
Response to reviewers on the manuscript: 

Using ICESat-2 and Operation IceBridge altimetry for supraglacial lake depth retrievals by Fair 

et al. 

 

We thank the reviewers for their comments and suggestions to improve the clarity and structure 

of the manuscript. In this response, the original comment is given in black, the authors’ response 

in blue, and the proposed changes in orange. 

 

Response to Review #1 

Broad comment (1) “There are places outlined in the line-by-line comments where it could be 

more quantitative” 

We addressed these suggestions on a case-by-case basis, as seen in the line-by-line responses 

below. 

 

Broad comment (2) “Some of these sections are ‘in the weeds’ concerning HDF5 variable names 

or classification differences. These sections and figures could probably be excluded.” 

We agree that Section 5.2 is too esoteric and technical in its current form. We assert, however, 

that this paper is a proof-of-concept study designed to highlight potential issues that a user may 

experience when performing automated supraglacial lake depth retrievals from ICESat-2 data. 

Therefore, while we propose to rewrite Section 5.2 to be less technical, we will retain a brief 

mention of the photon classification issues. The proposed rewrites are expanded upon in the 

responses to broad comments (3) and (4). 

 

Broad comment (3) “I would expand on the section of difficulties of making a fully automatic 

lake depth detection algorithm with laser altimetry.” 

As noted above, we plan to rewrite Section 5.2 to focus on the difficulties of automated retrievals 

from ICESat-2 data (Fricker et al., in prep.), with examples from the data formatting (i.e. photon 

classification) and from lake properties (bed topography, size, etc.), as follows: 

Section 5.2     Automation Challenges 

The identification of lake beds in the LSBS algorithm is based on a window of acceptable 

photons. The photon window is constrained by the coefficients a and b (for ICESat-2, a = 1.0, b 

= 0.5). Lake beds detected in this manner had a height uncertainty of 0.38 m (Table 2). The 

coefficients for ATM (a = 1.8, b = 0.75), resulted in more accurate retrievals on an individual 

basis. However, implementing varying a and b values proved difficult to automate, as other 

values may produce more accurate depths. 



The challenges in full automation are related to three key issues. First, the observed extent of 

lakes varied considerably, especially over Greenland. The diversity in lake sizes complicated 

attempts to derive a universal “flatness” check. Smaller lakes present fewer lake surface photons, 

so a smaller data window (~104 photons) is required to prevent false positives. However, larger 

lakes may not be fully represented in smaller windows. A larger data window (~105 photons) 

will fully capture the largest lakes, but smaller lakes may then be overlooked. 

Second, multiple scattering at the lake bed increases the photon spread and thus also increases 

the uncertainty of depth retrievals. Most supraglacial lakes observed by ATM featured smooth 

beds, so photons experienced one or few scattering events before returning to the detector. The 

instrument digitizer automatically filters return signals with low photon counts, reducing the 

spread of bed photons, at the cost of deep lake bottom detection. In contrast, the lakes observed 

with ICESat-2 exhibited more heterogeneous beds, leading to increased scattering events by 

photons and delays in return pulses. In these cases, the given values for a and b may not produce 

the most accurate bed solution. Furthermore, if the return is significant for a given photon 

window, then it may lead to a false negative for a portion of the lake (Figure 4i). To reduce 

uncertainty in lake depth retrievals, future improvements in working with ICESat-2 data should 

focus on identifying and filtering multiple scattering. 

Finally, the ATL03 signal-finding algorithm is considered conservative in that it accepts false 

positives (background photons classified as signal photons) to ensure that all signal photons are 

passed to higher-level products (Neumann et al., 2020). Thus, uncertainties in the ATL03 photon 

classification contribute to noise in the water column and the lake bed. The classification 

algorithm uses surface masks to allocate statistical confidence to ATL03 photons for multiple 

surface types (Neumann et al., 2019b), with overlap possible among the surfaces. Melt lakes are 

too short-lived to be considered “inland water” and are instead categorized as “land ice” (lake 

surface) and “land” (lake surface and bed). Because the “land” classification also includes the 

bed, it includes more potential signal photons than land ice, so we recommend to only use land 

photons when performing supraglacial lake depth retrievals. It must be noted, however, that a 

lake bed profile is fully resolved only with the inclusion of low-/medium- confidence and 

“buffer” photons. The buffer photons ensure that all photons identified as surface signal are 

provided to the appropriate upper-level data product algorithms. However, they can introduce 

more noise to the profile, so more sophisticated filtering techniques are needed to distinguish the 

signal photons against the solar background. 

 

Broad comment (4) “I would mention the impact of detector saturation on highly flat specular 

surfaces creating a “false” bottom return. This could be noted in the Algorithm Performance 

section.” 

We agree that it is important to note the potential effects of specular reflection on observed lake 

surfaces. We will note its impact on lake depth retrievals in Section 5.1 as a potential obstacle. 

A potential issue for lake depth retrievals concerns specular reflection. When photons interact 

with a flat water surface, they may reflect directly back to the detector with minimal energy loss. 



The excessive return energy produces a “dead time” in the ATLAS detector, and the return signal 

is represented by multiple subsurface returns approximately 2.3 m and 4.2 m below the true 

surface (Neumann et al., 2020). An example of this phenomenon may be seen in Fig. 4f, where a 

prominent subsurface return is featured along the lake extent. However, because the subsurface 

echo is smaller than the true surface when viewed through histograms, the LSBS algorithm is 

able to avoid biases caused by specular reflection. 

 

Page 1, Lines 2-4: “I would split this sentence to be something like: ‘Detection of lake extent, 

depth, and temporal evolution is important for understanding glacier dynamics. Previous remote 

sensing observations of lake depth are limited due to inherent uncertainties of depth retrievals 

with passive remote sensing techniques, and the high absorption of infrared laser energy in water 

from the original ICESat mission.’” 

We changed as requested with a slight edit, as we do not see it necessary to mention ICESat 

here: 

…for understanding glacier dynamics. Previous remote sensing observations of lake depth are 

limited to estimates from passive satellite imagery, which has inherent uncertainties, and there is 

little ground truth available. 

 

Page 1, Line 8: “I would change this to reliably or statistically detect lake beds as deep as 7m.” 

We made the following change: 

Both lidars reliably detect lake beds as deep as 7 m. 

 

Page 1, Line 10: “The insufficient classification of photon events when profiling lakes is 

expected due to how the ATL03 classification algorithms work with a bimodal or multimodal 

surface, particularly if the lake surface return is not specular.” 

The statement given here is addressed to a general scientific audience that may not be aware of 

the ATL03 classification algorithms. However, we agree it is to be expected, so we will reword 

the text as follows: 

The bimodal nature of lake returns means that high-confidence photons are often insufficient to 

fully profile lakes, so lower confidence and buffer photons are required to view the lake bed. 

 

Page 1, Line 16: “You are noting here that the contributions to sea level rise from ice sheets will 

likely overtake steric sea level effects and not that the contributions will overtake glacier and ice 

caps correct?” 

You are right. To make this clearer, we reworded the statement as: 



…leading to the contributions from both ice sheets to overtake the contribution of thermal 

expansion to sea level rise (Vaughan et al., 2013). 

 

Page 1, Line 17: “I would probably use ‘aggregation’ and not ‘accumulation’”. 

We changed as requested: 

Meltwater plays vital roles in ice sheet evolution […], including aggregation on ice sheets as 

supraglacial lakes. 

 

Page 1, Line 18: “When unfrozen, these lakes exhibit a lower albedo than the surrounding ice,” 

We changed as requested: 

When unfrozen, these lakes exhibit a lower albedo than that of the surrounding ice… 

 

Page 1, Line 21: “which can lead to potentially significant impacts” 

We changed as requested: 

...their spectral emissivity in the IR spectrum also differs from bare ice […], which can lead to 

potentially significant impacts… 

 

Page 2, Lines 2–4: “Meltwater penetration into the ice during catastrophic lake drainage events 

can also lead to hydrofracture, a mechanism through which meltwater facilitates full ice fracture 

as a result of the stresses induced by the density contrast between liquid water and ice” 

We applied the following change: 

During catastrophic lake drainage events, meltwater penetration into the ice can also lead to 

hydrofracture… 

 

Page 2, Line 5: “thus can impact sliding velocity and ice discharge” 

We changed as requested: 

…which in turn modify the resistance to ice flow and thus can impact sliding velocity and ice 

discharge. 

 

Page 2, Line 12–13: “Hopefully we don’t reach a time where supraglacial lakes are present over 

the entirety of either ice sheet. ‘sheer size of the ice sheet ablation areas’” 



We agree. We applied the following change: 

However, the harsh conditions of Antarctica and Greenland, the transience of meltwater, and the 

sheer size of the ice sheet ablation zones… 

 

Page 3, Line 4: “6 distinct beams named in the products based on the ground track: GT1L/R, 

GT2L/R, and GT3L/R.” 

We applied the following change: 

…a 532 nm micro-pulse laser that is split into six distinct beams with names based on the ground 

track… 

 

Page 3, Line 6: “approximately every 0.7 meters” 

We changed as requested: 

…ICESat-2 records a unique laser pulse approximately every 0.7 m… 

 

Page 3, Line 16: “GT2R can be either the central strong beam or the central weak beam based on 

the orientation of the spacecraft. For the both of your dates (2019-01-02 and 2019-06-17) GT2R 

was the weak beam.” 

You are correct. We edited the text to fix this mistake: 

Of the six beams available, we concentrated on the central strong beam (GT2L)… 

 

Page 3, Lines 18–20: “This is expected due to transmit pulse truncation. The transmit pulse 

shape is slightly non-Gaussian with a trailing tail. Calculating the average of photon events 

without that trailing tail biases the results compared to a ‘true’ surface.” 

We respond to the reviewer assuming that they are referring to the inclusion of lower confidence 

photons. With this assumption, we added the following: 

The addition of medium, low, and “buffer” photons slightly decreases measurement precision, 

but a less truncated transmit pulse gives better agreement with ATL06 and ground-based data 

(Brunt et al., 2019b). 

 

Page 3, Lines 21–22: “Versions of ATM have flown in Greenland since 1993. As written it 

suggests that ATM was designed as a gap filling instrument rather than an existing and verified 

instrument suite used in this role.” 



We agree. To make it clearer that we are referring to the IceBridge measurements, we applied the 

following changes: 

The Operation IceBridge (OIB) campaign was designed to fill the gap in polar altimetry between 

ICESat and ICESat-2. Its scientific payload included the Airborne Topographic Mapper, a 532 

nm lidar that has been used for ice sheet and shallow water measurements since 1993. 

 

Page 3, Line 25: “The ATM1B QFIT elevation product is not a geolocated photon product but a 

geolocated elevation product” 

You are correct. We applied the following change: 

The ATM Level-1B Elevation and Return Strength (ILATM1B) product converts analog 

waveforms into a geolocated elevation product… 

 

Page 3, Line 26: “While ATM does not contain a statistical confidence definition, ATM uses a 

thresholded centroid model from their digitized waveforms and thus will typically only retrieve 

higher confidence returns. The data is also processed prior to release for QA/QC purposes.” 

The thresholding applied to ATM data is briefly mentioned in Section 4, but it is in the context 

of poor signal return for deep lake beds. To highlight the benefits of the centroid model, we 

added information to Section 5.2 (see response to broad comment #3), and reworded Line 26 as: 

...to emulate ATLAS data (Studinger, 2013, updated 2018). Although it lacks a statistical 

confidence definition, ATM applies a centroid model to digitized waveforms and to retrieve 

high-confidence photons. 

 

Page 3, Line 26: “Remove ‘Despite this’” 

We changed as requested: 

…retrieves high-confidence photons. Brunt et al. (2019a) found that… 

 

Page 3, Lines 27–28: “Here, the ATM results serve as a proof of concept for the lake detection 

algorithm” 

We changed as requested: 

Here, the ATM results serve as a proof-of-concept for the lake detection algorithm. 

 



Page 4, Lines 4–5: “The lake surfaces aren’t necessarily “easily” identifiable and potential lake 

beds can be hard to detect on highly flat surfaces because detector saturation (related to first-

photon-bias) can lead to a non-existent false bottom.” 

We acknowledge that lake surfaces can be difficult to discern from other features (i.e. smooth ice 

in close proximity to the lake, so we removed the assertion that surfaces are “easily” identifiable. 

We elaborate on the effects of specular reflection in the revised Section 5 (see above). 

…with the expectations that (i) lake surfaces would be identifiable in photon histograms and (ii) 

lakes may be found via statistical inference in the region of the lake surface. 

