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Abstract 

Surface mass balance estimates of polar ice sheets are essential to estimate the contribution of ice sheets to sea level rise, in 

response global warming. One of the largest uncertainties in the interior regions of the ice sheets, such as the East Antarctic 

Plateau (EAP), is the determination of a precise surface snow density. Wrong estimates of snow and firn density can lead to 10 

significant underestimations of the surface mass balance. We present density data from snow profiles taken along an overland 

traverse in austral summer 2016/17 covering over 2000 km on the Dronning Maud Land plateau. The sampling strategy 

included investigation on various spatial scales, from regional to local, with sampling locations 100 km apart as well as a high-

resolution study in a trench at 30°E 79°S with thirty 3 m deep snow profiles. Density of the surface snow profiles has been 

measured volumetrically as well as using μ-computer tomography. With an error of less than 2%, the volumetric liner density 15 

provides higher precision than other sampling devices of smaller volume. With four spatially independent snow profiles per 

location we derive a representative and precise 1 m mean snow density with an error of less than 1.5%. The average liner 

density along the traverse across the EAP is 355 kg m-3, which we identify as representative surface snow density between 

Kohnen station and Dome Fuji. The highest horizontal variability in density can be seen in the upper 0.3 m. Therefore, we do 

not recommend vertical sampling in intervals of less than several decimeters, as this does neither adequately cover seasonal 20 

variations in high accumulation areas nor the annual accumulation in low accumulation areas. From statistical analysis of the 

liner density on regional scale we identify representative spatial distributions of density based on geographical and thus climatic 

conditions. Our representative density of 355 kg m-3 is considerably different from the density of 320 kg m-3 provided by a 

regional climate model. This difference of more than 10% indicates the necessity for further calibration of density 

parameterizations. The difference in the total mass equivalent of measured and modelled density yields a 3% underestimation 25 

by models, which translates into 5 cm sea level equivalent. We do not find a statistically significant temporal trend in density 

changes over the last two decades. Our data provide a solid baseline for tuning parameterizations of the surface snow density 

for regions with low accumulation and low temperatures like the EAP to improve surface mass balance estimates of polar ice 

sheets. 
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1 Introduction 

Various future scenarios of a warming climate as well as current observations in ice sheet mass balance indicate a change in 

surface mass balance (SMB) on the Greenlandic and Antarctic ice sheets (IPCC, 2019). Accurate quantification of the current 

state and rate of change of SMB is therefore one of the most important quantities to estimate the contribution of the polar ice 

sheets to the global sea level rise (Lenaerts et al., 2019). Satellite altimetry is state of the art to measure height changes of the 5 

major ice sheets on large spatial scales (McMillan et al., 2014; Schroder et al., 2019; Sorensen et al., 2018). These changes are 

converted to a respective mass gain or loss, which are directly linked to an eustatic change in sea level (Rignot et al., 2019; 

Shepherd et al., 2018). But this estimate of a volume change converted to a mass change is impeded with large uncertainties 

(Shepherd et al., 2012). Apart from changes in bedrock elevation (Konrad et al., 2015; Sasgen et al., 2013), a precise estimation 

of the surface snow and firn density on top of the ice sheets, which undergoes constantly the natural process of densification, 10 

is crucial. Especially in the interior of the ice sheets the exact surface snow density is a limiting factor in precision. Due to the 

large extent of the ice sheets, the spatial coverage of in situ snow and firn density data is still sparse. To overcome this 

shortcoming, snow density is parameterized as a function of climatic conditions, such as temperature, wind speed and 

accumulation rate (Agosta et al., 2019; Kaspers et al., 2004) and validated with field measurements. But this parameterized 

approach (Ligtenberg et al., 2011; van den Broeke, 2008) seems to underestimate the real snow density when compared to 15 

independent in situ data from Antarctica (Sugiyama et al., 2012; Tian et al., 2018). Recently, Alexander et al. (2019) addressed 

the need for a precise snow density, especially in the uppermost meter, as its underestimation leads to significant surface mass 

balance errors. These data are urgently needed to optimize densification models (Lenaerts et al., 2019), which are crucial to 

calibrate altimetry data sets and therefore reduce the uncertainties in ice sheet mass balance estimates. 

Arthern et al. (2006) derived snow accumulation in Antarctica from available in-situ measurements of accumulation and 20 

density. To obtain this density, sampling is usually conducted in snow pits with discrete sampling over depth. Between the 

stations Kohnen and Dome Fuji, snow density has been sampled in discrete depth intervals by Sugiyama et al. (2012), who 

report a high spatial variability on a kilometer scale. Small variability can be attributed to the sampling method. Conger and 

McClung (2009) compared different cutting devices with various volumes between 99 cm³ and 490 cm³. The combination of 

under-sampling (usually negligible), variation of the device itself (0.8-6.2%) and the weight error of the scale can add up to a 25 

significant error (dependent on the type up to 6%). Box- or tube-type cutters with larger sampling volumes are suggested for 

more precise measurements, with the disadvantage of coarser sampling intervals. Other methods to derive snow density with 

high precision but in discrete intervals have been used as well, measuring dielectric properties (Sihvola and Tiuri, 1986) or 

penetration force into the snow (Proksch et al., 2015). 

Despite from climate-induced (e.g. seasonal or event-based) density fluctuations, surface snow density is also influenced by 30 

topographic changes of the ice sheet surface and underlying bedrock on small (tens of meters) and large spatial scales (up to 

hundreds of kilometers) (Frezzotti et al., 2002; Furukawa et al., 1996; Rotschky et al., 2004). Surface roughness and the surface 
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slope in combination with dominant wind regimes and varying accumulation rates (Fujita et al., 2011) as well as stratigraphic 

noise (Fisher et al., 1985) cause additional variation in density. 

