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Abstract. Accurate subseasonal-to-seasonal (S2S) atmospheric forecasts and hydrological forecasts have considerable
socioeconomic value. This study conducts a multimodel comparison of the Tibetan Plateau snow cover (TPSC) prediction skill
using three models (ECMWF, NCEP and CMA) selected from the S2S project database to understand their performance in
capturing TPSC variability. S2S models can skilfully forecast TPSC within a lead time of 2 weeks but show limited skill
beyond 3 weeks. Compared with the observational snow cover analysis, all three models tend to overestimate the area of TPSC,
especially during winter. Another remarkable issue regarding the TPSC forecast is the increasing TPSC with forecast lead time,
which further increases the systematic positive biases of TPSC in the S2S models at longer forecast lead times. The
underestimation of TPSC dissipation induces an increase in TPSC with forecast lead time in the models. Such systematic
biases of TPSC influence the forecasted surface air temperature in the S2S models. The surface air temperature over the Tibetan

Plateau becomes colder with increasing forecast lead time in the S2S models.

1 Introduction

Anomalous weather- and climate-related natural disasters are among the most common disasters and are associated with severe
socioeconomic consequences. Reliable forecasts of such weather and climate anomalies with sufficient lead time have
significant benefits for decision-makers (White et al., 2017). Traditionally, weather forecasts cover a time range of up to 2
weeks, while climate forecasts begin at the seasonal timescale and extend outward. Demands are growing rapidly in operational
forecasts in the subseasonal-to-seasonal (S2S) range (from two weeks to a season). The primary basis for longer lead forecasts
beyond 2 weeks is the interaction of the atmosphere with other, more slowly varying earth system components, such as the
ocean or land, that evolve over timescales of weeks and months, rather than days as in the atmosphere (Mariotti et al., 2018).
Land—-atmosphere coupling is one of the key physical processes for S2S prediction but is not well simulated and may reduce
S2S prediction skill (Robertson et al., 2014; Dirmeyer et al., 2019).

Snow cover is a crucial component in both the climate system and the cryosphere. The radiant and thermal properties of
snow cover significantly influence the ground thermal regime (Zhang, 2005). As the lower boundary condition of the

atmosphere, snow cover forces the regional and global atmosphere and can serve as an indicator of the atmosphere (Barnett et
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al., 1989; Bamzai and Shukla, 1999; Wu and Kirtman, 2007; Henderson et al., 2018). Snow cover can vary rapidly within a
season over discontinuous or sporadic permafrost zones (Wang et al., 2015; Suriano and Leathers, 2018; Song et al., 2019; Li
et al., 2020a) and rapidly influence the atmosphere (Clark and Serreze, 2000; Zhang et al., 2019). Snow cover may provide a
potential source of S2S predictability via its variability and atmospheric effects at the subseasonal time scale.

The Tibetan Plateau is the highest plateau in the world and is known as the “third pole”. Due to its high elevation and
cold climate, the Tibetan Plateau has much more snow cover than the other regions at the same latitude. Tibetan Plateau snow
cover (TPSC) is a key component of the climate system. TPSC influences land surface thermal conditions (Chen et al., 2017;
Li et al., 2018) and thus influences atmospheric circulations and monsoons over Asia and beyond (Wu and Qian, 2003; Lin
and Wu, 2011; Xiao and Duan, 2016; Wang et al., 2017; You et al., 2020). TPSC shows variations at multiple time scales,
including the subseasonal scale (Li et al. 2016; Song and Wu, 2019; Li et al., 2020a). The subseasonal variations in TPSC
influence the atmosphere over East Asia (Li et al., 2018; Li et al., 2020b). A better simulation and TPSC forecast may favour
a better forecast for weather and climate at the S2S time scale.

Snow cover also affects the hydrology cycle. The accumulation of precipitation in the form of snow and its release through
snowmelt runoff is an important component of the hydrologic cycle (Jeelani et al., 2012; Fayad et al., 2017). TPSC plays an
important role in hydrological systems, providing a reservoir of water and acting as a buffer that controls river discharge.
Rivers including the Yangtze River, Yellow River, Yarlung Zangbo River and Mekong River have headwaters over the Tibetan
Plateau. Studies on the variability in TPSC are critical for water management in downstream regions (Immerzeel et al., 2009;
Zhang et al., 2012; Zhang et al., 2013). Skilful predictions of TPSC with sufficient lead time are thus of great societal
importance for hydrologic prediction.

