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Response to editor O. Gagliardini  
 
The editor’s comments are italicized.  
 
I have nevertheless a last remark regarding plotting pole figures using orientations of pixels or 
grains. Just before the results section, you have a paragraph which discuss this as well as the 
Appendix material. I feel that your conclusion that "If the sample does not contain a representative 
number of grains, as is often the case with coarse-grained ice, then using one-point-per-grain 
provides a more representative fabric" is a bit weak and not really supported by any references or 
objective arguments of what should be a more representative fabric? Some years ago (Gagliardini et 
al., 2003), I conducted a modeling work to study the influence of accounting for the grain area when 
evaluating statistic parameters used to describe polycrystal fabric. The conclusion was that 
accounting for the grain area greatly improve the fabric description, in opposition with your current 
affirmation. I should have mentioned this publication before in the review process, but I am always 
reluctant because it is not the role of an editor to promote his own work. Nevertheless, I think in this 
particular case, and because they have not been that much work on that very specific subject, I would 
be interested to know how our findings based on synthetical fabrics (for which we know what is the 
real fabric) can support or not your statement about pixel versus grain orientations. 
 
We should have been aware of your 2004 paper, and thank you for bringing it to our attention 
now. We have modified the text in the appendix in light of this awareness and your above 
comments.  The modified text is highlighted in red. 
 
The issue of using one-point-per-grain vs. all pixel orientations for CPO plots is complex. We 
agree that if the volume of ice sampled is fully representative, such that the results of two 
samples are the same, and the assumption that the measured area of a grain in cross section is 
the mean projected area of the grain, then measuring all pixel orientations is better 
statistically, as you demonstrate. In particular, the weighted area representation based on all-
pixel measurements is clearly the best procedure to use for providing estimates of bulk 
physical properties, such as the polycrystal elasticity tensor.  We have highlighted this in the 
manuscript appendix (l.635-636). If there are no repeat or ‘island’ grains, then one-point-per-
grain and all pixel measurements will show the same basic pattern of CPO (See fig. A1), that 
is, the same fabric elements – girdle or point clusters – and these are important for identifying 
microstructural processes.  If there are island grains, then the basic assumption of grain shape 
in the area-weighted method is violated and the significance of the fabric pattern by either 
method becomes uncertain.  
 
If the volume of ice is not representative, which is almost certainly the case with our samples, 
then all- pixel representations will be biased towards large grains (or in many cases, the 
largest grain in the section analysed, which may not be the largest or close to largest grain in 
a representative volume). Several large grains may then be responsible for maxima on the 
fabric diagram and mask the true fabric elements that would emerge if a truly representative 
volume had been sampled. One-point-per-grain analyses in such instances can reduce this 
bias, but still may include repeated grains. This is what we show in Fig. A1 where the main 
fabric element (small circle girdle) is clearer in the one-point-per-grain diagram than the all-
pixel diagram when the sample size is reduced.  For the largest sample size, there is little 
difference. 
 
In our case, we do not have a representative area on the scale of one section, nor is it likely 
that we have a representative volume in one block of ice, which we sample by creating 
composite sections in order to make EBSD practicable.  By combining data from three blocks 
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from what we believe to be a homogeneously deformed volume of ice, we can reduce the bias 
further and better approach a representative volume.  Because of the presence of the large, 
ameboidal shaped grains, we believe that one-point-per-grain provides a better indication of 
the fabric elements than all-pixel representation.  
 
As we have pointed out, dealing with large crystals of complex and interconnected shapes 
remains a problem, and the grain size and shape remain largely undefined. As a result, until 
we can better define the size and shape of such ice, in order to look at the most representative 
CPO patterns to assess microstructural processes, we believe the one-point-per grain analyses 
provide a better representation of the CPO.  
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Abstract. Microstructures provide key insights into understanding the mechanical behavior of ice. 

Crystallographic preferred orientation (CPO) develops during plastic deformation as ice deforms dominantly by 15	
dislocation glide on the basal plane, modified and often intensified by dynamic recrystallization. CPO patterns 

in fine-grained ice have been relatively well characterized and understood in experiments and nature, whereas 

CPO patterns in “warm” (T > -10ºC), coarse-grained, natural ice remain enigmatic. Previous microstructural 

studies of coarse-grained ice have been limited to c-axis orientations using light optical measurements. We 

present the first study of a-axes as well as c-axes in such ice by application of cryo - electron backscatter 20	
diffraction (EBSD) -and do so in a shear dominated setting. We have done this by developing a new sample 

preparation technique of constructing composite sections, to allow us to use EBSD to obtain a representative, 

bulk CPO on coarse-grained ice. We draw attention to the well-known issue of interlocking grains of complex 

shape, and suggest that a grain sampling bias of large, branching crystals that appear multiple times as island 

grains in thin section may result in the typical multiple maxima CPOs previously identified in warm, coarse-25	
grained ice that has been subjected to prolonged shear. CPOs combined from multiple samples of highly sheared 

ice from Storglaciären provide a more comprehensive picture of the microstructure and yield a pronounced 

cluster of c-axes sub-normal to the shear plane and elongate or split in a plane normal to the shear direction, and 

a concomitant girdle of a-axes parallel to the shear plane with a maximum perpendicular to the shear direction. 

This pattern compares well with patterns produced by sub-sampling data sets from ice sheared in laboratory 30	
experiments at high homologous temperatures up to strains of ~1.5. Shear strains in the margin of Storglaciären 

are much higher than those in experimental work. At much lower natural strain rates, dynamic recrystallization, 

particularly grain boundary migration, may have been more effective so that the CPO represents a small, final 

fraction of the shear history. A key result of this study is that multimaxima CPOs in coarse grained ice reported 

in previous work may be due to limited sample size and a sampling bias related to the presence of island grains 35	
of a single host that appear several times in a thin section. 

 

1 Introduction 

 

Ice sheets and glaciers play crucial roles in Earth’s climate system, and understanding their dynamic 40	
behavior is essential for a variety of predictive purposes, including making projections of glacier and ice sheet 
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discharge and sea level rise (e.g. Bindschadler et al., 2013; Faria et al., 2014b; Dutton et al., 2015; Golledge et 

al., 2015; Bamber et al., 2019). In addition, glacial ice is a monomineralic rock that deforms at high-homologous 

temperatures as ice flows, and glaciers represent natural tectonic systems that undergo the equivalent of regional 

high-grade metamorphism under known driving forces (Hambrey and Milnes, 1977; Van der Veen and 45	
Whillans, 1994). Similar to rocks in active orogens, flowing glacial ice develops both structures and CPOs that 

reflect the conditions and kinematics of deformation. Studying the internal structure of glaciers on the crystal 

scale provides key insights into ice mechanics, and aids in the understanding of tectonic processes (Hambrey 

and Milnes, 1977; Hooke and Hudleston, 1978; Faria et al., 2014b; Wilson et al., 2014; Hudleston 2015).  

Quantifying flow behavior of ice under natural conditions is essential for the accurate incorporation of 50	
glacier flow into climate models and for using ice as an analog for high temperature deformation of crustal and 

mantle rocks (Hambrey, 1997; Wilson 1981; Faria et al., 2014b; Wilson et al., 2014). Glaciers move by two 

gravity-driven processes: (1) frictional sliding (including deformation of underlying sediments) of the ice mass 

over the underlying rock surface (e.g. Flowers, 2010 and references therein), and (2) slow, continuous creep 

(flow) within the ice mass itself (e.g. Glen, 1955; Alley, 1992; Budd and Jacka, 1989; Cuffey and Paterson, 55	
2010). Creep is governed by thermally-dependent, micro-scale deformation processes, and therefore participates 

in important thermo-mechanical feedbacks in the Earth’s cryosphere, atmosphere and oceans. This is especially 

important because of the highly non-linear dependence of strain rate on stress (Glen, 1955; Budd and Jacka, 

1989; Bons et al., 2018). 