In this paper, we present surface snow density data with high precision from a traverse covering over 2000 km on the East 

Antarctic Plateau (EAP). In order to avoid misunderstandings we follow Stenni et al. (2017) using the term EAP for the region 

higher than 2000 m above sea level (asl). The coldest 10 m firn temperature is recorded at Plateau Station (Picciotto et al., 5 

1971), which makes the area the best modern analog of glacial firn. Within the framework of Coldest Firn (CoFi) project, we 

show snow density data using the recently introduced liner sampling method (Schaller et al., 2016), with a focus on the 

uppermost meter, as Alexander et al. (2019) pointed out the importance of precise 1 m snowpack density of polar ice sheets. 

To reduce the stratigraphic noise we show a different strategy with multiple samples per location. This allows a more precise 

determination of the local snowpack density. We discuss the representativeness of density on small and large scales. The spatial 10 

representativity of density profiles in East Antarctica has been recently addressed at the local scale (Laepple et al., 2016), but 

correlation studies for larger scales are currently not available. Beyond improving density retrieval, our results can be of 

particular interest for calibration of snow density parameterizations in this part of the East Antarctic ice sheet. 

2 Material & methods 

2.1 Study area 15 

We performed an overland traverse in austral summer 2016/17 – a joint venture of the CoFi project and the Beyond EPICA – 

Oldest Ice Reconnaissance (OIR) pre-site survey (Karlsson et al., 2018; Van Liefferinge et al., 2018) (Fig 1). From Kohnen 

station the traverse went to former B51 drill site. Right after B51 the traverse split up and followed two different legs, to reunite 

at the OIR field camp at 79°S, 30°E. After accomplishing the OIR airborne survey the traverse continued to the former Plateau 

Station (abandoned in 1969) and then went back to Kohnen station. 20 
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Figure 1: Overview map of the traverse route and sampling locations, inset shows location in Antarctica. The first sampling position 

with multiple liners after Kohnen station is named location 1. Following the traverse route, B51 is also called location 5, OIR camp 

location 12, Plateau Station location 14 and B56 location 15. 200 m firn cores were drilled at locations indicated with a red star. 

Subregions defined in chapter 2.5 are colored differently (Kohnen & vicinity: purple, ascending plateau area: orange, B53 & vicinity: 5 
light blue, interior plateau: lavender). 

2.2 Liner sampling 

For clarity, we define the terms used in the following paragraphs in Table 1.  
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Table 1: Definition of terms used in the following sections are listed below 

Term Symbol Description 

Liner - 1 m of snow sampled with a carbon fiber tube. This term is used in a methodological context or for the tube itself. 

Snow profile - (Continuous) snow sample at a given position. It may consist of several consecutively (vertically on top of each other) 

sampled liners; the length can be 1-3 m. 

Location - A given place with several snow profiles taken within a range of 50 m. 

Liner mean density ρL Volumetrically derived 1 m average density of one single liner. 

Note: for snow profiles over 1 m length, liner mean densities for every meter segment are calculated individually. 

μCTx mean density ρx
μCT μCT derived mean density for the sampling interval x. 

Location liner mean 

density 

ρloc Average of liner mean densities at one location for the same depth interval (usually 0-1 m). 

Horizontal standard 

deviation 

σx
H Standard deviation of either liner means or μCT density for depth interval x over horizontal distance in a given area. 

Note: for 1 m we use the liner means, for smaller intervals μCTx means. 

Vertical standard 

deviation 

σx
V Vertical standard deviation of either μCT density over depth interval x or liner means (only for snow profiles >1 m) at 

a given position. 

Standard error σn Definition in Sect. 2.4 

 

Along the traverse route, vertical snow profiles were extracted using the snow liner sampling technique, described by Schaller 

et al. (2016). Each vertical profile was taken using a carbon fiber tube of one meter length and ten centimeters in diameter. 

The liner was pushed into the snow until the liner top was level with the snow surface. Afterwards, a snow pit next to the liner 5 

was dug and the snow was cut at the liner bottom with a metal plate to take the filled liner out of the pit wall. Both ends were 

covered with a WhirlPack® plastic bag to reduce possible contamination by touching the liner ends and air ventilation. During 

the sampling process, the liner was handled carefully to avoid concussions that destroy the original snow stratigraphy (e.g. not 

to bounce against the liner with the shovel and placing it softly into the sample box). A 1 m snow profile can be retrieved 

within 15 minutes. 10 

In total 144 snow profiles in different setups and total lengths were taken (Sect. 2.2.1 – 2.2.3). The liners were stored in isolated 

polypropylene boxes and shipped to the Alfred Wegener Institute (AWI) in Bremerhaven in a continuous cold chain. 

22 locations were sampled with multiple liners (usually four, at three locations the sample size was smaller), at 32 locations 

one single liner was taken (Fig. 1). Both strategies (single and multiple liners) have been sampled independently from each 

other. 15 

2.2.1 Single snow profiles 

Single liners were taken every 30 km. On the last segment of the traverse (OIR camp – Kohnen station) the distance increased 

due to limited liner availability. In total, 31 single snow profiles are available (Fig. 1). 
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2.2.2 Multiple snow profiles 

22 locations were sampled with multiple liners (usually four, at three locations the sample size was smaller) during overnight 

stops of the traverse, therefore the distance between the locations varied (roughly around 100 km). The four profiles were 

arranged in an even-sided triangular setup with one profile in the center (labeled with ‘X’) and three profiles around it (labeled 

with ‘A’, ‘B’ and ‘C’). The corner profiles A, B, C are on a radius of 10 m to the central profile X (Fig. 2). 83 profiles were 5 

retrieved in this setup. The locations are named in ascending order (Fig. 1 and Tab. 2). 