 

Page 4, Lines 5–6: “To simplify the identification of lake features, we separated them into two 

arrays: one for the surface and one for the bed, which we refer to as ‘lake surface-bed separation 

(LSBS).’” 

We changed as requested: 

…one for the surface and one for the bed, which we refer to as “lake surface-bed separation” 

(LSBS). 

 

Page 4, Line 8: “What is ∼104–105 photons in terms of distance?” 

The given number of photons is equivalent to ~1-10 km in along-track distance for ICESat-2 and 

~0.15-1.5 km for ATM. We added the following to provide context: 

We divided each data granule into discrete along-track windows to reduce the data volume to 

~104-105 photons per window. This photon count is equivalent to ~1-10 km in along-track 

distance for ICESat-2 and ~0.15-1.5 km for ATM. 

 

Page 4, Line 11: “Are there times when the lake bottom can be the dominant return?” 

Yes - this issue may be observed in Figure 4i, where a strong bottom return in a shallow lake 

leads to a false negative over part of the lake. We added commentary on this observation in 

Section 5. 

The given values for a and b may not produce the most accurate lake bed solution in these cases. 

Furthermore, if the bottom return is significant for a given photon window, then it may lead to a 

false negative for that portion of the lake (Figure 4i). 

Page 4, Line 12: “We check the flatness of the window by computing the standard deviation” 

We propose this change, as requested: 

We check the flatness of the window by computing the standard deviation of high-confidence 

signal photons… 



 

Page 4, Lines 23–24: “Seems somewhat arbitrary that the thresholding needed to be different 

surface classification. Would it be better to only use the full set of potential signal photons and 

the second set of thresholds?” 

We agree that ICESat-2 photons do not require thresholds based on classification. Most lakes we 

considered required medium-/low- confidence and buffer photons, so we applied the second 

threshold to all cases. The statistics given in Table 3 reflect this thresholding. 

However, the second threshold proves ineffective for shallow lakes in ATM data, whereas the 

first threshold was applicable in all cases. Therefore, to improve readability, we propose to 

remove the procedural step starting at Line 23, and revised Lines 19-22 to be: 

Within these horizontal bounds, photons were defined as a lake bottom if they satisfied the 

condition: ℎ𝑠𝑓𝑐 − 𝑎𝜎𝑠𝑓𝑐 ≤ ℎ ≤ ℎ𝑠𝑓𝑐 − 𝑏𝜎𝑠𝑓𝑐, where σsfc is the standard deviation of lake surface 

photons. The constraints a and b were derived through trial-and-error, such that a = 1.0 (1.8) and 

b = 0.5 (0.75) for ICESat-2 (ATM). We set these constraints to reduce the impacts of multiple 

scattering and specular reflection on depth estimates. 

 

Page 4, Line 30: “I would say that these were ‘potential’ or ‘probable’ false positives.” 

We propose to apply the following change: 

If the number of bed photons was very small (100 or less), then the scene was marked as a 

probable false positive. 

 

Page 5, Line 6: “overlapping 40 meter segments” 

We changed as requested: 

…ATL03 photon aggregates within overlapping 40 m segments… 

 

Page 5, Paragraph 2: “The ATL06 algorithm assumes a single returning surface within a segment 

of photon events. In supraglacial lake instances, the ATL06 algorithm can compute a height for 

either lake bottom or lake surface depending on their corresponding return strength. These return 

strengths can be highly variable.” 

We thank the reviewer for providing their knowledge of the ATL06 algorithm. In response, we 

revised Paragraphs 2 and 3 in the following manner: 

The linear regression in ATL06 accounts for all ATL03 photons (background or signal), and the 

technique performs a background-corrected spread estimate to narrow the range for acceptable 

photons. This is an iterative scheme; the refinement process repeats its acceptable photon filter 



until no photons are removed. As a consequence, the ATL06 algorithm assumes a single 

returning surface, so over a melt lake it will compute a height for either the lake bottom or the 

lake surface, depending on their return strengths.  

The condition for acceptable surface photons in ATL06 is given by: 

|𝑟 − 𝑟𝑚𝑒𝑑| < 0.5𝐻𝑤 

Within a 40 m photon segment, r is the residual of a photon relative to the linear regression, rmed 

is the median residual, and Hw is window height. The height of the window is taken as the 

maximum of the observed photon spread, the window height (if any) and 3 m, and photons 

within the window range are defined as the surface. The LSBS algorithm follows a similar 

procedure, but the flatness of the lake surface and relatively low photon density of the 

corresponding beds rendered iterating unnecessary. The lake bed is then defined as photons not 

within the window and below the surface… 

 

Page 5, Line 18: “The ATL06 algorithm uses 3m as the minimum window height.” 

You are correct. We applied the following correction: 

The height of the window is taken as the maximum of the observed photon spread, the previous 

window height (if any), and 3 m… 

 

Page 5, Line 26: “I would mention that 3cm is far below the horizontal geolocation uncertainty 

of ICESat-2” 

To highlight the accuracy of ICESat-2 geolocation, we applied the following change: 

The central strong beam for ICESat-2 is near-nadir, so the horizontal offset was determined to be 

small relative to the size of lakes (~3 cm, far below the horizontal geolocation uncertainty of 

ICESat-2). 

 

Page 6, Line 10: “What do you mean quantitatively by agree well?” 

We acknowledge that a quantitative representation of the agreement would be beneficial. We 

therefore made the following change: 

We compare zs and zp over lakes with well-defined bottoms, and show in Sect. 4 that the two 

generally agree to within 0.88 m. 

 

Page 6, Lines 12–14: “These sentences are awkwardly phrased.” 

We reworded the given sentences in the following manner: 



We acknowledge the desire to retrieve lake volume from laser altimetry, but we leave the 

development of such an algorithm for a future study. For example, depth retrievals from ICESat-

2 could potentially be combined with lake radius and shape estimations determined from visible 

satellite imagery to derive water volume. 

 

Page 6, Lines 16–18: “You list the dates here, in Figure 1 and in Table 1. I would get rid of Table 

1 as it seems extraneous.” 

We assessed the necessity of Table 1, and we agree that it is redundant with the information 

given in Section 3.4. The table is deleted in the revised manuscript. Lines 19-20 were changed to 

reflect this: 

Comparisons between Landsat-8 imagery and ICESat-2/OIB flight tracks confirmed supraglacial 

lake overpasses for study. In Spring 2019… 

 

Page 6, Lines 21–23: “Why mention this?” 

At the time of writing, ATM data from the 2019 Spring campaign were unobtainable despite the 

availability of ICESat-2 data. Lines 21-23 are given as justification for the lack of case studies 

co-located by ICESat-2 and ATM. With the release of the 2019 Spring data, we were unable to 

find suitable lake candidates that may be observed by both ATM and ICESat-2. We updated the 

given lines to reflect this: 

There were no lakes sampled at the time by both ICESat-2 and OIB. 

 

Page 6, Lines 25–26: “I would rewrite to be ‘We detected 12 lakes with sufficient bed returns 

from the ATM data and 16 potential lake surfaces overall.’” 

We changed as requested: 

We detected 12 melt lakes with sufficient bed returns from the ATM data and 16 potential melt 

lake surfaces overall. The melt lake profiles are shown in Fig. 3… 

 

Page 6, Line 27: “What do you mean quantitatively by good accuracy?” 

We qualitatively considered the surface accuracy to be “good” if the algorithm distinguished 

between lake surfaces and the surrounding ice terrain. To provide a more quantitative 

assessment, we calculated the standard deviation of surface photons (σsfc). The mean for σsfc was 

found to be 0.0087 m, thus demonstrating the effectiveness of the flatness check. We revised 

Line 27 to reflect this assessment: 



The algorithm reliably distinguishes between lake surfaces and the surrounding ice terrain. The 

mean spread among lake surface photons is 0.0087 m, or well within the flatness threshold of 

0.02 m. Lake bottoms are well-defined when ds < 8 m. Lake bottoms deeper than 8 m exhibit 

fewer signal returns… 

 

Page 7, Line 3: “lake bed elevations” 

We changed as requested: 

The highest uncertainties are observed for lake depths greater than 3 m… 

 

Page 7, Line 4: “perhaps influenced by low signal-to-noise ratios or the conical scanning of the 

lidar instrument” 

We changed as requested: 

...perhaps influenced by low signal-to-noise ratios or the conical scanning of the OIB lidar 

instrument. 

 

Page 7, Lines 8–9: “We examined an additional 12 supraglacial lakes with ICESat-2, eight in 

Greenland and four highlighted in Magruder et al. (2019) on the Amery Ice Shelf in Antarctica 

(Fricker et al., in prep.).” 

We applied the following change: 

We examined an additional 12 supraglacial lakes with ICESat-2, eight in Greenland and four 

highlighted in Marguder et al. (2019) and Fricker et al. (in prep) on the Amery Ice Shelf in 

Antarctica. 

 

Page 7, Line 10: “What do you mean by reasonable success?” 

As with Page 6, Line 27, “reasonable success” is a qualitative assessment of the lake surface/bed 

profiles. We added a quantitative assessment of lake surface/bed uncertainty, as seen below. 

The refined algorithm captures lake surfaces and beds reasonably well (Fig. 4), with a mean 

uncertainty of 0.015 m for surface photons and 0.38 m for bed photons. 

 

Page 7, Line 21: “less necessary for ICESat-2 than ATM for the supraglacial lakes studied here” 

We changed as requested: 



It must also be noted that lake bed photons are more likely to be found in the ATL03 photon 

cloud than in ATM waveforms, meaning that the polynomial estimates are less necessary for 

ICESat-2 than ATM for the supraglacial lakes studied here.” 

 

Page 7, Line 34: “ICESat-2 returns are also affected by first-photon-bias (particular if complete 

saturation of the detectors occurs), blowing snow events (which by for-ward scattering can create 

sub surface photons or have a multi-modal return by the snow itself), and solar radiation 

background.” 

The reviewer is correct. To highlight these issues, we revised Line 33 to include the following: 

At its operational altitude, the ATLAS laser is subject to first-photon-bias, solar background 

radiation, and scattering and absorption by clouds and blowing snow. 

 

Page 8, Line 7: “What do you mean in the attribution sentence?” 

In lakes observed by ICESat-2, we observed clear differences in lake bed topography between 

Antarctica and Greenland. We speculate in the revised Section 5.2 that bed topography may 

affect the return signal of the ATLAS laser and produce greater uncertainties. 

We also realized that the sentence did not flow with the preceding paragraph, so we propose to 

revise the sentence as follows: 

We observed differences in lake topography for ICESat-2 lakes, and we attribute them to the 

underlying ice surfaces. 

 

Page 8, Lines 14–31: “I’m not sure if mixing classifications is the best approach for deter-mining 

the signal classification. You’re right that supraglacial lakes are not quite fit in any default 

category in the signal classification algorithm of ATL03. I may be mistaked but I think 

supraglacial lakes being classified higher in “land” than “land ice” makes sense due to the tighter 

histogram window of “land ice” (and not that supraglacial lakes resemble canopies). Going 

forward, it might be better to use signal and buffer photons of a single surface class and iterate to 

remove potential background photons.” 

We agree that a single surface class offers a simpler approach to the classification issue 

discussed in Section 5.2. A follow-up analysis confirmed that the “land” classification is 

sufficient to characterize the lakes examined in this study. The example given in Figure 5 

highlights this point. 

According to the ATL03 Algorithm Theoretical Basis Document, classifications are based on 

surface masks, with overlaps frequent for land and land ice over ice sheets. Therefore, 

differences between the two surface types should originate from dissimilar criteria for signal 



photons, as the reviewer suggests. To amend this misconception, we edited the following for the 

revised Section 5.2 (see broad comment #3): 

Finally, the ATL03 signal-finding algorithm is conservative in that it accepts false positives 

(background photons classified as signal photons) to ensure that all signal photons are passed to 

higher-level products. Thus, uncertainties in the ATL03 photon classification contribute to noise 

in the water column and the lake bed. The classification algorithm uses pre-defined surface 

masks to allocate statistical confidence to ATL03 photons for multiple surface types (e.g. “inland 

water”, “land ice”, “land”; Neumann et al., 2019b), with overlap possible between masks. Melt 

lakes are categorized as “land ice” (lake surface) and “land” (lake surface and bed). Because the 

“land” classification also includes the bed, it includes more potential signal photons than land 

ice, so our recommendation is to only use land photons for supraglacial lake depth retrievals. It 

must be noted, however, that a lake bed profile is fully resolved only with the inclusion of low-

/medium- confidence and “buffer” photons. The buffer photons ensure that all photons identified 

as surface signal are provided to the appropriate upper-level data product algorithms. However, 

they can introduce greater noise to the profile, so more sophisticated filtering techniques are 

needed to distinguish between signal photons and the solar background. 