Terrestrial glaciers, ice sheets and ice shelves comprise crystals of hexagonal ice (Ih, Fig. 1a; Pauling, 1935; 60	
Faria et al., 2014b). As ice deforms plastically during flow, anisotropy in the form of a crystallographic fabric or 

crystallographic preferred orientation (CPO) develops due to a dominance of intracrystalline glide on the basal 

plane, and this is modified by recrystallization (Weertman, 1983; Duval et al., 1983; Faria et al., 2014b). Similar 

to other crystalline materials, such as rocks (e.g. Wenk and Christie, 1991), CPO development modifies the 

internal flow strength (e.g. Steinemann, 1958; Lile, 1978; Pimienta and Duval, 1987; Alley, 1988; Alley, 1992; 65	
Azuma and Azuma, 1996; Gagliardini, 2009) and thus documenting natural ice CPOs provides insight into the 

large-scale flow rates of glaciers and ice sheets (e.g. Azuma, 1995; Azuma and Azuma, 1996; Faria et al., 

2014b; Montagnat et al., 2014; Llorens et al., 2016a; Vaughan et al., 2017). The CPO of ice is commonly 

represented by the preferred orientation of c-axes. This is useful because the c-axis of an ice crystal is normal to 

the basal plane (Fig. 1a), and glide on this plane dominates deformation (Duval et al., 1983). However, the 70	
orientations of a-axes are needed to fully characterize the orientation of ice crystals, and to better understand 

deformation mechanisms, since slip in the basal plane is not necessarily isotropic (Kamb, 1961), as has been 

demonstrated in recent shear experiments that result in the alignment of the a-axes (Qi et al., 2019; Journaux et 

al., 2019).   

Coarse-grained (highly variable, but typically >20mm; see figure 2) ice is common at the base of ice sheets 75	
and in warm (T > -10ºC) glaciers. Work on coarse-grained ice is especially important because basal ice in ice 

sheets may accommodate much more of the ice flow than the colder ice higher up the ice column (e.g. Rignot 

and Mouginot, 2012; MacGregor et al., 2016), and clearly coarse-grained ice experiences large strains in valley 

glaciers (e.g., Kamb, 1959). Previous studies on coarse-grained ice have likely only measured partial CPOs, 

typically by optical methods (c-axes only), and identified what may be apparent multimaxima patterns defined 80	
by isolated clusters of c-axes (Fig. 1b; e.g. Rigsby, 1951; Kamb, 1959; Jonsson, 1970). However, these 
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multimaxima patterns are incompletely understood and defined, in part because there has been no practical 

method for measuring the a-axes associated with such patterns. Measuring the a-axes means that we can tell 

whether two grains (in a 2D slice) with the same c-axis orientation also have the same a-axes and may be two 

slices through the same grain in 3D. Work on coarse-grained ice has been limited because methods used to 85	
measure CPOs are restricted to section sizes of 100mm x 100mm or smaller, which results in there being an 

insufficient number of grains needed to clearly define the CPO pattern without making use of multiple sections 

from a given volume of ice (Bader, 1951; Rigsby, 1968).  

We aim to (1) better quantify the CPO patterns (c- and a-axes) associated with warm, coarse-grained ice 

using cryo-electron backscatter diffraction (cryo-EBSD), (2) understand how and why the apparent 90	
multimaxima CPO patterns develop, and (3) interrogate the relationships among multimaxima CPO patterns and 

local deformation conditions in the ice. To address these objectives, we combine results from fieldwork and 

laboratory analyses on Storglaciären, a small valley glacier in northern Sweden, and compare the results with the 

results of experimental work on ice deformation. Fieldwork included detailed mapping of structural features to 

provide a large-scale kinematic framework for our lab-based, microstructural study. Importantly, in the lab we 95	
developed a new sample preparation method to allow us to measure a representative volume and number of 

grains necessary for robust CPO characterization in coarse-grained ice using cryo-EBSD.    

 

2 Previous work 

 100	
Much of the pre-existing research on CPO development in natural ice has been done on ice cores from 

Antarctica and Greenland, and this has been nicely summarized by Faria et al. (2014a). Schytt (1958) produced 

the first microstructural study of deep polar ice from the ice core extracted from the Norwegian-British-

Swedish-Antarctic Expedition of 1949-1952. Many studies of ice cores have been subsequently undertaken, on 

both Antarctica (Gow and Williamson, 1976; Lipenkov et al., 1989; EPICA community members, 2004; Seddik 105	
et al., 2008; Durand et al., 2009; Weikusat et al., 2009b; Azuma et al., 1999, 2000; Weikusat et al., 2017) and 

Greenland (Herron and Langway, 1982; Herron et al., 1985; Langway et al., 1988; Thorsteinsson, 1997; Gow et 

al., 1997; Wang et al., 2002; Svensson et al., 2003b; Montagnat et al., 2014). Studying microstructures in ice 

sheets offers the advantages of examining an extensive record of ice deforming under relatively simple 

kinematic conditions. As a result, CPOs in ice caps have been well defined and interpreted from ice cores, 110	
except perhaps at the base of ice sheets.  

There are two typical end member c-axis CPO patterns that have been identified in experimental work, and 

these are useful in interpreting natural CPOs. At warm temperatures and lower strain rates, under uniaxial 

compression, the c-axes define an open cone shape or small circle girdle at 30-60o about the axis of compression 

on a CPO plot (Fig. 1c; e.g. Jacka and Maccagnan, 1984; Alley, 1988; Budd and Jacka, 1989; Jacka and Jun, 115	
2000; Treverrow et al., 2012; Piazolo et al., 2013; Montagnat et al., 2015; Vaughan et al., 2017; Qi et al., 2017). 

Whether this CPO occurs in nature is less clear. Possible examples are described at the center of ice domes, 

where they would be expected (e.g. Hooke and Hudleston, 1981; Lile et al., 1984; Gow and Meese, 2007). 

There are certainly fabrics close to open cones (sometimes referred to as small circle girdles) in the upper parts 

of many polar ice cores (e.g. Ross ice shelf, Gow and Williamson, 1976; Byrd Station, Gow and Williamson, 120	
1976; Camp Century; Herron and Langway, 1982; Cape Folger, Thwaites et al., 1984; Dye 3, Herron et al., 
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1985; Siple Dome, DiPrinzio et al., 2005; Siple Dome, Gow and Meese, 2007; NEEM, Montagnat et al., 2014). 

Additionally, some CPOs in coarse-grained ice at the base of ice sheets have been identified as possible open 

cones or modifications of open cones (e.g. Byrd Station, Gow and Williamson, 1976; Tison et al., 1994; GRIP, 

Thorsteinsson et al., 1997; GISP2, Gow et al., 1997; Siple Dome, DiPrinzio et al., 2005; Siple Dome, Gow and 125	
Meese, 2007), even though these types of fabrics typically show clustering that is interpreted as a multimaxima 

CPO. It is important to note, however, that the eigenvalue technique of fabric representation, often used with 

more recent analyses, does not distinguish between small circle girdles and multimaxima fabrics (Fitzpatrick et 

al., 2014), and is inappropriate for multimaxima fabrics.   

Under simple shear conditions, the basal planes of ice crystals dominantly align with the shear plane, and 130	
the c-axes form an asymmetric bimodal distribution with both a strong maximum perpendicular to the shear 

plane and a weaker secondary cluster offset at an angle antithetic to the rotation associated with the shear 

direction (Fig. 1c). The angle between the two clusters varies with shear strain, and the weaker cluster ultimately 

disappears with increasing strain leaving a strong single maximum pattern normal to the shear plane (Fig. 1d; 

e.g. Duval, 1981; Bouchez and Duval 1982; Budd and Jacka, 1989; Budd et al., 2013; Qi et al., 2019; Journaux 135	
et al., 2019). This dual maxima pattern of CPO development under simple shear has been described in nature 

(Hudleston, 1977a; Jackson and Kamb, 1997).  It is probable that the strong single vertical maximum seen in 

many ice cores from Antarctica and Greenland are associated with zones of sub-horizontal simple shear (e.g. 