 

Figure 2: The sampling setup for locations with multiple snow profiles. The profiles A, B and C have a sampling distance of roughly 

10 m to the central profile. Due to time or logistical constraints, locations 19 (three profiles) 11 and 13 (two profiles) have been 

sampled differently. 10 

2.2.3 OIR trench 

At the OIR camp (Fig. 1), a 50 meter long and ca. 2.3 meter deep trench was excavated with a PistenBully snow vehicle 

(Fig. 3). The trench orientation was perpendicular to the main wind direction (127° true North). Thirty 3 m snow profiles were 

sampled directly at the trench wall using the liner technique described above. At every sampling position in the trench three 

liners were taken below each other. The first liners were pushed into the snow around 0.2 meters behind the trench wall, to 15 

ensure an original stratigraphy not disturbed by excavation of the trench. After removal of the snow, the liners were directly 

taken out of the wall and the next consecutive liner in depth was placed at the same position (see Fig. 3, where the first liner 

is already in place). The lateral spacing between neighboring liners varied between 0.4 and 2.4 meters, depending on the 

surface structure. The total height difference between the lowest (first) and highest (last) profile is 0.385 m. The profiles were 

taken within two days after excavation of the trench. The trench surface was measured using optical levelling at the profile 20 

positions and in between two consecutive profiles. 

https://doi.org/10.5194/tc-2020-14
Preprint. Discussion started: 2 March 2020
c© Author(s) 2020. CC BY 4.0 License.



7 

 

 

Figure 3: Sampling procedure in the OIR trench. The first carbon fiber liner is pushed into the snow after excavation of the trench. 

The positions were marked with a small bamboo pole. After retrieval of the first profile, the vertically consecutive second and third 

liners were taken. Two carbon fiber tubes lean at the trench wall. The last liner had to be dug out partly as the trench was only 2 to 

2.5 meters deep. 5 

2.3 Density measurements 

The snow liners have been analyzed at AWI with the non-destructive micro-computer tomograph in a cold cell (μCT), 

specifically constructed for snow and ice cores. For technical details see Freitag et al. (2013) and Schaller et al. (2016). 

Before the measurement all liners were weighted. The weight of the carbon fiber tube was subtracted. Then, ρL was calculated 

volumetrically. The exact height of filled snow inside the liner was determined using the μCT. All liners have been measured 10 

in a 2D-mode using a setup of 140 kV and 470 μA at -14°C. The μCT-density profiles have a vertical resolution of ca. 0.13 mm. 

Breaks and lost snow in the snow profiles haven been corrected. 

Both, ρ1m
μCT and ρL are in good agreement with each other (Fig. 4), the differences between the volumetrically calculated ρL 

and ρ1m
μCT is on average only 0.6%. But for the calculation of the μCT density only the central segment of the liner is used as 

scattering effects at the outer parts of the liner occur. The used segment corresponds to less than half of the snow volume in 15 

the liner. 

https://doi.org/10.5194/tc-2020-14
Preprint. Discussion started: 2 March 2020
c© Author(s) 2020. CC BY 4.0 License.



8 

 

 

Figure 4: Comparison of ρL with ρ1m
μCT calculated from the 114 liners along the traverse. Values of both measurements are in good 

agreement with an R² of 0.94. The linear fit is given with a grey solid line, the dashed black line represents x=y. 

Also ρL is affected by errors. Breaks that occurred during sampling or transport and lost snow in non-cohesive layers (such as 

depth hoar layers) or at the edges of the liner can lead to lower densities. Conger and McClung (2009) reported, that snow 5 

sampling devices with larger volumes usually result in higher precision in snow density. The volume of the snow liners (radius: 

5 cm, length: 1 m) is 7855 cm³, 16 times the volume with the highest precision in their study. 

As the volume error among single liners is not known, we assume a 0.3 mm variation in both dimensions (length and radius), 

resulting in a volume error around 1.2%. It is generally possible that at the liner top and bottom some snow is lost, but as the 

exact snow volume is determined with the μCT, we overcome this error source. As still small parts inside the liner might not 10 

be completely filled with snow (e.g. lost snow during the transport) we estimate the under-sampling error of the liner method 

to be less than 1.5%. Additional error sources are the precision of the used scale (1 g or 0.03% compared to the mean value 

along the traverse) as well as weight variations among the carbon tubes (<0.1%). An error estimation for an assumed maximum 

relative error for each part sums up to 1.9%. 

Therefore, to quantify the 1 m snowpack density we use ρL, to investigate smaller intervals we use the ρ1m
μCT (Tab. 1). 15 

2.4 Finding a representative density 

Laepple et al. (2016) have shown, that snow profiles are spatially independent after 5-10 m sampling distance. To test how 

many liners per location are needed for a representative 1 m ρloc, we calculated σ1m
H of ρloc using the maximum number of 

spatially independent ρL for ρloc (n). At the locations along the traverse we use all four available ρL to calculate ρloc. In the 

trench, we used two sets of seven ρL with a minimum sampling distance of adjacent profiles of 5 m and used the mean value 20 
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of both sets. We can derive an error value, which depends on the number n of ρL at a given location. We divide σ1m
H by √x, 

with x being a varying number of snow profiles from 2 to n-1. For instance, using seven profiles we are able to calculate the 

standard error for 2 to 6 profiles. This way we use the maximum sample size without an artificially caused bias in the data. We 

refer to the resulting term as standard error (σn) and aim for a density value with less than 2% relative σn. 