Since the implementation of the S2S prediction project database (Vitart et al., 2016), many studies have evaluated the
skill of S2S models for atmospheric elements and variables, such as the Madden—Julian Oscillation (Vitart, 2017), surface air
temperature (Yang et al., 2018; Wulff and Domeisen, 2019), and precipitation (de Andrade et al., 2019). Some works also
focus on the skill of S2S models for hydrological elements (Li et al., 2019; Schmitt Quedi and Mainardi Fan, 2020). However,
we still know little about the skill of S2S models for TPSC. Understanding the forecasting skills of the S2S model on the TPSC
is the first step to applying the S2S model to hydrological forecasts over the Tibetan Plateau. Moreover, considering the
influence of TPSC on the atmosphere, clarifying the issue of the S2S model for TPSC helps improve the ability of the S2S
model for atmospheric forecasting.

This study conducts a multimodel comparison of the TPSC prediction skill using selected models from the S2S project
database to learn about their performance in capturing TPSC variability. Our main goal is to use the state-of-the-art S2S
prediction systems of these operational centres to demonstrate why models exhibit systematic biases of TPSC and whether
such systematic biases influence the regional air temperature forecasted in S2S models. The rest of the paper is organized as
follows. Details on the data set used in this study are described in Section 2. The systematic bias of TPSC in S2S models and
its effect on local temperature are presented in Section 3 and Section 4, respectively. The conclusion and discussion are

presented in Section 6.
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2 Data

The reforecasts considered for this study are taken from three operational forecast systems that are part of the S2S project
database: the European Centre for Medium Range Weather Forecasts (ECMWF), the US National Centers for Environmental
Prediction (NCEP), and the China Meteorological Administration (CMA). These models share a common reforecast period of
1999-2010 with a reforecast initialized frequency that is equal to or greater than once a week. This study only used reforecasts
produced by the control forecast. Details of the S2S database can be found in Vitart et al. (2016). Daily reforecast data were
averaged for each 7-day period starting every 1 January to create a total of 52 weeks per year (December 31 was excluded).
The reforecasts that initialized on the first day of these weeks were selected. Forecast lead times were defined here as 1 week
(1-7 days), 2 weeks (8—14 days), 3 weeks (15-21 days), 4 weeks (22-28 days), and 5 weeks (29-35 days).

The land surface models used for ECMWF, NCEP and CMA are the Hydrology Tiled ECMWF Scheme for Surface
Exchanges over Land (HTESSEL; Balsamo et al., 2009), Noah (Ek et al., 2003) and BCC_AVIM2 (Wu et al., 2014),
respectively. All these land surface models contain snow schemes. According to the snow scheme in each land surface model
(Dutra et al., 2010; Koren et al., 1999; Wu and Wu, 2004), we obtain the snow cover fraction, which is a diagnostic variable
in this study, from the snow water equivalent and snow density. The surface air temperature (SAT) in these S2S models is also
used. All variables are at a 1°x1° horizontal spatial resolution.

The reforecasts in the S2S models are verified against observational daily snow cover and SAT in the reanalysis.
Observational daily snow cover data are obtained at a 24 km resolution from the Interactive Multisensor Snow and Ice Mapping
System (IMS) snow cover analysis (Helfrich et al., 2007) provided by the National Oceanic and Atmospheric Administration.
The IMS examines satellite images and other sources of data on snow cover and generates maps of snow cover distribution.
The IMS analysis over the Tibetan Plateau corresponds well with ground-based measurements and can capture the general
subseasonal variability in TPSC (Yang et al., 2015; Li et al., 2018). The original 24-km resolution IMS analysis is interpolated
into the 1°x1° grid of the S2S models. Daily SATs at a 1°x1° resolution are obtained from ERA-Interim reanalysis (Dee et al.,
2011). These data range from 1 January 1999 to 30 December 2010. S2S reforecasts are compared with the observations and
reanalysis for the same calendar date.