Gow and Williamson, 1976; Azuma and Higashi, 1985; Paterson, 1991; Alley, 1992; Tison et al., 1994; 

Thorsteinsson et al., 1997; Faria et al., 2014a; Montagnat et al., 2014). However, there are almost no new data 140	
for the evolution of CPO of natural ice in shear zones, because there is very little close control of strain 

gradients in natural ice.  Nearly all the published data comes from laboratory experiments.  As far as we are 

aware there is still only one study of fabrics in natural ice constrained to be from a well-defined shear zone 

(Hudleston, 1977). 
An enigmatic CPO pattern can develop in valley glaciers and deep in ice sheets in coarser grained ice that 145	

has undergone significant recrystallization. This pattern is always associated with warmer (T > −10ºC) 

conditions and an increase in grain size, and is characterized by 3-4 maxima (sometimes with submaxima), 

arranged around an axis that is vertical in ice sheets (Gow and Williamson, 1976; Thwaites et al., 1984; 

Goossens et al., 2016), and perpendicular to foliation in valley glaciers (Fig. 1b, Fig. 2; Kamb, 1959; Allen, 

1960; Budd, 1972; Jonsson, 1970). In most cases, given the coarse grain size (Fig. 2a), the number of grains 150	
measured per thin section is small, usually no more than ~100. This may or may not be enough to reveal a 

mechanically significant CPO pattern (Fig. 2b; Rigsby, 1960). By contrast, CPO plots produced for fine-grained 

ice and other deformed crystalline materials typically include data from several hundred unique grains/crystals, 

which can usually be collected from a single sample section. This would be difficult or impossible to 

accomplish with coarse-grained ice. 155	
Previous studies of coarse-grained ice in valley glaciers done by Rigsby (1951) on Emmons glacier, Kamb, 

(1959) on Blue Glacier, and Jonsson (1970) on Isfallsglaciären used light optical measurements to delineate a 

CPO characterized by a multimaxima pattern of the type described above, but were limited to measuring c-axis 

orientations. Such studies used a Rigsby universal stage to individually orient c-axes (Langway, 1958), and they 

demonstrated a relationship of the overall c-axis CPO to other structural elements, with the pole to foliation 160	
typically located centrally among the maxima (Kamb, 1959; Jonsson, 1970). 
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Possible analogues to the multimaxima CPOs found in nature have been produced in experiments by 

Steinemann (1958) and Duval (1981), in both cases at temperatures near the melting point and under torsion-

compression conditions. The maxima developed at high angles to the shear plane.  It should be noted however, 

that the grain size in the experiments is much smaller than in natural ice with these CPOs.  165	
Ice with the multi maxima CPO in valley glaciers (Rigsby, 1951; Meier et al., 1954; Kamb, 1959; Higashi, 

1967; Jonsson, 1970; Fabre, 1973; Vallon et al., 1976; Tison and Hubbard, 2000; Hellmann et al., in review) and 

deep in ice sheets (Gow and Williamson, 1976; Matsuda and Wakahama, 1978; Russell-Head and Budd, 1979; 

Gow et al., 1997; Diprinzio et al., 2005; Gow and Meese, 2007; Montagnat, 2014; Fitzpatrick et al., 2017; Li et 

al., 2017) is comprised of large, branched crystals that lack undulose extinction and have irregular, lobate grain 170	
boundaries (Fig. 2a; Fig. 3). Individual grains are so large that even with the maximum size thin section (using 

any method of analysis), the exact shape and extent of individual grains remain unknown. Additionally, the 

branching nature of these crystals may result in sectioning artifacts that lead to apparent “island grains”—

branches of the same grain appearing multiple times throughout one 2D thin section (Fig. 3: e.g. as illustrated in 

glacial ice by Bader (1951) and Rigsby (1968), in sea ice by Dempsey and Langhorne (2012), and in quartz 175	
(Stipp et al., 2010). Without a complete crystal orientation – one that includes ice a-axes – it is difficult to 

confirm the existence of such island grains and determine their effect of the characterization of a representative 

CPO. Early work tried to address the problem of sample size by making multiple sections from different parts of 

a sample or core, spacing thin sections between 5 and 15cm intervals, (Rigsby, 1951; Gow and Williamson, 

1976; Thwaites et al., 1984) or taking them from more than one sample (Kamb, 1959).  Nonetheless, there 180	
remains the uncertainty about whether the maxima are truly distinct or reflect repeated measurements of 

individual grains. It might be noted that in recent work little or no explicit attention is given to the problem of 

sample size in coarse-grained ice (see Dahl-Jensen et al., 2013; Montagnat et al., 2014; Fitzpatrick et al., 2014; 

Li et al., 2017), and to the significance of possible island grains on fabric (see Diprinzio et al., 2005; Gow and 

Meese, 2007; Dahl-Jensen et al., 2013; Montagnat et al., 2014; Fitzpatrick et al., 2014; Li et al., 2017). This 185	
problem may not have been highlighted, as CPO in coarse-grained ice was not the sole focus of these ice core 

studies.  
A number of interpretations have been proposed for the multimaxima CPOs, though it is clear that there is 

no single explanation that can be applied to all cases. Earlier studies made efforts to quantify an angular 

relationship between clusters of c-axes, but no consistent relationship could be found, and a mechanism that 190	
produces such a pattern – with regular angular relationships or otherwise – has not been established. For one 

thing, the number, shape and relative intensity of the maxima that define the CPO are variable (e.g. Rigsby, 

1951, 1960; Kizaki, 1969; Jonsson, 1970), even though the “ideal” shape is classified as rhomboid or diamond 

(Rigsby, 1951, 1960). It has been proposed that the multimaxima pattern may be the result of mechanical 

twinning (Matsuda and Wakahama, 1978), although the texture in thin section gives little indication of this. (It 195	
should be noted that twinning can only be investigated if both a- and c-axes are known). It is often assumed that 

CPOs are related to the state of stress, and that the maxima reflect the basal plane alignment with orientations of 

high shear stress (Duval, 1981). If this were the case, there should be no distinction between CPOs formed in 

coaxial and non-coaxial kinematics, there should be just two maxima, and there should be a consistent 

relationship between fabric elements and the principal stress directions. However, in pure shear, found in the 200	
center of the ablation zone near the surface of valley glaciers, where ice undergoes longitudinal compression, the 
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maximum principal stress is horizontal and the multimaxima pattern is centered about the axis of compression 

(Hellmann et al., in review), which in the case of the Blue Glacier is also the pole to foliation (Kamb, 1972, fig. 

17b). By contrast, in simple shear, assumed to hold near glacier margins, the maximum principal stress is 

inclined at 45° to the foliation (shear plane), and the maxima are arranged about the normal to the foliation 205	
(Kamb, 1959) and not centered about the maximum principal stress direction.   

A number of previous studies proposed that recrystallization dominated by grain boundary migration results 

in the multimaxima CPOs (Rigsby, 1955; Gow and Williamson, 1976; Gow et al., 1997; Duval, 2000; Diprinzio 

et al., 2005; Gow and Meese, 2007; Montagnat et al., 2014). While dynamic recrystallization likely plays an 

important role, these studies do not provide an interpretation as to why recrystallization results in the 210	
geometrically spaced clustering of c-axes rather than the well understood patterns found in fine-grained ice. 

Some authors suggest the multimaxima pattern illustrates the transition between small circle girdles and single 

maximum CPOs  (e.g. Rigsby 1955; Gow and Williamson, 1976; Gow and Meese, 2007; Fitzpatrick, et al., 

2017), but again do not provide a reason this would result in several distinct maxima. 

We argue that previously employed methods have most probably not been able to clearly determine a 215	
representative CPO for glacial ice consisting of coarse, branching crystals. Optical studies using the Rigsby 

stage, such as those illustrated in figure 2, which accommodates 100mm x 100mm thin sections, are time 

consuming, especially when many sections must be made for one sample, and are limited not only by 

incomplete crystal orientations, but also by data resolution. Automatic ice texture analyzers (AITA), which can 

also accommodate larger grain sizes, use an image-analysis technique under cross-polarized light to determine 220	
c-axes (Russell-Head and Wilson, 2001; Wilen et al., 2003). AITA analyses are attractive for speed and data 

resolution, but are also limited by incomplete crystal orientations (Russell-Head and Wilson, 2001). For both the 

Rigsby stage and AITA methods, it is not possible to relate two grains with the same c-axis orientation in two-

dimensions to the same parent grain, unless traced through an undetermined number of successive thin sections. 

This is near impossible for all grains since the exact size and shape of the crystals remains undefined. 225	
Three methods: etching (Matsuda 1979; Matsuda and Wakahama 1978), semi-automated Laue diffraction 

(Miyamoto et al 2011; Weikusat et al 2011), and EBSD (Dingley, 1984; Prior et al., 1999) enable the 

measurement of full crystallographic orientations in ice (Obbard et al., 2006; Obbard and Baker, 2007; Weikusat 

et al., 2017; Kim et al., 2020). Etching is time intensive and the results are of low angular resolution. The other 

two methods produce results of high resolution. Laue X-ray diffraction has been applied as a spot based method 230	
while EBSD provides the orientation of every pixel measured.  