2.5 Definition of subareas on the EAP 5 

We pooled several snow profiles for further investigation to lower the influence of local noise and characterize the surface 

density of a larger (≥10,000 km²) region. We chose a minimum number of 10 profiles (0-1 m) per area. We followed the 

classification of Furukawa et al. (1996) as good as possible and used the 3500 m asl contour line as approximate boundary 

between different wind and accumulation regimes on the katabatic wind zone and the interior plateau (calm accumulation 

zone). This way we classified one major area “Ascending plateau area” (AP) with 64 profiles, covering roughly 140.000 km² 10 

between Kohnen station and OIR camp, and the smaller “Interior plateau” (IP) with 29 profiles between OIR camp and Plateau 

Station (28,500 km²). We did not include the OIR trench, as this specific location would have been overrepresented. The area 

around B53 (28,500 km²) was treated as a separate area as it is on the interior plateau close to the ice divide (“B53 & vicinity” 

– 10 profiles). Additionally, we handled the area around Kohnen station (Ko) with roughly 10,000 km² as another separate unit 

(“Kohnen & vicinity” – 45 profiles). The sample availability at Kohnen from other studies is sufficient, several liners from 15 

other sampling programs in seasons 2015/16 (16 profiles) and 2016/17 (18 profiles) have been added to the evaluation. 

Furthermore, a possible effect of the station itself should not be migrated into the other subsets. The areas are colored in the 

overview map (Fig. 1). 

As we present density data on different scales, in this context we use the term ‘local’ scale for distances between profiles at 

one location and the area around a sampling location (i.e. tens of meters, Tab. 1). In contrast, the term ‘regional’ scale is used 20 

for distances between several locations (100 km to 1000 km) and areas in the dimensions of the subareas defined above. For 

all subsets, we present a spatial distribution of ρL and ρloc. 

2.6 Optical levelling 

At OIR camp and Plateau Station surface roughness along transects has been measured using optical levelling. 

The optical level was placed at the transect starting point. The first height measurement was done in 10 m distance to the 25 

starting point and repeated in 2 m intervals up to 58 m distance. In total six transects have been done at one location with 1 m 

lateral spacing between them. 
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3 Results 

3.1 Snow & firn density in the OIR trench 

 

Figure 5: Density of the OIR trench from 30 profiles in vertical 1 m (liner means, top) and 0.1 m sampling intervals (μCT, bottom) 

in a color-coded plot. For the 0.1 m intervals, we applied a raster, starting at the highest profile (profile 30 at 35.22 m). ρL and 5 
ρ0.1m

μCT, respectively, are given in a blue (low density) to red (high density) color code. On the right of each panel σH of the respective 

depth interval is shown. The highest horizontal variability can be seen in the uppermost part of the snow column (top meter and top 

0.3 meters, respectively). 

https://doi.org/10.5194/tc-2020-14
Preprint. Discussion started: 2 March 2020
c© Author(s) 2020. CC BY 4.0 License.



11 

 

ρL ranges in the OIR trench from 347 kg m-3 to 380 kg m-3.We calculated ρloc for the OIR trench with 365±2 kg m-3, which is 

3.1% higher than for the whole traverse (Sect. 3.2). σH is in the range between 10 and 27 kg m-3 for 0.1 m sampling intervals 

and between 5 and 10 kg m-3 for 1 m sampling intervals (Fig. 5 and Tab. 4). The highest σ0.1m
H can be found in the top 0.3 m. 

σ3m
V of the 3 meter profiles is 34 kg m-3 (Tab. 4). 

3.2 Snow & firn density along the traverse 5 

Here we present data from section 2.2.1 and 2.2.2. Along the traverse we find ρL ranging from 324 kg m-3 (pos. 22C) to 

382 kg m-3 (pos. 16A). The average ρL (with standard error) calculated from 114 liners along the traverse is 354 ± 1 kg m-3 

(Fig. 6). 

ρloc (Tab. 1) is calculated from multiple snow profiles (Sect. 2.2.2) at each location. At location 21 and 1 we find the lowest 

ρloc with 344 and 345 kg m-3, respectively. Highest ρloc is found at position 5 with 372 kg m-3 (Tab. 2). The average ρloc along 10 

the traverse is 355 ± 2 kg m-3. To characterize the surface variability, we calculated σ1m
H for each location separately. The 

average for the whole traverse is σ1m
H=8 kg m-3, ranging from minimum 2 kg m-3 at position 20 (and position 13 with only 2 

profiles taken) to maximum 15 kg m-3 at position 22. 

 

Figure 6: Histogram of a) ρL (0-1 m depth) and b) ρloc along the whole traverse route (profiles of the OIR trench not included). For 15 
both plots we used a bin width of 5 kg m-3. The average liner mean and location mean, respectively, is given with the red dashed line. 

A detailed overview of all ρloc and σ1m
H along the traverse can be found in table 2. 
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Table 2: ρloc at each location with multiple liners and the respective standard deviation. The number of liners at each location is 

given in brackets. For locations and abbreviations see Fig. 1. 

Location 

(No. of ρL) 

Longitude 

[°] 

Latitude 

[°] 

Elevation 

[m asl] 

ρloc 

[kg m-3] 

σ1m
H 

[kg m-3] 

1 (4)  2.89 -75.11 2990 345 8 

2 (4) 6.12 -75.18 3146 355 10 

3 (4) 9.58 -75.21 3301 360 13 

4 (4) 12.66 -75.18 3400 350 9 

5 (4) – B51 15.4 -75.13 3470 372 7 

6 (4) 16.32 -75.47 3484 353 14 

7 (4) 18.33 -76.19 3463 346 8 

8 (4) 20.66 -76.9 3456 355 9 

9 (4) 23.19 -77.57 3452 351 12 

10 (4) 26.3 -78.29 3455 346 5 

11 (2) 29.38 -78.89 3461 350 6 

12 (4) – OIR / B54 30.0 -79 3473 358 6 

13 (2) 35.69 -79.18 3576 362 2 

14 (4) – B55 40.56 -79.24 3665 352 10 

15 (4) – B56 34.97 -79.33 3544 351 8 

16 (4) 27.28 -78.84 3416 366 11 

17 (4) 22.64 -78.5 3325 358 7 

18 (4) 17.62 -78.02 3259 356 5 

19 (3) 12.03 -77.32 3153 365 6 

20 (4) 7.2 -76.54 3067 368 2 

21 (4) 2.90 -75.67 2959 344 7 

22 (4) – B53 31.91 -76.79 3737 345 15 

Whole traverse (22 ρloc) - - - 355 8 

3.3 Representativity of surface snow density on local scales 

According to our calculation in the OIR trench, we get a value for σn of less than 1.5% of σn (4.9 kg m-3) with four spatially 