 

Page 9, Line 7: “Should add a value for ‘too deep’” 

We agree. For better consistency with the results, we changed Line 7 to the following: 

Lake bottoms are easy to identify once lake surfaces are established, given that the lakes are not 

deeper than 7 m. 

 

Figure 4: “The polynomial fits are pretty poor for complex beds. I get the need to not overfit the 

beds, but would it be better to use a variable order of polynomial or splines?” 

It is true that the polynomials perform poorly for many of the lakes observed by ICESat-2. The 

3rd-order approximation was designed to fill the gaps in deep lakes with the classic “bowl” shape. 

The polynomial fits therefore perform most effectively for the deep lakes observed by ATM, 

where the bed topography is less complex. 

The lake beds in Figure 4 generally show greater complexity, which results in the poorer fits. In 

these cases, we agree that a spline interpolation would perform more effectively. We therefore 

replaced the polynomial fits in Figure 4 with splines on a case-by-case basis. Ultimately, only the 

polynomial fit in lake 4i was retained due to poor spline fitting. 

We highlight the notion that the polynomial/spline fit is less unnecessary for ICESat-2 lakes, 

given that bed photons are more likely to be found in the ATL03 photon cloud. Its primary 

function in ICESat-2 retrievals is to fill gaps missed by the initial bed-finding routine, rather than 

predict the deepest part of lakes. Due to the limited usage of the 3rd-order fit, we removed the 

“polynomial error” column in Table 3, instead focusing on how the interpolants improved 

retrievals for lakes 4a, 4b, 4f, and 4i. The updated Figure 4 is shown below. 



Lastly, the change to spline fitting for ICESat-2 lakes necessitated alterations to the text. The 

changes are given here: 

Page 6, Paragraph 2: For deep or inhomogeneous lakes, attenuation of photon energy in water 

resulted in fewer signal photons observed at lake bottoms (Fig. 4). In these situations, we fitted 

polynomial or spline fits to all lake profiles with bounds at the lake edges. Lakes observed by 

ATM typically featured “bowl” shapes and attenuation at the deepest parts, so 3rd-order 

polynomials were sufficient. In ICESat-2 data, the retrieved lake beds showed greater 

complexity, so we tested polynomial fits and splines on a case-by-case basis. Lake depths 

approximated with curve fitting were denoted as zp… 

Page 7, Lines 17-21: The curve fits improved depth estimates for lakes 4b, 4f, and 4i. Of these 

lakes, only 4i used a polynomial estimate due to poor spline fitting. The inclusion of interpolants 

increased the mean depth estimates of 4b, 4f, and 4i by 0.08 m, 0.04 m, and 0.03 m respectively. 

The spline fitting also significantly increased the maximum observed depth in lake 4b from 2.67 

m to 3.27 m. The remaining lakes featured more complete bed profiles, meaning that the fitting 

estimates were less necessary. 

Figure 4: Polynomial curves were replaced with splines. The legend entry “Polyfit” was changed 

to “CurveFit” (this change also occurred for Figure 3). 

Table 3: The polynomial error (ϵp) was removed. 

 

Figure 4. Supraglacial lakes and melt ponds detected by ICESat-2 over the Amery Ice Shelf (a-d, 

reported by Magruder et al., 2019 and Fricker et al., in prep.) and western Greenland (e-l), using 

Tracks 0081 and 1222, respectively. 

 

Figure 4: “Bed detection seems to be a bit off on the lake edges (a, e, g, i, j, k, l).” 



The lake bed detection is restricted to the edges of the lake surfaces. This limitation affects the 

number of photons considered to be acceptable bed photons, which occasionally leads to a slight 

skewing of the lake bed near the edges. We observed this issue occurring most frequently with 

smaller, shallower lakes with fewer photons. The following was added to Lines 9-11 to account 

for this: 

The refined algorithm captures lake surfaces and beds reasonably well (Fig. 4), with a mean 

uncertainty of 0.015 m for surface photons and 0.38 m for bed photons. The lake edges partially 

account for the bed photon uncertainty, for the limited number of acceptable photons produces a 

slight bias in bed estimates. 

 

Figure 5: “I don’t know if this figure has much meaning.” 

After careful consideration, we agreed that Figure 5 is unnecessary for the relevant discussion. 

We propose to delete it. 

 

Table 1: “I don’t think this table is necessary with Figure 1 and the text.” 

As mentioned in a previous comment, we removed Table 1 and made the appropriate text 

changes. 

 

Response to Review #2 

Scope comment: “The paper limits itself to central strong beam (GT2R), but then also includes 

lower confidence photos from this band which ‘decreases measurement precision but gives better 

agreement with ground-based data.’ Because of this, I am wondering why other beams were not 

used, or at least their potential use discussed in the paper?” 

The central strong beam was initially selected for the number of lakes observed over the Amery 

Ice Shelf. However, we recognize that the other strong beams (GT1L and GT3L) could also be 

used for depth retrievals. The weak beams (GT1R, GT2R, and GT3R for these ground tracks) are 

less effective at detecting beds for deeper lakes, so they were omitted from this study. We added 

the following to Section 2.1 to address these questions: 

Our study focused on the central strong beam, as the number of lakes was deemed sufficient for 

our purposes. While we recognize that the other strong beams could be useful for depth retrievals 

we did not consider them here. We speculate that the weak beams may avoid issues with 

multiple scattering and specular reflection, but their power is too low to reliably detect lakes 

deeper than 4 m. 

 

Page 6 Line 14: “Do you have any estimate for just how widely applicable these methods will be 

/ how easy it is to get good coverage? I understand you have to put limits on this paper 



somewhere, for sure, so this is mostly out of curiosity and might be of interest in a discussion/ 

conclusion?” 

We agree that these points would be useful to readers, so we added more information in Section 

5.1. 

The success of this method for lake depth retrievals is governed by spatial and temporal 

sampling of the instruments across the lakes when they are full. The methods presented here are 

most effective when the altimeter passes directly over the deep part of a lake rather than at its 

edge. This provides a lake depth profile that is more representative of the complete lake, 

allowing for improved estimates of lake depth and extent. A complete lake profile also provides 

sufficient information to the LSBS algorithm, reducing the risk of false negatives that occur with 

small lakes or incomplete profiles. The temporal sampling of ICESat-2 and ATM is infrequent 

(every 91-days for ICESat-2 and random for ATM), and so the same lakes will not always be 

present every time these data are required. Therefore, coincident satellite imagery is desirable to 

simplify the lake-finding process. 

 

Data & Code Citation/Sharing (1) “The Cryosphere’s data policy states that ‘Authors are 

required to provide a statement on how their underlying research data can be accessed. This must 

be placed as the section ‘Data availability’ at the end of the manuscript.’ I did not see such a 

section. Clarity in citing the exact subsets of the large datasets that you cite would be ideal 

(which I know is also in your Table 1, but not presented in one place).” 

The full information for the ICESat-2 and ATM data is given in Section 3.4, including date, 

ground track number, and coordinates. However, we acknowledge the lack of a Data Availability 

section, and we included one in the revised manuscript. 

Code and data availability: ICESat-2 ATL03 V002 and ATM L1B V002 data may be accessed 

from https://doi.org/10.5067/ATLAS/ATL03.002 and https://doi.org/10.5067/19SIM5TXKPGT, 

respectively.  Depth data for the supraglacial lakes given in Figure 4 are available at 

https://doi.org/10.5281/zenodo.3838274. Depth data for lakes in Figure 3 are available upon 

request from Zachary Fair. The LSBS algorithm and its subroutines may also be accessed from 

https://doi.org/10.5281/zenodo.3838274. 

 

Data & Code Citation/Sharing (2) “The Cryosphere guidelines also state that "Data do not 

comprise the only information which is important in the context of reproducibility. Therefore, 

Copernicus Publications encourages authors to also deposit software, algorithms, model code, 

video supplements, video abstracts, International Geo Sample Numbers, and other underlying 

material on suitable FAIR-aligned repositories/archives whenever possible. These materials 

should be referenced in the article and cited via a persistent identifier such as a DOI." There is 

clearly a lot of important code developed and used by the authors, and it would be in line with 

this journal’s goals that it be documented, shared, and cited. This would allow for 

reproducibility, further application of these methods, and further refinement, as well. I very 

https://doi.org/10.5067/ATLAS/ATL03.002
https://doi.org/10.5067/19SIM5TXKPGT
https://doi.org/10.5281/zenodo.3838274
https://doi.org/10.5281/zenodo.3838274


much hope that the reviewers document, share, and cite the final version of their code to make 

their methods as open as the data they use and the publication they have chosen to publish in. (Of 

course, if you have another code/methods paper in prep, then please do cite that and I apologize 

for jumping the gun!)” 

The lake detection algorithms are available under the Assets section through the following link: 

https://doi.org/10.5281/zenodo.3838274. This is noted in the “Code and data availability” 

section. 

The LSBS algorithm and its subroutines may also be accessed from the DOI given above. 

 

 

 

Data & Code Citation/Sharing (3) “And since I’m talking about data and code sharing - at the 

risk of inviting my own citation - you cited Pope at al 2016 on Page 2 Line 23/24. I wonder 

whether you might (also) want to cite Pope (2016), which I bring up here because if more fully 

describes, documents, and shares the code developed and used in the Pope et al paper. 

https://doi.org/10.1002/2015EA000125” 

We agree that the given paper would be a useful citation. We therefore added the following to 

Page 2, Line 17: 

The normalized water difference index (NWDI) and dynamics thresholding techniques have also 

been considered for lake detection (Fitzpatrick et al., 2014; Liang et al., 2012; Moussavi et al., 

2016; Pope, 2016; Williamson et al., 2017; Moussavi et al., 2020). 

 

Page 1 Line 8-9 (Abstract): “Can you quickly mention where the uncertainties are derived from 

here? It might just be me, but if quickly reading, it makes it sounds like there is comparison to 

some in situ data…” 

The uncertainty was derived from the standard deviation of acceptable lake bed photons. In other 

terms, the depth uncertainty is equal to the spread of lake bed photons. We reworded the given 

lines to be clearer: 

Lake bed uncertainties for these retrievals… 

 

Page 4 Line 10: “about how long is each data granule, in ground distance, to include10ˆ4 - 10ˆ5 

photos per window? I think this will help people understand the next assumptions.” 

Each flight track for ATM is 13-15 km in length, whereas each ICESat-2 ground track is ~103 

km in total distance. We indirectly addressed this comment in response to Reviewer #1: 

https://doi.org/10.5281/zenodo.3838274
https://doi.org/10.1002/2015EA000125


We divided each data granule into discrete along-track windows to reduce the data volume to 

~104-105 photons per window. This photon count is equivalent to ~1-10 km in along-track 

distance for ICESat-2 and ~0.15-1.5 km for ATM. 

 

Page 4 line 14: “How were these ranges selected / chosen? This would seem to be an important 

part of method development.” 

These thresholds were selected by comparing the flatness of lake surfaces to that of surrounding 

ice topography. We also note here that the ATM threshold of 0.002 m was a typo, and it is 

supposed to be 0.02 m. We added the following to provide more clarity: 

We define a “flat” surface for regions where σ ≤ 0.05 m for ATL03 data, and ≤ 0.02 m for 

ILATM1B data. We selected these values by comparing the “flatness” of lake surfaces to that of 

surrounding ice topography. 

 

Page 4 Line 14: “I’m sorry if I missed it, but can you define sigma in the text upon first usage?” 

Sigma is previously defined as the standard deviation of high-confidence photons in Lines 12-13. 

To avoid confusion for future readers, we edited these lines slightly: 

We check the flatness of the window by computing the standard deviation (σ) of high-confidence 

signal photons… 

 

Page 4 Line 17: “Consider replacing "lake surface" with ‘height of the lake surface’ and 

underlining the letters h, s, f, and, c in order to make the abbreviation very clear?” 

We changed as requested: 

…we assigned the data to a new array for the height of the lake surface (hsfc). 

 

Page 4 Line 20: “How were these ranges selected / chosen? This would seem to be an important 

part of method development.” 