 Cryo-EBSD as a technique was first applied to ice in 2004 (Iliescu et al 2004), and modern cryo-EBSD 

methods enable routine work on water ice (Prior et al 2015). CPOs derived from EBSD datasets include a-axis 

orientations and provide a comprehensive view of ice microstructure that can improve our knowledge of the 

CPO and its relation to ice flow mechanisms on the grain scale. In addition, the speed, angular precision, and 235	
spatial resolution attainable with modern EBSD systems offer major advantages over optical methods. However, 

until now, EBSD has not been applied to warm, coarse-grained ice because a sample of maximum size for 

analysis (60mm x 40mm: Prior et al., 2015; Wongpan et al., 2018) will only contain a few grains. The procedure 

we apply in this paper addresses this limitation.    

 240	
3 Glaciological Setting  
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Storglaciären is a small polythermal valley glacier located in the Tarfala Valley in northern Sweden (Fig. 

4). The glacier is 3.2km long, extending in an E-W direction, with a total surface area of 3.1km2. A cold surface 

layer (annual mean of -4.0ºC) (Hooke et al., 1983a; Holmlund and Eriksson, 1989; Pettersson et al., 2007) of 245	
variable thickness (20-60m) (Holmlund and Eriksson, 1989; Holmlund et al., 1996; Pettersson et al., 2003), and 

a cold-based margin and terminus (annual mean of -4.0ºC) (Holmlund et al., 1996; Pettersson, 2007), 

characterize the ablation zone (Holmlund et al., 1996b). The thermal regime influences glacier dynamics; the 

center of the glacier undergoes basal sliding, but the margins and terminus are frozen to the overlying and 

marginal rock (Holmlund et al., 1996), causing most of the deformation in these areas to be a result of creep 250	
(Pettersson et al., 2007). Storglaciären was chosen because: (1) a compilation of preexisting information on 

surface velocities and seasonal changes gathered over many years exists to provide background for the study; (2) 

the multimaxima pattern has been observed optically in strongly sheared marginal and basal ice (Fig. 2), and (3) 

because it is comparatively easy to access. 

Primary stratification is easily identified above the equilibrium line on the glacier as gently undulating 255	
layers roughly parallel to the ice surface. The ice in Storglaciären undergoes horizontal compression and 

shortening as it enters the valley from the accumulation cirques, and this amplifies the slight undulations in 

primary stratification, causing upright, similar folds (Ramsay, 1967) near the margins of the valley (walls) 

where shearing, which combines with shortening, is most intense. Folds range from centimeter to meter 

amplitude, and generally have axial surfaces that are vertical near the margins and contain the flow direction. 260	
They are associated with an axial planar foliation and have hinges that plunge gently west, away from the flow 

direction. Foliation develops from pre-existing stratification, veins and fracture traces where shear is most 

intense (e.g. Hambrey, 1975; Roberson, 2008; Jennings et al., 2014), and is defined by variations in crystal size, 

shape and bubble concentration and distribution (e.g. Allen et al., 1960; Hambrey, 1975; Hambrey and Milnes, 

1977; Hooke and Hudleston, 1978). Foliation tends to become perpendicular to the maximum shortening 265	
direction, and thus rotates with progressive shear towards parallelism with the flow direction along the glacier 

margins (Fig. 4; Ragan, 1969), reflecting cumulative strain (Hambrey and Milnes, 1977; Hooke and Hudleston, 

1978; Hambrey et al., 1980; Hudleston, 2015).  

 

4 Methods 270	
 

4.1 Field Work  

 

Detailed mapping in 2016 and 2018 on the surface of the glacier provides the structural framework for this 

study. Data collection was focused on multiple transects across the glacier in the ablation zone. Relevant data, 275	
presented in Figure 4, highlight the relationship of the structures to one another and the known kinematics. 

We collected samples from eight areas of intense deformation in the ablation zone during the 2018 field 

season. For the purposes of this paper, we are focusing on three samples from the intensely sheared southern 

margin (SG23, SG27, and SG28) (Fig. 4) because they are from a small area with well-defined kinematics. The 

other samples collected in 2018 were spread out across the glacier in various and more complex local settings, 280	
and were not clustered in such a way that data could be combined for a strong interpretation, and thus do not 
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contribute to the arguments we present here. We excavated 10-20cm of surficial ice before sampling to avoid a 

layer of solar-damaged, recrystallized ice. Damaged ice was broken up using an ice axe and removed with a 

shovel. Blocks of ice were removed from the glacier using a small chainsaw. Each sample was ~15x15x30cm, 

oriented such that the top of the block was parallel to the glacier surface, and the long axis was N-S, 285	
perpendicular to the flow direction. The shear plane, used to define the kinematic reference frame for subsequent 

microstructural analyses, is assumed to be parallel to the foliation. Samples were immediately shaded with a tarp 

upon removal to avoid solar damage, then labeled and insulated with ice and jackets to be transported off the 

glacier. We trimmed samples with a band saw in a cold room at the University of Stockholm, Sweden, and 

marked the top north edge with a notch. We transported these samples to the University of Otago, New Zealand, 290	
in doubly insulated Coleman Xtreme 48L wheeled coolers, each of which can only contain four samples, to be 

stored in a biohazard freezer set to -31ºC. Samples remained below -20ºC for the entire transport pathway.  

 

4.2 Sample preparation  

 295	
We prepared samples for EBSD mapping and microstructural analysis in a cold room (-20ºC) at the 

University of Otago. To do this, we developed a novel composite sample preparation method to maximize the 

number of grains collected and minimize the number of repeated grains, in order to obtain a representative CPO. 

We made at least two composite sections for imaging from each of the eight samples, totaling 18 composite 

sections. We emphasize that we are not the first to combine orientation data from multiple oriented sections to 300	
overcome the problem of sampling when dealing with very large grain sizes (e.g. Rigsby, 1951; Kamb, 1959; 

Gow and Williamson, 1976; Thwaites et al., 1984). Our method provides a way of dealing with the specific 

technical challenges of using EBSD for coarse-grained ice since the time/ resource limitation for EBSD is time 

on the instrument and with fast EBSD speeds, the sample exchange rather than the analysis time becomes the 

limit.  Making composite sections enables us to collect data equivalent to 10 to 20 full sample sections with only 305	
one exchange of samples, taking a half day of SEM time rather than what would otherwise be two weeks. 

The sample preparation procedure is highlighted in figure 5. We initially cut each sample block into three 

5cm thick slabs perpendicular to the foliation. We then divided each slab into rods, spaced by 5cm, 

perpendicular to the flow direction and to the foliation.  These rods were cut such that they were staggered 

between sequential slabs, and a series of ~2mm thick slices were cut off of the bottom or top of each rod (easiest 310	
to divide each rod into equally spaced cubes before cutting slices due to the delicacy of individual slices). Each 

slice was labeled, oriented, and stacked sequentially between two wooden blocks within a clamp to hold loose 

slices together before being cemented. We wrapped wet paper towels around the compiled stack to adhere the 

slices into a coherent block, ~3.6x5x5 cm. We then cut these blocks in half to generate a flat composite surface, 

labeled each half, and returned one to storage for future use. We mounted sections on 4x6cm copper and 315	
aluminum ingots in the cold room using the freeze-on technique outlined by Craw et al. (2018) and, to ensure 

secureness, used thin slices of wet paper towels around the edges in contact with the ingot. The exposed surface 

was then flattened and polished using progressively finer sand paper and then cooled slowly to ~ -90ºC before 

being inserted into the SEM.  

We note that there are associated errors of misorientation with each step. We consider the process in several 320	
stages. Each sample is first squared into a rectangular prism, with one side vertical and another parallel to 
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foliation, using guides to ensure perpendicularity. Guides are then used for each of steps 1-4 (Fig. 5), cutting the 

sample progressively into slabs, rods, cubes and slices. The errors involved in each stage of this process are 

estimated to be less than 0.5°. The error involved in slight twisting between slices during assembly into a 

composite section is estimated to be no more than 1°.  Combining data from two or three composite sections in a 325	
sample adds only possible errors of misalignment in mounting for EBSD measurement. This is estimated to be 

no more than 0.5°. These sum to give possible errors of misorientation of the slices making up the composites 

and thus of the pole figures derived from them of 3-4o.  

Whole sections of certain areas of the original blocks were prepared for examination, to mitigate loss of 

information on internal structure due to the small slices for the composite sections. Slabs cut perpendicular to 330	
foliation (first step in composite preparation) were polished using progressively finer sandpaper and allowed to 

sublimate overnight, then illuminated using low angle light, which revealed grains intersecting the surface. 

