than from the nadir-front-back

triplets (0.78 m) and very similar to the NMAD from the front-back pair. The NMAD over stable terrain is

lower but relative values between two geometries are similar (Table 2). For the different image geometries,

the RMSE evolves similarly to the NMAD over snow-covered areas but very differently over stable terrain.

The largest RMSE over stable terrain is 1.35 m for front-back and the smallest is 1.06 m for nadir-front-

back. The mean difference over snow-covered areas ranges from +0.01 m (front-nadir) to +0.16 m (front-

back). The absolute means and medians over stable terrain are all less than 0.06 m. The relative results for

the different geometries are similar with the SGM-ternary and Local-Search options except for the mean

error (not shown here). In the following sections, the HS map from the front-nadir-back geometry is used as

it  yielded the lowest  bias,  RMSE and NMAD of  all  the  geometries  although similar  to  the  front-back

geometry.

5.2. Sensitivity to the photogrammetric processing 

We compare the stereo options on the HS maps from the front-nadir-back geometry (Table 3 and Fig. 3).

The SGM sets of options provide DEMs without data gaps. The Local-Search option produces snow-on

DEMs with gaps, which results in ~2 km² missing in the HS maps compared to the SGM options (Table 3).

Visual examination of the winter DEMs shows large differences in snow fields and forest. Linear art ifacts

are observed over snow in the DEM produced with the SGM-ternary option (Figure S1). The same regions

are noisy in SGM-binary. Patches of typically 20 m x 20 m with abnormally large HS (>10 m) compared to

ASO (~3 m) are also observed with the Local-Search options around isolated trees. These artifacts are not

visible with the SGM-binary or ternary options (Figure S1). 
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The mean differences  from the ASO snow depth data ranges  from +0.08 m (SGM-binary) to +0.49 m

(Local-Search  option).  It  is  larger  for  SGM-ternary  (+0.24  m)  than  SGM-binary.  The  NMAD  of  the

residuals is smaller for SGM-binary (0.68 m) than Local-Search (0.80 m) and SGM-ternary options (0.85

m). Over stable terrain, the absolute mean and median of the elevation differences are  less than  0.03 m

except for the mean of the Local-Search option which is -0.32 m. The mean of the elevation differences for

Local-Search decreases to -0.03 m when the elevation differences are excluded if they exceed three times the

NMAD value. This is expected as the same filtering is  used during the co-registration process to remove

outliers.  In the following, the SGM-binary was selected since it  gives the lowest bias and NMAD with

respect to ASO data and the lowest NMAD over stable areas (Table 3). 

5.3 Spatial distribution of the residuals

The Pléiades HS map calculated with the selected image geometry and ASP configuration (front-nadir-back

images, SGM-binary) compares well with the ASO HS map (Fig. 4). Typical mountain snowpack features

(e.g., avalanche deposits and snow drift accumulation) can be identified in the Pléiades HS map (Fig. 4 d.,e.,

Fig. 5). Pléiades HS data are available over 215 km² of open terrain but not for the 23 km² of forest. No HS

was higher than 30 m but 0.25 km² of HS were excluded because HS was less than -1 m. This occurred in

areas covered with low density deciduous vegetation which was classified as snow. The intersection area of

Pléiades and ASO snow-covered areas is 138 km² after erosion of the Pléiades snow mask. The Pléiades

mean (median) HS is 4.05 m (4.13 m) against 3.96 m (4.02 m) for ASO over the common snow-covered

area. ASO and Pléiades HS exhibit a similar relationship between HS and elevation (Fig. 6) except between

1900 m - 2100 m and 3500 m - 3700 m where the mean residual over snow-covered areas is greater than

0.25 m (Fig. 7). This corresponds, however, to elevation ranges that cover less than 0.05 km² each. 

