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Abstract. Sea ice pressure poses great risk for navigation; it can lead to ship besetting and damages. Contemporary large-

scale sea ice forecasting systems can predict the evolution of sea ice pressure. There is, however, a mismatch between the

spatial resolution of these systems (a few km) and the typical dimensions of ships (a few tens of m) navigating in ice-covered

regions. In this paper, the downscaling of sea ice pressure from the km-scale to scales relevant for ships is investigated by

conducting high resolution idealized numerical experiments with a viscous-plastic sea ice model. Results show that sub-grid5

scale pressure values can be significantly larger than the large-scale pressure (up to∼ 4× larger in our numerical experiments).

High pressure at the sub-grid scale is associated with the presence of defects (e.g. a lead). Numerical experiments show

significant stress concentration on both sides, especially at the back, of a ship beset in sea ice. The magnitude of the stress

concentration increases with the length of the lead (or channel) behind the ship and decreases as sea ice consolidates either

by thermodynamical growth or mechanical closing. These results also highlight the difficulty of forecasting, for navigation10

applications, the small-scale distribution of pressure and especially the largest values as the important parameters (i.e., the

length of the lead behind the ship and the thickness of the refrozen ice) are not well constrained.

1 Introduction

With the growing shipping activities in the Arctic and surrounding seas, there is a need for user relevant sea ice forecasts and

products at multiple time and spatial scales. An important forecast field for navigation is the internal sea ice pressure (simply15

referred to as pressure for the rest of this paper). In compact ice conditions, high pressure events can complicate navigation

activities and even pose great risk for ship besetting.

By solving equations for the momentum balance and for the ice thickness distribution, sea ice models are able to predict the

evolution of the pressure field. However, even for high resolution operational forecasting systems with spatial resolutions of a20

few km (e.g. Dupont et al. (2015); Hebert et al. (2015)), there is a clear mismatch in the spatial scales considered. Indeed, the

forecast pressure from the model, which represents the average pressure for a grid cell of a few km wide, is not necessarily

relevant for a much smaller ship; there are larger pressure values than the average pressure provided by the sea ice forecasting

system (Kubat et al., 2010; Leisti et al., 2011; Kubat et al., 2012). Figure 1 shows an example of a pressure forecast from a

1



large-scale forecasting system. The Canadian Arctic Prediction System (CAPS) is a fully-coupled atmosphere-sea ice-ocean25

system developed and maintained by the Canadian Centre for Meteorological and Environmental Prediction. Its domain covers

the Arctic Ocean, the North Atlantic and the North Pacific. The spatial resolution of the atmospheric model is ∼3 km while

the spatial resolution in this region for the sea ice and ocean models is ∼4.5 km. Looking at a specific region, that is north of

Svalbard (panel b), it can be observed that the surface winds push the ice toward the coast and create large pressure.

30

Some researchers have done case studies of compressive or besetting events using large-scale sea ice forecasting systems

(e.g. Kubat et al. (2012); Leisti et al. (2011); Kubat et al. (2013)). These besetting events are all associated with heavy ice

conditions. The investigations of Kubat et al. show the importance of the coast on pressure conditions; the sea ice pressure

often increases toward the coast.

35

Mussells et al. (2017) used ship logs and satellite imagery to relate besetting events and density of sea ice ridges. They

indeed found that the ship was often beset in areas and times of the year with high ridge densities. Probabilistic models for

ship performance in sea ice and likelihood of besetting events have also been developed (e.g. Montewka et al. (2015); Turnbull

et al. (2019)). Turnbull et al. (2019) argue that the primary cause of the besetting events they studied were the relatively large

ice floes encountered by the vessel.40

There is also a vast literature on the performance of ships navigating in ice infested waters and on the estimation of ice

resistance, that is the longitudinal forces applied on the ship by the ice (e.g., Lindqvist (1989); Su et al. (2010); Jeong et al.

(2017)). These calculations are important for ship design and for operational considerations. Lindqvist (1989) introduced a

simple empirical formulation to calculate ice resistance based on ship’s characteristics and ice physical parameters. When sea45

ice pressure is not considered, the resistance encountered by a ship only depends on processes such as on crushing, breaking

and displacement of ice floes by the ship’s hull. Based on laboratory experiments in ice tanks, Kulaots et al. (2013) extended

this empirical approach by also considering the effect of compression on the performance of ships navigating in ice infested

waters. There are also some numerical studies of ice loads on ships transiting in ice infested waters where sea ice is represented

using discrete elements (i.e., the floes, Metrikin and Løset (2013); Daley et al. (2014)) or as a continuum (e.g., Kubat et al.50

(2010)).

In contrast with studies mentioned in the last paragraph, we focus on ship besetting, rather than on a ship progressing in

an ice covered region. We also study the downscaling of sea ice pressure from the km scale to scales relevant for navigation

activities (tens of m). Note that this was briefly investigated by Kubat et al. (2010) for a ship transiting through a loose sea55

ice cover. Kubat et al. (2010) showed that the pressure on the hull of the ship can be two orders of magnitude larger than the

large-scale pressure. For our numerical experiments, we use a continuum based viscous-plastic sea ice model. In a first set of

simulations, we study how the small-scale pressure depends on the stresses applied at the boundaries, on the ice conditions and

on the rheology parameters. The second part of the results is dedicated to shipping applications; we investigate the small-scale
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pressure field in the vicinity of an idealized ship beset in heavy ice conditions and under compressive stresses. Idealized sea60

ice modeling studies with a continuum based approach have been conducted by specifying strain rates at the boundaries (e.g.