Areas of interest in these slabs were targeted for whole section analysis. At least two whole sections were taken 

from each sample.  

It is important to note that the copper and aluminum ingots on which the samples were mounted were up to 335	
40 x 60mm because that is the maximum size the SEM can analyze without significant risk of sample crashes 

(Prior et al 2015 show a larger sample but 40mm x 60mm is now the standard max size). This size pushes the 

limits of the instrument, and therefore we aimed to make sections that were not quite 60mm wide. We 

experimented with the width of the composite slices, initially starting with 5mm (see Fig. 7, SG23 composite 2 

EBSD image—this was the first composite constructed), and determined that in order to maximize the number 340	
of grains, we needed to use more slices that were thinner. We ultimately aimed for 36 spaced slices per sample - 

18 per composite - that were each approximately 2mm wide. This allowed extra room, which was important 

because different bubble concentrations throughout the sample made certain areas more fragile than others. 

Slices in areas with a high bubble concentration needed to be a bit wider (2.5-4mm). Ultimately, most of the 

composite sections were between 36mm and 50mm wide. Thus it was practical considerations that limited the 345	
width of the sections we produced. Additionally, for whole sections, we were interested in examining the 

internal structure of the largest grains, which included subgrain boundaries, and also the misorientations 

between grain boundaries. Many of the sections measured were mounted on the larger ingots (40mm x 60 mm), 

but due to the limited number of these, some were mounted on smaller ingots (30mm x 30 mm). All produced 

similar analytical results.  350	
 

4.3 Orientation data collection  

 

A Zeiss Sigma variable pressure field-emission-gun Scanning Electron Microscope (SEM) fitted with a 

Nordlys EBSD camera from Oxford Instruments was used for EBSD analyses. The instrument is fitted with a 355	
custom-built cryo-stage that is continuously cooled by liquid nitrogen from an external dewar via a copper braid 

connection (Prior et al., 2015). The stage is cooled below -100ºC prior to sample insertion. During the transfer 

process, the sample did not exceed -80ºC. Once the stage cooled back down to -100ºC, we vented the SEM 

chamber, allowing the stage temperature to rise to -75ºC, inducing a sublimation cycle outlined by Prior et al. 

(2015) to remove any residual frost from the sample surface before imaging.  360	
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We collected full cross-sectional orientation maps of whole sections (e.g. Fig. 6a,b) and composite sections 

(e.g. Fig. 7a) at a 50µm step size in order to balance data resolution with such a coarse grain size. SEM settings 

for EBSD acquisition were a stage temperature of ~-90ºC, a chamber pressure of 3-5Pa, an accelerating voltage 

of 30kV, a beam current of ~60-70nA, and a sample tilt of 70º. Each large section takes >1 hour to analyze at 

this coarse step size, additional time to analyze any areas of interest in finer detail, and another hour to do a 365	
sample exchange, run the sublimation cycle to clean frost off of the sample for imaging, bring the stage down to 

the correct temperature, and set up another analysis. When all goes smoothly, only 3-4 sections can be analyzed 

per day. 

EBSD data were collected using the Aztec Software from Oxford Instruments and exported into Oxford- 

HKL Channel 5. We used EBSDinterp 1.0, a graphic user interface based MATLAB® program developed by 370	
Pearce (2015) to reduce noise and interpolate non-indexed EBSD data points using band contrast variations. 

Noise reduced data were then processed using MTEX, a texture analysis toolbox for MATLAB® (Bachmann et 

al., 2010), to determine full crystallographic orientations, intergranular misorientations, grain boundaries and to 

calculate one-point-per-grain CPO plots (Mainprice et al., 2015). The overall CPO in our samples is best 

represented using one-point-per-grain plots rather than all-pixel orientation plots due to the area bias introduced 375	
by larger grains in a small sample size. We note that representing the data using all-pixel orientations does take 

into account the issue of parent grains with satellite island grains, but only if the sample is large enough to 

contain a sufficient number of grains to provide a truly representative CPO (Appendix A). If the sample does not 

contain a representative number of grains, as is often the case with coarse-grained ice, then using one-point-per-

grain provides a more representative CPO (Fig. A1). The kinematic reference frame used for plotting CPO is 380	
shown in figure 4.  

 

5 Results 

 

5.1 Field Work   385	
 

Orientation measurements of bedding and foliation are consistent with previous observations on 

Storglaciären and other valley glaciers. Bedding is difficult to distinguish from foliation at the margins of 

Storglaciären, but more obviously recognizable in the center of the glacier. Although locally variable due to 

folding, in the center of the ablation zone, bedding generally dips shallowly west. Along the margins, the 390	
foliation is subvertical, dipping steeply inwards towards the center of the glacier (Fig. 4). In the center towards 

the front of the glacier, the foliation becomes progressively shallower and dips shallowly up glacier where 

sheared basal ice is closer to the surface (Fig. 4). The combination of transformed stratification and foliation in 

the ablation zone forms a series of arcs on the surface reflecting in three dimensions an overall nested spoon 

arrangement, opening up glacier, much as described by Kamb (1959) for the Blue Glacier. 395	
 

5.2 Microstructure 

 

Grains are locally variable in size, ranging from 1mm to >90mm. They have no apparent consistent shape 

preferred orientation (SPO). Air bubbles exist as a secondary phase and are found both within grains and on 400	
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grain boundaries (Figs. 2a and 6a,b). Broadly, there is an inverse correlation between bubble concentration and 

grain size, and also between bubble concentration and grain boundary smoothness.  

 

5.2.1 Whole Section 

 405	
The size of an individual whole-section is determined by the technique used for the analysis. For U-stage 

work it is 100mm x 100mm, whereas for EBSD work it is 40mm x 60mm. Neither section size is large enough 

to clearly measure the coarse crystal size, but such sections capture the complexity of grain boundaries and 

crystal shapes. Larger crystals have lobate-cuspate boundaries (Fig. 2a; Fig. 6a,b), and many grains are larger 

than the size of the thin section. Many larger grains within one measured section have the same color in thin 410	
section under cross-polarized light and are shown to have the same crystallographic orientations by EBSD data, 

with near identical c-axis and a-axis orientations (Fig. 2; Fig. 6,b,c). We chose to show sections from the smaller 

ingots (~30mm x 30mm) (Fig. 6a,b) because the data resolution was high (not many mis-indexed points/holes in 

the data, or cracks in the section) in comparison with those from the larger ingots. These sections highlight all 

the features we discuss. 415	
Misorientation profiles A-A’ (Fig. 6a) and B-B’ (Fig. 6b) show that the orientation gradient across 

individual grains is low. The pixel-to-pixel scatter, mostly less than ±0.5º is typical of the angular error for fast 

EBSD acquisition (Prior et al., 1999). Profile A-A’ shows an abrupt change of about 4º across a subgrain 

boundary, and no distortion within the grain or subgrain. In nine whole sections analyzed for this study, ~15% 

of grains contain subgrain boundaries, with misorientations ranging between 2.5º and 5.5º (e.g. Fig. 6a). Profile 420	
B-B’ shows a grain that has no internal distortion, and profile C-C’ shows an orientation change of about 2.5º 

across ~20mm. The statistics of misorientation between every pixel and the average orientation for that grain 

(Fig 6e) shows that 99% of these misorientations are below 2.5º. There is very little orientation spread, a 

measure of lattice distortion in the grains in this and all of the other sections shown.  

 425	
5.2.2 Composites  

 

Several c-axis maxima clustered around the normal to the shear plane are present in individual samples and 

this is largely independent of whether we plot all measured pixel orientations or one-point-per-grain orientations 

(Fig. 7b,c,d). The maxima in the all-pixel diagrams (Fig. 7b) have different relative intensities compared to 430	
those in the one-point-per grain CPO plots (Fig. 7c,d), reflecting the increased weight given to the larger grains 

in the per pixel data. In either case, many c-axes within an individual cluster are only separated by 3º-5º. The a-

axes define a diffuse girdle, parallel to sub-parallel with the shear plane, containing three distinct clusters (Fig. 

7e). Each cluster is elongate towards the pole to foliation. 