The NMAD of the Pléiades dDEMs over the 4.07 km² of stable terrain is 0.40 m against 0.69 m for the HS

residual. The distribution of residuals on stable terrain is similar for most aspect classes with the exception

of the north facing slopes (0.26 km², aspect classes 315°-360° and 0°-45°, Fig. 7). Based on a visual analysis

of the residuals map, we attribute these errors to shaded slopes of steep summits. The distribution of HS

shows a similar spread for all aspects but a larger positive bias (~0.20 m) for south facing slopes (90°-270°,

Fig. 7). The distribution of HS residuals against the terrain slope is similar between 0° and 50°, but  has a

greater spread in steeper terrain, which covers 2.13 km². The same trend is observed over stable terrain, but

only above 70°. 

The semi-variogram of the residual increases from 0.2 to 0.8 linearly for lag distances between 3 and 20 m

(Fig. 9.a). Low amplitude undulation for lag distances between 2000 m to 8000 m (Fig. 9.b) are related to a

low frequency undulation in the HS residual map, which has an amplitude of approximately 0.30 m and a
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wavelength of about 4 km (Fig. 8). The crests of the undulation are oriented in the east-west direction (Fig.

8). Such undulation pattern was observed in other Pléiades products, ASTER images (Girod et al., 2017) and

World-View DEMs (Fig. 10 in Shean et al., 2016, Fig. 6 in Bessette-Kirton et al., 2018). It is attributed to

unmodeled satellite attitude oscillations along-track (jitter). A similar semi-variogram shape is obtained over

stable terrain. From this semi-variogram analysis we estimate that the correlation length of the residuals  (see

4.2) is about 20 m for both snow and stable areas. 

5.5 Evaluation of the Rolstad error model

The measured error of the HS map decreases with increasing resampling resolution (Fig. 10). The NMAD of

the  HS residuals is reduced by a factor of almost two  by resampling from the original resolution of 3 m

(NMAD=0.69 m) to 36 m (NMAD=0.38 m). As explained in Sect. 4.2, we computed two error models using

either the HS residuals (lcor= 20 m, 𝜎 = 0.69 m) or the stable terrain residuals (lcor= 20 m, 𝜎 = 0.40 m) to

parameterize Eq. (1) and (2). We find that the NMAD of the HS residuals matches well the error modelled in

for averaging areas smaller than 103 m² when  (lcor,  𝜎 )  are calculated with the HS residuals (Fig. 10).

However it does not match with the modeled error for averaging areas larger than 10 3 m² (Fig. 10). This is

due  to  the  lower  decrease  of  the  residuals  dispersion  with  spatial  resolution.  The  measured  NMAD

decreased by 0.07 m between 36 m resolution and 180 m resolution while the modeled error decreased by

0.22 m between the same resolutions. We attribute this mismatch to the undulation pattern identified in Sect.

5.3 (see Sect. 6.5 in Discussion).

Table 2. Comparison of the snow depth residual (HS Pléiades minus HS ASO) and stable terrain elevation

difference (Pléiades)  for different image acquisition  geometries for SGM-binary options only. All metrics

are  in  meters  except  the  mean B/H for  bi-stereo geometries,  which  is  dimensionless.  The  bold  line  is

common to this table and Table 3.

Area (km²) Mean Median NMAD RMSE

Standard

deviation

Mea

n

B/H

snow stable snow stable snow stable snow stable snow stable snow stable

front-back 0.22 138.11 5.2 0.16 -0.03 0.18 0.01 0.68 0.39 0.80 1.35 0.79 1.35
front-nadir 0.12 138.13 5.28 0.01 -0.01 0.03 0.02 1.13 0.70 1.21 1.15 1.21 1.15
nadir-back 0.10 137.25 5.25 0.08 -0.02 0.10 0.02 1.07 0.71 1.18 1.17 1.18 1.17

front-nadir-back - 138.02 5.30 0.08 -0.01 0.10 0.02 0.69 0.40 0.80 1.16 0.79 1.16
nadir-front-back - 137.51 5.29 0.13 -0.06 0.15 -0.00 0.78 0.44 0.90 1.06 0.89 1.06
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Table 3. Comparison of the snow depth residual (HS Pléiades minus HS ASO) and stable terrain elevation

difference (Pléiades) depending on the ASP stereo options for front-nadir-back geometry only. All metrics

are in meters. The bold line is common to this table and Table 2.