The ranges for acceptable bed photons were selected through trial-and-error. The given bounds 

were selected to minimize the impacts of multiple scattering and specular reflection. To make 

this clear in the text, and to address comments from Reviewer #1, we reworded Lines 19-22 to 

be: 

Within these horizontal bounds, we defined photons as a lake bottom if they satisfied the 

condition: ℎ𝑠𝑓𝑐 − 𝑎𝜎𝑠𝑓𝑐 ≤ ℎ ≤ ℎ𝑠𝑓𝑐 − 𝑏𝜎𝑠𝑓𝑐, where σsfc is the standard deviation of lake surface 

photons. The constraints a and b were derived through trial-and-error, such that a = 1.0 (1.8) and 



b = 0.5 (0.75) for ICESat-2 (ATM). We set these constraints to reduce the impacts of multiple 

scattering and specular reflection on depth estimates. 

 

Page 4 Line 22: “Consider replacing ‘lake surface’ with ‘height of the lake bottom’ and 

underlining the letters h, b, t, and, m in order to make the abbreviation very clear?” 

We assume this is a typo and that the reviewer is actually requesting a rewording of the term 

“lake bottom” (rather than “lake surface”). With this assumption, we applied the following 

change: 

…the data were placed in an array for the height of the lake bottom (hbtm). 

 

Page 4 Line 27: “How were these filters chosen? This would seem to be an important part of 

method development.” 

We expand upon these issues in Section 5.2. However, we acknowledge that justification is 

needed here, so we applied the following change: 

For ICESat-2, lakes shallower than 1.3 m or less than 200 m in horizontal extent were found to 

be too noisy or ill-defined for further analysis (see Section 5.2 for more details). 

 

Page 4 / Section 3.1 in general: “It would be even clearer to present these methods if there were 

agreement between the steps here and in Figure 2 (e.g. one box / arrow per bullet point).” 

We contemplated this suggestion, and we decided that one box or arrow per bullet point was 

unnecessary. However, we added labels to Figure 2 (now Figure 1 in response to another 

suggestion) to improve consistency with Section 3. The modified figure is shown below, and the 

bullet points in Section 3.1 were changed for consistency: 

i. We divided each data granule into discrete along-track windows… 

ii. Each data window was binned into elevation-based histograms… 

iii. If the satellite image(s) confirmed the presence of a lake, the data were assigned to a new 

array for the lake surface (hsfc). The horizontal extent of the lake surface served as a constraint 

for where the lake bottom data could be defined… 

iv. A series of filters were applied to improve surface/bed estimates… 

v. If the data were obtained from ICESat-2, then we followed a photon refinement routine that is 

described in more detail in Section 3.2. Calculations for lake depth were then performed for both 

ATM and ICESat-2 retrievals and corrected for refraction (Section 3.3). 

 



Page 6 Line 18: “I could be wrong, but it is possible that Figure 1 and 2 are cited in backwards 

order? You might consider flipping their numbers?” 

You are correct. For better consistency, we changed the numbering for the relevant figures. 

(From Page 4, Line 7) For both instruments, the procedure for separation was identical, and is as 

follows (see Fig. 1 for a schematic view)… 

(From Page 6, Lines 16-18) We present cases over the Amery Ice Shelf […], the western 

Greenland ablation zone […], and Hiawatha Glacier […] (Fig. 2). 

 

Page 5 Line 27: “You mention a refraction correction but then there is no further detail. I know it 

is pretty basic, but for full clarity perhaps describe slightly more / provide a citation for the 

method you use for refraction correction?” 

The refraction correction mentioned in Line 27 is briefly described in Lines 23-25. Line 24 

includes a citation to Parrish et al. (2019), who outline a refraction correction algorithm based on 

beam angle and water depth. For quick reference, the passage is given below: 

As a final adjustment to the lake photons, we applied a refraction correction algorithm to account 

for slowing down of the light as it enters water. The correction follows the methods utilized by 

Parrish et al. (2019) by approximating refractive biases as a function of depth and beam elevation 

angle. 

 

Page 6 Line 29: “I wonder if you this it is important to re-emphasize the filtering of which lake 

depths were kept in presenting average lake depths? e.g. lots of shallow lakes aren’t being 

included?” 

The lake statistics given in Table 2 reflect quantities calculated from the lakes included in Figure 

3. Therefore, the excluded lakes were not considered for the average depth given in Line 29. To 

emphasize this, we reworded Line 29 to be: 

The average lake depth estimate for the lakes in Fig. 3 was 1.95 m… 

 

Figure 1: “Consider using dots to indicate location, rather than ovals, which are much larger than 

the image are?” 

This is a good suggestion. We replaced ovals with stars centered on the regions of interest. The 

stars appeared small if the full continental image was used, so we cropped the images to center 

on the markers. The new figure may be seen below: 



 

 

Figure 2: “It is slightly confusing that you use the same blue boxes for both data and processes 

(e.g. Landsat 8 imagery vs verify lake detection), consider using different shapes / colors / some 

design choice to indicate the difference?” 

We changed the color of the “ATL03/ILATM1B granule” and “Landsat-8 imagery” boxes to 

green to differentiate data inputs from algorithm steps. We also grouped the steps into sections to 

create better consistency between the figure and Section 3, as suggested above. The new figure 

and caption are shown below: 



 

Figure 2. Schematic for the workflow of the lake surface-bed separation algorithm, where green 

boxes indicate data inputs and blue boxes are steps in the algorithm. Roman numerals match the 

steps given in Section 3.1. 

 

Table 2: “Please also define d_s, d_p, and L in the table caption” 

We changed as requested: 

Cumulative statistics for ATM supraglacial lakes explored in this study, including mean and 

maximum signal-based depth (ds) and polynomial-based depth (dp), along-track extent L, mean 

lake depth uncertainty… 
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Abstract. Supraglacial lakes and melt ponds occur in the ablation zones of Antarctica and Greenland during the summer

months. Detection of lake extent, depth, and temporal evolution is important for understanding glacier dynamics, but passive

remote sensing techniques have inherent uncertaintiesassociated with depth retrievals, and observations from the original

ICESat mission experienced high absorption in water
:
.
::::::::
Previous

::::::
remote

:::::::
sensing

:::::::::::
observations

::
of

::::
lake

::::::
depth

:::
are

::::::
limited

:::
to

:::::::
estimates

:::::
from

:::::::
passive

::::::
satellite

::::::::
imagery,

::::::
which

:::
has

:::::::
inherent

::::::::::::
uncertainties,

:::
and

:::::
there

::
is
:::::
little

::::::
ground

::::
truth

::::::::
available. In this5

study, we use laser altimetry data from the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) over the Antarctic and Green-

land ablation zones and the Airborne Topographic Mapper (ATM) for Hiawatha Glacier (Greenland) to demonstrate retrievals

of supraglacial lake depth. Using an algorithm to separate lake surfaces and beds, we present case studies for 12 supraglacial

lakes with the ATM lidar and 12 lakes with ICESat-2. Both lidars
::::::
reliably detect bottom returns for lake beds as deep as 7

m. Uncertainties
::::
Lake

:::
bed

:::::::::::
uncertainties

:
for these retrievals are 0.05-0.20 m for ATM and 0.12-0.80 m for ICESat-2, with the10

highest uncertainties observed for lakes deeper than 4 m. Using ICESat-2 confidence classifications of detected photons, we

found
:::
The

::::::::
bimodal

:::::
nature

::
of

::::
lake

:::::::
returns

:::::
means

:
that high-confidence photons are often insufficient to fully profile lakes, so

lower confidence and buffer photons are recommended for improved retrievals. Despite issues in photon classification
:::::::
required

::
to

::::
view

:::
the

::::
lake

::::
bed.

:::::::
Despite

:::::::::
challenges

::
in

:::::::::
automation, the altimeter results are promising, and we expect them to serve as a

benchmark for future studies of surface meltwater depths.15

1 Introduction

The ice sheets of Antarctica and Greenland modulate rates of sea level rise, contributing 14.0± 2.0 mm (Antarctica) and 13.7±
1.1 mm (Greenland) since 1979 (Mouginot et al., 2019; Rignot et al., 2019). Current trends indicate greater melt in the coming

decades, leading to
::
the

::::::::::::
contributions

::::
from

:
both ice sheets becoming dominant contributors to

::
to

:::::::
overtake

:::
the

::::::::::
contribution

:::
of

::::::
thermal

:::::::::
expansion

::
to sea level rise (Vaughan et al., 2013). Meltwater plays vital roles in ice sheet evolution (e.g., van den Broeke20

et al., 2016), including accumulation
::::::::::
aggregation on ice sheets as supraglacial lakes, many of which are several meters deep

(Echelmeyer et al., 1991). These
::::
When

:::::::::
unfrozen,

::::
these

:
lakes exhibit a lower albedo than

:::
that

::
of the surrounding ice, allowing

1



them to absorb more incoming solar radiation and melt ice more efficiently, thus generating a positive feedback (Curry et al.,

1996). Supraglacial lakes are significant reservoirs of latent heat (Humphrey et al., 2012), and their spectral emissivity in the

IR spectrum also differs from bare ice (Chen et al., 2014; Huang et al., 2018), leading
:::::
which

:::
can

::::
lead to potentially significant

impacts on the surface energy balance of ice sheets.

A substantial portion of meltwater eventually drains into supraglacial streams or moulins (drainage channels), where it5

can flow to the ice bed (Banwell et al., 2012; Catania et al., 2008; Selmes et al., 2011). Meltwater
:::::
During

:::::::::::
catastrophic

::::
lake

:::::::
drainage

::::::
events,

:::::::::
meltwater

:
penetration into the ice also leads

:::
can

::::
also

::::
lead

:
to hydrofracture, a mechanism through which

meltwater facilitates full ice fracture as a result of the stresses induced by the density contrast between liquid water and ice

(Das et al., 2008). Meltwater injection to the bed can also modify basal water pressures which in turn modify the resistance to

ice flow and thus sliding velocity
:::
can

::::::
impact

:::::
sliding

:::::::
velocity

::::
and

:::
ice

::::::::
discharge.

:
(Parizek and Alley, 2004; Zwally et al., 2002).10

Hydrofracture can lead to significant ice loss for outlet glaciers and ice shelves (Banwell et al., 2013). Current observations

and modeling efforts indicate a propagation of supraglacial lakes farther inland as the climate warms (Howat et al., 2013;

Leeson et al., 2015; Lüthje et al., 2006), raising further concerns for accelerated mass loss. For these reasons, knowledge of

supraglacial lakes is important for our understanding of ice sheet evolution.

Previous studies developed techniques for detecting supraglacial lakes and retrieving depth, areal coverage, and volume.15

In-situ observations employed sonar and radiometers to approximate lake depth and albedo (Box and Ski, 2007; Tedesco and

Steiner, 2011). However, the harsh conditions of Antarctica and Greenland, the transience of meltwater, and the sheer size of the

ice sheets
::::
sheet

:::::::
ablation

:::::
zones

:
restrict the potential for extensive in-situ measurements, encouraging lake depth and areal cov-

erage estimates from passive remote sensing data such as Landsat-8, MODIS, and Sentinel-2 A/B. Supraglacial water is darker

than surrounding ice in visible and IR bands, allowing the use of band ratios between blue and red reflectance (Stumpf et al.,20

2003). The normalized water difference index (NWDI) and dynamic thresholding techniques have also been considered for lake

detection (Fitzpatrick et al., 2014; Liang et al., 2012; Moussavi et al., 2016; Williamson et al., 2017; Moussavi et al., 2020)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Fitzpatrick et al., 2014; Liang et al., 2012; Moussavi et al., 2016; Pope, 2016; Williamson et al., 2017; Moussavi et al., 2020).

Other methods implemented radiative transfer models (Georgiou et al., 2009) or positive degree day models (McMillan et al.,

2007) to estimate lake albedo and meltwater volume, respectively. By comparing surface reflectance data of supraglacial water25

to that of ice and optically deep water, empirical relationships have been derived to approximate lake depth (Philpot, 1989;

Sneed and Hamilton, 2007).

Image-based empirical techniques rely on approximations of lake bed albedo and an attenuation parameter, both of which

are subject to uncertainties from lake heterogeneity and cloud cover (Morassutti and Ledrew, 1996). Furthermore, Pope et al.

(2016) found that band ratios were insensitive to lakes deeper than 5 m, leading to errors that may exceed 1 m. Parameter30

fitting in the empirical equations requires supplementary depth retrievals, often from in-situ sources. More accurate methods

for supraglacial lake detection are needed to improve image-based estimates.