When composites SG23, SG27 and SG28, which are in the same kinematic reference frame, are 435	
individually plotted as one point per grain, and these results are combined on one CPO plot, the multimaxima 

nature of the pattern diminishes (Fig. 8). The composite pattern has one c-axis maximum roughly perpendicular 

to the shear plane, that is elongated or split into two maxima aligned in a plane normal to the shear direction, 

and an a-axis girdle parallel with the shear plane with a concentration of a-axes perpendicular to the shear 

direction (parallel to the inferred vorticity axis of flow). Two weak c-axis sub-maxima are offset from the main 440	
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maximum in a plane perpendicular to the vorticity axis: the more distinct one  ~30º synthetic to the shear 

direction and the less distinct one ~50º antithetic to the shear direction (Fig. 8).  

It is important to note that another source of error in creating Fig. 8 results from combining data from the 

three samples on to one pole diagram. The reference frame for this is the foliation plane (xy-plane with vertical, 

x, recorded on each block when removed from the glacier.) The error in combining data from the three samples 445	
is estimated to be no more than 1°. Adding this source of error to those associated with sample preparation (see 

above) we estimate the uncertainties in positioning points on the pole diagrams Fig. 8 to be no more than 6°. 

The overall effects of such errors are likely to modestly diffuse rather than strengthen the maxima shown, but 

they will not modify the basic pattern. We assert that the measurements we have made are sufficient to establish 

the main features of the fabric in Fig. 8.   450	
 

6 Discussion  

 

6.1 Whole sections  

 455	
EBSD maps of whole sections confirm that island grains are likely part of the same larger grain based on 

identical full crystallographic orientations (Fig. 6a,b). Individual grains within a two-dimensional surface that 

have exactly the same orientation or a slight misorientation are likely branching segments of the same grain, or 

subgrains of the larger grain in three dimensions (Fig. 3; Fig. 6b,c). Even small (30mm x 50mm) 2D sections 

can contain 3-5 island grains that have the same orientation (Fig. 6b,c). By appearing several times in the same 460	
section, some of the larger crystals amplify individual maxima within the overall CPO pattern typically 

identified in warm, coarse-grained ice. This may particularly be the case in studies that only use ~100 or fewer 

grains to identify a c-axis pattern, because if 10-15 islands comprising the same grain were measured as separate 

grains, that would automatically lead to a c-axis maximum due to that grain.     

Whole section analyses also allowed us to better understand the deformation mechanisms. While some 465	
subgrains are present in the suite of whole sections analyzed, most crystals show little evidence of significant 

lattice distortion. Individual grains are relatively strain free (Fig. 6e). A lack of intragranular distortion, 

combined with the presence of lobate-cuspate grain boundaries, no visible shape preferred orientation, and 

evidence of grain boundary drag around bubbles (e.g. Fig. 6a), similar to pinning effects discussed by Evans et 

al. (2001), suggests that recrystallization in these samples is dominated by grain boundary migration (Urai et al., 470	
1986). These interpretations are consistent with those in microstructural studies of experimentally deformed ice 

at high temperatures (e.g. Kamb, 1972; Montagnat et al., 2015; Vaughan et al., 2017; Journaux et al., 2019), and 

natural ice samples deformed at relatively high temperature (Duval and Castelnau, 1995).  

 

6.2 Composite sections and combined samples 475	
 

c-axis patterns for individual samples appear to represent typical multimaxima CPO patterns of the kind that 

have previously been identified in warm, coarse-grained ice (Fig. 7b,c), with 2-3 strong maxima and 1-2 weaker 

maxima all centered about the pole to foliation. However, on CPO plots of one-point-per-grain c-axes, we 

interpret the small angular difference between many of the individual points as most likely due to branched 480	
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grains appearing multiple times throughout the sample section and thus being counted more than once, 

consistent with observations made on whole sections. This interpretation is strengthened because c-axis clusters 

in Fig. 7 are coupled with corresponding a-axis clusters. The small 3º-5º misorientations of individual c-axes 

within a cluster are likely due to the combination of slight non-parallelism and rotation of slices that occurred 

during the sample preparation process (as described above) and the internal structure of individual grains. On 485	
this basis, we propose that multimaxima patterns such as those described in previous studies may be an apparent 

result caused by grain sampling bias, with some samples containing fewer than 30 unique grains within a set of 

100 apparent grains (i.e. the case assuming no multiple counting). Thus, even for the composite samples, the 

data in Fig. 7 likely do not truly provide a representative one-point-per-grain CPO. Combining sections for 

SG23, SG27, and SG28 provides a more representative dataset (fig. 8), reducing but not entirely eliminating the 490	
bias. 

 

6.3 Comparison with Experimental Results  

 

Only two published sets of experiments document both c-axis and a-axis CPOs in simple shear in ice, and 495	
those are the ones by Qi et al. (2019) and Journaux et al. (2019). The results of these two sets of experimental 

studies are coherent, exhibiting two clusters of c-axes, a strong cluster normal to the imposed shear plane at all 

strains, and a secondary cluster in a profile plane antithetic to the imposed shear direction at lower strains. Both 

studies highlight the disappearance of the weaker maximum, and an enhancement of the stronger maximum with 

high shear strains. Except for grain size, we interpret microstructures in the ice from both the warm temperature 500	
experiments by Qi et al. (2019) and the experiments done by Journaux et al. (2019) to be similar to those in our 

samples from Storglaciären (including c- and a-axis CPOs) and to other examples (including only c-axis CPOs) 

of warm, natural ice (Rigsby, 1951; Kamb, 1959; Jonsson, 1971). Individual grains from these “warm” 

experiments by Qi et al. (2019) and Journaux et al. (2019) are characterized by ameboidal shapes and lobate 

boundaries, and portray little to no shape preferred orientation in the two dimensional plane.  505	
We provide a more detailed comparison of our CPOs from natural ice to experimentally obtained CPOs 

from two warm temperature (-5ºC) direct shear experiments by Qi et al. (2019), at relatively low (γ=0.62) and 

high (γ=1.5) strains. A major advantage of using an experimental dataset for our comparison is that it comprises 

hundreds more grains than can be measured in a single sample of coarse-grained glacial ice – even with using 

the novel composite-section sampling techniques addressed in this paper. Given the similarity in grain-shape 510	
characteristics and deformation temperature, and owing to the greater number of analyzed crystal orientations, 

we argue that CPO patterns from both the Qi et al. (2019) and Journaux et al. (2019) samples represent an 

excellent analogue for crystallographic texture evolution of ice along the margins of Storglaciären. 

Orientation data from Qi et al. (2019) show well-defined CPO patterns with a two-cluster c-axis pattern: a 

strong c-axis maximum perpendicular to the shear plane, and a c-axis sub-maximum rotated from the dominant 515	
maximum 45º-70º in a direction antithetic to the shear induced rotation (Fig. 9). The angle between the strong 

maximum and sub-maximum decreases with increasing shear strain. Clusters of c-axes are somewhat elongate 

in a plane normal to the shear direction. 

The elongation of the main c-axis maximum in a plane normal to the shear plane and in a direction 

perpendicular to the shear direction is found both in simple shear experiments (Kamb, 1972; Bouchez and 520	
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Duval, 1982; Journaux et al., 2019; Qi et al., 2019) and in experiments involving simple shear with the added 

effect of compression or flattening normal to the flow plane (Kamb, 1972; Duval, 1981; Budd et al., 2013; Li et 

al., 2000). It is also found in our samples (Fig.8). There are many proposed explanations, a combination of 

which likely tells the story along the margin of Storglaciären. The combination of uniaxial compression (cone 

distribution about the compression axis) with simple shear (single maximum perpendicular to the shear plane for 525	
large strains) provides the clearest explanation for the split maximum (Kamb, 1972; Budd et al., 2013). Bouchez 

and Duval (1982), and Journaux et al. (2019) observe the tendency for the main c-axis maximum to spread, but 

not split entirely, in experiments using fixed plattens where compression could not be a factor. Li et al. (2000) 

attribute the spreading to transverse extension accompanying the flattening of the sample during deformation in 

their experiments. Two-dimensional numerical simulations by Llorens et al. (2016a, 2017) show this spreading 530	
and splitting occurs in simple shear with no flattening strain, and that it is enhanced by dynamic 

recrystallization. It is most pronounced at low strain rates. Qi et al. (2019) suggest that the spreading increases 

with increasing shear strain. In our case, at the margins of Storglaciären, the ice is deforming at high 

temperatures, low strain rates, and to high finite strains, consistent with conditions that enhance spreading in 

experiments (Qi et al., 2019) and in modeling (Llorens et al., 2016a, 2017). The degree of spreading and 535	
splitting is likely enhanced in these samples due to compression normal to the valley walls, in a direction normal 

to the shear plane, a pattern similar to that observed by Kamb (1972) and Budd et al. (2013). 