Kubat et al. (2010); Ringeisen et al. (2019)) or by specifying wind patterns (e.g. Hutchings et al. (2005); Heorton et al. (2018)).

However, to our knowledge, it is the first time that internal stresses are specified at the boundaries.

This paper is structured as follow. In section 2, the sea ice momentum equation and the viscous-plastic rheology are de-65

scribed. The sea ice model used for the numerical experiments is presented in section 3. The approach for prescribing sea ice

stresses at the boundaries is presented in section 4. The validation of our experimental setup is done in section 5. The main

results are given in section 6. Finally, concluding remarks are provided in section 7.

2 Sea ice momentum equation and rheology70

Large-scale sea ice forecasting system solves the sea ice momentum given by

ρh
Du

Dt
=−ρhf ẑ×u+ τa− τw +∇ ·σ− ρhg∇Hd, (1)

where ρ is the density of the ice, h is the ice volume per unit area (sometimes referred to as the mean thickness), D
Dt is the total

derivative, f the Coriolis parameter, u = ux̂+vŷ the horizontal sea ice velocity vector, x̂, ŷ and ẑ are unit vectors aligned with

the x, y and z axis of our Cartesian coordinates, τa is the wind stress, τw the water stress, σ the internal ice stress tensor with75

components σij acting in the jth direction on a plane perpendicular to the ith direction, g the gravitational acceleration and

Hd the sea surface height. This two-dimensional formulation, which is obtained by integrating along the vertical, is justified

when the ratio between the horizontal and vertical scales of the problem is large (i.e., a ratio of at least 1:10, Coon et al. (1974)).

The sea ice pressure is by definition the average of the normal stresses, that is80

p=−(σ11 +σ22)/2, (2)

with a negative sign because, by convention, stresses in compression are negative. The pressure is the first stress invariant (i.e.,

it does not vary with the choice of the coordinate system). The second stress invariant (q), that is the maximum shear stress at

a point, is defined by

q =

√
σ2

12 +

[
(σ11−σ22)

2

]2

. (3)85

As the stresses are vertically integrated, the stresses and stress invariants are 2D fields with units of Nm−1. Because the sea

ice stresses are written as a function of the sea ice velocity (see details below), one also obtains the pressure p and the maximum
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shear stress q when solving the momentum equation for u. Hence, by solving the momentum equation for the large-scale sea

ice model, the pressure at every grid point is obtained (we refer to this pressure field as the large-scale pressure).

90

Here, we consider a small area of sea ice (the size of a grid cell) to be under compressive stresses. The idea is to apply the

large-scale pressure at the boundaries of this small area and to simulate the sub-grid scale sea ice pressure (referred to as the

small-scale pressure). We assume here that the ice is not moving nor deforming (e.g. it is being held against a coast). To further

simplify the problem, the wind stress, the water stress, the advection of momentum and the sea surface tilt term are neglected.

We wish to find, inside this small domain, the steady-state solution of ρh∂u/∂t=∇ ·σ which is equivalent as finding the95

solution of∇·σ = 0. The stresses are modeled according to the viscous-plastic rheology with an elliptical yield curve (Hibler,

1979). With this rheology, the relation between the stresses and the strain rates can be written as

σij = 2ηε̇ij + [ζ − η]ε̇kkδij −Pδij/2, i, j = 1,2, (4)

where δij is the Kronecker delta, ε̇ij are the strain rates defined by ε̇11 = ∂u
∂x , ε̇22 = ∂v

∂y and ε̇12 = 1
2 (∂u

∂y + ∂v
∂x ), ε̇kk = ε̇11 + ε̇22,

ζ is the bulk viscosity, η is the shear viscosity and P is a term which is a function of the ice strength.100

The bulk and shear viscosities are respectively

ζ =
Pp

24
, (5)

η = ζe−2, (6)

where Pp is the ice strength, 4=
[
(ε̇211 + ε̇222)(1 + e−2) + 4e−2ε̇212 + 2ε̇11ε̇22(1− e−2)

] 1
2 , and e is the aspect ratio of the el-105

lipse, i.e. the ratio of the long and short axes of the elliptical yield curve.

Following Hibler (1979), the ice strength Pp is parameterized as

Pp = P ∗hexp[−C(1−A)], (7)

where P ∗ is the ice strength parameter, A is the sea ice concentration and C is the ice concentration parameter, an empirical110

constant set to 20 (Hibler, 1979) such that the ice strength decreases quickly with the ice concentration. Unless otherwise

stated, the rheology parameters P ∗ and e are respectively set to 27.5 kNm−2 and 2.

4



When4 tends toward zero, equations (5) and (6) become singular. To avoid this problem, ζ is capped following the approach

of Hibler (1979). It is expressed as115

ζ =
Pp

2∆∗ , (8)

where ∆∗ = max(∆,∆min) with ∆min = 2× 10−9 s−1.

We use a replacement method similar to the one presented in Kreyscher et al. (2000). The P term in equation (4) is given by

P = 2ζ4. (9)120

The replacement method is commonly used in sea ice models to prevent unrealistic deformations of the sea ice cover when

there is no external forcing.

3 Experimental setup

The McGill sea ice model is used for the numerical experiments. We use revision 333 with some modifications, described125

below, for specifying stresses at the boundaries.

Considering a domain of a few km by a few km wide (representing a grid cell of a large-scale sea ice forecasting system),

the idea is to use the model at very high resolution for studying the distribution of pressure inside that domain. To do so, the

model was modified so that internal stresses can be specified at the boundaries (instead of the usual Dirichlet condition (i.e.130

u = 0) at land-ocean boundaries and the Neumann condition at open boundaries with gradients of velocity equal to zero).