The Tibetan Plateau area of focus in this study is the region within 26—41°N and 70-105°E at an altitude of greater than
3000 m (Fig. 1). Although the Tibetan Plateau is located over middle latitudes, the area is cold due to high altitude, especially
in boreal winter. This study mainly focuses on TPSC during wintertime. Here, each winter contains 17 weeks, covering from
the 45th week (November 5-11) in one year to the 9th week (February 26—March 4) in the following year. This study spans
11 winters (from 1999/2000 to 2009/2010).
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3 Tibetan Plateau snow cover in the S2S forecast models
3.1 Increasing Tibetan Plateau snow cover with forecast lead time

Before we present the systematic bias of TPSC in the S2S models, the overall forecast skills of TPSC is evaluated. Here, we
focus on the variation in snow-covered area over the entire Tibetan Plateau, which can be measured by a TPSC index. The
TPSC index represents the percentage of grid points covered by snow in the analysis or models over the entire Tibetan Plateau.
The unit of the TPSC index is %. The prediction skill of the TPSC index has been investigated through the temporal correlation
coefficient (TCC) between the TPSC index in the predictions and that in the observations during wintertime (Fig. 2). A skilful
prediction is generally defined as a TCC greater than 0.5. All three models show good prediction skills at lead times of 1-2
weeks with a TCC greater than 0.5. At lead times of 1-2 weeks, the TCC for the ECMWF model is largest among the three
models. The NCEP model has the lowest TCC among the three models at a lead time of 1 week. However, the TCC for NCEP
falls the most slowly at lead times of 2 weeks or more. The NCEP model has a larger TCC than the CMA model at lead times
of 2 weeks or more. The TCC values decrease with the increase in the forecast lead time and decline below 0.5 at and after
lead times of 3 weeks for all three models. These results indicate that the S2S models can skilfully forecast TPSC variations
within a lead time of 2 weeks during wintertime but show limited skill at a lead time of 3 weeks or more.

The seasonal cycle of TPSC is generally the most dominant component that contributes to the total variabilities in TPSC
(Li et al., 2020a). The prediction ability of models for the seasonal cycle of TPSC directly affects the prediction ability for the
total variability in TPSC. Systematic bias of TPSC in models will also be exposed in their multi-year mean seasonal cycle.
Because multi-year mean seasonal cycles of TPSC in the S2S models are based on only twelve years of available reforecasts
in this study, a 90-day low-pass filter is performed on the raw multi-year mean seasonal cycle to eliminate the unnecessary
high-frequency signal. The seasonal cycle of TPSC indexes in IMS and three different models show some obvious differences
(Fig. 3). Models can generally reproduce the seasonal cycle of the TPSC index but with some non-negligible biases. Compared
with the IMS analysis, all models tend to overestimate the TPSC index during winter. The TPSC index in the ECMWF is
higher than the observed TPSC index by approximately 10-30% all year round (Fig. 3a). NCEP has a larger TPSC index than
that in the observation by approximately 10-30% during wintertime but tends to underestimate the TPSC index by
approximately 10% during summertime (Fig. 3b). CMA overestimates the TPSC index all year round (Fig. 3c), especially
during winter and spring (up to 30%). Overall, overestimation of the TPSC area is common in models compared with
observations, especially during winter.

Another remarkable issue regarding the forecast of TPSC is the increasing TPSC with forecast lead time, which further
increases the overestimation of TPSC in models at longer forecast lead times. These increasing biases can be detected from
the multiyear mean seasonal cycle (Fig. 3). To highlight such increasing biases, we further present differences in the multiyear
mean seasonal cycle for the TPSC index between forecasts for leads of 2—5 weeks and forecasts for leads of 1 week in three
modes (Fig. 4). Such differences are obtained by subtracting the seasonal cycle at a lead time of 1 week from that at forecast

lead times of 2—5 weeks. The differences in the three models show some common features. The differences in all three models
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are mainly positive except for some short periods during summertime. By comparing values at different lead times, we found
that such positive differences increase with increasing lead time. In general, the positive biases of TPSC with the longest
forecast lead time (5 weeks; red lines in Fig. 4) are largest among all forecasts in autumn, winter and spring. The forecast
results of each model also show some unique characteristics. The increase in the ECMWF bias peaks in autumn and is
maintained through winter and spring, especially for that at a forecast lead time of 3—5 weeks (Fig. 4a). The increase in the
NCEP bias shows large values during autumn and spring, but considerable values are still observed during winter (Fig. 4b).
The increase in the CMA bias is similar to that in ECMWF but shows larger values than that in ECMWF (Fig. 4¢). Overall,

the systematic positive biases of TPSC in the S2S models increase with increasing forecast lead time during the cold season.