In September 2018, the Ice, Cloud and land Elevation Satellite-2 (ICESat-2) with the primary objective of obtaining laser

altimetry measurements of the polar regions (Abdalati et al., 2010; Markus et al., 2017; Neumann et al., 2019b). Observations

using the Airborne Topographic Mapper (ATM) and Multiple Altimeter Beam Experimental Lidar (MABEL) indicated the35

2



potential for shallow water profiling with laser altimetry (Brock et al., 2002; Brunt et al., 2016; Jasinski et al., 2016), and

ICESat-2 applications were recently demonstrated by Ma et al. (2019) and Parrish et al. (2019). In this study, we identify

test cases from ICESat-2 and ATM altimetry data and use these pilot cases to develop an algorithm for detecting supraglacial

lakes and retrieving lake depth. The algorithm is designed as a semi-automatic method to find supraglacial lakes within select

altimetry granules.5

2 Data Description

2.1 ICESat-2

ICESat-2 is a polar orbiting satellite with an inclination of 92 degrees that carries the Advanced Topographic Laser Altimeter

System (ATLAS), a 532 nm micro-pulse laser that is split into 6 distinct beams
:::
six

::::::
distinct

::::::
beams

::::
with

::::::
names

:::::
based

:::
on

:::
the

::::::
ground

::::
track: GT1L/R, GT2L/R, and GT3L/R. The beams are configured in pairs with a 90-meter separation between beams10

within a beam-pair and 3.3-kilometer
:::::::::
-kilometers between pairs. With an operational altitude of ~500 km and a 10 kHz pulse

repetition rate, ICESat-2 records a unique laser pulse
:::::::::::
approximately

:
every 0.7 m along-track over a 91-day repeat cycle.

The ATLAS product used here is the ATL03 Global Geolocated Photon Data V002 (Neumann et al., 2019a), which consists

of retrieved photons tagged with latitude, longitude, received time, and elevation. Each photon pulse also carries a classification

as either signal or background (noise). The differentiation between signal and background is performed using a statistical algo-15

rithm outlined by Neumann et al. (2019b). Signal photons are further classified by confidence level, such that photons labeled

as "high confidence" are most likely to originate from the surface. Generally, cloudy or variable profiles exhibit "medium/low

confidence" or noise photons, whereas low slope surfaces, such as water and ice sheets, result in more "high confidence" pho-

tons (Neumann et al., 2019b). In thin layers of water, high confidence photons are observed from both the water surface and

the underlying ice.20

Of the six beams available, we concentrated
:::
Our

:::::
study

::::::
focused

:
on the central strong beam (GT2L)to increase the likelihood

of detecting lake bottoms.
:
,
::
as

:::
the

:::::::
number

::
of

:::::
lakes

:::
was

:::::::
deemed

::::::::
sufficient

:::
for

:::
our

::::::::
purposes.

:::::
While

:::
we

:::::::::
recognize

:::
that

:::
the

:::::
other

:::::
strong

::::::
beams

:::::
could

::
be

:::::
useful

:::
for

:::::
depth

::::::::
retrievals,

:::
we

:::
did

:::
not

:::::::
consider

:::::
them

::::
here.

:::
We

::::::::
speculate

::::
that

:::
the

::::
weak

::::::
beams

::::
may

:::::
avoid

:::::
issues

::::
with

:::::::
multiple

:::::::::
scattering

:::
and

::::::::
specular

:::::::::
reflection,

:::
but

::::
their

::::::
power

::
is

:::
too

::::
low

::
to

:::::::
reliably

:::::
detect

:::::
lakes

::::::
deeper

::::
than

::
4
:::
m.

Ground-based validation by Brunt et al. (2019b) indicates an accuracy of <5 cm in ATL03 photons over ice sheet interiors.25

Only high-confidence photons were considered initially, but photons of lower confidence were included for attenuated lake

bottoms (see Sect. 5.2 for more details). The addition
:::
The

:::
use of medium, low, and "buffer"

::::::
“buffer”

:
photons slightly decreases

measurement precisionbut ,
::::

but
:
a
::::

less
::::::::
truncated

::::::::
transmit

:::::
pulse gives better agreement with

:::::
ATL06

::::
and

:
ground-based data

(Brunt et al., 2019b).
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2.2 Airborne Topographic Mapper

The Airborne Topographic Mapper is a 532 nm lidar flown as part of Operation Icebridge
::::::::
Operation

::::::::
IceBridge

:
(OIB) , a

campaign
::::::::
campaign

:::
was

:
designed to fill the gap in polar altimetry between ICESat and ICESat-2.

::
Its

::::::::
scientific

::::::
payload

::::::::
included

::
the

::::::::
Airborne

:::::::::::
Topographic

:::::::
Mapper,

:
a
:::
532

:::
nm

:::::
lidar

:::
that

:::
has

::::
been

::::
used

:::
for

:::
ice

:::::
sheet

:::
and

::::::
shallow

:::::
water

::::::::::::
measurements

:::::
since

:::::
1993.

The ATM lidar conically scans at 20 Hz, providing a 400 m swath width along-track (Brock et al., 2002; Krabill et al., 2002).5

The ATM Level-1B Elevation and Return Strength (ILATM1B) product converts analog waveforms into a geolocated photon

:::::::
elevation

:
product to emulate ATLAS data (Studinger, 2013, updated 2018), though

:
.
::::::::
Although it lacks a statistical confidence

definition. Despite this, ,
:::::
ATM

::::::
applies

:
a
:::::::
centroid

::::::
model

::
to

:::::::
digitized

::::::::::
waveforms

:
to
:::::::
retrieve

:::::::::::::
high-confidence

::::::::
photons. Brunt et al.

(2019a) found that ATM errors were -9.5 to 3.6 cm relative to ground-based measurements. Currently
::::
Here, the ATM results

presented serve as a proof of concept for the lake detection algorithm.10

3 Methods

3.1 Lake Detection

Supraglacial lake surfaces are much flatter than surrounding terrain. We thus performed topography checks with the expec-

tations that (i) lake surfaces would be easily identifiable in photon histograms and (ii) lake beds may be found via statistical

inference in the region of the lake surface. To simplify the identification of lake features, we separated them into two arrays:15

one for the surface and one for the bed. We refer to this technique as "
:
,
:::::
which

:::
we

:::::
refer

::
to

::
as

:
“lake surface-bed separation"

:
”

(LSBS). For both lidars, the procedure for separation was identical, and is as follows (see Fig. 2
:
1
:
for a schematic view):

i. We divided each data granule into discrete along-track windows to reduce the data volume to ~104-105 photons per

window.
::::
This

::::::
photon

:::::
count

::
is

:::::::::
equivalent

::
to

:::::
~1-10

:::
km

::
in

::::::::::
along-track

:::::::
distance

:::
for

::::::::
ICESat-2

:::
and

::::::::
~0.15-1.5

::::
km

::
for

::::::
ATM.

If a supraglacial lake appeared on the edge of the window, the window size was adjusted to include the full observed20

water feature.

ii. Each data window was binned into elevation-based histograms. We assumed that the lake surface dominates the total bin

count within each window of 105 photons. Thus, we performed a flatness check
:::::::
photons.

:::
We

::::::
check

:::
the

::::::
flatness

:::
of

:::
the

::::::
window

:
by computing the standard deviation

::
(σ)

:
of high-confidence signal photons within the upper 85th-percentile of

bin count. A flatwater surface was defined for ATL03 data
:::
We

:::::
define

::
a
:::::
“flat”

::::::
surface

:::
for

::::::
regions

:
where σ ≤ 0.05 m , or25

::
for

:::::::
ATL03

::::
data,

:::
and

:
≤ 0.002

::::
0.02 m for ILATM1B data.

::
We

:::::::
selected

:::::
these

::::::
values

::
by

:::::::::
comparing

:::
the

:::::::::
“flatness”

::
of

::::
lake

:::::::
surfaces

::
to

:::
that

::
of

:::::::::::
surrounding

::
ice

::::::::::
topography.

:
If data were within the appropriate flatness threshold, they were verified

as a lake surface using Landsat-8 OLI imagery. This step was included to filter non-glacial features, such as ocean or

fjords.

iii. If the satellite image(s) confirmed the presence of a lake, the data were assigned to a new array for the
:::::
height

::
of

:::
the lake30

surface (hsfc).
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iv.
::::
hsfc :

). The horizontal extent of where the above criteria were met
::
the

::::
lake

::::::
surface served as a constraint for where the lake

bottom data could be defined. Within these horizontal bounds, high-confidence photons were defined as a lake bottom

if they satisfied the condition: hsfc− 1.8σsfc ≤ h≤ hsfc− 0.75σsfc::::::::::::::::::::::::::::
hsfc− aσsfc ≤ h≤ hsfc− bσsfc, where σsfc is

the standard deviation of lake surface photons. We set this constraint
:::
The

:::::::::
constraints

::
a
::::
and

:
b
:::::

were
:::::::
derived

:::::::
through

::::::::::::
trial-and-error,

::::
such

::::
that

:::::::::::
a= 1.0(1.8)

:::
and

::::::::::::
b= 0.5(0.75)

:::
for

::::::::
ICESat-2

:::::::
(ATM).

:::
We

:::
set

:::::
these

:::::::::
constraints

:
to reduce the5

impact
::::::
impacts

:
of multiple scattering

::
and

::::::::
specular

::::::::
reflection on depth estimates. If these conditions were met, then the

data were placed in an array for the
:::::
height

::
of

:::
the lake bottom, hbtm::::

hbtm.

v. Lake bed photons often are classified at a lower confidence (Sect. 5.2), necessitating the inclusion of lower confidence

levels. Notably, Greenland supraglacial lakes observed by ICESat-2 featured this issue if they exceeded 3 m in depth.

For these cases, the condition for hbtm was revised as hsfc− σsfc ≤ h≤ hsfc− 0.5σsfc to filter background photons10

within the water column.

vi. A series of filters were applied to improve surface/bed estimates. For ICESat-2, lakes shallower than 1.3 m or smaller

than 200 m in horizontal extent were considered too noisy or ill-defined for further analysis
:::
(see

:::::::
Section

:::
5.2

:::
for

:::::
more

::::::
details). To remove water bodies with deep bed returns (e.g., oceans or fjords) or with no bed returns, the algorithm

counted the number of bed photons present for both lidars. If the number of bed photons was very small (100 or less),15

then the scene was marked as a
:::::::
probable

:
false positive.

vii.
:
If
:::
the

::::
data

:::::
were

:::::::
obtained

:::::
from

::::::::
ICESat-2,

::::
then

:::
we

:::::::
followed

::
a
::::::
photon

:::::::::
refinement

::::::
routine

::::
that

::
is

::::::::
described

::
in

:::::
more

:::::
detail

::
in

::::
Sect.

::::
3.2.

::::::::::
Calculations

:::
for

::::
lake

:::::
depth

:::::
were

::::
then

:::::::::
performed

:::
for

::::
both

:::::
ATM

:::
and

::::::::
ICESat-2

::::::::
retrievals

::::
and

::::::::
corrected

:::
for

::::::::
refraction

:::::
(Sect.

::::
3.3).

:

3.2 ATL03 Refinement20

The above steps were sufficient to obtain lake profiles within the ATM data, but melt lake bottoms observed by ICESat-2

were significantly noisier as a consequence of higher background (noise) photon rates. After the initial LSBS procedure, we

manually assessed bed estimates for each lake. For lakes that did not pass qualitative assessment, we adopted photon refinement

procedures initially used for the ATL06 surface-finding algorithm (Smith et al., 2019). In short, ATL03 photon aggregates

within
:::::::::
overlapping

:
40 m segments were used to estimate lake surfaces and beds with greater precision via least-squares linear25

fitting applied to the aggregates. These linear fits were used to approximate a window of acceptable surface or bed photons for

every 20 m along-track. A more detailed description of the ATL06 algorithm is given in Smith et al. (2019).

The linear regression in ATL06 accounts for all
:::::
ATL03

:
photons (background or signal), and the technique performs a

background-corrected spread estimate to narrow the range for acceptable photons. Background photons are omitted from LSBS

refinement, and low-/medium-confidence photons are only considered if the high-confidence photons are deemed insufficient.30

The ATL06 refinement process also
:::
This

::
is
:::
an

:::::::
iterative

:::::::
scheme;

::
the

:::::::::
refinement

:::::::
process repeats its acceptable photon filter until

no photons are removed. In LSBS, the flatness of lake surfaces and relatively low photon density of the corresponding beds
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rendered iterating unnecessary. Finally, the
::
As

:
a
:::::::::::
consequence,

:::
the

::::::
ATL06

::::::::
algorithm

::::::::
assumes

:
a
:::::
single

::::::::
returning

:::::::
surface,

::
so

::::
over

:
a
::::
melt

::::
lake

:
it
::::
will

:::::::
compute

::
a
:::::
height

:::
for

:::::
either

:::
the

::::
lake

::::::
bottom

::
or

:::
the

::::
lake

:::::::
surface,

:::::::::
depending

::
on

::::
their

::::::
return

::::::::
strengths.