Area (km²) Mean Median NMAD RMSE

standard

deviation

snow

stabl

e snow stable snow stable snow stable snow stable snow stable
SGM-binary 138.02 5.30 0.08 -0.01 0.10 0.02 0.69 0.40 0.80 1.16 0.79 1.16
SGM-ternary 138.14 5.21 0.24 -0.03 0.25 0.03 0.85 0.44 1.11 1.30 1.09 1.30
Local-search 135.96 5.32 0.49 -0.32 0.39 -0.00 0.80 0.51 1.41 1.94 1.32 1.92

6 Discussion

6.1 Comparison to others studies using satellite photogrammetry

By comparing the Pléiades HS with the ASO data, we find a NMAD of 0.69 m in the best case (i.e. best

acquisition geometry and ASP options), which is close to or higher than most previous evaluations (Table

4). Only Marti et al. (2016) measured a larger NMAD (0.78 m) with a reference HS map of 3.15 km 2 that

was obtained by UAV photogrammetry. The spread in accuracy between studies in Tab. 4 could be due to

differences in (i) the satellite data (i.e. acquisition geometry, image resolution), (ii) the characteristics of the

study  site  and  (iii)  the  representativeness  of  the  validation  data.  The  comparison  with  snow  probes

measurements showed NMAD about a third lower than this study at 0.45 m (n=442, Marti et al., 2016) and

0.47 m (n=36, Eberhard et al., 2020), but covered limited portions of the studied sites.  The B/H for the

images of Marti et al. (2016) range between 0.21 and 0.25 for all consecutive stereo pairs while our B/H

range between 0.08 and 0.12. This is consistent with photogrammetry theory, which states that the accuracy

of the DEM increases with the B/H up to a certain limit (Delvit  and Michel,  2016). We find a similar

NMAD to Eberhard et al. (2020) which calculated a HS map from a Pléiades snow-on DEM and an airplane

SfM snow-off DEM and compared it to HS from airplane SfM over 75 km² (NMAD=0.65 m). Finally,

McGrath et al., (2019) found a NMAD of 0.24 m for HS from WorldView-3 stereo DEMs using 2107 point

observations from ground penetrating radar surveys over a flat area of roughly 50 km². This lower NMAD

value might result from the higher resolution of the WorldView-3 images (0.3 m) together with the flatter

terrain used for evaluation. As the ASO provides a much larger reference dataset over a complex terrain, we

argue that  our study provides a  more robust  evaluation of the  HS accuracy that  can be expected from

Pléiades in high mountain regions. While the ASO data itself may add some error, the published accuracy of

the ASO HS data is significantly better than Pléiades.  In all these studies, the absolute mean biases range

between 0.01 m (McGrath et al., 2019) and 0.35 m (Eberhard et al., 2020).
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Table 4. Comparison of HS accuracy with studies using satellite photogrammetry. *Eberhard et al. used a

Pléiades DEM for snow-on and UAV or airplane SfM DEM for snow-off.

Satellite
(resolution)

HS map
resolution

Validation data Area

Number
of

measure
ments

Mean Median NMAD RMSE

This study
Pléiades 
(0.5 m)

3 m Airplane lidar 138 km² 0.08 0.10 0.69 0.80

Marti et
al. 2016

Pléiades 
(0.5 m)

2 m Snow probing 442 -0.16 0.45

UAV SfM 3.15 km² -0.06 -0.14 0.78

McGrath
et al. 2019

WorldView-3
(0.3 m)

8 m
Ground

Penetrating
Radar

2107 +0.01 +0.03 0.24

Shaw et
al. 2019

Pléiades 
(0.5 m)