3.2 Snow cover accumulation versus dissipation

The intraseasonal variability in TPSC leads to obvious rapid variations in TPSC with a period shorter than a season, making
TPSC exhibit a distinct lack of persistence within one season (Li et al., 2020a). Both accumulation and dissipation of snow
cover occur within a season over the Tibetan Plateau. The increase in TPSC with forecast lead time in the models may be
induced by overestimation of snow cover accumulation or underestimation of snow cover dissipation. To support this
hypothesis, we analysed the frequency of weekly TPSC accumulation and dissipation in the observation and forecast models
in winter (Table 1). Here, the increasing (decreasing) weeks means that the TPSC index is greater (less) than that in the last
week. The TPSC indexes in the S2S models are compared with the TPSC index in the last week, which are initialized at the
same time, but with different forecast lead times.

The proportions of increasing and decreasing weeks in the observations are 50.3% and 49.7%, respectively, which is
fairly even (Table 1). However, this kind of balance does not exist in the models. In the models, the proportion of increasing
weeks is mostly more than 2 times as large as the proportion of decreasing weeks. The proportion of decreasing weeks is low
compared with that in the observations. Specifically, decreasing weeks occupy only 23.0-31.0% of the total forecasts by
ECMWEF. NCEP shows similar results, except for forecasting at a lead time of 5 weeks. This underestimation of the proportion
of decreasing weeks is more severe in CMA. Moreover, the most severe underestimations of the proportion of decreasing
weeks are the forecasts with a lead time of 2 or 3 weeks for all models.

The above results indicate that the models underestimate the frequency of TPSC dissipation, whereas they overestimate
the frequency of TPSC accumulation. Then, systematic TPSC bias may occur and increase. To highlight increases in the overall
TPSC biases, as well as changes in biases in successive weeks, a composite analysis is performed for all TPSC reforecasts
during winter (Fig. 5a), increasing TPSC cases (Fig. 5b) and decreasing TPSC cases (Fig. 5c). All reforecasts initialized in
winter are taken into account for the composite of all cases shown in Fig. 5a. The sample numbers of all cases are 187. Among
all cases, we further select the increasing TPSC cases and decreasing TPSC cases. If the TPSC index continues to increase
(decrease) for three weeks, this case is regarded as an increasing (decreasing) TPSC case. There are 46 increasing TPSC cases
and 53 decreasing TPSC cases. We average the 46 (53) cases for different lead times. To focus on the increase in biases, values

with a lead time of 1 week are removed for forecasting at all lead times.
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On a seasonal average, the growth of the TPSC index in winter is only 1.3% over two weeks in the observation (black
line in Fig. 5a). However, the models tend to exaggerate the growth of the TPSC index (colour lines in Fig. 5a). The growth
of the TPSC index over the two weeks in the models ranged from 4.9% (ECMWF) to 9.8% (CMA). The TPSC index in the
forecast shows distinct differences between the increasing TPSC cases and decreasing TPSC cases (Fig. 5b and 5c¢). The growth
of the TPSC index in the increasing TPSC cases is 14.1% over two weeks in the observation (black line in Fig. 5b). The growth
of the TPSC index over two weeks in NCEP and CMA is close to that in the observation, while there is some underestimation
of such growth in the ECMWF (colour lines in Fig. 5b). Although there are some differences between the TPSC index in the
models and that in the observation, all models can forecast the increasing trend in the TPSC index. However, the situation for
the decreasing TPSC cases is quite different. The growth of the TPSC index in the decreasing TPSC cases is —10.0% over two
weeks in the observation (black line in Fig. 5¢). However, all the changes in the TPSC index in the models are positive values
(colour lines in Fig. 5c), indicating that there are some difficulties for the models in forecasting the dissipation of TPSC.