:::
The

:
condition for acceptable surface photons in ATL06 is given by:

|r− rmed|< 0.5Hw (1)

Within a 40 m photon segment, r is the residual of a photon relative to the linear regression, rmed is the median residual, and5

Hw is window height. The height of the window is taken as the maximum of the observed photon spread, the previous window

height (if any) , and 1
:::
and

:
3
:
m, and photons within the window range are defined as the surface. The lake

::::
LSBS

:::::::::
algorithm

::::::
follows

:
a
:::::::

similar
:::::::::
procedure,

:::
but

:::
the

:::::::
flatness

::
of

:::
the

::::
lake

::::::
surface

::::
and

::::::::
relatively

:::
low

:::::::
photon

::::::
density

::
of

:::
the

::::::::::::
corresponding

:::::
beds

:::::::
rendered

:::::::
iterating

:::::::::::
unnecessary.

:::
The

::::
lake

:
bed is then defined as photons not within the window and below the surface. In other

terms, lake bed photons satisfy the conditions:10

|r− rmed|> 0.5Hw, h < hsfc (2)

As with the initial guess, the lake bottom was only defined within the horizontal bounds of the lake surface, and the improved

guesses were assigned to hsfc and hbtm.

As a final adjustment to lake photons, we applied a refraction correction algorithm to account for spatial offsets from the

change in media
:::::::
slowing

::::
down

:::
of

::::
light

::
as

::
it

:::::
enters

:::::
water. The correction follows the methods utilized by Parrish et al. (2019)15

by approximating refractive biases as a function of depth and beam elevation angle. The center strong beam for ICESat-2 is

near-nadir, so the horizontal offset was determined to be small relative to the size of lakes (~3 cmfor a lake 10 m deep
:
,
:::
far

:::::
below

:::
the

::::::::
horizontal

::::::::::
geolocation

::::::::::
uncertainty

:::
for

::::::::
ICESat-2). However, vertical offsets of 1 m or more were found for lakes ≥4

m in depth, necessitating the use of refraction correction.

3.3 Lake Depth and Extent Estimations20

Once we obtained hsfc and hbtm, lake depth from the altimeter signal (zs) was estimated using:

zs = hsfc−hbtm (3)

where hsfc and hbtm represent the moving mean of the surface elevation and the bottom elevation, respectively. The moving

mean was used to account for signal attenuation and scattering at the lake bottom, a problem most evident over the Amery Ice

Shelf
:::
for

:::::::
ICESat-2

::::::::
retrievals.25

For deep or inhomogeneous lakes, water attenuation
::::::::
attenuation

:::
of

::::::
photon

::::::
energy

::
in
:::::

water
:

resulted in fewer signal pho-

tons observed at lake bottoms . To approximate lake depths in
::::
(Fig.

:::
4).

::
In

:
these situations, we fitted a 3rd-order polynomial

:::::::::
polynomial

::
or

::::::
spline

:::
fits to all lake profiles with bounds at the lake edges.

:::::
Lakes

::::::::
observed

::
by

:::::
ATM

:::::::
typically

:::::::
featured

:::::::
“bowl”
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:::::
shapes

::::
and

:::::::::
attenuation

::
at

:::
the

::::::
deepest

:::::
parts,

:::
so

::::::::
3rd-order

::::::::::
polynomials

::::
were

:::::::::
sufficient.

::
In

::::::::
ICESat-2

::::
data,

:::
the

::::::::
retrieved

::::
lake

::::
beds

::::::
showed

::::::
greater

::::::::::
complexity,

::
so

:::
we

:::::
tested

::::::::::
polynomial

:::
fits

:::
and

::::::
splines

:::
on

:
a
:::::::::::
case-by-case

:::::
basis. Lake depths approximated in this

manner
:::
with

:::::
curve

:::::
fitting

:
were denoted as zp. We compare zs and zp over lakes with well-defined bottoms, and show

:
in

:::::
Sect.

:
4
:
that the two generally agree well, in Sect. 4.

::
to

:::::
within

::::
0.88

:::
m.

To test the limits of the algorithm relative to lake size, we utilized the great-circle formula (ATM) or pre-defined along-track5

distance (ICESat-2) to approximate along-track extent L. We acknowledge the further potential for lake volume retrieval, but

improved estimates of lake radius and shape through visible imagery are required. We
::::
desire

::
to
:::::::
retrieve

::::
lake

::::::
volume

::::
from

:::::
laser

::::::::
altimetry,

:::
but

:::
we leave the development of such an algorithm for a future study.

:::
For

:::::::
example,

:::::
depth

::::::::
retrievals

:::::
from

::::::::
ICESat-2

::::
could

:::::::::
potentially

:::
be

::::::::
combined

::::
with

::::
lake

:::::
radius

::::
and

:::::
shape

:::::::::
estimations

::::::::::
determined

::::
from

::::::
visible

::::::
satellite

:::::::
imagery

::
to
::::::
derive

:::::
water

::::::
volume.

:
10

3.4 Case Study Locations

We present cases over the Amery Ice Shelf on 2 January, 2019 (ICESat-2 Track 0081; 68.271-73.798◦S, 63.057-78.620◦E),

the western Greenland ablation zone for 17 June, 2019 (ICESat-2 Track 1222; 66.575-69.582◦N, 48.284-49.239◦W), and

Hiawatha Glacier in 19 July, 2017 (ATM; 77.780-79.3119◦N, 65.279-67.484◦W) (Fig. 1
:
2). Comparisons between Landsat-8

imagery and ICESat-2/OIB flight tracks confirmed supraglacial lake overpasses for study. The tracks examined for this analysis15

are listed in Table 1. In Spring 2019, an early onset of the Arctic melt season resulted in both ICESat-2 and Operation Icebridge

surveying supraglacial lakes near Jakobshavan
:::::::::
Jakobshavn

:
Isbræ in May. Data granules from ATM for this time period were

not available for download
::::::::
However,

::::
there

::::
were

:::
no

:::::
lakes

:::::::
sampled at the time of publication, but we expect these observations

to be useful for additional depth estimates and validation in a future study
::
by

::::
both

::::::::
ICESat-2

:::
and

::::
OIB.

4 Results20

We detected a total of 16 supraglacial lakes in
::
12

:::::
melt

::::
lakes

::::
with

::::::::
sufficient

::::
bed

::::::
returns

:::::
from the ATM data . Of those, four

were omitted from further analysis due to poor signal return from the lake bed. The remaining
:::
and

:::
16

:::::::
potential

:::::
melt

::::
lake

:::::::
surfaces

::::::
overall.

::::
The

::::
melt

:
lake profiles are shown in Fig. 3, with maximum depths of 0.98-7.38 m and extents of 180-730

m. The algorithm identifies lake surfaces with good accuracy, and lake
:::::::
reliably

:::::::::::
distinguishes

:::::::
between

::::
lake

:::::::
surfaces

::::
and

:::
the

::::::::::
surrounding

::
ice

:::::::
terrain.

:::
The

:::::
mean

::::::
spread

::::::
among

:::
lake

:::::::
surface

::::::
photons

::
is
::::::
0.0087

:::
m,

::
or

::::
well

:::::
within

:::
the

:::::::
flatness

::::::::
threshold

::
of

::::
0.0225

::
m.

::::
Lake

:
bottoms are well-defined in all but the deepest lakes

::::
when

::::::
ds < 8

::
m. Lake bottoms >

:::::
deeper

::::
than 8 m below the surface

exhibit fewer signal returns, for the associated return signal is below the threshold required to be digitized (Martin et al., 2012).

Average measured lake depth was estimated as
::::
The

::::::
average

::::::
depth

:::::::
estimate

:::
for

:::
the

:::::
lakes

::
in

::::
Fig.

::
3

::::
was 1.95 m (Table 2

:
1),

and lakes at this depth typically featured adequate bed returns. In deeper lakes, the polynomial estimate produced reasonable

guesses for the lake bed location, with the most effective fitting seen in lakes 3e, 3g, and 3h. With the polynomial-based depths,30

mean lake depth increased to 2.15 m, and the maximum modeled depth was 8.83 m.
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The spread in ATM lake bed photons is low (Table 2
:
1, Column 7), with a maximum of 0.2 m for lake 3g. The largest

::::::
highest uncertainties are observed for lakes deeper

:::
lake

::::::
depths

:::::::
greater than 3 m, perhaps influenced by low photon returns

and
:::::::::::
signal-to-noise

:::::
ratios

:::
or the conical scanning of the lidar

:::
OIB

::::
lidar

::::::::::
instrument. Polynomial estimation errors are 0.41 m

on average. Several depth errors are below this mean, but a strong standard error (1.03 m) in lake 3g, due to difficulties in

capturing its steep bed slope, slightly skews the mean error. Excluding this value, the mean error among ATM polynomial5

estimates reduces to 0.35 m.

We examined an additional 12 supraglacial lakes with ICESat-2, eight in Greenland and four also explored by Magruder et al. (2019)

and Fricker et al. (in prep.) on the Amery Ice Shelf .
:
in

:::::::::
Antarctica.

::::::
Three

::
of

::
the

::::::::
Antarctic

::::
melt

:::::
lakes

:::
(4a,

:::
4b,

:::
4d)

:::
are

::::::::::
highlighted

::
in

:::::::::::::::::::
Magruder et al. (2019)

::
and

:::::::::::::::::::
Fricker et al. (in prep.).

:
The refined algorithm captured these

:::::::
captures lake surfaces and beds with

reasonable success, as seen in Fig. 4.
:::::::::
reasonably

::::
well

::::
(Fig.

:::
4),

::::
with

::
a

:::::
mean

:::::::::
uncertainty

:::
of

:::::
0.015

::
m

:::
for

::::::
surface

:::::::
photons

::::
and10

::::
0.38

::
m

::
for

::::
bed

:::::::
photons.

::::
The

::::
lake

:::::
edges

:::::::
partially

:::::::
account

:::
for

:::
the

:::
bed

::::::
photon

::::::::::
uncertainty,

:::
for

:::
the

::::::
limited

:::::::
number

::
of

:::::::::
acceptable

::::::
photons

::::::::
produces

::
a
:::::
slight

::::
bias

::
in
::::

bed
:::::::::
estimates. Antarctic melt lakes were generally shallower than those seen on Green-

land (Table 3
:
2) - only lake 4a exceeded 3 m in depth, whereas the mean maximum depth over Greenland was 4.08 m. The

heterogeneity and noisiness of
::::
Melt

:::::
lakes

::
on

:::
the Amery Ice Shelf retrievals rendered best-fit calculations difficult and increased

uncertainty estimates. However, these melt lakes were 3-8 km in extent, thus facilitating detection in histograms. Greenland15

lakes exhibited a wider range of sizes, but the algorithm successfully performed retrievals for lakes as small as 200 m in extent.

On average, the noisier data from ICESat-2 produces uncertainties greater than 0.2 m for the Antarctic lakes and 0.3 m for

the Greenland lakes, as seen in Table 3
:
2, Column 8. The inclusion of lower-confidence photons increases uncertainty despite

the restricted bed photon criteria, for the larger photon cloud increases the spread of the entire lake profile. The polynomial

errors in ICESat-2 are comparable to ATM over Greenland, with lakes
::::
curve

:::
fits

::::::::
improved

:::::
depth

::::::::
estimates

:::
for

:::::
lakes

:::
4b, 4fand20

4g exhibiting notably high error. Polynomial errors are higher for the Antarctic melt ponds, as it is difficult to reproduce the

complex bed topography, an observation shared with lakes ,
:::
and

:::
4i.

:::
Of

::::
these

::::::
lakes,

::::
only

::
4i

::::
used

:
a
::::::::::
polynomial

:::::::
estimate

::::
due

::
to

::::
poor

:::::
spline

::::::
fitting.

::::
The

::::::::
inclusion

::
of

::::::::::
interpolants

::::::::
increased

:::
the

:::::
mean

:::::
depth

::::::::
estimates

::
of

:::
4b,

:
4fand 4g from Greenland. It also

must be noted that bed photons are more likely to be found in the ATL03 photon cloud than in ATM waveforms
:
,
:::
and

::
4i

:::
by

::::
0.08

::
m,

::::
0.04

:::
m,

:::
and

::::
0.03

:::
m,

:::::::::::
respectively.