independent snow profiles (Fig. 7). We note, that on average σn in the OIR trench is higher than the average of the four areal 5 

subsets (7.0 kg m-3 in contrast to 6.1 kg m-3 for two profiles and 5.7 kg m-3 in contrast 5.0 kg m-3 for three profiles). 

Unfortunately, we cannot test a number of profiles higher than six. But assuming a constant σ1m
H, seven spatially independent 

profiles are needed to assure a relative σn of less than 1%. 
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Figure 7: Standard error (σn) of σloc as a function of the number of liners (n). Triangles represent samples from the OIR trench 

while colored circles show samples along the traverse in the respective subsets (Sect. 2.5). 

3.4 Representativity of surface snow density on regional scales 

In the spatial density distribution of ρL and ρloc, find similar values for Kohnen & vicinity (352±1 kg m-3), ascending plateau 5 

area (356±1 kg m-3) and the interior plateau (355±2 kg m-3) (Fig. 8). These have less than 1% difference from the average 

value of the whole traverse. Only B53 & vicinity shows lower density values (349±3 kg m-3, -1.41% compared to the traverse 

mean density 354 kg m-3). 
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Figure 8: Histograms of the liner means for the four subareas (Fig. 1). The bin width for each histogram is 5 kg m-3. The average ρL 

(Fig. 6, a) is given in a red dashed line while the liner mean of the respective subarea is marked with a blue dashed line. 

Looking at the density distribution of the high resolution μCT density profiles (see Appendix) over one meter depth, we find 

a normal distribution of the snow density in the first meter (Fig. 9). We calculated the confidence interval (95%) of ρL for each 5 

respective subarea (Tab. 3). We want to stress that the number of samples of “B53 & vicinity” is lower than recommended for 

this method. The mean value for the traverse is represented in all four intervals of the subareas. We note, that the interval for 
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Kohnen & vicinity just includes this value. We used the same approach for the OIR trench and find, that the traverse mean is 

not represented here. 

 

Figure 9: Density distribution from surface to one meter depth of the μCT density. It is based on all available liners - 114 liners from 

the traverse (according to their subarea), 30 liners for the OIR trench (grey) and 16 liners from Kohnen station (not this study) with 5 
a bin width of 2 kg m-³. We used the same color code for the subareas (Sec. 2.5) as in Fig. 1. We find a shift towards higher densities 

in the OIR trench and a higher probability for lower densities in B53 & vicinity, but in general a similar distribution of density is 

found. 

Table 3: Confidence intervals of 95% for each pooled area. 

Area (number of samples) Lower boundary [kg m-3] Upper boundary [kg m-3] 

Whole traverse (114) 352 356 

Kohnen & vicinity (45) 350 354 

Ascending plateau area (64) 353 358 

B53 & vicinity (10) 341 357 

Interior plateau (29) 351 358 

OIR trench (30) 361 368 

 10 

The snow density directly measured at the surface in general shows high spatial variability (Figs. 5 & 10). To characterize the 

spatial variability of density in a given area (tens of meters for traverse locations and trenches, hundreds of meters for Kohnen 

station), we use the parameter σH. For a comparison we used snow liners along the traverse (liners sampled at OIR trench 
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presented in a separate column), liners from Kohnen station (Schaller, 2018) and from East Greenland ice core project (EGRIP) 

camp site (75°37′N, 35°59′W; 2702 m asl). We also calculated the σV for the respective areas, which can be interpreted as 

temporal (seasonal or annual) variations in density. We computed both (σH and σV) for 0.1 m, 0.5 m and 1 m intervals each 

(Tab. 4). 

Table 4: Comparison of σ (horizontal and vertical) for each depth interval (from surface to respective depth) of samples from the 5 
traverse and OIR trench (this study), Kohnen and a trench from EGRIP (Schaller, 2018). Along the traverse we calculated the mean 

of the standard deviation at each location. 

σ0-X 

[kg m-3] 

 

σV 

per loc. 

traverse 

σH 

per loc. 

traverse 

σV 

OIR 

trench 

σH 

OIR 

trench 

σV 

Kohnen 

σH 

Kohnen 

σV 

EGRIP 

trench 

σH 

EGRIP 

trench 

0.1 m 24 23 19 25 31 23 24 17 

0.5 m 33 11 33 14 31 9 33 9 

1.0 m 34 8 34 10 33 6 43 7 

3.5 Small scale topography on OIR camp and Plateau Station 

We find significant differences in the surface topography at both places. At OIR camp the height differences between the 

lowest and highest point of the measured transects are 60% larger than the height differences at Plateau Station (Tab. 5). The 10 

variation of height differences between the six transects at each location is low with a standard deviation of 2.4 cm (OIR camp) 

and 2.0 cm (Plateau Station). 