In this section, it was found that S2S models underestimate the frequency of TPSC dissipation and have some difficulties
forecasting TPSC dissipation with a real rate. As a result, the underestimations of TPSC dissipation induce an increase in TPSC

with forecast lead time in the models.

4 Sensitivity of local surface air temperature to snow cover biases
4.1 Colder temperature with increasing forecast lead time

The variation in snow-covered area over the entire Tibetan Plateau immediately changes the local land surface albedo. The
surface air temperature (SAT) is further influenced. As shown in Section 3, the TPSC in the S2S models during the cold season
increases with increasing forecast lead time. Such systematic biases of TPSC may influence the forecasted SAT in the S2S
models. To test this hypothesis, we performed an analysis on SAT over the Tibetan Plateau similar to our analysis on TPSC.
The SAT over the Tibetan Plateau is derived by averaging the SAT over the Tibetan Plateau region as defined in Section 2.
Differences in the multiyear mean seasonal cycles for SAT over the Tibetan Plateau between forecasts with leads of 2—5 weeks
and forecasts with leads of 1 week in the three models, which were obtained by subtracting the seasonal cycle with a lead time
of 1 week from that for forecast lead times of 2—5 weeks, are examined (Fig. 6).

The differences in the three models show some common features. The differences in all three models are mainly negative
except for some short periods during summertime. By comparing values at different lead times, we also find that such negative
differences increase with increasing lead time. The negative differences of SAT with the longest forecast lead time (5 weeks;
red lines in Fig. 6) are largest among all forecasts in autumn, winter and spring. The differences in SAT between the forecast
for lead 5 weeks and the forecast for lead 1 week can be up to 1.8 °C. Such differences in ECMWF are more obvious than
those in NCEP and CMA. The above results indicate that the SAT over the Tibetan Plateau becomes colder with increasing
forecast lead time in the S2S models. Considering the results we obtained in Section 3, it can be concluded that the increasing

TPSC is accompanied by decreasing SAT with forecast lead time.
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4.2 Sensitivity of SAT to snow cover accumulation and dissipation

Section 3.2 reveals that models show different performances on snow cover accumulation and dissipation. We also found that
there are some difficulties for the models in forecasting the dissipation of TPSC. To learn whether such different performances
influence the SAT forecast and to examine the sensitivity of SAT to TPSC in the S2S models, we investigated the changes in
SAT in the S2S models over the Tibetan Plateau during winter (Fig. 7a), as well as the increasing TPSC cases (Fig. 7b) and
decreasing TPSC cases (Fig. 7¢). To provide a SAT reference in the models, a composite was performed on SAT in the ERA-
interim reanalysis. We performed the same composite method as that is used in Section 3.2 on TPSC but for SAT over the
Tibetan Plateau.

On a seasonal average, the change in SAT over the Tibetan Plateau in the reanalysis during winter is less than 0.1 °C
(black line in Fig. 7a). However, the SAT in the models tends to decrease as the forecast lead time increases, especially in the
ECMWF and NCEP models (colour lines Fig. 7a). The growth of the TPSC index over two weeks is 1.2 °C for the ECMWF
and NCEP models. Considering the exaggerated growth of TPSC shown in Fig. 5a, a decrease in SAT is expected. In the
ECMWF and NCEP models, more TPSC leads to lower SAT. SAT tends to be sensitive to TPSC in the ECMWF and NCEP
models. However, SAT in the CMA model lacks sensitivity to TPSC. Although the exaggerated growth of the TPSC index in
the CMA model is the most intense in these three models, the decrease in SAT in the CMA model is the least obvious.

The change in SAT should be closely connected to the variations in TPSC. The change in SAT in the increasing TPSC
cases is —1.9 °C in two weeks in the ER A-interim reanalysis (black line in Fig. 7b), which is associated with the accumulation
of TPSC (black line in Fig. 5b). SAT shows considerable decreases during the increasing TPSC cases (Fig. 7b). Cold biases
of SAT between the forecasted SAT with lead time and that at the initial week tend to appear in all models (Fig. 7b), which is
associated with accumulation of TPSC (in Fig. 5b). Here, the change in SAT in CMA over two weeks is smaller than that in
the ECMWF and NCEP models. SATs in the ECMWF and NCEP models are more sensitive to TPSC than that in the CMA
model.