:::
The

::::::
spline

:::::
fitting

:::::::::::
significantly

::::::::
increased

:::
the

:::::::::
maximum

:::::::
observed

::::::
depth

::
in

::::
lake

::
4b

:::::
from25

::::
2.67

::
m

::
to

::::
3.27

:::
m.

:::
The

:::::::::
remaining

:::::
lakes

:::::::
featured

:::::
more

::::::::
complete

:::
bed

:::::::
profiles, meaning that the polynomial estimates are less

necessary for ICESat-2 than when used for ATM
:::::
fitting

::::::::
estimates

::::
were

::::
less

::::::::
important.

5 Discussion

5.1 Algorithm Performance

The conical scanning of the ATM lidar produced oscillations in 1D elevation profiles that dampened over lake surfaces, so30

lakes generally were easier to identify with the airborne retrievals. Flights conducted during the OIB campaign actively avoided

cloudy conditions, reducing attenuation sources and further simplifying the lake-finding process over common melt regions.

The data volume per granule was lower than ATL03, resulting in less time needed to run the algorithm. However, the number

8



of retrievals possible with ATM is limited, so observations with the lidar best serve as a validation and correction tool for

ICESat-2 and other retrieval methods.

The laser power and detector sensitivity of the ATLAS instrument on board ICESat-2 are sufficient to reliably detect lake

beds, and a high along-track resolution will correspond to improved estimates of lake bed topography, water depth, and water

volume. Despite strong advantages, significant difficulties must be considered before automatic lake detection is feasible. At its5

operational altitude, the ATLAS laser is subject to
:::::::::::::
first-photon-bias,

:::::
solar

::::::::::
background

::::::::
radiation,

:::
and

:
scattering and absorption

by
:::::::
blowing

:::::
snow

:::
and clouds. Clouds are common over the fringes of Antarctica and Greenland (Bennartz et al., 2013; Lachlan-

Cope, 2010; Van Tricht et al., 2016), and often their optical depth is sufficient to render the surface undetectable. Handling the

large data volumes in ATL03 granules also presents a significant challenge. A single granule provides coverage over hundreds

of kilometers, so the running time of the algorithm increases relative to ATM granules. Lakes smaller than 1 km are difficult to10

automatically detect with the algorithm, but LSBS may still be performed for lakes as small as 200 m if the location of a lake

is known through other means (e.g., Landsat-8 imagery or ATM retrievals).

We attribute observed differences in lake topography
::
for

::::::::
ICESat-2

:::::
lakes,

::::
and

::
we

:::::::
attribute

:::::
them to the underlying ice surfaces.

Supraglacial lakes on Greenland typically form into smooth basins within depressions formed by the underlying bedrock, and

their location is independent of ice motion (Echelmeyer et al., 1991). In contrast, meltwater on the Amery Ice Shelf originates15

from the blue ice zone, propagating along the ice surface in streams. The location of lakes and ice topography are thus tied to

the flowlines of the ice shelf surface. These features are flooded in the Antarctic melt season, producing melt lakes and streams

up to 80 km in length (Mellor and McKinnon, 1960; Phillips, 1998; Kingslake et al., 2017).

5.2 ATL03 Photon Classification Uncertainties

The classification of ATL03 signal photons provides challenges for automatic depth retrievals . The signal confidence for20

photons is provided through the
:
A
::::::::
potential

::::
issue

:::
for

::::
lake

:::::
depth

::::::::
retrievals

:::::::
concerns

::::::::
specular

::::::::
reflection.

:::::
When

:::::::
photons

:::::::
interact

::::
with

:
a
:::
flat

:::::
water

:::::::
surface,

::::
they

::::
may

:::::
reflect

:::::::
directly

::::
back

::
to
:::
the

:::::::
detector

::::
with

::::::::
minimal

::::::
energy

::::
loss.

:::
The

::::::::
excessive

::::::
return

::::::
energy

:::::::
produces

::
a “signal_conf_ph

:::
dead

::::
time” variable, with higher values (at a maximum of 4) indicating greater confidence that a

photon is the signal
:
in

:::
the

:::::::
ATLAS

:::::::
detector,

::::
and

::
the

::::::
return

:::::
signal

::
is

:::::::::
represented

:::
by

:::::::
multiple

:::::::::
subsurface

::::::
returns

::::::
below

::
the

::::::
actual

::::::
surface

:::::::::::::::::::
(Neumann et al., 2020).

:::
An

:::::::
example

:::
of

:::
this

:::::::::::
phenomenon

::::
may

::
be

::::
seen

::
in
::::
Fig.

:::
4f,

:::::
where

::
a

::::::::
prominent

:::::::::
subsurface

::::::
return25

:
1
::
m

:::::
below

:::
the

::::
true

::::::
surface

::
is

:::::::
featured

:::::
along

:::
the

:::
lake

::::::
extent. However, the confidence variable is given as a 5 x N matrix, where

each row represents a surface type (land, ice, inland water, etc. ). The confidence level for photons varies between surface

types (Neumann et al., 2019b), and photons may be assigned to multiple surface types. Furthermore, the water masks used for

surface classification do not factor melt lakes
::::::
because

:::
the

:::::::::
subsurface

:::::
echo

:
is
:::::::
smaller

::::
than

::
the

::::
true

::::::
surface

:::::
when

::::::
viewed

:::::::
through

:::::::::
histograms,

:::
the

::::::
LSBS

::::::::
algorithm

::
is

:::
able

:::
to

::::
avoid

::::::
biases

::::::
caused

::
by

:::::::
specular

:::::::::
reflection.30

:::
The

:::::::
success

::
of

:::
this

:::::::
method

:::
for

:::
lake

:::::
depth

::::::::
retrievals

::
is

::::::::
governed

:::
by

:::::
spatial

::::
and

:::::::
temporal

::::::::
sampling

::
of

:::
the

::::::::::
instruments

::::::
across

::
the

:::::
lakes

:::::
when

::::
they

::
are

::::
full.

::::
The

:::::::
methods

::::::::
presented

::::
here

:::
are

::::
most

:::::::
effective

:::::
when

:::
the

:::::::
altimeter

::::::
passes

::::::
directly

::::
over

:::
the

::::
deep

::::
part

::
of

:
a
::::
lake

:::::
rather

::::
than

::
at
:::
its

:::::
edge.

::::
This

:::::::
provides

::
a
::::
lake

:::::
depth

::::::
profile

:::
that

::
is

:::::
more

::::::::::::
representative

::
of

:::
the

::::::::
complete

::::
lake,

::::::::
allowing

::
for

:::::::::
improved

::::::::
estimates

::
of

::::
lake

:::::
depth

::::
and

::::::
extent.

::
A

::::::::
complete

::::
lake

::::::
profile

::::
also

::::::::
provides

::::::::
sufficient

::::::::::
information

::
to

:::
the

::::::
LSBS
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::::::::
algorithm,

::::::::
reducing

:::
the

::::
risk

::
of

::::
false

::::::::
negatives

::::
that

:::::
occur

::::
with

:::::
small

:::::
lakes

::
or

::::::::::
incomplete

:::::::
profiles.

::::
The

:::::::
temporal

::::::::
sampling

:::
of

:::::::
ICESat-2

::::
and

:::::
ATM

::
is

:::::::::
infrequent

:::::
(every

:::::::
91-days

:::
for

::::::::
ICESat-2

::::
and

::::::
random

:::
for

::::::
ATM),

::::
and

::
so

:::
the

:::::
same

:::::
lakes

:::
will

::::
not

::::::
always

::
be

::::::
present

:::::
every

::::
time

:::::
these

::::
data

:::
are

::::::::
required.

:::::::::
Therefore,

::::::::
coincident

:::::::
satellite

:::::::
imagery

::
is
::::::::
desirable

::
to

:::::::
simplify

::::
the

::::::::::
lake-finding

::::::
process.

:

5.2
::::::::::
Automation

:::::::::
Challenges5

:::
The

:::::::::::
identification

:::
of

::::
lake

::::
beds

::
in

:::
the

::::::
LSBS

::::::::
algorithm

::
is
:::::
based

:::
on

::
a

:::::::
window

::
of

:::::::::
acceptable

::::::::
photons.

:::
The

:::::::
photon

:::::::
window

::
is

:::::::::
constrained

:::
by

:::
the

:::::::::
coefficients

::
a
:::
and

::
b

:::
(for

::::::::
ICESat-2, so lakes on ice-sheet surfaces are not identified. Instead, lake surfaces in

ATL03 typically classify as "land ice", and lake beds as either "land ice" or "land"
:::::::
a= 1.0,

::::::::
b= 0.5).

::::
Lake

::::
beds

:::::::
detected

::
in

::::
this

::::::
manner

:::
had

::
a
:::::
height

::::::::::
uncertainty

::
of

::::
0.38

::
m

::::::
(Table

:::
2).

:::
The

::::::::::
coefficients

:::
for

:::::
ATM

:::::::
(a= 1.8,

:::::::::
b= 0.75),

:::::::
resulted

::
in

:::::
more

:::::::
accurate

:::::::
retrievals

:::
on

::
an

:::::::::
individual

:::::
basis.

::::::::
However,

::::::::::::
implementing

:::::::
varying

:
a
::::
and

:
b
::::::
values

::::::
proved

:::::::
difficult

::
to

::::::::
automate,

::
as

:::::
other

::::::
values10

:::
may

:::::::
produce

:::::
more

:::::::
accurate

::::::
depths.

The example in Fig. 5 shows the differences between the two surface types. The land-only photons identify the lake surface

and portions of the lake bed with high confidence, whereas the lake bed exhibits lower confidence in the land ice classification.

For lake beds, photons >2 m below the surface are more likely to be assigned the
:::::::::
challenges

::
in

:::
full

::::::::::
automation

:::
are

::::::
related

::
to

::::
three

:::
key

::::::
issues.

:::::
First,

:::
the

::::::::
observed

:::::
extent

::
of

:::::
lakes

:::::
varied

:::::::::::
considerably,

:::::::::
especially

::::
over

:::::::::
Greenland.

::::
The

:::::::
diversity

::
in
::::
lake

:::::
sizes15

::::::::::
complicated

:::::::
attempts

::
to

::::::
derive

:
a
::::::::
universal

:
“land

::::::
flatness” classification. We theorize this occurs because the lake resembles a

tree canopy in 1-D profiles. To circumvent this issue, the LSBS algorithm includes a routine that takes the highest confidence

level among all surface types for each photon in a data granule.
:::::
check.

::::::
Smaller

:::::
lakes

::::::
present

:::::
fewer

::::
lake

:::::::
surface

:::::::
photons,

::
so

::
a

::::::
smaller

::::
data

:::::::
window

:::::
(~104

:::::::
photons)

::
is
:::::::
required

::
to
:::::::
prevent

::::
false

::::::::
positives.

::::::::
However,

::::::
larger

::::
lakes

::::
may

:::
not

:::
be

::::
fully

::::::::::
represented

::
in

::::::
smaller

::::::::
windows.

::
A
::::::
larger

:::
data

:::::::
window

::::::
(~105

:::::::
photons)

::::
will

::::
fully

:::::::
capture

:::
the

::::::
largest

:::::
lakes,

:::
but

::::::
smaller

:::::
lakes

::::
may

::::
then

:::
be20

:::::::::
overlooked.

:

By default, the LSBS algorithm incorporates high-/medium-/low-confidence signal photons
:::::::
Second,

:::::::
multiple

:::::::::
scattering

::
at

::
the

::::
lake

::::
bed

::::::::
increases

:::
the

::::::
photon

::::::
spread

::::
and

::::
thus

:::
also

::::::::
increases

:::
the

::::::::::
uncertainty

::
of

:::::
depth

:::::::::
retrievals.

:::::
Most

::::::::::
supraglacial

:::::
lakes

:::::::
observed

:::
by

::::
ATM

::::::::
featured

::::::
smooth

:::::
beds,

::
so

:::::::
photons

::::::::::
experienced

:::
one

:::
or

:::
few

::::::::
scattering

::::::
events

:::::
before

::::::::
returning

::
to
:::
the

::::::::
detector.

:::
The

:::::::::
instrument

::::::::
digitizer

:::::::::::
automatically

:::::
filters

::::::
return

::::::
signals

::::
with

::::
low

::::::
photon

:::::::
counts,

:::::::
reducing

:::
the

::::::
spread

:::
of

:::
bed

::::::::
photons,

::
at25

::
the

::::
cost

:::
of

::::
deep

::::
lake

:::::::
bottom

::::::::
detection.