4 m Terrestrial lidar 0.74 km² -0.10 -0.22 0.36 0.52

Eberhard
et al.*

Pléiades 
(0.5 m)

2 m Snow probing 36 -0.35 -0.36 0.47 0.52

UAV SfM 4 km² -0.18 -0.18 0.38 0.44

Airplane SfM 75 km² -0.02 -0.18 0.65 0.92

6.2 Sensitivity to image geometry

We find that the HS maps accuracy is sensitive to the B/H ratio of the input images, and to the configuration

details of the photogrammetric processing. We do not find a large added-value of the tri-stereo images for

the map accuracy compared to an optimal bi-stereo configuration. Tri-stereo might provide greater benefits

in case of image occlusion in steep slopes, which is more prone to occur with higher B/H.

The NMAD of the Pléiades HS is improved by 36 % when using images with a B/H of 0.22 instead of 0.11

(Table 3). Marti et al. (2016) used pairs of front-nadir and nadir-back images (B/H=0.2) as they observed

that the front-back pair (B/H=0.4) led to too many no-data pixels.  From these two studies and for similar

terrain, a triplet of images with a B/H for consecutive images around 0.2 seems  a good compromise. It
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should ensure high coverage and good DEM precision. Further work is needed to confirm this statement, by

testing varying B/H values.

Using tri-stereo instead of bi-stereo images did not improve significantly the Pléiades HS map accuracy. It

seems like the processing of a triplet of stereo images (front, nadir, back) with the ASP stereo function is

equivalent to the processing of the best stereo pair of the triplet, the front-back pair in our case. There were

no data gaps due to view obstruction by steep relief in this study area. Should it be the case, the tri-stereo

may offer better coverage. Several studies have evaluated the benefits of tri-stereo imagery against bi-stereo

(Berthier  et al., 2014; Zhou et al., 2015; Bagnardi  et al., 2016; Marti  et al., 2016). However, these studies

used different photogrammetric software that does not handle the combination of three images in the same

way. For example, either multiple disparity maps, or points clouds or DEMs can be calculated and merged to

produce a final single DEM. The use of tri-stereo results in increasing the density of the point cloud (Zhou et

al., 2015; Bagnardi et al., 2016) and decreasing the area with missing data in the final DEM (Berthier et al.,

2014;  Zhou  et  al.,  2015).  The  accuracy  of  elevation  products  from tri-stereo  was  slightly  modified  in

Berthier et al. (2014) and Marti et al. (2016) compared to bi-stereo, with an increase or decrease of the

NMAD by a few percent. 

To our  knowledge,  volume change measurements  were never  computed  from a large number  of  VHR

satellite stereo-images (>10), but studies suggest that the combination of multi-view images can improve the

DEM quality. The fusion of 16 Worldview-3 images improved the NMAD of the residual by 20% compared

to a set of 6 images over an industrial zone (Rupnik et al., 2018). Therefore, the most important use of tri-

stereo may not be to improve the accuracy of HS maps, but rather to obtain complete coverage of complex

terrain and have a less distorted nadir ortho-image for land surface classification. We did not evaluate the

extent to which the front and back images would provide a different land surface classification from the one

obtained with the nadir image. 

6.3 Sensitivity to photogrammetric processing

The choice of the photogrammetric options has an impact on the elevation difference accuracy over stable

terrain and snow-covered areas. The NMAD over snow-covered areas is improved by 0.16 m by modifying

the cost function (binary census-transform instead of ternary census-transform). However, such a gain on the

dispersion will hardly impact the HS averaged over a region of interest  since the random error decreases

rapidly with increases in averaging area (see section 6.5). More important is the larger mean bias over snow-

covered areas introduced with the SGM-ternary option (0.24 m) and Local-Search option (0.49 m) compared

to the SGM-Binary option (0.08 m). This bias is particularly important for south facing slopes. It seems to

result  from difficulties in image matching in bright  areas for the three options and from the impact  of

isolated trees for Local-Search. The impact of the trees is likely due to the larger kernel size (25 pixels) used

in the Local-Search option. The exact origin of the bias on south facing slopes remains unknown.
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6.4 Attribution of the HS error