Table 5: Maximum height differences [m] along the transects one to six at Plateau Station and B56 

 1 2 3 4 5 6 Mean 

OIR camp 0.268 0.280 0.310 0.330 0.319 0.310 0.303 

Plateau Station 0.180 0.211 0.180 0.174 0.150 0.212 0.184 

4 Discussion 

4.1 Liner method vs. discrete sampling 15 

To discuss the precision of 1 m liner mean density using the snow liner technique, we compare our dataset with data by Oerter 

(2008). In that study, snow pits with 20 km spacing have been dug and sampled along a small transect from Kohnen station 

upstream towards B51 (comp. Fig. 1). A detailed map of the sampled region is available in Huybrechts et al. (2007). Snow 

density has been measured volumetrically in each snow pit using discrete samples in 0.1 m depth intervals. We compare our 

results with density data from locations 1 to 4 (including single snow profiles in between) in two different depth resolutions 20 

(0.1 m & 1 m). For our study, we use ρ0.1m
μCT and ρL. For the 1 m interval from Oerter (2008) we use the average of all density 

values between 0 and 1 m. 
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ρ1m from both studies are in good agreement with each other. ρ1m derived with the liner method tends to be 1-5% higher than 

the one from Oerter (2008) (Fig. 10). Higher discrepancy can be seen in the mean density of the upper 0.1 m. While we find 

on average ρ0.1m
μCT=349 kg m-3 from liner measurements, ρ0.1m for Oerter (2008) is 293 kg m-3. The calculated σ0.1m

H over the 

whole distance is 31 kg m-3 for our study and 25 kg m-3 for Oerter (2008). Interestingly, ρ0.1m in Oerter (2008) is always lower 

than ρ1m, which is not the case in samples from our study. Due to the soft and unconsolidated snow at the surface we assume 5 

that the under-sampling error is higher at the surface for small sampling devices, which forces a systematic error towards 

smaller values (Fig. 10). Snow in greater depth has undergone sintering processes and is more coherent, therefore also the 

under-sampling error should be smaller. Additionally, a systematic error with increasing depth in the data by Oerter (2008) 

cannot be excluded, as the sampling device (core cutter) might densify the snow with each interval due to the thick wall in 

relation to the sampling volume. In contrast to other devices, the liner method preserves the original stratigraphy of the snow 10 

column, which results in a more precise density value in combination with the μCT-measurement on different chosen depth 

intervals, especially for small sampling intervals at the snow surface.  

 

Figure 10: Density values of this study (black) in comparison with those from snow pit sampling by Oerter (2008) (grey). The samples 

are taken along a comparable transect line. Density is given as mean value from the snow surface to the respective depth. The spatial 15 
variability in both, 1 m and 0.1 m intervals, can be seen by the spread of points in data of this study at one sampling location (comp. 

Tab. 3). 
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At sites with accumulation rates higher than 100 kg m-² a-1, small sampling intervals (<0.5 m) do not contain the seasonal or 

annual variability over several years (see data by Oerter (2008) in Fig. 10), at sites with low accumulation (<80 kg m-² a-1) the 

density might be masked by the high spatial heterogeneity. Both effects can be seen in the low σ0.1 m
V in contrast to σ1m

V 

looking at data from different sites in Tab. 4. Higher σ1m
V in snow profiles from EGRIP are caused by a clearer seasonal density 

cycle, which is barely or not detectable on the EAP. This can be explained with warmer temperatures as well as higher 5 

accumulation rates at EGRIP. In case of surface melting (like in year 2012), σ1m
V can be even higher. 

We find lower σH at the surface in samples from EGRIP in contrast to EAP. This can be explained with the non-uniform 

deposition causing a high surface topography. We measured the topography in form of dune heights (Tab. 5), which exceed 

the yearly accumulation by far. Snow layers do not form as spatially consistent as at sites, where the (predicted) yearly layer 

thickness is larger than the amplitude of dunes. This also affects the snow density as the signal cannot form homogenously 10 

over a larger distance and causes larger σH. The 0.1 m surface snow density has a 2.4 – 4 times higher σH than the 1 m interval. 

Furthermore, we want to advert to the time efficiency of the liner method. A 1 m snowpack density with four samples can be 

determined within 1 h. Even if a high resolution study in a snow pit is done, a snow profile using a liner can always be added 

to the discrete sampling in the snow pit as comparison. For these reasons, we suggest the 1 m liner mean density as the most 

feasible and precise method to derive a representative surface snow density on small scales. 15 

4.2 Vertical and temporal variation of density along the traverse 

Despite of errors due to the precision of the sampling method, the discrepancy in surface density between this study and Oerter 

(2008) can also be caused by the natural variability of snow density, which can be significant in consecutive years (Vihma et 

al., 2011). Also long-term changes in temperature, accumulation rate or wind systems can affect fluctuations in density. Several 

recent studies postulate an increase in temperature and accumulation rate in some areas in Antarctica, partly also on the EAP 20 

(Medley and Thomas, 2019). But precise accumulation rates for the interior EAP are hard to determine and are generally 

overestimated (Anschütz et al., 2011). 

We test the impact on surface snow density of a 1°C temperature rise, which has been recorded at Kohnen station with an 

automatic weather station (AWS) over the past 20 years and discussed by Medley et al. (2018), and a 15% overestimation of 

the accumulation rate on the interior plateau. The temperature dependent densification effect can be neglected in that context. 25 

According to the model by Herron and Langway (1980), at a temperature of -44.6°C (annual mean air temperature at Kohnen 

station (Oerter et al., 1999)), the increase in snow density by densification from the surface to 1 m depth is 10 kg m-3. At 

a -54.6°C annual mean air temperature (-10°C compared to Kohnen station) the densification is roughly 8.3 kg m-3. A 

temperature change of -1°C would lower the densification induced density by about 0.17 kg m-3. 