:::
In

:::::::
contrast,

:::
the

:::::
lakes

::::::::
observed

::::
with

:::::::::
ICESat-2

::::::::
exhibited

:::::
more

::::::::::::
heterogeneous

:::::
beds,

::::::
leading

::
to

::::::::
increased

::::::::
scattering

::::::
events

::
by

:::::::
photons

:::
and

::::::
delays

::
in

:::::
return

::::::
pulses.

::
In

:::::
these

:::::
cases,

:::
the

:::::
given

:::::
values

:::
for

:
a
:
and "buffer"

photons
:
b
::::
may

:::
not

:::::::
produce

:::
the

::::
most

:::::::
accurate

:::
bed

::::::::
solution.

:::::::::::
Furthermore,

::
if

::
the

::::::
return

::
is

::::::::
significant

:::
for

::
a

::::
given

::::::
photon

::::::::
window,

:::
then

::
it
::::
may

::::
lead

::
to

::
a

::::
false

:::::::
negative

:::
for

::
a

::::::
portion

::
of

:::
the

::::
lake

:::::::
(Figure

:::
4i).

::
To

::::::
reduce

::::::::::
uncertainty

::
in

::::
lake

:::::
depth

::::::::
retrievals,

::::::
future

:::::::::::
improvements

:::
in

:::::::
working

::::
with

::::::::
ICESat-2

::::
data

::::::
should

:::::
focus

:::
on

:::::::::
identifying

:::
and

:::::::
filtering

::::::::
multiple

::::::::
scattering. This approach is30

necessary for most melt lakes observed by ICESat-2, as lake beds frequently receive lower confidence flags.For instance, melt

lake 4a features an incomplete bedwhen only high confidence photons are considered. The

::::::
Finally,

:::
the

::::::
ATL03

::::::::::::
signal-finding

::::::::
algorithm

::
is

:::::::::::
conservative

::
in

:::
that

::
it

::::::
accepts

:::::
false

:::::::
positives

:::::::::::
(background

:::::::
photons

::::::::
classified

::
as

:::::
signal

::::::::
photons)

::
to

::::::
ensure

::::
that

:::
all

:::::
signal

:::::::
photons

::::
are

::::::
passed

::
to

::::::::::
higher-level

:::::::::
products.

:::::
Thus,

:::::::::::
uncertainties

::
in

:::
the

:::::::
ATL03

10



::::::
photon

:::::::::::
classification

::::::::
contribute

::
to
:::::

noise
:::
in

:::
the

:::::
water

::::::
column

::::
and

:::
the

::::
lake

::::
bed.

:::
The

::::::::::::
classification

::::::::
algorithm

::::
uses

::::::::::
pre-defined

::::::
surface

:::::
masks

::
to
:::::::

allocate
::::::::
statistical

::::::::::
confidence

::
to

::::::
ATL03

:::::::
photons

:::
for

:::::::
multiple

::::::
surface

:::::
types

::::
(e.g.

::
“
:::::
inland

:::::
water

:
”,
::
“
:::
land

:::
ice

::
”,

:
“
:::
land

::
”),

:::::
with

::::::
overlap

:::::::
possible

:::::::
between

::::::
masks

:::::::::::::::::::
(Neumann et al., 2020)

:
.
::::
Melt

::::
lakes

:::
are

::::::::::
categorized

::
as

::
“
:::
land

:::
ice

:
”
:::::
(lake

:::::::
surface)

:::
and

:
“
::::
land

:
”
::::
(lake

:::::::
surface

:::
and

:::::
bed).

:::::::
Because

:::
the

::
“
::::
land”

::::::::::::
classification

:::
also

::::::::
includes

:::
the

::::
bed,

::
it

:::::::
includes

:::::
more

:::::::
potential

::::::
signal

::::::
photons

::::
than

:::::
land

:::
ice,

:::
so

:::
our

::::::::::::::
recommendation

::
is

::
to

::::
only

::::
use

::::
land

::::::
photons

:::
for

::::::::::
supraglacial

::::
lake

:::::
depth

:::::::::
retrievals.

::
It

::::
must

:::
be5

:::::
noted,

::::::::
however,

::::
that

:
a
::::
lake

::::
bed

::::::
profile

::
is

::::
fully

::::::::
resolved

::::
only

:::::
with

:::
the inclusion of low-/medium- confidence and “buffer”

photonsreveals a complete bed profile, increasing the maximum depth estimate from 2.60 m to 4.57 m, as seen in Fig. 5a.

Thus, it is recommended to include photons of multiple confidence levels, otherwise the lake bed may appear attenuated and

hinder retrieval efforts.
::::

The
::::::
buffer

::::::
photons

::::::
ensure

::::
that

::
all

:::::::
photons

::::::::
identified

:::
as

::::::
surface

:::::
signal

:::
are

::::::::
provided

::
to

:::
the

::::::::::
appropriate

:::::::::
upper-level

::::
data

:::::::
product

:::::::::
algorithms.

:::::::::
However,

::::
they

:::
can

::::::::
introduce

::::::
greater

:::::
noise

::
to

:::
the

:::::::
profile,

::
so

:::::
more

:::::::::::
sophisticated

:::::::
filtering10

:::::::::
techniques

::
are

:::::::
needed

::
to

:::::::::
distinguish

:::::::
between

:::::
signal

:::::::
photons

::::
and

:::
the

::::
solar

::::::::::
background.

6 Conclusions

We present a method to detect supraglacial lakes and estimate lake depth from 532 nm laser altimetry data. We establish test

cases for lake detection over two regions of Greenland (Hiawatha Glacier, 19 July, 2017 and Jakobshavan
:::::::::
Jakobshavn

:
Isbræ,

17 June, 2019) and East Antarctica (Amery Ice Shelf, 2 January, 2019), and our results demonstrate that depth retrievals are15

possible using laser altimetry. Verification of lake detection is given with lake surface flatness tests, where we observe low

topographical variance over lake surfaces relative to surrounding ice. Lake bottoms are easy to identify once lake surfaces are

established, given that the lakes are not too deep
:::::
deeper

::::
than

:
7
::
m.

We introduce lake a surface-bed separation scheme for ATM and ICESat-2 geolocated photon data to determine the maxi-

mum depth of lakes. Our results indicate that altimetry signals reliably detect bottoms as deep as 7 m, after which absorption20

of the photons in water reduces the number of reflected photons. Heterogeneity at the lake bed also produces attenuation,

complicating retrieval attempts for lakes with rough bed topography or with high impurity concentration. Additional work is

required to assess the impacts of lake impurities and geometry on altimetry signals and to improve estimates for such cases.

Despite these shortcomings, we anticipate retrieval capability to improve as observations from the 2019 and 2020 Arctic melt

seasons are released.25

We establish the feasibility for estimates of supraglacial lake depth over Antarctica and Greenland. The high accuracy of 532

nm laser altimeters allow these results to serve as a benchmark for future retrieval studies. Future studies need to examine the

accuracy of ICESat-2 lake retrievals relative to ATM where applicable, with additional comparisons to depth estimates from

passive imaging sensors.

Code and data availability. ICESat-2 ATL03 V002 and ATM L1B V002 data may be accessed from https://doi.org/10.5067/ATLAS/ATL03.00230

and https://doi.org/10.5067/19SIM5TXKPGT, respectively. Depth data for lakes in Figure 3 are available upon request from Zachary Fair.
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Depth data for the supraglacial lakes given in Figure 4 are available at https://doi.org/10.5281/zenodo.3838274. The LSBS algorithm and its

subroutines may also be accessed from https://doi.org/10.5281/zenodo.3838274.
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True-color Landsat-8 composites of Hiawatha Glacier on 18 July, 2017 (a), the Amery Ice Shelf on 1 January, 2019 (b), and the western

Greenland ablation zone on 17 June, 2019 (c). Flight tracks for Operation IceBridge (a) and ICESat-2 (b, c) are shown in dotted orange.

Figure 1.
::::::::
Schematic

::
for

:::
the

:::::::
workflow

::
of

:::
the

:::
lake

:::::::::
surface-bed

::::::::
separation

::::::::
algorithm.
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Schematic for the workflow of the lake surface-bed separation algorithm.

Figure 2.
::::::::
True-color

::::::::
Landsat-8

::::::::
composites

::
of
::::::::

Hiawatha
::::::
Glacier

::
on

::
18

::::
July,

::::
2017

:::
(a),

:::
the

:::::
Amery

:::
Ice

:::::
Shelf

::
on

:
1
:::::::
January,

::::
2019

:::
(b),

:::
and

:::
the

::::::
western

::::::::
Greenland

::::::
ablation

::::
zone

::
on

:::
17

::::
June,

::::
2019

:::
(c).

:::::
Flight

:::::
tracks

:::
for

:::::::
Operation

::::::::
IceBridge

:::
(a)

:::
and

:::::::
ICESat-2

:::
(b,

::
c)

::
are

::::::
shown

::
in

:::::
dotted

:::::
orange.
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Figure 3. ATM lake profiles from 17 July, 2017 fitted using lake surface-bed separation, including the raw ILATM1B product, the lake

surface signal, the lake bottom signal, the polynomial-fitted
::::::::::::::::::
polynomial-/spline-fitted

:
bottom, and the point of maximum depth. Along-track

distance is relative to the start of a data granule.
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Figure 4. Supraglacial lakes and melt ponds detected by ICESat-2 over the Amery Ice Shelf (a-d, first observed by Magruder et al. (2019))

and western Greenland (e-l), using Tracks 0081 and 1222, respectively.
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Differences in signal confidence between the "land" and "land ice" surface classifications in the ATL03 algorithm. In both

examples, photons received by the lake bottom are labeled as "buffer" photons by the ATL03 algorithm.

Information on the data used for each altimeter. Altimeter Region Track(s) Date Amery Ice Shelf 0081 2 January, 2019

Jakobshavan Isbræ 1222 17 June, 2019 ATM Hiawatha Glacier 135106-144357 19 July, 2017
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Table 1. Cumulative statistics for ATM supraglacial lakes explored in this study, including mean and maximum
:::::::::
signal-based

:
depth for (ds:)

and
:::::::::::::
polynomial-based

::::
depth

:
(dp:), ::::::::

along-track
:::::
extent L, mean lake depth uncertainty (σd), and mean polynomial estimation error (εp). Units

are in meters.

Lake ds max(ds) dp max(dp) L σd εp

3a 0.98 1.69 0.91 1.51 270 0.08 0.31

3b 2.25 3.75 2.32 3.49 640 0.15 0.45

3c 1.33 2.39 1.33 2.24 440 0.09 0.25

3d 0.64 0.98 0.71 1.09 180 0.10 0.38

3e 1.81 2.98 2.37 4.11 520 0.05 0.42

3f 1.70 2.70 1.97 3.15 470 0.10 0.49

3g 4.32 7.38 5.50 8.83 630 0.20 1.03

3h 3.64 5.91 3.90 6.37 730 0.15 0.41

3i 1.56 2.38 1.48 2.37 510 0.12 0.15

3j 3.17 5.18 3.39 5.29 650 0.11 0.65

3k 0.60 1.06 0.55 0.97 350 0.09 0.21

3l 1.45 2.32 1.39 2.18 590 0.11 0.15

Mean 1.95 3.23 2.15 3.47 500 0.11 0.41
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Table 2. As with Table 2
:
1, but for ICESat-2 tracks.

Track Lake ds max(ds) dp max(dp) L σd εp

0081

4a 2.32 4.57 2.62 4.00 3170 0.25 0.60

4b 1.48 2.67 1.48 1.70 8570 0.80 1.25

4c 2.02 2.86 2.08 2.41 3790 0.28 0.46

4d 1.39 2.32 1.46 1.96 3860 0.77 1.21

Mean 1.80 3.11 1.91 2.52 4850 0.53 0.88

1222

4e 2.24 3.43 2.28 2.98 1990 0.28 0.44

4f 2.31 5.22 2.66 3.44 2980 0.26 1.07

4g 3.52 7.15 3.76 5.78 1370 0.49 0.94

4h 1.22 1.47 1.24 1.50 211 0.12 0.14

4i 1.52 2.88 1.55 2.37 2070 0.23 0.37

4j 4.13 6.56 4.13 6.01 530 0.73 0.87

4k 1.65 3.13 2.04 3.08 780 0.22 0.25

4l 1.93 2.76 1.93 2.78 360 0.15 0.21

Mean 2.32 4.08 2.45 3.49 1290 0.31 0.55
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