The a-axes in both the low- and high-strain experiments of Qi et al. (2019) define a girdle parallel with the 

shear plane (Fig. 9). In the lower-strain experiments, the a-axes cluster mostly perpendicular to the shear 

direction (parallel to the vorticity axis), whereas in the higher-strain experiments they mostly cluster parallel 540	
with the shear direction (Fig. 9). This change in a-axis maximum from normal to the shear direction to parallel 

to the shear direction with increasing strain is also observed by Journaux et al. (2019), though there is not 

currently a good explanation for this switch. It is important to note that in both the experiments (Qi et al., 2019; 

Journaux et al., 2019) and in our study, the a-axis CPO indicates that slip is not isotropic in the basal plane (see 

Kamb, 1961).  545	
In an attempt to mimic a possible grain sampling bias similar to that which we propose when dealing with 

warm coarse-grained ice, we randomly resampled subsets of 50 grains – allowing for random duplicates in the 

resampling (thus one grain may appear more than once in the resampling) – from the two warm experiments by 

Qi et al. (2019) at low and high strains and compared these to the stacked suite of natural samples in the same 

kinematic reference frame (Fig. 9). Subsets of the experimental data produce patterns that are more-diffuse and 550	
patchy than those for the full dataset and are broadly similar to patterns observed in natural coarse-grained ice. 

Importantly, the Qi et al. (2019) study does not suffer from grain sampling biases common to CPO 

characterization in warm glacial ice, due to the significantly finer and more consistent grain size (Fig. 9). 

Compared to the experimental results, the main c-axis maxima in the stacked data from our glacial ice samples 

(Fig. 8) are more elongate or “pulled apart” than those in the subsampled experimental data, and the girdle of a-555	
axes is broader, with a cluster perpendicular to the shear direction, similar to the pattern observed in the lower 

strain experiments (Fig. 9). The more distinct c-axis sub-maximum in our combined data (Fig. 8) is offset from 

the main maximum in a synthetic sense with respect to the shear direction, rather than an antithetic sense as 

might be expected from the experimental data (Fig. 9).  However, the less distinct sub-maximum, offset in the 

antithetic sense ~50º from the main maximum, is consistent with the secondary maximum in the experiments.  560	
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We interpret these results to mean that the grain sampling bias issue was not entirely resolved by making 

and combining composite sections, due to the very large grain size with interlocking shapes that still have not 

been entirely characterized. However, the overall similarity between the stacked data from composite sections 

from the three samples in the same kinematic reference (Fig. 8) to the CPO pattern presented by Qi et al. (2019) 

for fine-grained ice that has undergone low shear strains at high homologous temperature (Fig. 9, PIL91) 565	
suggest that the operative deformation mechanisms are similar. 

It is important to note that we do not know the exact deformational history experienced by the ice in our 

natural samples, but the recent part of that history corresponds most closely to simple shear parallel to the ice 

margin. An additional similarity between the experiments (Qi et al., 2019) and the conditions of deformation 

experienced by our samples is that there is a small component of compression, which for our natural samples is 570	
perpendicular to the margins of the glacier, associated with the narrowing of the valley in the direction of flow 

(Fig. 10a). Thus our samples may represent similar kinematics to those in the experiments conducted by Duval 

(1981) and Budd et al. (2013) that involved simple shear combined with compression normal to the shear plane 

(Fig. 10b).  

Hudleston (2015) calculated the finite shear strain required to rotate fractures towards parallelism with the 575	
flow direction along the margins of Storglaciären, and this indicated that the finite shear strain where we 

collected ice samples for our study is likely much greater than 2. This estimate exceeds the strain of the “high-

strain” experiments done by Qi et al. (2019) and we might therefore expect our data to best match the “high-

strain” experimental data. However, the a-axis pattern of our samples best matches the pattern for the “low-

strain” experiments, suggesting a weaker effect of recrystallization on the CPO in nature than in the 580	
experiments. One possible reason for this comes from considering strain rate. In the experiments, shear strain 

rate was ~10-4 s-1 whereas in natural ice along the south margin of Storglaciären, strain rate calculated from 

velocity measurements (Hooke et al., 1983b; Hooke et al., 1989) and modeling (Hanson, 1995) is ~10-10 s-1.  

Dynamic recrystallization and grain growth are effective at low strain rates (Hirth and Tullis, 1992; Takahashi, 

1998; Qi et al., 2017). They may also be enhanced under high temperature, low stress conditions, as shown by 585	
Cross and Skemer (2019) using empirical data, although these authors note that this conclusion needs testing 

because it is counterintuitive. In any case, both grain boundary mobility (function of temperature) and driving 

force (function of the storage of dislocations as a result of stress) are important, and the scaling between these 

two from experiment to natural conditions is not known. With the high finite strain experienced by our samples 

the ice must be completely recrystallized, with further strain producing further recrystallization. Considering all 590	
of this, it may be the case that recrystallization in nature is intense at the high finite strains encountered, and 

modifies the CPO so that it does not attain the degree of development found in the experiments. The resulting 

CPO (Fig. 10b) will then likely reflect only the latest part of the deformational history, being continually 

modified by dynamic recrystallization as deformation continued.  
 595	

7 Conclusions  

 

By developing a new sample preparation method to create composite sections for each sample collected, we 

are able for the first time to use cryo-EBSD to obtain complete (c- and a-axes) crystallographic orientation 

measurements for interpreting CPO patterns in natural, coarse-grained glacial ice subjected to simple shear, for 600	
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the marginal ice of Storglaciären. A single composite section captures a relatively large number (~50-100) of 

grains, in our case from an ice sample of ~200mm x 150mm x 75mm dimensions and with >20mm grain size, 

and combining composite sections from adjacent samples increases further the number of grains sampled. The 

larger number of grains in this new approach allows us to better characterize CPO patterns in coarse-grained ice 

than has been done previously, and it sheds new light on the significance of microstructural processes associated 605	
with previously identified multimaxima CPO patterns. Specifically, we conclude that a grain sampling bias of 

interlocking, large (>20mm) branched crystals that appear multiple times as apparent island grains in thin 

section contributes to the apparent multiple maxima CPOs displayed in our natural ice samples.  We have not 

removed this effect, but confirmed it using both c- and a- axes, and partly compensated for it by increasing the 

effective sample size.  Such bias also certainly contributed to similar CPOs that have long been identified in 610	
other studies of natural, warm, coarse-grained ice. Without better establishing 3D grain size and shape, it will be 

difficult to fully eliminate or account for this bias, but a combination of systematic sampling, composite sample 

preparation, and data stacking will help more accurately define CPOs.  

We predict that from our study and from a comparison with experimental results, a fully representative 

CPO, if enough data from a large enough volume of ice were sampled, would consist of: 1) a c-axis CPO with 615	
one maximum that is extended or “pulled apart” in a plane perpendicular to the shear direction, and a weaker 

maximum 45º-60º from the shear plane; and 2) a broad girdle of a-axes parallel to the shear plane with a cluster 

perpendicular to the shear direction, reflecting non-isotropic slip within the basal plane. Such a pattern assumes 

that the dynamic recrystallization of ice deformed to high finite strains, under slow strain rate and high 

temperature conditions results in the observed large grain size and resetting of CPO to reflect the local kinematic 620	
conditions.  

Our new sample preparation method allows for faster, and more accurate collection of complete 

crystallographic orientation data and microstructural analyses of coarse-grained ice. This opens a range of 

opportunities for further analyses to aid in the understanding of micromechanical processes governing 

rheological properties of such ice. Future work will benefit from better quantification of 3D grain size and shape 625	
to help improve the sample preparation methods in order to minimize any grain sampling bias. Additionally, 

more work should be done to quantify the effects of dynamic recrystallization in the context of shear strain 

along the margins of glaciers and should be taken into account when assessing these CPO patterns. 