We use the parameterization after Sugiyama et al. (2012): 30 

𝜌 = 305 + 0.629 T + 0.150 Ȧ + 13.5 W,         (1) 

where T is the annual mean temperature [°C], Ȧ the accumulation rate [mm we a-1] (we water equivalent) and W the mean wind 

speed [ms-1] at the given location. We use an annual mean temperature of -50°C, an accumulation rate of 40 mm we a-1 and a 
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wind speed of 4 m s-1, roughly the mean values of the area covered with the traverse. We get an increase in density of 

0.6 kg m-³ °C -1 and ±1.2 kg m-³ for ±8 mm we a-1. As both potential increases (decreases, respectively) are inside the error 

range and are masked by the sampling error, we cannot attribute a change in density to a potential temperature (or accumulation 

rate) change. In general we conclude, that several parameterizations for the surface snow density (Kaspers et al., 2004; 

Sugiyama et al., 2012) need further tuning for regions with low accumulation and low temperatures like the EAP. 5 

The uniform density distribution of density over 1 m for the respective subsets (Fig. 9) also indicates, that the natural variability 

of the snow density is larger than the change of environmental conditions we find along the traverse on EAP. Only ρ in the 

OIR trench is higher than the average of the four areal subsets. A possible explanation is the direction dependent sampling in 

the OIR trench, as the wind direction can have an influence on the correlation of snow profiles (Schaller, 2018). In contrast to 

the OIR trench, profiles at the locations along the traverse were taken in three directions from a common center, independently 10 

from the predominant wind direction (Fig 2). 

4.3 Error assessment of SMB 

Sasgen et al. (2019) calculated from a combination of the Gravity Recovery and Climate Experiment (GRACE) and CryoSat-2 

a mass balance for Antarctica of -178±23 Gt a-1. We try a simple quantitative calculation of the underestimated water 

equivalent in the firn column with the density data presented in this study (average ρloc) using the semi-empirical firn 15 

densification model by Herron and Langway (1980). We use an annual mean temperature of -50°C and an accumulation rate 

of 0.04 m we a-1, roughly the mean values of the area covered with the traverse. We use the two surface densities 

ρ0(1)=320 kg m-3 and ρ0(2)=355 kg m-3. 

We calculated 59.0 m we for ρ0(1) and 61.0 m we for ρ0(2) in the firn colum, reaching the critical density of the firn-ice-

transition at 830 kg m-3 in 92.9 m. The calculation is in good agreement with firn density (μCT) measured in core B53 20 

(unpublished). This is roughly an underestimation in mass of 3%. Other effects like an overestimation of the accumulation rate 

on the interior plateau are not taken into account. Extrapolating this underestimation to the East Antarctic ice sheet using the 

sea level equivalent for East Antarctica after Rignot et al. (2019) and an average ice sheet thickness of 2 km, this 3% mass 

underestimation corresponds to 5 cm sea level equivalent. 

4.4 A representative surface snow density on the EAP 25 

In order to overcome the sparsity of in-situ observations of surface snow density, regional climate models and derivatives with 

adequate snow deposition modules are often used to obtain estimates of surface accumulation and density on a full regional 

scale. Compared to the firn model presented by Ligtenberg et al. (2011), we find systematically higher values for density on 

the interior EAP than the model predicts for the same locations. While ρloc spans the range from 346 to 372 kg m-3, the firn 

model provides a range from 308 to 332 kg m-3 (Fig. 11). Having a sound statistics at these locations, we exclude the systematic 30 

bias to be caused by our observations, but rather a shortcoming of the model to yield densities which are about 10% too low. 

This could be caused by a multitude of reasons, e.g. model physics, spatial and temporal resolution or forcing. We suggest to 
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set up a specific model test designed for the EAP and use data sets like ours and those from comparable studies as the standard 

against which to evaluate model outcomes. 

 

Figure 11: ρloc along one leg of the traverse route, from Kohnen to B51, further along the ice divide to B53 and from Plateau Station 

straight back to Kohnen station. σn calculated from the OIR trench (Sect. 3.3) is given by vertical error bars at each location. A 5 
mean density value for Kohnen station was calculated from samples not collected in this study (s. 2.5). The red dashed horizontal 

line indicates the mean density along the whole traverse, σn is indicated with a grey shade. The color code shows the accumulation 

rate according to Arthern et al. (2006). Only locations with multiple liners are shown here. The triangles show the parameterized 

density values according to Ligtenberg et al. (2011). 

We cannot detect a clear trend in density along the whole traverse route. A potential reason might be the increase in elevation 10 

and decrease in temperature as well as accumulation rate (Fig. 11), as the distance to the coast and major Dronning Maud Land 

(DML) ice divide increases as well. But our observation is consistent with recent field observations on the EAP (Sugiyama et 

al., 2012) or snow density collections from over two decades (Tian et al., 2018). Sugiyama et al. (2012) found a density around 

350 kg m-3 for the same depth interval (0-1 m) along a traverse between Dome F and Kohnen station, with a similar spatial 

variability. 15 

Still we can spot patterns on large scales. We explain the increase in surface density along the ice divide from Kohnen towards 

B51 (Figs. 8, b & 11) by the increasing influence of katabatic winds, blowing from the Plateau along surface slope gradient to 
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the coastal regions. The observation of this systematic change in density is also visible in Sugiyama et al. (2012) and not 

captured by firn models. In fact, the model by Ligtenberg et al. (2011) shows the opposite trend along this traverse section (km 

0-500 in Fig. 11). High density at B51 goes along with stronger dune formation than at Kohnen station, which was observed 

to increase along this traverse part. This is consistent with observations of dune formation at wind speed exceeding 10 m s-1 

(Birnbaum et al., 2010). Modelled density is mainly parameterized by wind speed, but the process of snow redistribution might 5 

be underestimated. We assume that the relatively low density values – at least in comparison within our dataset – for the 

locations 14 and 15 (Plateau Station and B56, Fig. 11) in the calm accumulation zone, are most likely caused by snow 

redistribution. The relatively low wind speed (Lenaerts and van den Broeke, 2012), in combination with low temperatures and 

humidity (Picciotto et al., 1971), is not high enough to cause wind packing and sintering of snowflakes. It rather redistributes 

them smoothly at the surface, which also happens at low wind speeds. Therefore, as the sintering process is prolongated, we 10 

find lower snow density at these locations. But as the low densities cannot be seen for the whole interior plateau region 

(Fig. 8, d), we consider it rather as a process that needs very specific settings on the high plateau than an average characteristic. 