These stresses at the boundaries represent the integrated effect of the wind and ocean-ice stresses (like one would get from a

large-scale model). The next section gives more details about the implementation of the stress boundary conditions.

For the experiments, the domain is a square of dimensions 5.12 km by 5.12 km. It is subdivided in small squared grid cells135

of dimensions ∆x by ∆x with ∆x taking one of the following values depending on the experiment: 10 m, 20 m, 40 m, 80 m,

160 m, 320 m, 640 m or 1280 m. The size of the domain was chosen because it is close to the average size of CAPS sea ice

grid cells and because 5120 m divided by the ∆x listed above gives an integer number of small grid cells. For simplicity, we

refer to this domain as our 5×5 km domain.

140
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The momentum equation ρh∂u/∂t=∇·σ is solved at time levels ∆t, 2∆t, 3∆t , . . . where ∆t is the time step. We introduce

the index n= 1,2,3, . . . which refers to these time levels. Using a backward Euler approach for the time discretization, the

momentum equation is written as

ρh
un−un−1

∆t
=∇ ·σn (10)

The spatial discretization of equation (10) on the McGill model Arakawa C-grid leads to a system of nonlinear equations that145

is solved using a Jacobian free Newton Krylov (JFNK) solver (the most recent version is described in Lemieux et al. (2014)).

The ice starts from rest. The time step is 30 min. At each time level, the nonlinear convergence criterion is reached when the

Euclidean norm of the residual has been reduced by a factor of 10. The maximum number of nonlinear iterations is set to 500.

The steady-state solution is assumed when the maximum velocity difference between two time levels is lower than 10−9 m

s−1. As the ice is assumed to be held against the coast, the simulated velocities are very small (i.e., most of the ice cover is150

in the viscous regime). Our numerical simulations therefore provide 2D static fields of the internal stresses inside this small

domain. Thermodynamic processes and advection of h and A are neglected for all the numerical experiments described in this

paper.

For some of the numerical experiments, a digitized ship is placed inside the domain. The digitized ship is simply defined as155

a rigid body by using land cells. The boundary conditions on the contour of the ship are therefore no outflow and no slip (i.e.,

u= 0) which is the usual Dirichlet approach for land cells. This allows us to investigate the distribution of small-scale pressure

around this idealized ship.

4 Boundary conditions for the small domain160

The boundary conditions are imposed the same way on the four sides of the small domain. Hence, to shorten the paper, only the

treatment on the west side of the domain is explained here. The McGill model uses an Arakawa C-grid; the center of the cell is

the point for tracers (e.g. h and A) while the velocity components are positioned on the left side (for u) and lower side (for v).

To avoid confusion with the indices i and j for the stresses σij and the strain rates ε̇ij , the indices l and m are respectively used

to identify the grid cells along the x and y axes. The cell at the southwesternmost location of the domain has indices l =1 and165

m=1. Figure 2 shows one of the grid cell on the first column of the domain (on the west side). The left side of the grid cell is

on the west boundary of the domain. The sides of the domain are referred to as west (W ), east (E), south (S) and north (N ).

On the west side of the domain, a normal stress (σW ) and a shear stress (τW ) are applied. The momentum balance for the

u component is comprised of the terms ∂σ11/∂x and ∂σ12/∂y. Inside the domain, these terms are approximated by second-170
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order centered differences. At the boundaries, however, a one-sided first-order approximation is employed for ∂σ11/∂x. Hence,

∂σ11/∂x at the u location u(l,m) = u(lm) with l =1 is approximated as

∂σ11

∂x
∼
σ11(1m)−σW

(m)

∆x/2
, (11)

where σ11(1m) = [ζ(1m) +η(1m)][u(2m)−u(1m)]∆x
−1 +[ζ(1m)−η(1m)][v(1m+1)−v(1m)]∆y

−1−P(1m)/2 is evaluated at the

t point.175

On the other hand, the term ∂σ12/∂y only depends on the boundary conditions, that is

∂σ12

∂y
∼
τW(m+1)− τ

W
(m)

∆y
, (12)

For the v component v(1m) (which is at a distance of ∆x/2 from the boundary), there is no special treatment for ∂σ22/∂y.

However, the second-order treatment of the term ∂σ12/∂x follows180

∂σ12

∂x
∼
σ12(2m)− τW(m)

∆x
, (13)

where σ12(2m) = η(2m)[u(2m)−u(2m−1)]∆y
−1 + η(2m)[v(2m)− v(1m)]∆x

−1 is evaluated at the n point.

Even though u(1m) is located at the boundary, it is solved along with v(1m) and all the other velocity components in the

domain by the nonlinear solver.185

In our simulations, σW
(m) = σW and τW(m) = τW , i.e., they do not vary with m along the boundary (same idea for the other

sides of the domain). Furthermore, for numerical stability (see appendix A), the normal stress on the east side (σE) has to be

equal to σW . Similarly, σS = σN and τW = τE = τS = τN .

190

5 Model validation

The McGill model has, over the years, been extensively tested (e.g. Lemieux et al. (2014); Bouchat and Tremblay (2017);

Williams and Tremblay (2018)). A few simple experiments were conducted in order to validate the implementation of the new

stress boundary conditions.

195

In all the experiments, normal and shear stresses are applied at the four boundaries of the 5×5 km domain. For a given set of

sea ice conditions, the steady-state solution of equation (10) is obtained. This provides us with the velocity field defined on the
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Arakawa C-grid. As the stresses and invariants are function of the sea ice conditions and velocity (see equations (2-9)), static

2D fields of the internal stresses and invariants are easily obtained.