We found a mean difference of +0.08 m between Pléiades (SGM-binary, front-nadir-back) and ASO HS

despite the correction of the vertical offset between the snow-on and snow-off DEM using stable terrain

after co-registration. This bias is low given the differences in the characteristics of the ASO and the Pléiades

products. It can be due to many factors including the effect of vegetation. First, the ASO snow-off DEM is a

digital terrain model while the Pléiades snow-off DEM is a digital surface model. Tall vegetation (i.e. trees)

is identified during the classification of the MS images and do not impact the HS evaluation. But short

vegetation completely covered with snow in winter is not identified in the classification. For ASO products,

filtering based on the multiple lidar returns produced by vegetation should provide the ground elevation, but

short vegetation often does not produce multiple returns (Painter et al., 2015). Furthermore, there is a large

known error in vegetation height measured with Pléiades DEMs (Piermattei et al., 2018). Thus, it is still

unclear  which surface is  sensed by each method between the top of the  vegetation and the underlying

ground. 

We found that the random error is larger on snow-covered terrain (NMAD=0.69 m) than on stable terrain

(NMAD=0.40 m). This is true for all slopes and most aspects classes (Fig. 7). Although mountainous snow

surfaces  tend  to  have  smoother  topography,  thereby  increasing  the  accuracy  of  the  photogrammetric

processing, bright snow surfaces also tend to have less texture than snow-free surfaces, which decreases the

accuracy of the photogrammetric processing. The lower accuracy of snow areas is not due to saturation since

no pixel  was  saturated  in  the  panchromatic  images.  In  addition,  the  residuals  over  stable  terrain  were

computed from Pléiades data only, while residuals over snow-covered areas were computed from Pléiades

and ASO data. Finally, the co-registration of the snow-on DEM was optimized using the stable terrain (Sect.

4.1.4),  therefore  a  lower  NMAD on stable  terrain  may  be  due  to  the  co-registration  step  and not  the

photogrammetric processing in itself. Based on the above, we cannot conclude if the larger dispersion over

snow-covered areas results from the properties of the surface.

We further compared Pléiades snow-off DEM with the ASO snow-off DEM and Pléiades snow-on DEM

with the ASO snow-on DEM. The latter was calculated by adding the ASO snow-off DEM and the ASO HS.

Both Pléiades DEMs are co-registered as described in 4.1.4. We find a mean bias over snow-covered terrain

of +0.13 m for snow-off conditions and +0.21 m for snow-on conditions (Table S3). These biases are of the

same order of magnitude and suggest that a bias in the Pléiades snow-on DEM is partially compensated by

the difference of the surface observed in the snow-off DEM (see above). In addition, the ASO snow-off

DEM was acquired in October 2015 and the Pléiades snow-off DEM in August 2017. Growth or decay of
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the  vegetation can occur  over  almost  two years,  leading to  elevation differences  between the snow-off

DEMs. The NMAD is larger for snow-off DEMs (0.80 m) and snow-on DEMs (0.93 m) compared to HS

residual (0.69 m). This shows that some errors are consistently present in the snow-off and snow-on DEMs

of each type (airplane lidar or satellite photogrammetry). Pléiades DEMs are indeed over-estimating the

surface  elevation  as  the  terrain  slope  increases  (Figure  S3).  This  suggests  that  combining  satellite

photogrammetry and airplane lidar DEMs may lead to larger errors than comparing DEMs from the same

platform. 