The abundance of wind speeds higher than 10 m s-1 might be a limiting factor in this context. We want to stress, that also the 

modelled density reaches its minimum at Plateau Station. Different environmental conditions at B53 & vicinity might cause 

lower density here as well (Fig. 8, c). High σn for subset B53 & vicinity should not be over-interpreted, as only one sampling 15 

location with four profiles is present there. Still σloc is highest here amongst all locations with multiple liners along the traverse 

(comp. also σ1m
H in Tab. 2). An explanation can be a different wind and accumulation regime at the distant side of the ice 

divide causing high heterogeneity on a very small scale. 

Small fluctuations in density within the error range at nearby locations can be explained by local noise (Laepple et al., 2016; 

Münch et al., 2016). Stronger variations in density, e.g. beyond a standard variation, can be caused by a complex interaction 20 

between wind speed and surface roughness on the small scale but have also shown to originate from dynamic interaction of 

ice flow over bedrock undulations, thus altering surface slope and in turn elevation and accumulation rate on the large scale in 

this region (Eisen et al., 2005; Rotschky et al., 2004). 

As already stated above we cannot conclusively attribute a cause to the model behavior. Unfortunately, it is also difficult to 

pin down the mechanism for the observed systematic spatial distribution of density. Obviously, a dedicated sensitivity study 25 

with a snow deposition and firn model is needed to discriminate the various effects affecting postdepositional snow 

metamorphism and densification. 

5 Conclusion 

We presented surface snow density data along a traverse route from Kohnen station to former Plateau Station on the EAP using 

the time efficient liner method. Compared to other discrete sampling techniques, which have a sampling error up to ±4% 30 

(Conger and McClung, 2009), the liner technique (this study and e.g. Schaller et al., 2016) possesses a precision of less than 

2% relative error for a 1 m mean snow density. It covers seasonal and annual variations at sites of high accumulation and 
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reduces the influence of high surface roughness in relation to the annual accumulation in low accumulation areas. We compared 

snow profiles to density data from snow pits by Oerter (2008). We found a 1-5% discrepancy for the 1 m density, which cannot 

be attributed to a temperature change between the sampling dates. For the density from surface to 0.1 m depth we find a 

considerable 16% difference in density, that we explain with a systematic sampling error. This systematic error makes 

comparisons of old and new datasets with different sampling devices difficult, as an increase in mass in Antarctica or an 5 

underestimation of mass in the past is difficult to detect. As Alexander et al. (2019) pointed out, errors or biases in 1 m snow 

density can lead to large uncertainties in SMB. Especially on the EAP, in-situ data are sparse. A representative surface snow 

density is needed for a precise determination of the surface snow density in a given area. We conclude, that four spatially 

independent snow profiles are necessary to determine a snow density value with an error lower than 1.5% of the mean. To 

further verify this result in future studies, we suggest to test this with a similar sampling scheme with five and more profiles 10 

using the liner technique. A circular setup with one profile in the midpoint and four to six profiles along a circle with a radius 

of 10 m to keep spatial independency might be a feasible approach. 

With the volumetrically calculated 1 m mean snow density we confirm earlier density observations (Sugiyama et al., 2012) 

and suggest a representative mean density of 355 kg m-3 for surface snow on regional scales on the EAP. On smaller, 

subregional scales closer to the coast and thus more subject to the synoptic influence of low-pressure systems, systematic linear 15 

trends are visible, which we attribute to the effect of katabatic winds. As we find a high variability on different spatial scales, 

we suggest to average point measurements for snow density over regional scales to find a spatially representative density value 

for the surface instead of using single measurements. We divided the area covered by the traverse into subareas due to different 

environmental regimes, but we cannot find significant differences in snow density among them. Natural variability in snow 

density seems to be higher than previously assumed. Especially on the regional scale, we cannot see a clear correlation between 20 

temperature and accumulation rate with snow density. For future studies we therefore suggest to sample transects of 50-100 km 

with samples every 1 km to investigate the influence of topography changes on snow density in more detail. 

We also suggest further tuning for parameterizations of the surface snow density, especially for regions with environmental 

conditions like the EAP. We calculated that an underestimation of the surface snow density (in our case 320 kg m-3 instead of 

355 kg m-3) using the model by Herron and Langway (1980) can lead to a 3% mass underestimation in the firn column, which 25 

roughly corresponds to 5 cm sea level equivalent. Compared to recent calculations from GRACE and CryoSat-2 where the 

SMB is given with a 13% error estimation (Sasgen et al., 2019), our data can be used to update density parameterizations and 

therefore sustainably improve SMB estimates. 

6 Data availability 

Datasets will be uploaded to the open-access repository Pangaea. 30 
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10 Appendix 

For a better understanding of Fig. 9, we show a density profile over depth measured with the μCT. In the radioscopic image 

the stratification of the snowpack is visible. In Fig. 9 we took all high resolution μCT density profiles along the traverse, 

according to their subarea, as well as the OIR trench and plotted the relative abundance of the density values in 2 kg m-³ 

intervals. 5 

 
Figure 12: μCT density of a snow profile at position 15X. On the left the radioscopic image of the snow profile is visible. Dark grey 

colour represents high density, bright grey represents low density values. On the right, the corresponding density profile over 

depth is shown. 
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