In Section 3.2, we found that there are some difficulties for the models in terms of forecasting the TPSC dissipation. Here,
we further find that such biases lead to biases in SAT. SAT increases by 1.4 °C over two weeks in the reanalysis (black line in
Fig. 7¢), which is associated with the dissipation of TPSC (black line in Fig. 5¢). However, the SATs in all these models shows
small changes (colour lines in Fig. 7c) compared with that in the reanalysis. Such small changes in the SATs in the ECMWF
and NCEP models are consistent with the changes in the TPSC indexes in these models, which show little changes (Fig. 5c¢).
However, the large change in TPSC in the CMA model (Fig. 5¢) does not induce large biases in SAT, indicating that the SAT
in CMA lacks sensitivity to TPSC.

4.3 Numerical experiment

Through the results in Sections 4.1 and 4.2, we find that the local SAT over the Tibetan Plateau becomes colder with increasing

forecast lead time. We assumed that the cold SAT biases are induced by the overestimation of TPSC. However, the relationship
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between snow cover and the atmosphere is a two-way coupling connection (Henderson et al., 2018). The assumption should
be tested by numerical experiments. Otherwise, one may suspect that the cold SAT induces an increasing TPSC other than the
TPSC influence on SAT.

Numerical experiments are performed using the Advanced Weather Research and Forecasting Model (WRF-ARW,
version 4.1.3), which was developed by the National Center for Atmospheric Research (NCAR). WRF-ARW has been applied
to climate research, including studies of land—air interactions. The land surface parameterization scheme used in this study is
the Noah land surface model (Ek et al., 2003). Important physics options include the WRF single-moment 6-class microphysics
scheme (Hong and Lim, 2006), the NCAR Community Atmosphere Model (CAM 3.0) spectral-band shortwave and longwave
radiation schemes (Collins et al., 2006), the Yonsei University planetary boundary layer scheme (Hong et al., 2006), and the
Kain—Fritsch convective parameterization scheme (Kain, 2004). The WRF is driven by atmospheric and surface forcing data
extracted from the National Centers for Environmental Prediction (NCEP) FNL Operational Model Global Tropospheric
Analyses. The simulation domain is in a cylindrical Equidistant projection with a horizontal resolution of 1°x1° and located
within 5-65°N and 40-170°E (as shown in Fig. 1).

Two ensemble experiments are performed: control (CTL) runs and sensitive experimental EXP runs. Both runs contain
187 forecasts. All these runs have the same initial times as the forecasts in the S2S models that we used in this study. Each
member ran continuously for 22 days. The first day in each run is for spin-up, and the results are discarded. The CTL runs are
integrated freely without any modification. Because both the NCEP S2S model and our numerical experiment use Noah as the
land surface model, the TPSCs in CTL runs are expected to show unreal increases with integration time, which is similar to
that in the NCEP S2S model. The EXP run is designed to eliminate such bias in TPSC. The FNL analyses are from the Global
Data Assimilation System (GDAS), which continuously collects observational data from the Global Telecommunications
System and other sources for many analyses. GDAS incorporates daily snow data from IMS analyses and the Air Force
Weather Agency Snow Depth Analysis Model. We replace the forecasted TPSC in the WRF model with TPSC in the FNL
analyses every 6 hours. Because FNL analyses assimilate the observed TPSC, the TPSC in the EXP run is expected to show a
small bias that increases with integration time.

We averaged snow cover and SAT over the Tibetan Plateau in all simulations for CTL and EXP to obtain a composite
for all reforecasts of TPSC during winter in the numerical experiment (Fig. 8). As we discussed in Section 3.2, the growth of
the TPSC index in winter is only 1.3% for two weeks in the observations, while the S2S models tend to exaggerate the growth
of the TPSC index (Fig. 5a). In the numerical experiment, CTL also exaggerates the growth of the TPSC index (blue line in
Fig. 8a). Because both the NCEP S2S model and our numerical experiment use Noah as the land surface model, such biases
may be attributed to the land surface model. Compared with CTL, EXP shows smaller cumulative biases (red line in Fig. 8a),
which is because TPSC in EXP is replaced by TPSC in the FNL analyses every 6 hours . The SAT becomes colder with
increasing forecast lead time in CTL (blue line in Fig. 8b). However, such a decrease in SAT is much smaller in EXP (red line

in Fig. 8b). Here. the numerical experiment indicates that the cold SAT biases are induced by the overestimation of TPSC.
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5 Conclusion