 

6.5 Evaluation of an error model at different resolutions

The error predicted with Eq. (1) and (2) does not agree with the NMAD of measured HS error for averaging

areas larger than 103 m² (Fig.  10).  This is  likely because Eq.  (1) assumes a randomly distributed error

beyond the short distance correlation length (here 20 m), while the undulation pattern identified in Fig. 8

introduces  an  additional  spatial  correlation  at  larger  scales  in  the  HS  residuals  map.  To  verify  this

explanation, we applied an empirical correction to remove the undulation pattern from the residuals map.

We averaged the HS residuals by pixel rows in the across-track direction and used a Fourier transform to

identify the undulation frequencies (adapted from Girod et  al.,  2017).  Then,  we modelled this error by

selecting the frequencies lower than 4 10-4 m-1 (i.e. wavelength longer than 2.5 km) and removed it from the

HS map. As expected, this correction makes the semi-variogram of the HS residual flatter for lag distances

between 2000 m and 8000 m (Fig. 9.b). As a result, there is a better agreement between the HS residuals

NMAD and the modeled error with 𝜎  and lcor estimated from the HS residuals (lcor= 20 m, 𝜎 = 0.69 m) (Fig.

10).  The improvement  is  more marked at  lower resampling resolution.  For instance,  the  HS NMAD is

reduced after  correction by 50 % at  a resolution of  180 m. The improvement  is  under  10 % at  20 m

resolution as expected since the correction only dampers a low frequency signal. When the stable terrain

residuals are used to compute Eq. (1) and (2) (lcor= 20 m, 𝜎 = 0.40 m), the modeled error is lower than the

measured error. This is expected since the NMAD of the stable terrain residuals is lower than the NMAD of

HS residual. However, the discrepancy between both models decreased at coarser resolution. 

This analysis shows that the model proposed by Rolstad et al. (2009) provides a good first order estimation

of the random error after spatial aggregation under the assumption that there is no spatial drift in the error at

scales beyond the correlation length. In most cases, the statistics of the HS residuals are not available and

might be only measured on stable terrain. Interestingly in this study, the correlation length of the error is

similar over stable terrain and snow terrain. However, the dispersion (NMAD, standard deviation) is two

folds larger over snow covered terrain than stable terrain, which leads to a proportional underestimation of

the error. Finally, although the bias or systematic error is corrected on stable terrain, there remains a bias on
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HS of the order of ~0.20 m (Table 4) that should be taken into account in the error calculation. According to

the literature, this bias can be estimated by comparing the mean and median of elevation differences over

stable terrain (Gardelle et al., 2013) or by calculating the residual of co-registration vector when more than

two elevation datasets are available (Nuth and Kääb, 2011).

6.6 Comparison of satellite photogrammetry with airborne methods

ALS provides  HS maps  with  a  better  accuracy  (RMSE<0.10  m)  than  Pléiades  and  potentially  a finer

horizontal resolution too (Painter et al., 2016). One significant advantage of ALS is that it can measure HS

under the tree canopy and in shaded areas. It is also able to acquire data in overcast conditions provided that

the clouds are above the aircraft.  However,  from this study and Marti  et  al.  (2016),  it  appears that  the

accuracy of Pléiades HS maps is sufficient to provide valuable information in regions where there is no ALS

monitoring capability (the vast majority of mountain regions with snow cover). A limitation of current very

high-resolution sensors such as Pléiades is  their narrow swath (20 km for Pléiades) which impedes the

acquisition of large areas with a frequent revisit. In particular, there are areas of high tasking competition in

lower latitudes where it can be challenging to obtain a stereo pair at the right time of the snow season. More

frequent acquisitions should, however, become easier as new stereo satellite fleets are to be launched in the

coming years (Pléiades Neo, WorldView legion). The acquisition of visible images will always be limited

by the presence of clouds, making some regions hard to study at least during some seasons. 