200

Compared to realistic pan-Arctic simulations, the simplicity of the problem allows one to obtain analytical solutions for

specific cases. In a first validating experiment, the thickness (h) and concentration (A) fields are respectively set to 2 m and 1

everywhere on the domain. By specifying σW = σE = σS = σN = -10 kNm−1 (i.e., p=10 kNm−1) and τW = τE = τS = τN

= 0 kNm−1, at the boundaries, the shear stress should be zero everywhere inside the domain while the pressure field should

be constant and equal to 10 kNm−1. This is indeed what is obtained from the numerical experiment (not shown). With p=10205

kNm−1, a 2 m ice cover is able to resist this compressive stress, that is the ice should be in the viscous regime. Using the

definition of the stresses from equation (4), we obtain p= P/2− ζε̇I , where ε̇I = ε̇11 + ε̇22 is the divergence. It is easy to

demonstrate that the analytical solution for the divergence is ε̇I =−p∆min/Pp =−3.63× 10−10 s−1. This is exactly what is

obtained with the model (not shown).

210

We also verify that we obtain the same results when a lead is present within the physical domain for different spatial resolu-

tion (∆x). For example, Fig. 3 shows the pressure field for a 1 km long, 40 m wide lead resolved with a ∆x of 10 m (a) and for

the same lead resolved with ∆x=20 m (b). The thickness of the level ice (hl) around the lead is 2 m.. The maximum pressure

at 10 m resolution is 35.79 kNm−1 while the maximum pressure at 20 m is 33.15 kNm−1. From these simulated 2D pressure

fields, probability density functions (PDF) are calculated using bins of 0.25 kNm−1. They are shown in Fig. 3c which further215

demonstrates that the simulated fields are very similar at 10 and 20 m resolutions.

The effect of the same lead but oriented differently in the domain was also tested. The PDF of the pressure field is exactly

the same whether the lead is oriented horizontally (west-east) or vertically (south-north, not shown). The spatial distribution of

pressure is qualitatively the same when orienting the lead diagonally. The PDF of pressure for this diagonal lead is similar to220

the PDF of the vertical and horizontal ones although we find that the maximum pressure is usually a bit smaller (not shown).

This is likely a consequence of the spatial discretization of a finite width lead on a cartesian grid.

In a last set of experiments for the validation, we also checked that the presence of relatively nearby boundaries do not affect

our conclusions. In the first experiment, with ∆x=20 m, a horizontal 1 km long and 20 m wide lead was positioned in the225

center of the 5.12 km by 5.12 km domain. In a second experiment, again with ∆x=20 m, the same lead was positioned in a

domain twice this size, that is the boundaries are much further from the lead in the second experiment. For both experiments,

hl is again equal to 2 m. The pressure fields around the lead are very similar (not shown) in the two experiments with maxi-

mum pressures in the domain equal respectively to 36.22 kNm−1 and 36.36 kNm−1 (a difference of ∼ 0.4%). To avoid these

boundary effects, we will tend to position the important features in the center of the domain for the numerical experiments. For230

a numerical experiment to be valid, we require that the simulated pressure in the first grid cells around the domain has to be
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within 10% of the pressure value specified at the boundaries.

6 Results

To limit the number of parameters than can be varied in the numerical experiments, the thickness of the level ice hl is always235

set to 2 m. Furthermore, for all the experiments, except the ones for the last figure, the normal stresses at the boundaries are

always equal to -10 kNm−1 while the shear stresses are set to zero. In other words, σW = σE = σS = σN =−10 kNm−1 and

τW = τE = τS = τN = 0 kNm−1.

6.1 Idealized sea ice experiments240

In a first set of experiments, we conduct idealized experiments to investigate the impact of sea ice features (leads, ridges, etc.)

on the small-scale pressure field and especially on the maximum pressure. These experiments will give us insights and guide us

for the second series of experiments with the idealized ship (see subsection 6.2). Fig. 4a shows the pressure field for a uniform

sea ice cover with hl = 2 m except the presence of a 1 km long and 10 m wide lead. Large pressure are observed at the tips

of the lead. In a second experiment, the same thickness sea ice conditions are used except that a smaller lead, a refrozen lead245

(with h= 0.5 m) and a thick sea ice ridge (with h= 5 m) are also positioned in the 5×5 km domain. The pressure field for this

latter experiment is shown in Fig. 4b. Fig. 4c compares the PDFs of pressure for these two experiments. Looking at the PDFs

and comparing Fig. 4a and Fig. 4b, one can notice that the other features are not associated with such high pressure values and

that the maximum pressure is associated with the long 1 km lead. To further support this conclusion, note that the maximum

pressure in the 5×5 km domain is 42.57 kNm−1 in the first experiment while it is 42.59 kNm−1 in the second one. In other250

words, the other features do not change our analysis; what really matters is the longest lead as it is in the vicinity of the longest

lead that the largest stress concentration is found.

Our results above suggest that only the longest lead needs to be considered for estimating the largest small-scale pressure.

For a given hl and stresses applied at the boundaries, there is more and more stress concentration when increasing the length255

of a lead. This is shown in Fig. 5 for three values of the parameter P ∗. For short leads, the ice around the lead is able to sustain

the stresses (the ice is rigid, that is in the viscous regime). This is why the three curves are very similar in Fig. 5a and Fig. 5b

for short leads. However, for longer leads, there is more and more stress concentration. Some points of the ice, close to the tips

of the lead, fail (i.e., the state of stress reaches the yield curve).