 

Appendix A 630	
CPO representations using modern techniques, such as AITA or EBSD, are often plotted as all-pixel 

orientations. Gagliardini et al. (2004) demonstrated that the weighted area procedure based on all-pixel 

orientations is a statistically better representation of the CPO if the volume of ice measured is fully 

representative, such that results from two samples of that volume are the same. This assumes that the measured 

area of a grain in cross section is the mean projected area of the grain. All-pixel orientations are especially 635	
important for providing estimates of bulk physical properties, such as the polycrystal elasticity tensor, and may 

take into account the issue of parent grains with satellite island grains, although this will only be true if the 

sample is large enough to contain a sufficient number of grains to provide a truly representative CPO. In 

addition, the presence of island grains calls into question the assumption that the measured area of a grain in 

cross section is the mean projected area of the grain.  If there are no repeat grains in a representative sample, 640	
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one-point-per-grain plots would yield the same CPO patterns (e.g. small circle girdle in fig. A1), although the 

eigenvalues of the orientation tensor, if calculated, will generally differ. If the volume of ice measured is not 

fully representative, one-point-per-pixel will bias CPO patterns towards larger grains and is a sure way to 

produce a multimaxima CPO. This produces unrepresentative grain area biases, as these large grains may not be 

the largest or close to largest grain in a representative volume of ice. The one-point-per-grain method will 645	
reduce that area bias, but could have repeat grains and bias results towards finer grains if the fine grains differ in 

CPO from the large grains (unlikely in the case of Storglaciären). One-point-per-grain analyses, therefore, 

represent the CPO pattern better when you have less representative samples (fig. A1). This is true in our case, in 

which we have a broad range of grain sizes in 2D and few grains. In addition to better representing the CPO 

pattern, plotting the one-point-per-grain method allows for direct comparison with the fabrics described in 650	
earlier studies when all the data were represented this way. 

The issue of statistics is not straightforward for coarse-grained ice with the existence of multimaxima 

CPOs. Any way of attempting to eliminate the effects of multiple counting of individual grains that appear more 

than once in a thin section or in multiple sections intersecting a single crystal would be ad hoc. Doing statistical 

tests while ignoring this phenomenon is of little use. Kamb’s (1959) method of contouring provides a way of 655	
establishing the statistical significance of maxima in a fabric, but this is only meaningful if multiple points from 

the same grain are excluded. We believe that use of eigenvalue methods and associated statistics is inappropriate 

for multiple maxima fabrics. 
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Figure 1. Schematic image showing (a) an ice crystal and its defining c- and a-axes; (b) multimaxima fabric pattern 
identified in warm, coarse-grained glacial ice. The x, y, z axes define the symmetry, but the kinematics are debated (c) 
a small circle girdle or cone shape in uniaxial compression and (d) a strong single maximum fabric ± a weaker second 1025	
maximum in simple shear. (c) and (d) are from experiments and (c) (arguably) and (d) also from nature, and the axes 
x, y, z define the kinematic reference frame. CPO plots here and in subsequent figures are all equal-area, lower 
hemisphere projections. In (b) and (d), z is normal to the foliation, and x is parallel to the shear direction. There is no 
shear plane implied in (c).  
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Figure 2. (a) A thin section under cross-polarized light from sample SG6-B collected in 2016. Grains are labeled 
based on their c-axis orientations, measured using a universal Rigsby stage. Grains with the same orientation were 
tentatively marked as the same grain as indicated by lettering. Color gradients across some larger grains are a result 
of inconsistent thin section thickness; (b) Associated c-axis plot compiled from 8 thin sections from the sample SG6-B. 1035	
This plot contains orientations of all grains measured, and is contoured using the Kamb method (Kamb, 1959). When 
possible duplicates within the same section are removed, the pattern maintains its multimaxima nature, but is weaker 
(not shown). Numbered data points correspond to numbered grains in (a). In order to obtain 100 individual crystal 
measurements, 5-15 thin sections had to be made for each sample, depending on the overall grain size in the 
individual sample. The projection is plotted such that the pole to foliation is vertical and x is the flow direction. The 1040	
data in this figure are not included in the combined figure 8 because after U-stage work, there was not enough of this 
sample to use for EBSD, and thus there are no a-axis data available. 
 

 
Figure 3. (a) Schematic branching crystal and associated (b) two-dimensional thin section highlighting the notion of 1045	
island grains that would appear in a two-dimensional thin section. Numbered branches in three dimensions 
correspond to the numbered island grains in two-dimensions. Part of the grain in (a) lies above the section and part 
below.  
 
 1050	
 



	 30	

 
Figure 4. Simplified map of Storglaciären highlighting the traces of structural elements and orientations of foliation 
and bedding for the north margin, south margin, and center of the glacier in the ablation zone. Locations of samples 
SG6-B, SG23, SG27 and SG28 are labeled. The orientation diagrams of planar fabric elements (stratification and 1055	
foliation) are in geographic coordinates. The sample reference frame for the remainder of the paper is represented, 
where x is the flow/shear direction y is the vorticity axis and z is north. 
 

 

 1060	
Figure 5. (a) Schematic sample preparation for one composite section. Steps for each cut to progress from sample to 
slice are specified with dashed lines, and examples of each are highlighted with dark blue arrows. Individual 2mm 
slices are shown throughout the process on slab A and slab B, and the numbers correspond to the unique slice in the 
final composite stack. At least 36 slices were cut from every sample (using slabs A, B and C) to construct composite 
sections. At least two composites for each sample comprised the final data set (1 composite comprised of slices 1-18 is 1065	
shown in figure). (b) Sample preparation illustrated using SG28 from block sample to composite section. Note that 
the number sequences varied from sample to sample so the numbers on the slabs do not match the schematic in (a). 
Composites are oriented in a kinematic reference frame such that x is the flow/shear direction, y is the vorticity axis 
and z is north. 
 1070	
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Figure 6. A typical whole section EBSD analysis with: (a) and (b) maps of whole sections from SG28. (a) Subgrain 
boundary is shown with a red dashed line, and profile A-A’ crosses that boundary, (b) highlighting three potential 
island grains within the section, and profile lines B-B’ and C-C’ across two grains; (c) one-point-per-grain c- and a-
axes of the highlighted grains 1, 2 and 3 in B. (d) misorientations profiles relative to first pixel along A-A’, B-B’ and 1075	
C-C’; (e) Misorientation angle of each pixel in EBSD map (b) with respect to the mean orientation of the grain. The 
red line highlights that 99.4% of the misorientations between pixels lie below 2.5º. 
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Figure 7. EBSD maps and associated CPOs for composite sections from samples SG23, SG27 and SG28. Data from 1080	
each pair of composites are combined to give the bulk CPO for each sample. (a) EBSD images of the two composite 
sections, where the vertical black lines represent junctions between individual slices of the composite. (b) contoured 
plots of c-axis orientations of all pixels; (c) uncontoured plots of c-axis orientations representing one-point-per-grain; 
(d) contoured plots of c-axis orientations representing one-point-per-grain; and (e) contoured a-axis orientations 
representing one-point-per-grain. All plots are in a kinematic reference frame where x is the shear flow/shear 1085	
direction (black dot), y is the vorticity axis and z is north. 
 
 

 
Figure 8. Combined data (one-point-per-grain) from SG23, SG27 and SG28 in the same kinematic reference frame. 1090	
Plots from left to right show c-axes uncontoured, c-axes contoured and a-axes contoured. 
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Figure 9. Samples PIL91 (γ= 0.62) and PIL94  (γ= 1.5) from Qi et al. (2019), displaying the full data set, and a typical 
subset of randomly resampled data. Both of these samples were deformed at -5ºC at 20MPa confining pressure in a 
cryogenic gas medium apparatus under constant axial displacement rates and terminated at different shear strains. 1095	
In all cases, the pole figures are in kinematic coordinates, with x being the shear direction and x-y the shear plane.  
 
 

 
Figure 10. (a) Schematic of the combination of simple shear and compression experienced by the ice as the valley 1100	
narrows (similar to Storglaciären) and (b) associated schematic CPO plots (for marginal ice), highlighting the 
relationship of the CPO to the foliation/shear plane (gray), the vorticity axis (red) and the plane normal to the shear 
direction (navy blue), expected for dynamic recrystallization at low strain rates and high temperatures. 
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Figure A1: EBSD map and associated CPO plots for sample PIL36 deformed in uniaxial compression at -9.8°C from 
Qi et al. (2017), highlighting the difference in representing data as all-pixel orientations vs. one-point-per-grain 
orientations as a function of sample size. (a) EBSD map, with boxes representing subsampled areas. (c) CPO plots (c- 
and a-axes) of all pixel orientations from the entire sample area, ¼ the sample area and 1/16 the sample area. (d) CPO 1110	
plots (c- and a-axes) of one-point-per-grain orientations from the entire sample area, ¼ the sample area and 1/16 the 
sample area. 
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