Accurate subseasonal-to-seasonal (S2S) atmospheric forecasts and hydrological forecasts have considerable socioeconomic
value. This study evaluates the Tibetan Plateau snow cover (TPSC) prediction capabilities of three S2S forecast models
(ECMWF, NCEP and CMA). These three S2S models can skilfully forecast TPSC variations within a lead time of 2 weeks
during wintertime with temporal correlation coefficients greater than 0.5. ECMWF better captures TPSC variations compared
with NCEP and CMA at a lead time of 1-2 weeks. All models show limited skill in forecasting TPSC at a lead time of 3 weeks
or more. Compared with the IMS snow cover analysis, all three models tend to overestimate the area of TPSC, especially
during winter. Another remarkable issue regarding the TPSC forecast is the increasing TPSC with forecast lead time, which
makes the systematic positive biases of TPSC in models further increase at longer forecast lead times. Generally, the positive
biases of TPSC with the longest forecast lead time are largest among all forecasts with different lead times for most of the year.

S2S models underestimate the frequency of TPSC dissipation, whereas they overestimate the frequency of TPSC
accumulation. The accumulation and dissipation of wintertime TPSC occurs evenly in the observations. However, this kind of
balance does not exist in the S2S models. In the models, the proportion of TPSC accumulation is mostly more than 2 times as
large as the dissipation proportion. The most severe underestimations of the dissipation proportions are the forecasts at a lead
time of 2 or 3 weeks for all models. The models also have some difficulties forecasting the TPSC dissipation at a real rate. The
growth of TPSC in the decreasing TPSC cases is —10.0% over two weeks in the observations, but all the changes in TPSC in
the models are increasing. As a result, the underestimation of TPSC dissipation induces an increase in TPSC with forecast lead
time in the models.

The increasing TPSC is accompanied by decreasing surface air temperature (SAT) with forecast lead time. The SAT over
the Tibetan Plateau becomes colder with increasing forecast lead time in the S2S models. The negative differences in SATs
with the longest forecast lead times are largest among all forecasts in autumn, winter and spring. The differences in SATs
between the forecast for a lead of 5 weeks and the forecast for a lead of 1 week can be up to 1.8 °C. SATs tends to be sensitive
to the TPSCs in both ECMWF and NCEP. However, SAT in CMA lacks sensitivity to TPSC. Numerical experiments were
performed to test whether the cold SAT biases are induced by the TPSC overestimation. The control run exaggerates the
growth of TPSC, which is similar to that in S2S models. The SAT in the control run becomes colder with integration time.
When the increasing TPSC with forecast lead time in the models along with the integration of the model is removed in the
sensitivity run, the overestimated snow cover in the numerical model is flattened. Meanwhile, the decreasing SAT with
integration time also disappears. This finding indicates that cold SAT biases are induced by the TPSC overestimation.

Land—atmosphere coupling is one of the key physical processes for S2S prediction but is not well simulated and may
reduce S2S prediction skill (Robertson et al., 2014; Dirmeyer et al., 2019). Studies have shown that better snow cover
initialization improves subseasonal and seasonal forecasts/simulations (Jeong et al., 2013; Orsolini et al., 2013; Senan et al.,

2016; Lin et al., 2016; Kolstad, 2017). This study indicates that in addition to snow cover initialization, a better model skill for
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snow cover prediction may also improves S2S prediction skill. More work is necessary and valuable to improve the prediction

ability of models for snow cover.