260

As the whole yield curve scales with the value of P ∗, a larger P ∗ leads to larger maximum pressure and shear values. When

increasing P ∗, the maximum shear stress approaches asymptotically the shear strength (dashed lines in panel a, e−1hlP
∗/2).

This asymptotic behavior is less obvious for the pressure (Fig. 5b) as it is still far from the compressive strength (hlP ∗).
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A similar behavior is observed when varying the ellipse aspect ratio (which modifies the shear strength). A smaller value of

e leads to larger pressure values and larger shear stresses values (with a similar asymptotic behavior) for long leads (not shown).265

While the average pressure in the domain is the same (10 kNm−1) for all the values of P ∗, the maximum pressure is en-

hanced as P ∗ increases (as shown in Fig. 5b). Comparing the pressure fields with P ∗=27.5 kNm−2 and P ∗=20 kNm−2 (see

Fig. 6) for the same lead shows that the pressure fields around the lead are different over hundreds of meters. Moreover, the

largest difference in the pressure fields are found at the tips of the lead; the pressure is much larger with P ∗=27.5 kNm−2 than270

with P ∗=20 kNm−2 in the vicinity of the tips.

We also investigate the evolution of the small-scale pressure field as a function of resolution. The h and A fields are defined

at 10 m resolution. These fields h and A are respectively set to 2 m and 1.0 everywhere except for a 1 km long, 10 m wide lead

in the middle of the domain with h= 0 m and A= 0. The model is run at resolutions of 10, 20, 40,...1480 m. For these lower275

resolutions, the h and A fields are obtained through a coarse-graining procedure (see Fig. 7 for details).

All the values of p and q in the 5×5 km domain are plotted as a function of ∆x in Fig. 8a and Fig. 8b. The distribution of

these small-scale stresses are non-symmetric (they are limited by 0 on one side) and are skewed toward large values. These

results constitute another validation of the numerical framework as the distribution reduces to a single point equal to the large-280

scale values prescribed at the boundaries as ∆x tends toward the horizontal dimension of the domain.

6.2 Experiments with an idealized ship

In a second set of experiments, we investigate the small-scale pressure field in the vicinity of a ship in heavy sea ice conditions

and under compressive stresses. Importantly, we estimate the maximum pressure applied on the ship in different idealized285

experiments. The small-scale pressure field around a ship 90 m long and 30 m wide is investigated. We assume that the ship

was navigating in level ice 2 m thick and that it is now beset. First, it is assumed that a lead (i.e., a channel) created by the ship

is still open behind it over a distance of 600 m while further away the lead has been closed due to resulting sea ice convergence.

The pressure field for this experiment is shown in Fig. 9a and with more details in Fig. 9b. Similar to our previous results

without a ship, larger pressures are found at the tips of the lead. In fact, there are very large pressure on both sides of the ship,290

especially at the back of the ship. Numerical simulations of ships navigating in sea ice show larger pressure at the front of

the ship (e.g. Kubat et al. (2010); Sayed et al. (2017)). However, our results show the opposite for a ship that is beset. These

results also suggest that by navigating in these compact ice conditions, the ship has generated these high pressure conditions

by creating a lead in its wake.

295

A crucial aspect to consider here is the length of the lead behind the ship. Assuming the leads closes at a shorter distance

from the ship should imply smaller pressure values (for the same pressure applied at the boundaries). This is indeed the case as
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demonstrated by the sensitivity study shown in Fig. 10 (blue curve). We also consider the case of a lead partially consolidated.

In fact, we assume that the concentration (A) is 0 just behind the ship and that it increases linearly to 1.0 for a certain lead

length. The (mean) thickness h of the ice is set equal toAhl. This appears to have a very small effect on our results (not shown)300

compared to the case with A=0 everywhere in the lead (blue curve in Fig. 10). This is due to the fact that the ice strength

(see equation (7)) decreases rapidly as A diminishes. However, if we consider that the ice in the lead is consolidating through

thermodynamical growth (i.e., we set h to a small value in the lead behind the ship) we find that this notably reduces the

stress applied on the ship. This can be seen with the orange and magenta curves in Fig. 10 which respectively correspond to

thicknesses of 0.1 m and 0.2 m for the refrozen lead.305

Fig. 10 shows that, for a certain large-scale pressure applied at the boundaries, the length of the lead behind the ship has a

strong impact on the maximum pressure applied on the ship. Even though it is unclear how long should be the lead for a given

hl and for a given large-scale pressure, it is realistic to suppose that the higher the pressure at the boundaries, the shorter is the

lead (i.e., it has closed over a certain distance due to the compressive stresses). Note that this is what is usually assumed for310

ships navigating in sea ice under compressive stresses (see for example Suominen and Kujala (2012)). In this last experiment,

with results shown in Fig. 11, it is therefore assumed that the lead is 600 m long when the pressure at the boundaries is 0 kNm−1

and that it decreases linearly to 0 m when the pressure reaches 20 kNm−1 (blue curve) or when it reaches 15 kNm−1 (magenta

curve). The relation between the lead length L and the pressure at the boundaries pb is therefore L=−30pb + 600 for the blue

curve and L=−40pb + 600 for the magenta one. We therefore consider here that the lead has consolidated mechanically and315

that there is no thermodynamical growth. Fig. 11 roughly exhibits three different regimes. In the first regime, for small pressure

at the boundaries (i.e., long lead length), the maximum pressure on the ship is linearly related to pb because it is independent of

lead length. In the second regime, for large pressure at the boundaries (i.e., small lead length), the maximum pressure is most

sensitive to the lead length and we see again a linear dependence, with a negative slope, on pb. In between, in the third regime,

two compensating effects are playing out: a larger pressure at the boundaries causes the lead to be shorter which decreases the320

stress concentration in the vicinity of the ship, making the maximum pressure weakly sensitive to the pressure at the boundary.