HS maps from UAV SfM typically exhibit a centimetric bias (0.05 m to 0.11 m) and a RMSE between 0.05

m and 0.30 m based on comparison with snow probe and GNSS measurements. This is more accurate than

what is currently achieved with satellite photogrammetry. However, UAV campaigns are currently limited to

areas of less than 1 km² due to battery limitation and often rely on numerous ground control points. This

greatly limits the possibility to cover large and remote areas. Airplane SfM exhibits accuracy close to UAV

SfM with NMAD typically of 0.30 m (Bühler et al.  2015) and presents the same potential and logistic

limitations as airplane laser scanning campaigns. The reader is referred to the study of Eberhard et al. (2020)

for a detailed discussion on the different approaches to map snow depth with photogrammetry.

6.7. Generalization to other regions

Several snow applications could benefit from HS maps from satellite photogrammetry. First this study could

be reproduced in any place of the globe provided that i) there is a window to acquire snow-off images and ii)

there is a way to co-register the series of DEMs, for example with stable terrain. This method is particularly

suited for  snow volume evaluation at  a  basin scale  in  alpine areas  (this  study site,  Marti  et  al.,  2016,

McGrath et al. 2019, Shaw et al. 2019). Observing shallow snowpack (roughly HS below 0.5 m, e.g. polar
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environments) might not be as straightforward as the typical spatial variability lays within our range of

uncertainty  (roughly  0.5  m).  However,  even  landscapes  with  shallow  snowpack  often  feature  local

accumulation of snow which would be measurable with satellite photogrammetry. Therefore it is hard to

qualify this method as unfit to any region, but future studies are required to confirm its usefulness in these

challenging contexts. Study of shallow snowpack would clearly benefit from higher accuracy DEMs through

correction of the satellite jitter or increases in image resolution.

A lack of well distributed stable terrain in snow-on and snow-off DEMs can complicate the co-registration

process in some regions. The horizontal component of the co-registration vector can be measured without

differencing stable terrain and snow covered terrain (Marti et al., 2016) but the vertical component requires

some stable terrain or an elevation reference. GCPs could be used but would limit the applicability of the

method in remote mountains. Besides, it remains to be tested how many GCPs would be required and how

precisely their position should be measured. 

There are already a number of efficient free and open-access photogrammetric software tools that are under

continuous  development.  These  tools  enable  a  high  level  of  automation  and  are  compatible  with  high

performance computing environments (Howat et al., 2019). In our workflow, the last step to automate is the

collection  of  training  samples  for  image  classification.  This  could  be  done  by  using  an  unsupervised

classification algorithm or by using an external land cover classification. Preliminary work with a time series

of Pléiades images in the  Pyrénées  (not  shown here) suggests that  it  is  not  possible to  simply use the

classification model from a previous year to generate the classification of the current year. A possibility may

be to use a Sentinel-2 snow cover map to extract training samples in the Pléiades multi-spectral images,

since Sentinel-2 images have a shortwave infrared band which enables a robust and unsupervised detection

of snow cover (Gascoin et al., 2019). Differentiating terrain covered with vegetation from stable terrain

would remain challenging.

We find that the selection of the image configuration and the processing options can lead to changes in the

NMAD up to ~0.3 m. Fig. 10 suggests that this variation is likely to become insignificant if the HS map is

aggregated at a larger spatial scale (grids spacing larger than 100 m x 100 m). Such optimisation is therefore

more important for the study of small-scale features (wind drift, avalanches, typically about a few tens of

meters) or to decrease bias on specific terrain (south slopes, fields with isolated trees). The optimization of

the photogrammetric processing can also be important  when little  stable terrain is  available for the co-

registration step. 