Data and code availability

The data and model used in this study are free to the public. The S2S datasets and ERA-interim data are available at
https://apps.ecmwf.int/datasets/. The IMS snow cover data are available at https://nsidc.org/data/G02156. The NCEP FNL data
are available at https://rda.ucar.edu/datasets/ds083.2/. The WRF source codes can be obtained at
https://www2.mmm.ucar.edu/wrf/users/download/get source.html. All figures were produced using NCAR Command
Language (NCL) version 6.6.2, an open source software free to the public, by UCAR/NCAR/CISL/TDD,
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Figure 1. The location and topography of the Tibetan Plateau. Shading shows topography (unit: m). The black rectangle shows the region
within 26-41°N and 70-105°E. The red contour marks altitudes at 3000 m. The Tibetan Plateau area, which is the focus of this study is the

region within the black rectangle at an altitude of greater than 3000 m. This figure also shows the simulation domain for numerical

experiments in this study.
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Figure 2. Prediction skill of the Tibetan Plateau snow cover (TPSC) index in the S2S models during wintertime. The temporal correlation
coefficients (TCCs; y-axis) between the observed TPSC index and the predicted TPSC index in the ECMWF (orange line), NCEP (green
line) and CMA (blue line) models during winter. The x-axis represents the forecast lead time (unit: week). A good prediction skill has a TCC

that is greater than 0.5 (marked by black line).

16



https://doi.org/10.5194/tc-2020-131
Preprint. Discussion started: 15 June 2020 The Cryosphere
(© Author(s) 2020. CC BY 4.0 License. Discussions

(a) Seasonal cycle for TPSCI in ECMWF
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Figure 3. The multiyear mean seasonal cycle for the weekly Tibetan Plateau snow cover (TPSC) index (unit: %) in (a) ECMWF, (b) NCEP,
475 and (c) CMA. The black lines represent the TPSC index in the observation; the red or blue lines represent the TPSC index in the forecast

models for different lead times (in week); see legend in (a). The x-axis represents the first day of each week in the seasonal cycle.
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(a) All cases (N=187)
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Figure 5. Composites of the Tibetan Plateau snow cover index (unit: %) for (a) all cases, (b) increasing TPSC cases, and (c) decreasing
485 TPSC cases. Black lines, orange lines, green lines and blue lines represent composites in the observation, ECMWF, NCEP, and CMA,
respectively; see legend in (a). The x-axis represents the number of weeks in the cases for the composites, which are also forecast lead times

(unit: week). The “N” in the title of each plot indicates the number of cases for the composite.
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(a) Seasonal cycle for SAT in ECMWF
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(c) Seasonal cycle for SAT in CMA
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490  Figure 6. Differences in the multiyear mean seasonal cycle for weekly surface air temperature over the Tibetan Plateau (unit: °C) between
forecasts with a lead of 2-5 weeks and forecasts with a lead of 1 week in (a) ECMWEF, (b) NCEP, and (c) CMA. The x-axis represents the

first day of each week in the seasonal cycle.
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(a) All cases (N=187)
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(b) Raising TPSC cases (N=46)
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(c) Reducing TPSC cases (N=53)
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495  Figure 7. Composites of surface air temperature over the Tibetan Plateau (unit: °C) for (a) all cases, (b) increasing TPSC cases, and (c)
decreasing TPSC cases. Black lines, orange lines, green lines, blue lines and black lines represent composites in observation, ECMWF,
NCEP, and CMA, respectively; see legend in (a). The x-axis represents the number of weeks in the cases for the composites, which are also

forecast lead times (unit: week). The “N” in the title of each plot indicates the number of cases for the composite.
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(a) TPSCI
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500
Figure 8. Sensitivity of SAT to TPSC biases in the numerical experiments. (a) TPSCI and (b) SAT over TP in CTL (blue lines) and EXP
(red lines) runs. The units of TPSCI and SAT are % and °C. The x-axis represents the number of weeks lagging the start of the model initial

date (unit: week).
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505 Table 1. The proportion of increasing (decreasing) weeks in the observations and forecast models with different lead times (in

weeks).
Observation/Lead=2 Lead=3 Lead=4 Lead=5
IMS 50.3% (49.7%)
ECMWF 72.7% (27.3%) 77.0% (23.0%) 70.6% (29.4%) 69.0% (31.0%)
NCEP 77.5% (22.5%) 69.5% (30.5%) 64.7% (35.3%) 55.1% (44.9%)
CMA 86.6% (13.4%) 67.4% (32.6%) 72.2% (27.8%) 79.7% (20.3%)
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