7 Conclusions

We have investigated how sea ice pressure could be downscaled at scales relevant for navigation. The distribution of pressure

at small-scales is associated with non-uniform sea ice conditions. The PDF of the small-scale pressure is non-symmetric (it is325

limited by 0 on one side) and is skewed toward large values. Our results indicate that what really determines the largest values

of pressure is associated with defects, that is long leads. Because a lead itself is not able to sustain any stress (unless it has

refrozen), the load is taken by the ice around the lead with especially large values of the stresses in the vicinity of the tips.

A sensitivity study indicates that the small-scale distribution and maximum pressure are notably affected by the choice of the

shear strength (e) and compressive strength (P ∗) for the elliptical yield curve. This suggests that a different yield curve and330

11



different mechanical strength properties would also lead to significantly different results.

Idealized experiments with a digitized ship beset in heavy sea ice conditions show that stress concentration also occurs in

the vicinity of the ship. In fact, our simulations show that the largest pressure applied on the ship is found on both sides at the

back of the ship. These results are different than the ones of Kubat et al. (2010) and Sayed et al. (2017) because our idealized335

ship is beset while they considered a digitized ship progressing in looser ice conditions.

We also argue that the ship itself is responsible for the strong concentration of stress on its side; the lead (or channel) it

created by navigating in sea ice causes these large values of the stresses. Moreover, it is found that even a short lead causes

pressure values notably larger than the pressure applied at the domain boundaries. The stresses on the ship should decrease340

as the ice in the lead consolidates (either by thermodynamical growth or closing of the lead). These conclusions highlight the

difficulty of providing sub-grid scale pressure forecasts for navigation applications as the important parameters (i.e. the length

of the lead and the thickness of the refrozen ice) are not well constrained.

A significant advantage of our numerical framework is that stresses can be specified at the boundaries. However, it is also345

important to note its limitations. First, it can only calculate the pressure field for a ship beset in heavy sea ice conditions; it can-

not simulate the sea ice stresses applied on a ship navigating in ice infested waters (as in Kubat et al. (2010)). Also, in reality,

sea ice convergence can cause ridging which can locally increase the yield strength of the ice. This strain hardening process

was not considered in our numerical experiments; the maximum possible pressure in the domain is equal to P ∗hl. Another

possible limitation of our numerical framework is that the ice is modeled as a continuum material rather than a collection of350

discrete particles. It would be very interesting to still apply stresses at the boundaries but to model the interactions between the

sea ice and the idealized ship with a model based on discrete floes (e.g., Daley et al. (2014); Metrikin and Løset (2013)).

In our numerical experiments, the digitized ship is simply represented as a rigid body with no outflow and no slip boundary

conditions applied on the contour. A more realistic numerical framework should also involve a better representation of ship-355

ice interactions. For example, as done by Kubat et al. (2010), a Coulomb friction condition could be applied on the ship contour.

Although the convergence criterion for the steady-state solution of the velocity field has been reached in all the numerical

experiments described in this paper, it is worth mentioning that this came with tremendous difficulties for the JFNK solver;

the nonlinear convergence was really slow and the solver failed on some occasions to reach the required drop in the Euclidean360

norm of the residual within the allowed 500 nonlinear iterations. Lemieux et al. (2010) have already shown that the JFNK

solver exhibits robustness issues as the grid is refined. In fact, it is really the number of unknowns that impacts the nonlin-

ear convergence and robustness of the JFNK solver. This clearly indicates that innovations and more sophisticated numerical

methods (e.g., Mehlmann and Richter (2017)) would be very beneficial for the sea ice modeling community.

365
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Code availability. Revision 333 of the McGill sea ice model was modified so that stresses can be prescribed at the boundaries. This code is

available on Zenodo at https://doi.org/10.5281/zenodo.3992822

Appendix A: Stability analysis

A few observations were made concerning the numerical stability of our new numerical framework with stresses applied at the

boundaries. In this appendix, we discuss and provide explanations for these limitations.370

1) We have noticed that for a simulation to be numerically stable, σW should be equal to σE , σS should be equal to σN

and that all the shear stresses at the boundaries should have the same value (i.e., τW = τE = τS = τN ). This can be easily

understood by considering the ice in the domain as a single piece of ice. Assuming there is no shear stress, the sum of the

forces applied on the ice along the x axis are375

∑
Fx = σW ∆x−σE∆x. (A1)

For stability,
∑
Fx should be zero so that the ice does not accelerate indefinitely. This means that σW should be equal

to σE . The same conclusion applies for σS and σN . Finally, a similar argument can be made for the shear stresses in terms

of conservation of angular momentum. Interestingly, these conditions are the same ones found for the Cauchy tensor for the

stresses at a point.380

2) Dukowicz (1997) mentions, that for numerical stability, the internal stresses should be zero at open boundaries while

our simulations show that it is possible to obtain stable solutions with non-zero stresses prescribed at the boundaries. To

understand this, we revisit the stability analysis described in Dukowicz (1997). As Dukowicz (1997), we consider a simplified

1D momentum equation. However, we also take into account the replacement method. With these considerations, our 1D385

momentum equation is given by

ρh
∂u

∂t
=
∂σ

∂x
, (A2)

For stability, the rheology term should dissipate kinetic energy (KE). To investigate this, we multiply equation (A2) by u

and integrate it over the whole domain (x= 0, i.e. the west side and x= L, i.e. the east side of our domain).