7 Conclusion
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We found a good agreement between snow depth (HS) maps from high resolution stereo satellite images

with airplane laser scanning HS maps over 138 km² of mountainous terrain in California. The mean residual

is +0.08 m, the NMAD is 0.69 m and the RMSE is 0.80 m. Comparison of individual DEMs show a growing

positive bias with slope in Pléiades DEMs. This bias is of similar magnitude in both snow-on and snow-off

Pléiades DEMs and thus cancel out in the HS map, leading to agreement between Pléiades and airplane laser

scanning HS for all slopes up to 60°. South facing slopes seem prone to a positive bias in the Pléiades HS

(~0.2 m). These areas were found to have less texture in the panchromatic images. The main drawbacks of

the satellite stereo HS method are the lack of data under dense tree cover, the reduced accuracy in shaded

areas, and the current challenge to image large regions in a short time. We found that the accuracy of the

maps was sensitive to the B/H and the photogrammetric processing options. Using the current ASP multi-

view triangulation routines, we could not find a clear benefit from the use of a triplet of images compared to

a pair with optimal B/H (about 0.2). The accuracy of the HS maps can be  improved by decreasing their

resolution. This improvement cannot be described with a well-accepted statistical model partly due to an

undulation pattern commonly observed in DEMs derived from satellite photogrammetry. We observe that

the accuracy is improved by 50 % when decreasing the HS maps resolution from 3 m to 36 m. We conclude

that satellite photogrammetric measurements of HS are relevant for snow studies as they offer accuracy of

~0.70 m at 3 m resolution, a high level of automation and the potential to cover remote regions around the

world.
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Figure 3: Mean, median, NMAD and RMSE of the residual of HS maps depending on the ASP  stereo

correlation option.  The options compared are the SGM algorithm with the binary census-transform cost

function (SGM-binary in red), with the ternary census-transform cost function (SGM-ternary in yellow) and

the local search algorithm (Local-Search in blue).
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Figure 4: Snow depth maps from Pléiades data on 01 May 2017 (a and d) and from ASO on 02 May 2017 (b

and e). Cornice (A) and avalanche deposits (B) are visible on Pléiades HS maps (d). The land surface cover

is shown in c and f over the same area. Black squares in a, b, c, is the area shown in d, e, f. The transect T-T’

is shown in Fig. 5. All datasets have the same spatial resolution (3 m). The difference of the maps (a) and (b)

(Pléiades minus ASO) is in Fig. 8.
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Figure 5. Transect T-T’ of snow depth visible on Figure 4. e. from Pléiades data (pink) and ASO (blue).

More transects are available in supplement. 

Figure 6. Snow depth against elevation (a) and total distribution (b) from Pléiades data (pink) and ASO 

(blue). The boxplots show the median value (white line), the 25th and 75th percentile (box) and the 5th and 

95th percentile (whiskers).
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Figure 7.  Distribution of the residuals between the Pléiades and ASO snow depth maps over the snow-

covered area (empty box) and stable terrain (filled box) against elevations (top), slopes (middle) and aspect

(bottom). Over stable terrain, ASO product is set uniformly to zero. Boxes where data were covering less

than 1 km² are slightly transparent.
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Figure 8. Residual snow depth (Pléiades minus ASO) over the complete study area (a) and average per line

(b). In b., the HS residual before correction (blue) is corrected for the low frequency undulation (black) to

obtain a corrected signal (red).
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Figure 9. (a) Semi-variogram or spatial autocorrelation (ℽ) against lag distance of the HS residuals (empty

circles) and Pléiades elevation difference over stable terrain (filled circle). (b) Semi-variogram of the HS

residuals  for  large  distances  before  (blue  line)  and  after  correcting  the  undulation  pattern  (red  line),

illustrating the reduction in spatial variance at greater lag distances due to this correction (Sect. 6.5).

Figure 10. Measured error and modeled error (Rolstad et al., 2009) of the HS averaged over different areas.

Modeled error (dashed line) is predicted based on different random error per pixel (𝜎 ) and autocorrelation

length (lcor) (Eq. 3). The lines are the modeled error based on lcor from the semi-variogram and𝜎 taken as theNMAD derived from stable terrain residuals (dotted line) and HS residuals (dashed line). Empty blue circles

are the NMAD of the residual HS maps averaged at different resolutions before the undulation correction.
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Filled  red  circles  are  the  NMAD  of  the  residual  HS  maps  averaged  at  different  resolutions  after  the

undulation correction.
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