L∫
0

uρh
∂u

∂t
dx=

L∫
0

u
∂σ

∂x
dx, (A3)390
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As advection and thermodynamics are not considered, the thickness field is constant in time and we can write

L∫
0

∂

∂t

(
ρhu2

2

)
dx=

L∫
0

u
∂σ

∂x
dx, (A4)

In 1D, σ = α2ζε̇I − ζ∆ with ζ =
Pp

2∆∗ , ∆∗ = min(∆,∆min), ε̇I = ∂u
∂x and ∆ = α|ε̇I | with α=

√
1 + e−2.

The term on the right can be integrated by parts, that is395

L∫
0

u
∂σ

∂x
dx= [uσ]

L
0 −

L∫
0

∂u

∂x
σdx, (A5)

∂

∂t

L∫
0

(
ρhu2

2

)
dx= uLσL−u0σ0−

L∫
0

(
α2ζε̇2I − ε̇Iζ∆

)
dx, (A6)

where the time derivative has been moved outside the integral because the region of integration is fixed (Dukowicz, 1997).

Note that uL = u|x=L (same idea for the other terms). The term in the integral on the left is the total KE. From our results

above we know that σL has to be equal to σ0. By symmetry, we can also assume that uL =−u0. Hence, with the definition of400

the viscous coefficient, we can then write equation A6 as

∂

∂t
KE =−2u0σ0−

L∫
0

αPp

2∆∗

(
αε̇2I − ε̇I |ε̇I |

)
dx. (A7)

For the second term on the right,
(
αε̇2I − ε̇I |ε̇I |

)
= ε̇2I(α− 1) if ε̇I is positive (divergence), while it is equal to ε̇2I(α+ 1)

if ε̇I is negative (convergence). As α≥ 1, this means that the integral is always positive and the term therefore always dissi-

pates KE because of the minus sign in front of it. As opposed to the derivation of Dukowicz (1997), the replacement method405

is also considered here. Nevertheless, consistent with his results, we find that the second term on the right always dissipates KE.

The stability therefore depends on the boundary term −2u0σ0. The worst condition happens when there is strong conver-

gence at the boundaries. In this case, σ0 =−|σ0|< 0 and u0 > 0 such that 2u0|σ0| is a source of KE. For a large convergence,

we assume that the ice is in the plastic regime. To be able to evaluate the integral on the right in equation (A7), we also look at410

a simple case with Pp that is constant over the whole domain. With these assumptions we find:

∂

∂t
KE = 2u0|σ0| −

αPp

2

L∫
0

ε̇2I
|ε̇I |

dx+
Pp

2

L∫
0

ε̇Idx. (A8)
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With ε̇2I/|ε̇I |= |ε̇I |=−ε̇I because ε̇I < 0 we can then write

∂

∂t
KE = 2u0|σ0|+

αPp

2

L∫
0

ε̇Idx+
Pp

2

L∫
0

ε̇Idx. (A9)

With
∫ L

0
ε̇Idx=

∫ L

0
∂u
∂xdx= uL−u0 =−2u0 we obtain415

∂

∂t
KE = 2u0|σ0| − (α+ 1)Ppu0. (A10)

This means that |σ0| should be smaller that the compressive strength (α+ 1)Pp/2 for the solution to be stable (i.e., the

rheology term dissipates KE). A similar analysis can be conducted if we assume a tensile stress at the boundaries. In this case,

we find that the stress |σ0| at the boundaries should be smaller than the tensile strength (α− 1)Pp/2.

420

To ensure numerical stability, Dukowicz (1997) mentions that the stresses should be zero at the open boundaries. This is a

stricter condition that the one we find here. We have indeed demonstrated that the solution is stable as long as the stresses pre-

scribed at the boundaries are between the compressive and tensile strengths of the ice. Numerical experiments (in 2D) confirm

this finding. For example, when prescribing normal stresses of -10 kNm−1 on a uniform sea ice cover, the solution is stable if

hl > 10 kNm−1/P ∗ (not shown).425
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a)

b)

Figure 1. 24 h forecast of the sea ice pressure (kNm−1) and of the surface winds (ms−1) from the Canadian Arctic Prediction System

(CAPS). The forecast was initiated at 00 UTC on 29 April 2020. Almost all of the domain is shown in panel a) while panel b) is a subset of

the domain located in the region of Svalbard (the sub-region is defined by the blue rectangle in panel a). Note that the color scale is not the

same for the two panels.
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Figure 2. One grid cell on the western boundary of the domain with indices l =1 and m. This figure shows the location of the velocity

components on the C-grid of the McGill model. The variables h and A are positioned at the tracer point t. Some variables (e.g. σ12) are also

calculated at the node (n) point. The stresses (σW and τW ) applied at the western boundary are shown with purple arrows.
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a)

b)

c)

Figure 3. Pressure field for ∆x=10 m (a) and ∆x=20 m (b). The thickness field is 2 m everywhere except a 1 km long, 40 m wide

horizontal lead in the middle of the domain. The normal stresses at the boundaries are -10 kNm−1. The last panel (c) shows PDFs of the

pressure in the 5×5 km domain for ∆x=10 m (cyan) and ∆x=20 m (magenta). Bins of 0.25 kNm−1 were used to build the PDFs.

20



a)

b)

c)

Figure 4. Pressure (kNm−1) field for a thickness field of 2 m everywhere except a 1 km long, 10 m wide horizontal lead in the middle of

the domain (a, referred to as ’single lead’). Pressure (kNm−1) field for a thickness field of 2 m everywhere except a 1 km long, 10 m wide

horizontal lead in the middle of the domain, a diagonal refrozen lead (h=0.5m), a smaller lead in the northwestern part of the domain and a

1 km ridge (max h = 5 m in center, 2.5 m on each side) in the southeastern part of the domain (b, referred to as ’many features’). For both

experiments ∆x= 10 m and the normal stresses at the boundaries are -10 kNm−1. PDFs of the pressure for the ’single lead’ experiment

(cyan) and the ’many features’ experiment (dashed magenta)
21



a)

b)

Figure 5. Maximum value of the shear stress invariant (a, kNm−1) and of the pressure (b, kNm−1) in the domain as a function of lead length

for different values of the parameter P ∗ (P ∗=20 kNm−2: blue, P ∗=27.5 kNm−2: orange, P ∗=35 kNm−2: magenta). The thickness field is

2 m everywhere except the 10 m wide horizontal lead in the middle of the domain. The normal stresses at the boundaries are -10 kNm−1.
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Figure 6. Pressure field with P ∗=27.5 kNm−2 minus the pressure field with P ∗=20.0 kNm−2 (in kNm−1). For both experiments, the

thickness field is 2 m everywhere except a 1 km long, 10 m wide horizontal lead in the middle of the domain. The normal stresses at the

boundaries are -10 kNm−1.
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�x = 10 m

<latexit sha1_base64="3V7kNO0cMPp9Za2wY40yURuXnw0="></latexit>

�x = 20 m

<latexit sha1_base64="HDOmRcKD+Cubdf6yC7LHZVEffgg="></latexit>

h(l⇤m⇤)

<latexit sha1_base64="cg2atnF81hn34nbqj45b0RkYxXk="></latexit>

h(lm)

<latexit sha1_base64="3YoskzIuH132ep+jgNP+Hg+jjAg="></latexit>

h(lm+1)

<latexit sha1_base64="n3MAjNUWy2BkW6FWHsTo1FQxlJY="></latexit>

h(l+1m+1)

<latexit sha1_base64="yo1kpPeioe0GsrV79UiLsnrWAP0="></latexit>

h(l+1m)

<latexit sha1_base64="4x/pyfOqbNdQZXbsW65Yn8tFALY=">AAACzXicjVHLSsNAFD2Nr1pfVZdugkWoCCWRii6LbtxZwT6wlpJMp21oXiQTodS69Qfc6m+Jf6B/4Z0xBbWITkhy5tx7zsy91w5dJxaG8ZrR5uYXFpeyy7mV1bX1jfzmVj0OkojxGgvcIGraVsxdx+c14QiXN8OIW57t8oY9PJPxxi2PYifwr8Qo5G3P6vtOz2GWIOp60BkX3QPT25908gWjZKilzwIzBQWkqxrkX3CDLgIwJPDA4UMQdmEhpqcFEwZC4toYExcRclScY4IcaRPK4pRhETukb592rZT1aS89Y6VmdIpLb0RKHXukCSgvIixP01U8Uc6S/c17rDzl3Ub0t1Mvj1iBAbF/6aaZ/9XJWgR6OFE1OFRTqBhZHUtdEtUVeXP9S1WCHELiJO5SPCLMlHLaZ11pYlW77K2l4m8qU7Jyz9LcBO/yljRg8+c4Z0H9sGSWS0eX5ULlNB11FjvYRZHmeYwKzlFFjbx9POIJz9qFlmh32v1nqpZJNdv4trSHD3hfkqw=</latexit>

Figure 7. Schematic of the coarse-graining procedure. The thickness field is defined at 10 m resolution (blue cells on the left). The thickness

field at 20 m resolution is obtained by averaging the h values of the four 10 m cells contained in the 20 m one (purple cell). This procedure

is repeated for the other lower resolutions. The same method is applied for the concentration A. The indices l,m are for the 10 m grid while

the indices l∗,m∗ are for the 20 m grid.
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a)

b)

Figure 8. All the values of pressure (a) and of the shear stress invariant (b) in the 5×5 km domain as a function of resolution. The thickness

field is 2 m everywhere except a 1 km long, 10 m wide horizontal lead in the middle of the domain. The initial thickness and concentration

fields at the other resolutions are obtained through a coarse-graining procedure. The normal stresses at the boundaries are -10 kNm−1.
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a)

b)

Figure 9. Pressure field at 10 m resolution when including a digitized ship 90 m long and 30 m wide (in gray). The thickness field is 2 m

everywhere except a 600 m long lead behind the ship. The normal stresses at the boundaries are -10 kNm−1. The whole domain is shown in

panel a while panel b shows a zoom of the pressure field around the ship.
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Figure 10. Maximum pressure (kNm−1) on the ship as a function of the length of the lead behind the ship. The thickness field is 2 m

everywhere except in the lead behind the ship; the thickness of the refrozen lead (hrf ) is 0 cm for the blue curve, it is 10 cm for the orange

one and it is 20 cm for the magenta one. The digitized ship is 90 m long and 30 m wide. The normal stresses at the boundaries are -10

kNm−1.

Figure 11. Maximum pressure (kNm−1) on the ship as a function of the pressure (pb) prescribed at the boundaries. For both curves, it is

assumed that the length of the lead (L) is 600 m for pb=0 kNm−1 and that it decreases linearly as pb increases. For the blue, the lead behind

the ship is closed when pb reaches 20 kNm−1 while the lead is closed when pb=15 kNm−1 for the magenta curve. The thickness field is 2 m

everywhere except in the lead behind the ship where the thickness is 0 m. The digitized ship is 90 m long and 30 m wide.
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